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Many epidemiologic studies use metabolomics for discovery-based research. The degree to which sample
handling may inf luence findings, however, is poorly understood. In 2016, serum samples from 13 volunteers from
the US Department of Agriculture’s Beltsville Human Nutrition Research Center were subjected to different clotting
(30 minutes/120 minutes) and refrigeration (0 minutes/24 hours) conditions, as well as different numbers (0/1/4)
and temperatures (ice/refrigerator/room temperature) of thaws. The median absolute percent difference (APD)
between metabolite levels and correlations between levels across conditions were estimated for 628 metabolites.
The potential for handling artifacts to induce false-positive associations was estimated using variable hypothetical
scenarios in which 1%–100% of case samples had different handling than control samples. All handling conditions
inf luenced metabolite levels. Across metabolites, the median APD when extending clotting time was 9.08%. When
increasing the number of thaws from 0 to 4, the median APD was 10.05% for ice and 5.54% for room temperature.
Metabolite levels were correlated highly across conditions (all r’s ≥ 0.84), indicating that relative ranks were
preserved. However, if handling varied even modestly by case status, our hypotheticals showed that results can
be biased and can result in false-positive findings. Sample handling affects levels of metabolites, and special care
should be taken to minimize effects. Shorter room-temperature thaws should be preferred over longer ice thaws,
and handling should be meticulously matched by case status.

bias (epidemiology); metabolomics; preclinical handling; sample handling

Abbreviations: APD, absolute percent difference; IQR, interquartile range; ND, normalized difference; PF, probability of false-
positive associations.

Metabolomics, the simultaneous quantification of con-
centrations of hundreds or thousands of metabolites in a
biological matrix (1), has become a versatile analytical tech-
nique capable of characterizing endogenous metabolism and
exogeneous exposures (2, 3). Increasingly, epidemiologic
studies have used metabolomics to investigate metabolism’s
relationship to disease (4–8), and the number of studies has
grown, as exemplified by the Consortium of Metabolomics
Studies, a consortium of at least 47 cohort studies and more
than 100,000 participants with metabolomics data (9). With
the growing relevance of metabolomics to research has also
come a pressing need to understand how preanalytical fac-
tors affect findings.

Preanalytical factors consist of those processes relating to
collection, shipment, storage, and aliquoting of biological
samples prior to analysis. Research studies aim to mini-
mize their potential effects by standardizing handling, but
in practice, such variability is never completely eliminated.
Serum samples, for example, must stand for at least 30
minutes to clot, but actual time may vary depending on
the duties of the attending nurse/technician. Additionally,
samples are often stored in refrigerators for short durations
prior to freezing, but length of storage depends on workflow.
Finally, samples must be thawed prior to analysis and may
experience variable temperatures and durations of thawing,
particularly in large studies with many samples.
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In the clinical context, preanalytical factors are known
to substantially affect assay results: An estimated 60%–
70% of diagnostic errors are attributed to mishandling
(10). In comparison, effects of preanalytical factors on
metabolomics analyses are less well understood. Several
experimental studies showed that changes in preanalytical
factors can cause increases/decreases of specific metabolites
by less than 1%–60% (11–16). Other studies have found
that metabolite levels (11, 17) or profiles (14, 18) are highly
reproducible across handling conditions, suggesting little
influence of handling method. These seemingly disparate
conclusions complicate efforts to define the likely effects of
sample handling on research results. Different conclusions
may stem, in part, from the different metrics that investi-
gators report, each of which only partly describes handling
effects.

A further limitation of existing studies relates to how the
researchers tested effects of thawing conditions. These stud-
ies showed that, for any duration, a warm thaw (e.g., at room
temperature) affects metabolite levels more than a cold thaw
(e.g., refrigerator thawing) (12, 13, 16, 18). However, warm
thaws take less time, so this comparison is artificial and prob-
ably biased. A fairer comparison would be to thaw samples
only for the exact minimum time needed for a given temper-
ature. To our knowledge, no studies have compared warm
thaws with cold thaws in this way. Most extant studies also
examined fewer than 300 metabolites (12–16, 18, 19) and
did not examine standing/clotting time (11, 14, 15, 17, 19).

To better characterize sample handling effects in a
metabolomics analysis, we collected serum samples from 13
study participants, subjected the samples to various handling
conditions (clotting and refrigeration time, number/temper-
ature of thaws), and examined how each condition affected
observed circulating levels of 600 or more metabolites
given normal laboratory run procedures. To provide a full
accounting of handling effects, we describe these in terms
of 4 key metrics and elaborate upon their implications. We
also tested minimum thawing times to provide a fairer
comparison of warm thaws versus cold thaws than is
currently available. Based in part on prior findings, we
hypothesized that sample handling would affect serum
metabolite levels and metabolite levels would still be highly
correlated across handling conditions, but handling effects
could nonetheless still induce false-positive findings under
certain conditions.

