UC Berkeley

UC Berkeley Previously Published Works

Title

Vaccine waning and mumps re-emergence in the United States

Permalink

https://escholarship.org/uc/item/35p927rs

Journal

Science Translational Medicine, 10(433)

ISSN

1946-6234

Authors

Lewnard, Joseph A Grad, Yonatan H

Publication Date

2018-03-21

DOI

10.1126/scitranslmed.aao5945

Peer reviewed

Published in final edited form as:

Sci Transl Med. 2018 March 21; 10(433): . doi:10.1126/scitranslmed.aao5945.

Vaccine waning and mumps re-emergence in the United States

Joseph A. Lewnard^{1,*} and Yonatan H. Grad^{2,3,*}

¹Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, Massachusetts

²Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, Massachusetts

³Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts

Abstract

Following decades of declining mumps incidence amid widespread vaccination, the United States and other developed countries have experienced a resurgence in mumps cases over the last decade. Outbreaks affecting vaccinated individuals and communities with high vaccine coverage have prompted concerns about the effectiveness of the live attenuated vaccine currently in use. It is unclear if immune protection wanes, or if the vaccine protects inadequately against currently circulating mumps virus lineages. Synthesizing data from six studies of mumps vaccine effectiveness, we estimated that vaccine-derived immune protection against mumps wanes on average 27 (95% confidence interval: 16 to 51) years post-vaccination. After accounting for this waning, we found no evidence that the emergence of heterologous virus genotypes contributed to changes in vaccine effectiveness over time. A mathematical model of mumps transmission confirmed the central role of waning immunity to the vaccine in the re-emergence of mumps cases. Outbreaks from 2006 to the present among young adults, and outbreaks in the late 1980s and early 1990s among adolescents, aligned with peaks in mumps susceptibility of these age groups predicted to be due to loss of vaccine-derived protection. In contrast, evolution of mumps virus strains escaping immune pressure would be expected to cause a higher proportion of cases among children, not adolescents and young adults as observed. Routine use of a third vaccine dose at age 18 years, or booster dosing throughout adulthood, may be a strategy to prevent mumps reemergence and should be assessed in clinical trials.

Introduction

Over the last decade, mumps outbreaks have thwarted the goal of eliminating indigenous or non-imported mumps virus transmission in the United States by the year 2010 (1, 2).

Author contributions: JAL and YHG conceived the study, JAL performed the analyses with input and discussion from YHG, and JAL drafted and YHG edited the manuscript.

Competing interests: JAL discloses grant funding from Pfizer to Harvard University, and previous consulting for Pfizer, for work unrelated to this analysis. YHG discloses consulting for GSK for work unrelated to this analysis.

Data and materials availability: Code for replicating analyses and figures is available at http://github.com/joelewnard/mumps.

^{*}To whom correspondence should be addressed: jlewnard@hsph.harvard.edu, ygrad@hsph.harvard.edu.

Whereas over 90% of US-born children experienced mumps infections by age 20 in the prevaccine era (3), incidence declined substantially after licensure of a live attenuated vaccine (the Jeryl Lynn vaccine) in 1967, in particular after the 1977 recommendation for its routine use among infants as part of the measles-mumps-rubella (MMR) vaccine (2). Outbreaks among vaccinated middle school- and high school-aged children arose in the late 1980s, followed by sustained reductions in incidence after children were recommended to receive a second MMR dose at 4-6 years of age (4). However, an ongoing resurgence in mumps cases began with a series of outbreaks on university campuses in 2006 (2). An older age of infection (ages 18-29 years, compared to the pre-vaccine average of 5-9 years) has been a defining feature of these outbreaks (5), similar to recent occurrences in Canada, western Europe, and Asian countries with routine MMR vaccination (6–9).

These circumstances are troubling on two fronts. First, as many as 10% of mumps infections acquired after puberty may cause severe complications including orchitis, meningitis, and deafness, in contrast to a milder clinical course in children that typically involves fever and parotid gland swelling (10). Second, a majority of mumps cases in recent outbreaks have been reported among young adults who received two vaccine doses as recommended (11). This observation has prompted concerns about suboptimal performance of the Jeryl Lynn vaccine currently in use (12).

It is unclear whether recent outbreaks in vaccinated communities are due to the waning of vaccine-derived immunity or to the emergence of mumps virus strains escaping vaccine-driven immunological pressure. Distinguishing between these possibilities is critical to policymakers and members of the scientific and medical communities: at issue is whether the re-emergence of mumps can be prevented by modifying vaccine dosing schedules or if a new vaccine must instead be developed (12).

To this end, we sought to distinguish waning of vaccine-derived protection from long-term changes in vaccine effectiveness against circulating mumps strains using data from six epidemiological studies of mumps vaccine effectiveness performed over past decades in the United States and Europe (table S1). Pooling data from these studies, we tested whether the strength of vaccine-derived immune protection declines with time since receipt of the vaccine—a pattern that would suggest vaccine waning—and whether the degree of protection has changed over recent decades amid shifts in the circulating population of mumps virus lineages. We then measured the potential impact of the waning of vaccinederived immunity on the susceptibility of the United States population to mumps over the decades since vaccine licensure, and used mathematical models to assess whether recent mumps virus transmission dynamics are more consistent with hypotheses of waning immunity or vaccine escape. Specifically, we compared expected age-specific incidence in stochastic simulations of mumps transmission within two hypothetical vaccinated populations. The first was subject to waning protection based on our estimates of the duration of vaccine-derived immunity; the second experienced durable protection but confronted mumps virus strains against which vaccination provided low degrees of protection. We used our findings to evaluate alternative vaccination policies aiming to enhance protection among adults.

Results

Evidence of waning immunity in studies of vaccine effectiveness

Uncertainty about the protective efficacy of the Jeryl Lynn mumps vaccine—ranging from 95% following a single dose in randomized controlled trials (13) to <50% 2-dose effectiveness during recent outbreaks (14)—has undermined efforts to gauge population immunity. This variation in estimates of effectiveness permitted us to evaluate several hypotheses about the reasons mumps cases have re-emerged among vaccinated persons (2, 12). Fitting a meta-regression model to data from prospective and retrospective cohort studies (table S1), we identified that the time elapsed since receipt of an individual's last vaccine dose accounted for 66.4% of unexplained variation in published vaccine effectiveness estimates (Fig. 1A-C). Applying our estimate of the vaccine waning rate to a model of exponentially-distributed durations of protection, we estimated that immunity persists, on average, 27.4 (95% confidence interval [CI]: 16.7 to 51.1) years after receipt of any dose. Among the 96.4% (CI 94.0 to 97.8%) of individuals expected to mount primary responses to mumps vaccination, we thus expected 25% may lose protection within 7.9 (CI 4.7 to 14.7) years, 50% within 19.0 (CI 11.2 to 35.4) years, and 75% within 38.0 (CI 22.4 to 70.8) years.

The gradual replacement of predominantly A-genotype mumps virus in the pre-vaccine era by mixed genotypes after vaccine introduction has also been suspected to contribute to diminished protection. However, we found no evidence for a decline in vaccine effectiveness over the years, 1965 to 2006, in particular after controlling for the effect of vaccine waning (Fig. 1D). Whereas we estimated a non-significant 1.29 (CI 0.70 to 2.37)-fold increase in the relative risk of infection given vaccination for each log year after 1964 in unadjusted analyses, this trend did not persist (adjusted relative risk=0.85; 95% CI 0.56 to 1.30) after controlling for longer time since vaccination among older age of subjects in later studies.