METHODS

Pilot experiment

A key aim of our study was to compare effects of warm
thaws with those of cold thaws when using minimum thaw-
ing time. However, we found no literature on how to estimate
expected thawing times at different temperatures and under-
took a pilot study. In this pilot study, we analyzed thawing
time as a function of 4 sample volumes and 4 thawing tem-
peratures (16 conditions). Samples were analyzed in dupli-
cate for each condition (32 total). Vials were placed in racks
in every other slot. Samples of each volume/temperature
combination were allowed to stand upright, and start time

Figure 1. Time to minimum thaw according to serum sample vol-
ume and thaw temperature in a study of sample handling conditions
and the serum metabolome (pilot study), Beltsville Human Nutrition
Research Center (US Department of Agriculture), 2015. Each line
represents a distinct thaw temperature, and triangles represent the
thawing times of individual samples (16 total conditions analyzed in
duplicate).

was recorded. Samples were checked every 1 (24◦C/30◦C)
or 2 (3.5◦C/7◦C) minutes for completeness of thawing until
thaw was achieved, and the finish time was recorded.

Minimum thawing times for the 16 conditions are shown
in Figure 1. The thaw at 7◦C, intended to represent overnight
thaws, showed that minimum thaw was achieved in less
than 80 minutes for all volumes. The room temperature
thaw (24◦C) showed that, for all volumes, time to minimum
thaw was less than 25 minutes. For 0.15-mL aliquots and
minimum thaws, ice thaws (3.5◦C) were approximately 50
minutes in length and room temperature thaws were about
10 minutes. We used these data to guide selection of thawing
times for subsequent experiments.

Study population

The study participants consisted of 13 volunteers aged 20–
65 years who had a body mass index (weight (kg)/height
(m)2) between 18.5 and 35.0 and were not ill at the time
of blood collection. Participants completed a short question-
naire and donated blood at the Beltsville Human Nutrition
Research Center, US Department of Agriculture (Beltsville,
Maryland), in 2016. Participants were not required to fast,
and the blood draw occurred at roughly the same time on
the same day for all participants.

The study protocol was reviewed and approved by the
Medstar Health Research Institute’s institutional review board
(Clinicaltrials.gov identification number NCT02697500).

Sample collection and processing

As Figure 2 outlines, 28 combinations of experimental
conditions were analyzed for each participant. Including
quality control samples, 416 samples were analyzed ((13

Am J Epidemiol. 2021;190(3):459–467
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Figure 2. Experimental conditions for the serum samples of each participant in a study of sample handling conditions and the serum
metabolome, Beltsville Human Nutrition Research Center (US Department of Agriculture), 2016. A) 30 minutes of clotting time; B) 120 minutes
of clotting time. Each square represents a single sample, and the duplicate samples comprised the quality controls. Initial sample tube volumes
were 8.5 mL, and then samples were processed in 0.15-mL aliquots. The experimental conditions for both clotting times with 0 hours in the
refrigerator and 0 thaws had an additional 2 quality control samples. Ice thaws were implemented at 3.5◦C for 50 minutes. Refrigerator thaws
were implemented at 4◦C–7◦C for 16 hours and were explicitly designed not to be minimum thaws. Room temperature thaws were implemented
at 24◦C for 10 minutes.

participants × 28 combinations of conditions) + (13 par-
ticipants × 4 repeated quality control samples)). We col-
lected approximately 17 mL of blood from each participant
in a serum separator tube and split that into two 8.5-mL
serum separator tubes. Tubes were inverted 5 times imme-
diately after drawing and allowed to stand upright to clot.
Samples were subsequently processed and split into 0.15-
mL aliquots.

Overall, we examined 4 experimental conditions: 1) clot-
ting time (30 minutes or 120 minutes), 2) postprocessing
refrigeration time (0 minutes or 24 hours), 3) number of
thaws (0, 1, or 4 thaws), and 4) thawing temperature (thaw-
ing on ice, in a refrigerator, or at room temperature).

The first condition, clotting time, entailed allowing the
8.5-mL serum separator tubes to stand for different periods
of time before processing. One tube was allowed to clot for
30 minutes, and the other for 120 minutes. After processing,
the sample set from each clotting group was further split into
2 groups to examine refrigeration time (condition 2). The 0-
minute refrigeration group was immediately frozen in liquid
nitrogen and stored at −80◦C. The remaining samples were
stored in the refrigerator for 24 hours, then frozen in liquid
nitrogen and stored at −80◦C.