Moreover, we did not identify a difference in the duration of protection after a first dose of vaccine as compared to the duration of protection after a second dose (Fig. 1E). Whereas second doses were originally recommended to bolster immunity in case of failed "take" of the first dose, our findings suggested the second dose also restores immunity to the degree achieved prior to waning of the first dose, thus extending protection to older ages. Taken together, our findings support the central role of waning immune protection as a driver of variation in vaccine performance.

Changes in population susceptibility to mumps virus after vaccine introduction

To understand the epidemiologic context of mumps resurgence in older age groups, we assessed how waning vaccine-derived immunity and declining rates of natural transmission have impacted the susceptibility of the US population over the decades since vaccine introduction. We inferred the degree of immune protection as of 1967, when the vaccine was licensed, by fitting a mathematical model (table S2, fig. S1) to reproduce epidemiological dynamics in the pre-vaccine era at steady state (15). We estimated that the basic reproductive number (R_0) of mumps in the United States—the number of infections expected to result from an initial index case in a fully-susceptible population—was 4.79 prior to vaccine

rollout, in agreement with previous estimates of 3–7 for high-income settings in the twentieth century (16, 17). Allowing for loss of naturally acquired immunity did not improve model fit (15), consistent with longer-term persistence of high antibody titers after natural infection in comparison to vaccination in children (18).

The ongoing resurgence in mumps among young adults corresponded to cohort-specific changes in susceptibility resulting from vaccine waning and declining transmission over the decades since vaccine rollout (Fig. 2, fig S2). We estimated that 52.8% (CI 41.6% to 63.1%) of adults ages 20-24 years and 52.6% (CI 42.4% to 61.3%) of adults ages 25-29 years were susceptible to mumps virus infection in 2006 at the outset of the ongoing resurgence, in contrast to 33.8% (CI 30.4% to 37.6%) and 25.2% (CI 22.8% to 27.5%), respectively, as of 1990, and <10% in each age group before vaccine introduction. Susceptibility has also permeated older age groups amid the replacement of cohorts that experienced mumps as children. Whereas most individuals ages 65 and older had natural immunity as of 2016, we estimated that 29.2% (CI 24.7% to 32.3%) of those ages 40-64 years were at risk of infection.

In a further validation of model predictions, the emergence and disappearance of mumps outbreaks among adolescents during the late 1980s and early 1990s corresponded to a transient increase in predicted susceptibility at ages 10-19 years (Fig. 2). We estimated that susceptibility at ages 10-14 years peaked in 1991, when 45.8% (CI 39.3% to 52.4%) of children in this age group were at risk for infection, as well as 43.0% (CI 37.3% to 49.0%) of adolescents ages 15-19 years. These estimates reflect 2.85 (CI 2.65 to 3.30)-fold and 3.96 (CI 3.43 to 4.52)-fold increases in age-specific susceptibility, respectively, compared to the pre-vaccination era. Whereas breakthrough outbreaks beginning in the 1980s were hypothesized at that time to reflect inadequate responses of children to their first vaccine dose (19), our findings instead suggest that vaccine waning and declining natural exposure explain why adolescents were the population at highest risk for infection at that time.

We estimated that as of 2016, prevalence of susceptibility among children ages 10-14 years declined to 34.8% (CI 24.3 to 45.7%) due to the recommendation in 1989 for children to receive a second dose at ages 4-6 years (4). Whereas most adolescents experiencing cases during the initial resurgence had received one dose of vaccine in keeping with the recommendations at that time (20, 21), recent outbreaks have predominantly included individuals eligible to receive two doses (fig. S3). Thus, the increasing age of infection in the US more likely tracks with cases due to waning immunity after receipt of the second dose rather than a continuation of cases within a single, under-immunized cohort. These findings hold in sensitivity analyses assuming 1% and 2% annual declines in reporting effort (corresponding to 39% and 63% overall reductions in disease reporting by 2017) over the decades since vaccine introduction (fig. S4, fig. S5).

Predicted transmission dynamics under vaccine waning and viral escape

Our analyses have suggested that reduced vaccine effectiveness relates primarily to waning protection rather than the emergence of mumps virus genotypes escaping vaccine-driven immunity. However, our ability to compare these hypotheses using data from previous studies is limited by a lack of data about genotype-specific protection. To better understand

whether recent outbreaks are more consistent with vaccine waning or viral escape, we used a stochastic transmission model to compare expected epidemiologic dynamics under these scenarios in the year 2006, when the ongoing resurgence began. Using the approach taken above to update population immunity and transmission parameters in the absence of waning vaccine immunity (fig. S6, fig. S7), we simulated the spread of mumps virus strains against which the vaccine provided partial protection in a population of 1 million.

Under age-structured social mixing patterns that formerly caused mumps cases to center among school-aged children, waning of vaccine protection is a necessary mechanism to account for shifts in the age distribution of cases toward adolescence and young adulthood. We found that strains capable of vaccine escape would be expected to cause higher-than-observed incidence among younger children (Fig. 3A-E). In contrast to the median age of mumps cases of 22 years reported in 2006, the predicted median age of cases approached 14.2 years (CI 8.3 to 21.7) as strain-specific vaccine effectiveness declined to 0%. Although strains with lower ability to escape immune pressure may not concentrate to such an extent among children, we expected such strains to cause low incidence in a population unaffected by waning immunity (Fig. 3F). Model-predicted overall rates of mumps incidence exceeded reported rates at lower degrees of cross-protection. As compared to predictions under scenarios of viral escape, model-predicted dynamics under vaccine waning provided a closer match to reported overall and age-specific incidence, with an expected median age of 22.3 years (CI 17.7 to 26.3) among cases.

Potential impact of booster vaccination

If vaccine derived immunity wanes or confers shorter-lasting protection against genotypes currently in circulation as compared to those circulating in 1967, then administering additional vaccine doses may help control transmission by extending immune protection to older ages. Based on analyses of the effective reproductive number (R_E) , or the number of new infectious cases emerging from a single infectious case under prevailing levels of immunity, we found that protection afforded by two vaccine doses alone is unlikely to support elimination of endemic mumps virus transmission from the US in the long term. If R_F stays below 1.0, then epidemics are unlikely to be sustained in the long term; as birth cohorts exposed to high rates of transmission in the 20th century are replaced by individuals whose protection comes only through vaccination, we expect R_E to approach 1.11 (CI 1.04) to 1.13) (Fig. 4). While administering a third vaccine dose by 18 years of age would not necessarily confer life-long protection based on our estimate of the time to loss of immunity, we nonetheless predict that this intervention could extend protection through young adulthood, thereby protecting age groups at risk in recent outbreaks. Low (56%) uptake of a third dose matching adult compliance with recommended tetanus-diptheria toxoid booster doses would be expected to sustain R_E around 0.88 (CI 0.83 to 0.91), based on transmission dynamics in the US as of 2016. Under a more optimistic scenario of 88% third-dose coverage—where third-dose uptake equates second-dose uptake among already-immunized individuals—we expect R_E to approach 0.77 (CI 0.72 to 0.79) as cohorts previously exposed to high transmission rates age out of the population.

Whereas we estimated most older adults are currently immune to mumps virus due to previous infection, our modeling suggested neither a two-dose nor three-dose vaccination program would be expected to protect over 50% of adults beyond the age of 40 years in the long term. This concern may motivate the use of routine booster doses in adulthood (Fig. 4). Based on our model, we expect that administering additional doses every 10 years or 20 years would lead to sustained protection in, at minimum, 68.0% (CI 58.5% to 77.6%) and 55.2% (CI 44.1% to 68.4%) of the population, respectively, under a scenario of 88% vaccine coverage; at the lower (56%) coverage level, we estimated protection among, at minimum, 59.0% (CI 48.2% to 71.2%) and 45.5% (CI 34.3% to 60.5%) of adults with dosing every 10 years or 20 years, respectively. Maintaining high prevalence of immunity in the population through repeated dosing may also help to contain emergence of new mumps virus strains (Fig. 4E). To sustain R_E 1 under three-dose schedules, we estimated that an emerging strain would require, at minimum, 8.5% (CI 7.6% to 9.8%) to 15.7% (CI 11.9% to 20.3%) probability of causing infection in exposed persons otherwise protected by vaccination. Adding booster doses every 10 years increased this threshold probability to between 16.6% (CI 12.5% to 20.8%) and 22.9% (CI 16.4% to 29.7%) at varying degrees of vaccine coverage.

Discussion

Resurgent outbreaks centered among young adults have brought renewed attention to mumps following decades of progress toward its elimination from the US (2, 12). Understanding why cases have re-emerged is essential for determining how to contain the disease through vaccination. Our analyses show that vaccine derived immune protection wanes over time. We estimate the rate of waning and demonstrate that this waning immunity accounts for susceptibility in the age groups experiencing outbreaks over the decades since vaccine introduction in the US. In contrast, changes in the circulating genotypes of mumps virus over this same period have not been associated with reductions in vaccine effectiveness; moreover, our modeling suggests mumps virus strains escaping vaccine protection would be expected to cause disproportionate incidence among younger children, which has not been observed in most recent outbreaks. Guided by these outcomes, our model shows that routine use of a third vaccine dose around age 18 years, with or without regular dosing in adulthood, could help maintain immune protection in the population.

Distinguishing between the contributions of vaccine waning and the emergence of vaccine-escape virus strains to mumps resurgence helps inform whether new vaccines are needed to control transmission (22, 23). Our findings that vaccine effectiveness has not declined amid the replacement of genotype A mumps viruses (from which the Jeryl Lynn vaccine strain was derived), and that the age distribution of recent cases is inconsistent with expectations under vaccine escape, are in agreement with several lines of evidence that mumps vaccination protects broadly against heterologous strains (24). Neutralizing antibody responses to the Jeryl Lynn strain are effective *in vitro* against wild-type mumps virus strains responsible for recent outbreaks among vaccinated individuals (25, 26), and genetic distinctions have not been identified between strains isolated from vaccinated and unvaccinated mumps patients (27). High efficacy and effectiveness estimates for both the Jeryl Lynn (genotype A-derived) and Urabe (genotype B-derived) vaccines against clinical

illness caused by heterologous mumps genotypes further substantiate the notion of cross-neutralizing or monotypic immune responses (12).

Although the efficacy of a third dose has not been assessed in clinical trials, several observations suggest effectiveness of extended vaccine schedules. Whereas congregated US military populations resemble high-risk groups based on their age distribution and closecontact environments, no outbreaks have been reported in the military since a policy was adopted in 1991 of administering an MMR dose to incoming recruits, regardless of vaccination history (28). In addition, receiving a third dose was associated with protection in a recent observational study following a third-dose campaign undertaken in response to a university-campus outbreak (29), building on limited evidence from previous studies where third doses were only administered at the tail end of outbreaks (30–33). Trials demonstrating the clinical effectiveness of adult vaccine doses remain ideal to guide policy around the benefits of routine or reactive use of third doses, and may improve our understanding of immunological correlates of protection (34-36). Such trials—or further observational studies —will also play an important role in establishing the duration of protection after third or additional doses in adulthood. Modifying MMR vaccines to improve the magnitude or duration of immune responses against mumps virus may also improve protection. Notably, the mumps component of the vaccine induces lower-avidity antibody responses, and weaker specific memory B-cell proliferation, than the measles and rubella components (37, 38).

Several limitations of the analysis should be considered. Our use of aggregated rather than individual-level data from vaccine effectiveness studies contributed to an imprecise estimate of the time to loss of immunity, in turn limiting the precision of our estimates of population susceptibility. Individual-level data from post-licensure vaccine studies could support better inferences about the magnitude and duration of vaccine protection, thus aiding policy decisions. Identifying immunological correlates of protection from such datasets would also aid evaluations of alternative vaccination schedules and measurements of population immunity. Second, we lack data on genotype-specific incidence that could help us infer differential protection of the Jeryl Lynn vaccine against circulating strains. Epidemiological studies of outbreaks caused by distinct virus lineages, and in populations exposed to different circulating mumps viruses, can better characterize genotype specificity in the strength or duration of vaccine protection. Last, our analysis addresses mumps epidemiology in the United States, where prevalence of immunity within particular birth cohorts may differ in relation to settings that introduced routine mumps vaccination later or use different vaccine schedules. The burden of cases and prevalence of immunity across ages or birth cohorts should be considered as a basis to guide vaccination policy within specific countries.

Analyzing nationally-aggregated incidence datasets also limited our ability to investigate how geographic or socioeconomic differences in vaccine uptake and contact rates contribute to the dynamics of focal outbreaks, as might occur in close-contact settings such as university dormitories (40). However, our inferences about vaccine waning and the changing age distribution of mumps cases offer insight into why mumps resurgence has been possible throughout geographically and socioeconomically distinct communities. In this regard, the widespread re-emergence of mumps in vaccine-compliant communities stands in stark

contrast to the focal re-emergence of measles in communities with low vaccine coverage (11).

Changes in the epidemiology of mumps have implications for disease surveillance. Diminished clinical awareness of mumps, expectations that it appears in pediatric rather than adult populations, and protection against symptoms in vaccinated individuals (41) may limit routine detection of cases, and thus bias disease reporting. Indeed, serological surveys have provided evidence of higher-than-reported rates of mumps virus infection in the US prior to 2006 (28, 42). The tendency to identify outbreak-associated cases through contact tracing may also favor detection of cases in university campuses and other closely-connected populations, underscoring the importance of epidemiological surveillance to identify infections occurring in the community.

The ongoing resurgence in mumps among young adults has undermined previous enthusiasm about near-term elimination of this disease from the US (1). Our analysis suggests that vaccinated individuals lose protection against infection on average 27 years after receipt of their last dose, and that this rate of vaccine waning explains susceptibility in adolescent and young-adult cohorts at the time of post-licensure outbreaks in these age groups. Re-emergence of mumps among older, previously-vaccinated individuals whose immunity has waned parallels recent experience with varicella outbreaks affecting immunized communities as a result of waning vaccine-derived protection (43). As demonstrated in mumps epidemiology, immunity in previously infected cohorts may buffer transmission and delay breakthrough epidemics from occurring until decades after vaccine introduction. We expect population susceptibility to mumps to continue increasing as transient vaccine-derived immunity supersedes previous infection as the main determinant of mumps susceptibility in the US population. These observations indicate the need for either innovative clinical trial designs to measure the benefit of extending vaccine dosing schedules or new vaccines to address the problem of waning vaccine-induced protection (44).

Materials and Methods

Study design

Our study comprises four parts. First, we conducted a meta-analysis of six studies on mumps vaccine effectiveness in the US and Europe to assess hypotheses of waning protection and diminished effectiveness against currently circulating strains. We next applied estimates of the waning rate to infer changes over time in the susceptibility of the US population, accounting for vaccine uptake and incidence of natural infection. We integrated a system of differential equations forward from initial conditions, defined from the pre-vaccination endemic equilibrium (as inferred over the years 1960-1964), by back-calculating transmission rates from reported mumps incidence. We next modeled expected transmission dynamics under scenarios of vaccine waning and viral escape, and estimated long-term impacts of adult vaccination schedules on population susceptibility. Full technical details pertaining to our analyses are presented in the Supplementary Materials and Methods; a brief summary is provided here.

Meta-analysis of vaccine effectiveness studies

We performed a systematic review of prospective and retrospective cohort studies calculating effectiveness of the Jeryl Lynn-strain mumps vaccine via a PubMed search and citation tracking. Details of the studies used to infer vaccine effectiveness are listed in table S1. We used an inverse variance-weighted meta-regression model, accounting for study-level heterogeneity, to measure unadjusted and multivariate-adjusted associations of the following variables with study-level estimates of the relative risk of infection associated with vaccination:

- 1. Time since receipt of the last vaccine dose, indicating waning vaccine immunity;
- 2. Time from 1964 (when the Jeryl Lynn vaccine was developed) to the year of mumps exposure, indicating long-term changes in vaccine effectiveness associated with changes in circulating genotypes; and
- **3.** Vaccine doses received, with an interaction term for time since last dose to test for differential waning of first and second doses.

Regression model summary statistics indicated the proportion of variance explained by these covariates. We used our estimate of the association between instantaneous risk of infection and time since vaccination to fit an exponential distribution to the duration of vaccine derived immune protection, and used this fitted distribution as the basis for further modeling.

Modeling population immunity and mumps virus transmission

We used a system of ordinary differential equations to describe changes in the population of susceptible and protected persons, partitioned into those who had and had not received mumps vaccines. Updating the model to address the contributions of vaccination and vaccine waning to population immunity, we back-calculated changes in natural immunity in the population based on the relation

$$\Lambda(i,t) \propto \lambda(i,t) \Big[\pi_U S(i,t) + \pi_V F(i,t) \Big]$$

between reported incidence rates (Λ) in age group i and year t and the force of infection to which individuals were exposed (λ), the populations of susceptible unvaccinated (S) and vaccinated (F) persons, and the probabilities (π_U and π_V , respectively) for these individuals to experience symptoms if infected. As described in the Supporting Information, this approach allowed us to account for changes over time in transmission patterns leading to time-varying estimates of the basic reproductive number. Susceptible vaccinated persons (F) comprised those failing to mount an immune response immediately following vaccination (primary vaccine failure) as well as those whose initial protection had waned (secondary vaccine failure). Model parameter values and their sources are listed in table S2. Agespecific incidence reports were collated from nationwide surveillance (45); our model accounted for age-structured mixing among individuals partitioned across age 10 classes (0-11 months, 1-4 years, 5-9 years, 10-14 years, 15-19 years, 20-24 years, 25-29 years, 30-39 years, 40-64 years, and 65 years). Members of the tth age class encountered the force of infection

$$\lambda(i) \propto \sum_{j=1}^{10} C_{(S)}(i,j) \frac{I(j)}{N(j)}$$

cumulatively through interactions with infectious individuals (I) distributed across all j age classes; the matrix $C_{(S)}$ conveyed age-specific mixing patterns. We inferred starting-time age-specific prevalence of immunity in the US population (as of 1967) by fitting a mathematical model of mumps transmission to recapitulate age-specific incidence in the prevaccine era at steady state. To compare predicted incidence during an introduced outbreak against observations from the year 2006, we implemented stochastic realizations of extended versions of the model under scenarios where we assumed waning of immunity or circulation of strains with differential risk of infecting persons protected by vaccination. We assessed which scenario was more consistent with epidemiological observations based on model-predicted age-specific and overall incidence rates, as well as the predicted median age of infection.

Assessing extended-dose strategies

We compared the long-term performance of different vaccination schedules including the addition of a third dose by age 18 years and the use of routine boosters at 10-year or 20-year intervals through adulthood. We calculated the prevalence of age-specific immune protection achieved under these strategies and resulting values of the effective reproductive number (R_E), describing the number of cases an infectious individual would be expected to cause under prevailing conditions. We also calculated the minimum probability of immune escape a novel mumps virus strain would need to invade a population protected under these different strategies, defined as the minimum probability of infecting a vaccinated, protected individual upon exposure such that R_E 1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors thank Lucy Li, Sarah Cobey, Pardis Sabeti, Shirlee Wohl, Nathan Yozwiak, Greg Armstrong, and Marc Lipsitch for input.

Funding: This work was supported by National Institute of General Medical Sciences award U54GM088558 (JAL) and a Doris Duke Charitable Foundation Clinical Scientist Development Award (YHG). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or National Institutes of Health.

References and Notes

- 1. National Center for Health Statistics. Healthy People 2010: final review. U.S. Centers for Disease Control and Prevention; 2012. http://www.cdc.gov/nchs/data/hpdata2010/hp2010_final_review.pdf
- Dayan GH, Quinlisk MP, Parker AA, Barskey AE, Harris ML, Schwartz JMH, Hunt K, Finley CG, Leschinsky DP, O'Keefe AL, Clayton J, Kightlinger LK, Dietle EG, Berg J, Kenyon CL, Goldstein ST, Stokley SK, Redd SB, Rota PA, Rota J, Bi D, Roush SW, Bridges CB, Santibanez TA, Parashar U, Bellini WJ, Seward JF. Recent resurgence of mumps in the United States. NEJM. 2008; 358:1580–1589. [PubMed: 18403766]

3. Meyer MB. An epidemiologic study of mumps; its spread in schools and families. Am J Hyg. 1962; 75:259–281. [PubMed: 14473149]

- Measles Prevention: Recommendations of the Immunization Practices Advisory Committee (ACIP). Morb Mortal Wkly Rep. 1989; 38:1–18.
- 5. Centers for Disease Control and Prevention (CDC). Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: Summary recommendations of the Advisory Committee on Immunization Practices (ACIP). Morb Mortal Wkly Rep. 2013; 62:1–34.
- 6. Savage E. Mumps outbreaks across England and Wales in 2004: observational study. BMJ. 2005; 330:1119–1120. [PubMed: 15891227]
- Sane J, Gouma S, Koopmans M, de Melker H, Swaan C, van Binnendijk R, Hahné S. Epidemic of mumps among vaccinated persons, the Netherlands, 2009-2012. Emerg Infect Dis. 2014; 20:643– 648. [PubMed: 24655811]
- 8. St-Martin G, Knudsen LK, Engsig FN, Panum I, Andersen PHS, Rønn J, Fonager J, Fischer TK. Mumps resurgence in Denmark. J Clin Virol. 2014; 61:435–438. [PubMed: 25218244]
- Peltola H, Kulkarni PS, Kapre SV, Paunio M, Jadhav SS, Dhere RM. Mumps outbreaks in Canada and the United States: time for new thinking on mumps vaccines. Clin Infect Dis. 2007; 45:459– 466. [PubMed: 17638194]
- Anderson RM, Crombie JA, Grenfell BT. The epidemiology of mumps in the UK: a preliminary study of virus transmission, herd immunity and the potential impact of immunization. Epidemiol Infect. 1987; 99:65–84. [PubMed: 3609175]
- Phadke VK, Bednarczyk RA, Salmon DA, Omer SB. Association between vaccine refusal and vaccine-preventable diseases in the United States: a review of measles and pertussis. JAMA. 2016; 315:1149–58. [PubMed: 26978210]
- Dayan GH, Rubin S, Plotkin S. Mumps outbreaks in vaccinated populations: are available mumps vaccines effective enough to prevent outbreaks? Clin Infect Dis. 2008; 47:1458–1467. [PubMed: 18959494]
- Hilleman M, Weibel R, Buynak E, Stokes J, Whitman J. Live, attenuated mumps-virus vaccine: 4. Protective efficacy as measured in a field evaluation. NEJM. 1967; 276:252–258. [PubMed: 6016061]
- Harling R, White JM, Ramsay ME, Macsween KF, Van Den Bosch C. The effectiveness of the mumps component of the MMR vaccine: a case control study. Vaccine. 2005; 23:4070–4074.
 [PubMed: 15950329]
- 15. Full materials and methods, and results of sensitivity analyses, are presented in the supplementary material
- Fine PE. Herd immunity: history, theory, practice. Epidemiol Rev. 1993; 15:265–302. [PubMed: 8174658]
- Wallinga J, Teunis P, Kretzschmar M. Using data on social contacts to estimate age-specific transmission parameters for respiratory-spread infectious agents. Am J Epidemiol. 2006; 164:936– 944. [PubMed: 16968863]
- 18. Christenson B, Böttiger M. Methods for screening the naturally acquired and vaccine-induced immunity to the mumps virus. Biologicals. 1990; 18:213–219. [PubMed: 2257134]
- 19. Cochi SL, Preblud SR, Orenstein WA. Perspectives on the relative resurgence of mumps in the United States. Am J Dis Child. 1988; 142:499–507. [PubMed: 3358389]
- 20. Cheek JE, Baron R, Atlas H, Wilson DL, Crider RD. Mumps outbreak in a highly vaccinated school population. Arch Pediatr Adolesc Med. 1995; 149:774. [PubMed: 7795768]
- 21. Briss PA, Fehrs LJ, Parker RA, Wright PF, Sannella EC, Hutcheson RH, Schaffner W. Sustained transmission of mumps in a highly vaccinated population: assessment of primary vaccine failure and waning vaccine-induced immunity. J Infect Dis. 1994; 169:77–82. [PubMed: 8277201]
- 22. Plotkin SA. Mumps vaccines: do we need a new one? Pediatr Infect Dis J. 2013; 32:381–382. [PubMed: 23552675]
- 23. Rubin SA, Beeler J. Mumps Vaccines: do we need a new one? Pediatr Infect Dis J. 2013; 32:1156–1157. [PubMed: 24067559]

 Rubin SA, Link MA, Sauder CJ, Zhang C, Ngo L, Rima BK, Duprex WP. Recent mumps outbreaks in vaccinated populations: no evidence of immune escape. J Virol. 2012; 86:615–620. [PubMed: 22072778]

- 25. Rubin SA, Qi L, Audet SA, Sullivan B, Carbone KM, Bellini WJ, Rota PA, Sirota L, Beeler J. Antibody induced by immunization with the Jeryl Lynn mumps vaccine strain effectively neutralizes a heterologous wild-type mumps virus associated with a large outbreak. J Infect Dis. 2008; 198:508–515. [PubMed: 18558869]
- Rubin S, Mauldin J, Chumakov K, Vanderzanden J, Iskow R, Carbone K. Serological and phylogenetic evidence of monotypic immune responses to different mumps virus strains. Vaccine. 2006; 24:2662–2668. [PubMed: 16309801]
- 27. Utz S, Richard JL, Capaul S, Matter HC, Hrisoho MG, Mühlemann K. Phylogenetic analysis of clinical mumps virus isolates from vaccinated and non-vaccinated patients with mumps during an outbreak, Switzerland 1998-2000. J Med Virol. 2004; 73:91–96. [PubMed: 15042654]
- 28. Eick AA, Hu Z, Wang Z, Nevin RL. Incidence of mumps and immunity to measles, mumps and rubella among US military recruits, 2000-2004. Vaccine. 2008; 26:494–501. [PubMed: 18155326]
- Cardemil CV, Dahl RM, James L, Wannemuehler K, Gary HE, Shah M, Marin M, Feiken DR, Patel M, Quinlisk P. Effectiveness of a third dose of MMR vaccine for mumps outbreak control. NEJM. 2017; 377:947–956. [PubMed: 28877026]
- 30. Ogbuanu IU, Kutty PK, Hudson JM, Blog D, Abedi GR, Goodell S, Lawler J, McLean HQ, Pollock L, Rausch-Phung E, Schulte C, Valure B, Armstrong GL, Gallagher K. Impact of a third dose of measles-mumps-rubella vaccine on a mumps outbreak. Pediatrics. 2012; 130:e1567–e1574. [PubMed: 23129075]
- 31. Albertson JP, Clegg WJ, Reid HD, Arbise BS, Pryde J, Vaid A, Thompson-Brown R, Echols F. Mumps outbreak at a university and recommendation for a third dose of measles-mumps-rubella vaccine: Illinois, 2015-2016. Morb Mortal Wkly Rep. 2016; 65:731–734.
- 32. Parker Fiebelkorn A, Lawler J, Curns AT, Brandeburg C, Wallace GS. Mumps postexposure prophylaxis with a third dose of measles-mumps-rubella vaccine, Orange County, New York, USA. Emerg Infect Dis. 2013; 19:1411–1417. [PubMed: 23965729]
- 33. Nelson GE, Aguon A, Valencia E, Oliva R, Guerrero ML, Reyes R, Lizama A, Diras D, Mathew A, Camacho EJ, Monforte MN, Chen TH, Mahamud A, Kutty PK, Hickman C, Bellini WJ, Seward JF, Gallagher K, Fiebelkorn AP. Epidemiology of a mumps outbreak in a highly vaccinated island population and use of a third dose of measles—mumps—rubella vaccine for outbreak control—Guam 2009 to 2010. Pediatr Infect Dis J. 2013; 32:374–380. [PubMed: 23099425]
- 34. Fiebelkorn AP, Coleman LA, Belongia EA, Freeman SK, York D, Bi D, Zhang C, Ngo L, Rubin S. Mumps antibody response in young adults after a third dose of measles-mumps-rubella vaccine. Open Forum Infect Dis. 2014; 1 ofu094.
- 35. Date AA, Kyaw MH, Rue AM, Klahn J, Obrecht L, Krohn T, Rowland J, Rubin S, Safranek TJ, Bellini WJ, Dayan GH. Long-term persistence of mumps antibody after receipt of 2 measles-mumps-rubella (MMR) vaccinations and antibody response after a third MMR vaccination among a university population. J Infect Dis. 2008; 197:1662–1668. [PubMed: 18419346]
- 36. Cortese MM, Barskey AE, Tegtmeier GE, Zhang C, Ngo L, Kyaw MH, Baughman AL, Menitove JE, Hickman CJ, Bellini WJ, Dayan GH, Hansen GR, Rubin S. Mumps antibody levels among students before a mumps outbreak: In search of a correlate of immunity. J Infect Dis. 2011; 204:1413–1422. [PubMed: 21933874]
- 37. Gu XX, Plotkin SA, Edwards KM, Sette A, Mills KHG, Levy O, Sant AJ, Mo A, Alexander W, Lu KT, Taylor CE. Waning immunity and microbial vaccines: workshop of the National Institute of Allergy and Infectious Diseases. Clin Vaccine Immunol. 2017 doi:cvi.00034-17.
- 38. Kontio M, Jokinen S, Paunio M, Peltola H, Davidkin I. Waning antibody levels and avidity: implications for MMR vaccine-induced protection. J Infect Dis. 2012; 206:1542–1548. [PubMed: 22966129]
- Cortese MM, Jordan HT, Curns AT, Quinlan PA, Ens KA, Denning PM, Dayan GH. Mumps vaccine performance among university students during a mumps outbreak. Clin Infect Dis. 2008; 46:1172–1180. [PubMed: 18444852]

40. Wright JA, Polack C. Understanding variation in measles-mumps-rubella immunization coverage: a population-based study. Eur J Public Health. 2006; 16:137–142. [PubMed: 16207728]

- Dittrich S, Hahné S, van Lier A, Kohl R, Boot H, Koopmans M, van Binnendijk R. Assessment of serological evidence for mumps virus infection in vaccinated children. Vaccine. 2011; 29:9271– 9275. [PubMed: 21983156]
- Amanna IJ, Carlson NE, Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. NEJM. 2007; 357:1903–1915. [PubMed: 17989383]
- 43. Chaves SS, Gargiullo P, Zhang JX, Civen R, Guris D, Mascola L, Seward JF. Loss of vaccine-induced immunity to varicella over time. NEJM. 2007; 356:1121–1129. [PubMed: 17360990]
- 44. Ebola ca suffit ring vaccination trial consortium. The ring vaccination trial: a novel cluster randomised controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special reference to Ebola. BMJ. 2015; 351:h3740. [PubMed: 26215666]
- 45. Adams DA, Thomas KR, Jajosky RA, Foster L, Sharp P, Onweh DH, Schley AW, Anderson WJ, Arguin PM, Artus A, Benedict K, Blaney DD, Blanton J, Bowen A, Bower WA, Briere EC, Chatham-Stephens K, Chiller T, Choi M, Clemmons N, Cooney S, Cullen KA, Dahlgren FS, de St Maurice A, Drexler N, Ervin E, Faulkner AE, Fischer M, Fullerton KE, Gargano JW, Garrison LE, Gould H, Gray EB, Guerra M, Hall R, Heitman KN, Hendricks KA, Herwaldt BL, Hlavsa MC, Holmberg S, Hurd J, Iwamoto M, Jackson KA, Jiles R, Johnson AS, Jones J, Judd M, Kharod GA, Kidd S, Kirkcaldy R, Knust B, Kugeler KJ, Kupronis B, Lankford AN, Lehman J, Lindsey N, Lopez A, Mace KE, MacNeil JR, Mahon B, Manangan LP, Martin SW, Massung RF, McCotter O, Mead PS, Mody RK, Montgomery S, Newton A, Paddock CD, Pieracci E, Pratt RH, Presley R, Purpura L, Redd S, Rollin P, Schafer IJ, Shadomy SV, Sharp TM, Skoff TH, Staples E, Stine T, Tiwari TSP, Torrone E, Traxler RM, Wallace G, Wallace R, Weinstock H, Weston E. Summary of notifiable infectious diseases and conditions: United States, 2014. Morb Mortal Wkly Rep. 2016; 63:1–152.
- Farrington CP. The measurement and interpretation of age-specific vaccine efficacy. Int J Epidemiol. 1992; 21:1014–1020. [PubMed: 1468838]
- Schaffzin JK, Pollock L, Schulte C, Henry K, Dayan G, Blog D, Smith P. Effectiveness of previous mumps vaccination during a summer camp outbreak. Pediatrics. 2007; 120:e862–e868. [PubMed: 17908742]
- 48. Kutty PK, McLean HQ, Lawler J, Schulte C, Hudson JM, Blog D, Wallace G. Risk factors for transmission of mumps in a highly vaccinated population in Orange County, NY, 2009-2010. Pediatr Infect Dis J. 2014; 33:121–5. [PubMed: 23995590]
- 49. Cohen C, White JM, Savage EJ, Glynn JR, Choi Y, Andrews N, Brown D, Ramsay ME. Vaccine effectiveness estimates, 2004-2005 mumps outbreak, England. Emerg Infect Dis. 2007; 13:12–17. [PubMed: 17370510]
- 50. Farrington CP. Estimation of vaccine effectiveness using the screening method. Int J Epidemiol. 1993; 22:742–746. [PubMed: 8225751]
- 51. Vandermeulen C, Roelants M, Vermoere M, Roseeuw K, Goubau P, Hoppenbrouwers K. Outbreak of mumps in a vaccinated child population: a question of vaccine failure? Vaccine. 2004; 22:2713–2716. [PubMed: 15246601]
- 52. Tizes R, van Zetta S, Beaver J, Krawczyk A, Hinman A. Mumps in an elementary school: New York. Morb Mortal Wkly Rep. 1973; 22:185–186.
- Schlegel M, Osterwalder JJ, Galeazzi RL, Vernazza PL. Comparative efficacy of three mumps vaccines during disease outbreak in Eastern Switzerland: cohort study. BMJ. 1999; 319:352. [PubMed: 10435956]
- 54. Marin M, Quinlisk P, Shimabukuro T, Sawhney C, Brown C, LeBaron CW. Mumps vaccination coverage and vaccine effectiveness in a large outbreak among college students: Iowa, 2006. Vaccine. 2008; 26:3601–3607. [PubMed: 18539365]
- 55. Galazka AM, Robertson SE, Kraigher A. Mumps and mumps vaccine: a global review. Bull World Health Organ. 1999; 77:3–14. [PubMed: 10063655]
- Adams D, Fullerton K, Jajosky R, Sharp P, Onweh D, Schley A, Anderson W, Faulkner A, Kugeler K. Summary of Notifiable Infectious Diseases and Conditions: United States, 2013. Morb Mortal Wkly Rep. 2015; 62:1–122.

57. Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, Massari M, Salmaso S, Tomba GS, Wallinga J, Heijne J, Sadkowska-Todys M, Rosinska M, Edmunds WJ. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008; 5:0381–0391.

- 58. Witte JJ, Karchmer AW. Surveillance of mumps in the United States as background for use of vaccine. Public Health Rep. 1968; 83:5–100. [PubMed: 4965815]
- 59. Levitt LP, Mahoney DH, Casey HL, Bond JO. Mumps in a general population. Am J Dis Child. 1970; 120:134–138. [PubMed: 5454932]
- Wharton M, Cochi SL, Hutcheson RH, Schaffner W. Mumps transmission in hospitals. Arch Intern Med. 1990; 150:47–9. [PubMed: 2297298]
- 61. Philip RN, Reinhard KR, Lackman DB. Observations on a mumps epidemic in a "virgin" population. Am J Epidemiol. 1995; 142:233–53. 2. [PubMed: 7631629]
- 62. Orlíková H, Malý M, Lexová P, Šebestová H, Limberková R, Jurzykowská L, Kyn 1 J. Protective effect of vaccination against mumps complications, Czech Republic, 2007–2012. BMC Public Health. 2016; 16:293. [PubMed: 27036176]
- 63. Gouma S, Hahné SJM, Gijselaar DB, Koopmans MPG, van Binnendijk RS. Severity of mumps disease is related to MMR vaccination status and viral shedding. Vaccine. 2016; 34:1868–1873. [PubMed: 26954106]
- 64. Hahné S, Whelan J, van Binnendijk R, Swaan C, Fanoy E, Boot H, de Melker H. Mumps vaccine effectiveness against orchitis. Emerg Infect Dis. 2012; 18:191–3. [PubMed: 22260843]
- 65. Dowell SF, Kupronis BA, Zell ER, Shay DK. Mortality from pneumonia in children in the United States, 1939 through 1996. NEJM. 2000; 342:1399–1407. [PubMed: 10805825]
- 66. Glass RI, Kilgore PE, Holman RC, Jin S, Smith JC, Woods PA, Clarke MJ, Ho MS, Gentsch JR. The epidemiology of rotavirus diarrhea in the United States: surveillance and estimates of disease burden. J Infect Dis. 1996; 174:S5–S11. [PubMed: 8752284]
- DiLiberti JH, Jackson CR. Long-term trends in childhood infectious disease mortality rates. Am J Public Health. 1999; 89:1883–5. [PubMed: 10589325]
- 68. Mina MJ, Metcalf CJE, de Swart RL, Osterhaus ADME, Grenfell BT. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science. 2015; 348:694–699. [PubMed: 25954009]
- 69. Sherry B, Mei Z, Scanlon KS, Mokdad AH, Grummer-Strawn LM. Trends in state-specific prevalence of overweight and underweight in 2- through 4-year-old children from low-income families from 1989 through 2000. Arch Pediatr Adolesc Med. 2004; 158:1116–24. [PubMed: 15583095]
- 70. Yip R, Binkin NJ, Fleshood L, Trowbridge FL. Declining prevalence of anemia among low-income children in the United States. JAMA. 1987; 258:1619–23. [PubMed: 3625969]
- 71. Rohani P, Zhong X, King AA. Contact network structure explains the changing epidemiology of pertussis. Science. 2010; 330:982–985. [PubMed: 21071671]
- 72. Broutin H, Viboud C, Grenfell BT, Miller MA, Rohani P. Impact of vaccination and birth rate on the epidemiology of pertussis: a comparative study in 64 countries. Proc Biol Sci. 2010; 277:3239–3245. [PubMed: 20534609]
- 73. Bjørnstad ON, Finkenstädt BF, Grenfell BT. Dynamics of measles epidemics: estimating scaling of transmission rates using a time series SIR model. Ecol Monogr. 2002; 72:169–184.
- 74. Wharton M, Cochi SL, Hutcheson RH, Bistowish JM, Schaffner W, Schaffner W. A large outbreak of mumps in the postvaccine era. J Infect Dis. 1988; 158:1253–1260. [PubMed: 3198938]
- 75. Centers for Disease Control and Prevention (CDC). Update: mumps activity: United States, January 1–October 7, 2006. Morb Mortal Wkly Rep. 2006; 55:1152–1153.
- 76. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977; 81:2340–2361.
- 77. Leuridan E, van Damme P. Passive transmission and persistence of naturally acquired or vaccine-induced maternal antibodies against measles in newborns. Vaccine. 2007; 25:6296–6304. [PubMed: 17629601]
- 78. Christenson B, Böttiger M. Measles antibody: comparison of long-term vaccination titres, early vaccination titres and naturally acquired immunity to and booster effects on the measles virus. Vaccine. 1994; 12:129–133. [PubMed: 8147093]

79. Christenson B, Böttiger M. Long-term follow-up study of rubella antibodies in naturally immune and vaccinated young adults. Vaccine. 1994; 12:41–45. [PubMed: 8303939]

- 80. Plotkin SA. Correlates of protection induced by vaccination. Clin Vaccine Immunol. 2010; 17:1055–1065. [PubMed: 20463105]
- 81. Williams WW, Lu PJ, O'Halloran A, Bridges CB, Kim DK, Pilishvili T, Hales CM, Markowitz LE. Vaccination coverage among adults, excluding influenza vaccination: United States, 2013. Morb Mortal Wkly Rep. 2015; 64:95–102.

One Sentence Summary

The estimated waning rate of vaccine-conferred immunity against mumps predicts changes in the ages of mumps cases seen over the past five decades.

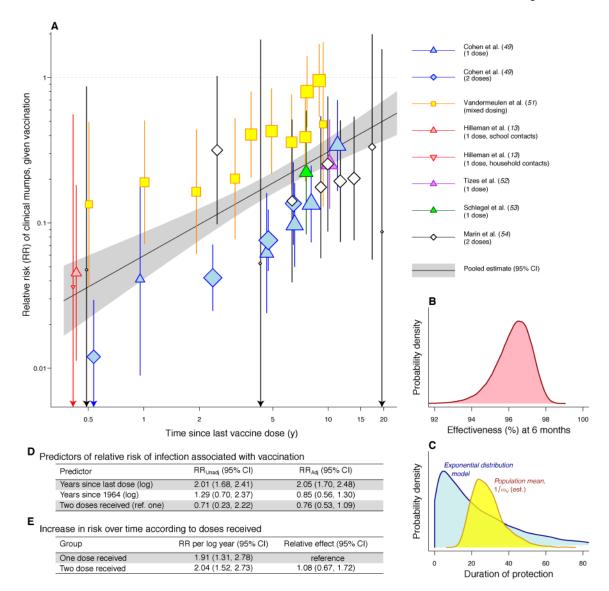


Fig. 1. Synthesis of prospective and retrospective cohort studies estimating the relative risk of clinical mumps in vaccinated and unvaccinated individuals

We illustrate the results of our meta-analysis of studies of mumps vaccine effectiveness, from which we estimated rates of vaccine waning. (A) Shown here is how estimates of vaccine effectiveness (defined as one minus the relative risk of experiencing mumps for a vaccinated individual, relative to an unvaccinated individual) differ across the six studies analyzed here. Time since last dose accounts for 66.4% of residual variation in estimates after accounting for random sources of between-study heterogeneity. Points representing study-level estimates are scaled in size to reflect differences in sample size. Lines signify 95% confidence intervals and are truncated where they exceed the plotted range (arrowheads). (B) At 6 months after vaccine receipt (the earliest time point assessed in primary studies), we estimate 96.4% (94.0 to 97.8%) of recipients are protected; we apply this as our estimate of the probability of vaccine "take". (C) A parsimonious model of exponentially distributed durations of protection predicts loss of protection after, on average,

 $\frac{1}{\omega_V}$ = 27.4 years (95%CI: 16.7-51.1), as indicated by the yellow plotted area. The blue

plotted area illustrates the distribution of times to loss of protection for vaccinated individuals, generated by pooling exponential distributions parameterized using estimates of ω_V . (**D**) Contrary to the hypothesis of reduced effectiveness against diverse mumps genotypes currently in circulation, we did not identify evidence of a decline in vaccine effectiveness over time, whereas evidence of waning vaccine-derived immunity persisted in a model adjusting for calendar year. Unadjusted estimates of the relative risk (RR) of clinical mumps given vaccination—and estimates adjusted for time since vaccination, years since 1964, and doses received—are calculated via meta-regression using incidence data from the original studies (13, 49, 51–54). (**E**) Using this meta-regression framework, we identified no difference in the waning rate (as defined by the inverse of the association between time since vaccination and relative risk of mumps given vaccination; see Materials and Methods) after receipt of a first or second dose (95% CI: 33% decrease to 72% increase in the relative risk of mumps given vaccination per log-year since vaccination; p>0.1).

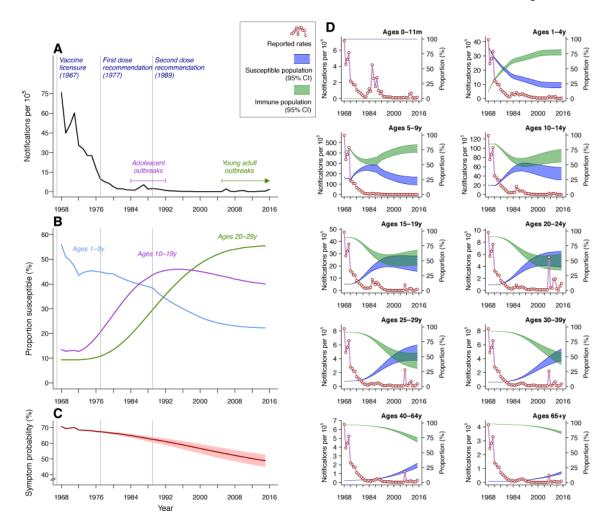


Fig. 2. Mumps incidence and estimates of population susceptibility over time

Here we illustrate changes in the proportion of the population, by age, predicted to be susceptible to mumps based on the estimated waning rate of vaccine-derived immune protection and the incidence of mumps infection in the population. (**A**) Overall rates of reported cases declined following vaccine licensure in 1967, punctuated by outbreaks primarily among adolescents from 1984-1992 and recent outbreaks (2006 onward) centered among young adults. These outbreaks have corresponded with (**B**) peaks in the model-inferred proportion of individuals susceptible to mumps infection at ages 10-19 and 20-29 years of age, respectively and (**C**) reductions in the proportion of infections that cause symptoms and are reported due to vaccine protection against symptoms. (**D**) Changes in the proportion of individuals susceptible to infection across different ages are plotted against case notification rates.

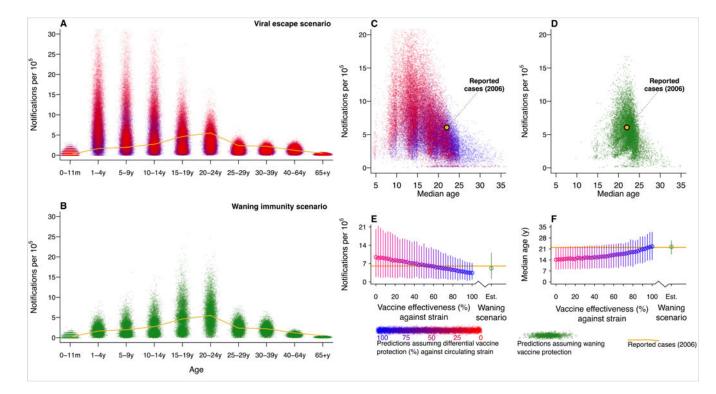
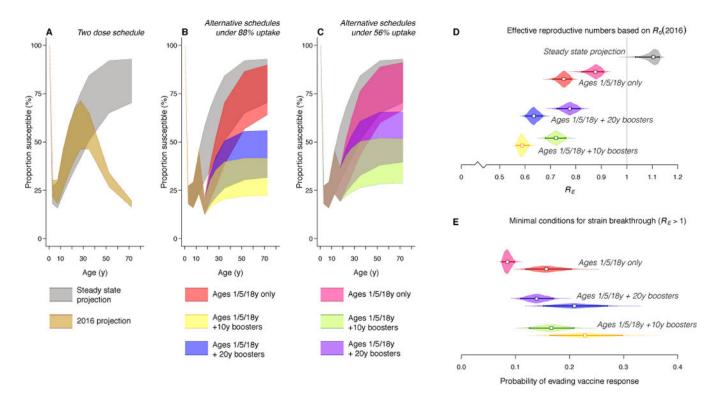



Fig. 3. Anticipated transmission dynamics under scenarios of vaccine escape and vaccine waning Here we use a stochastic simulation model to predict the epidemiology of mumps outbreaks under the scenario of mumps virus escaping vaccine-induced immune pressure and the scenario of waning vaccine-derived immunity (A) A stochastic model of an emerging vaccine-escape strain of mumps virus in a vaccinated population predicts excess incidence in young age groups, in keeping with their higher historical burden of mumps. (B) In contrast, the fit of a model incorporating waning vaccine-derived immunity matches the observed age distribution. (C) Higher overall incidence rates and (D) a younger age distribution of cases are predicted when immune responses to the vaccine offer minimal cross-protection against the circulating strain, as compared to the fit of the model with waning vaccine immunity. (E) Whereas the model with a viral-escape strain can reproduce the age distribution of cases at low degrees of immunological mismatch, (F) lower-than-reported incidence is expected under this scenario, again in contrast to the fit of a model with waning vaccine immunity. Lines in (E) and (F) signify 95% confidence intervals.

 $\label{eq:Fig. 4.} \textbf{Age-specific immunity and transmission dynamics under two- and three-dose vaccine schedules }$

Waning vaccine-derived protection in the population raises the question of how additional vaccine doses would impact mumps transmission. To address this question, we evaluated several scenarios. (A) Cohorts over 40 years of age as of 2016 were exposed to endemic transmission prior to and shortly after vaccine rollout and likely retain life-long protection. However, a population protected only by 2-dose vaccination would be expected to experience high prevalence of susceptibility over age 20 years. (B and C) Our modeling suggests the duration of protection can be extended through young adulthood by adding a third dose around age 18, whereas routine booster doses every 10 years or 20 years would be expected to sustain longer-term protection. Lines and shaded areas delineate median estimates and 95% confidence intervals, respectively. (**D**) Under transmission dynamics estimated as of 2016, protection in young adult age groups achieved through the use of a third vaccine dose is expected to reduce the effective reproductive number (R_E) below 1. We however predict R_E to approach 1.10 under the two-dose schedule as cohorts that experienced high rates of mumps infection age out of the population; larger reductions in R_E are sustained at higher coverage and with more frequent dosing. Colors are the same as in panels A-C. (E) In turn, these extensions of protection provide a stronger barrier against emergence of strains escaping vaccine immunity. A new strain with 8.5% (CI 7.6% to 9.8%) probability of evading vaccine-induced immunity and infecting a vaccine-protected individual would be expected to succeed under a three-dose schedule with low coverage. We however estimate that a novel strain would require 22.9% (CI 16.4% to 29.7%) probability of infecting such an individual to emerge in a population with 88% uptake of the third dose

and 10-year boosters. Lines denote 95% confidence intervals and shaded areas represent distributions around R_E estimates.