One week after processing and freezing of samples, we
conducted freeze-thaw experiments to examine the effects
of number of thaws (condition 3) and temperature (condition
4). For samples that were part of the 1- or 4-thaw condition,
each freeze-thaw cycle consisted of a thaw, thorough mixing
by vortex, and a return to −80◦C. The time between indi-
vidual freeze-thaw cycles was 1 week. The samples were
thawed on ice (3.5◦C) for 50 minutes (minimum thaw),
thawed in the refrigerator (4◦C–7◦C) for 16 hours (not

minimum thaw—intended to reflect the normal practice of
overnight thawing), or thawed at room temperature (24◦C)
for 10 minutes (minimum thaw). For thawing, samples were
placed in racks at the specified temperature with every other
space unoccupied to prevent unequal thawing at the center.
Samples that were part of the 0-thaw condition remained in
storage. During the entire freeze-thaw process, samples were
contained in sealed cryovials.

We defined the gold-standard set of handling conditions
as 30 minutes of clotting, 0 minutes of refrigeration, and 0
thaws.

Laboratory assays

After performing all experimental manipulations, we
shipped frozen samples to Metabolon Inc. (Durham, North
Carolina) for extraction and metabolic profiling. Metabolon
used Q-Exactive (Thermo Fisher Scientific, Inc., Waltham,
Massachusetts) ultrahigh-performance liquid chromatog-
raphy–mass spectrometry and gas chromatography–mass
spectrometry, also referred to as the high-resolution accurate
mass platform. Raw data were extracted, peaks were iden-
tified, and quality control was processed on the platform
as previously described (20, 21). Samples were arranged in
batches of 32. All samples for each participant were ana-
lyzed in a single batch, and each batch included 3–5 blinded
duplicate quality control samples from the participant.

Metabolon quantified levels of 722 metabolites, of which
628 metabolites (metabolite metadata are shown in Web
Table 1, available at https://academic.oup.com/aje) were
present in more than 80% of samples (531 metabolites were
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present in more than 95% of samples), the criterion we set
for inclusion. Values deemed to be below the limit of accu-
rate detection were assigned the minimum value above that
limit (22–24). The median correlation between duplicate
gold-standard condition samples was 0.89, similar to prior
studies (25, 26). Levels were log-transformed for analysis.
Metabolite levels, on the original scale and transformed, are
given in Web Table 2 (parts A and B).

Statistical analysis

We performed principal components analysis and plotted
samples by their first 2 principal component scores (Web
Figure 1). We identified 2 samples as outliers and removed
them from further analyses.

We used 4 metrics to assess sample handling effects on
circulating metabolite levels: absolute percent difference
(APD), normalized difference (ND), correlation (r), and
expected number of false-positive associations. We charac-
terized the distributions of the first 3 metrics by their median
value and interquartile range (IQR).

The first metric was the APD, which measured the relative
difference in metabolite levels when changing 1 condition
while holding the others constant. Specifically, we defined
APD for increasing clotting time from c = 30 minutes to
c = 120 minutes:

APDj = 1
13

∑
i

APDij = 1
13

∑
i

1
14

∑
f ,t

Yij(120,f ,t)−Yij(30,f ,t)
(Yij(120,f ,t)+Yij(30,f ,t))/2 ,

where Yij(c,f ,t) is the observed level (Y) of metabolite j in
participant i for a specified clotting time (c), refrigeration
time (f ), and thaw conditions (t). We divided by 182 (13 ×
14 = 182) to average the APD over all conditions and
subjects. We formally tested whether the effects of handling
conditions were statistically significant. For each subject, we
calculated the average difference across all conditions (i.e.,
APDij) and then obtained a P value from a 1-sample t test
evaluating whether those 13 values had a mean of 0.

We also assessed APD categorized by metabolite super-
pathway, defined using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway database (27). We examined dis-
tributions of APD over metabolites within superpathways.
The superpathways used were xenobiotics (e.g., caffeine),
amino acids (e.g., creatinine), lipids (e.g., cholesterol),
and “other.” For the “other” superpathway, we combined
pathways with fewer than 30 metabolites, which included
carbohydrates (e.g., glucose), cofactors and vitamins (e.g.,
bilirubin), energy (e.g., phosphate), nucleotides (e.g., urate),
and peptides (e.g., glycylvaline).

Our second metric was the ND, which is the relative
effect of changing a condition compared with the between-
individual variability. By benchmarking sample handling
effects relative to between-individual variability, the ND is
more closely related to the ability to detect associations.
We determined the ND using linear mixed models (i.e.,
log(metabolite) levels as a function of the experimental
conditions), with study participant as the random effect and
the experimental conditions (clotting, refrigeration, thawing

conditions) as fixed effects. For example, we defined the ND
for comparing the 2 clotting times to be

NDj = β̂C
j

σ̂j
,

where βj measured the mean difference in log-levels between
the 2 clotting conditions (e.g., 30 minutes vs. 120 minutes)
and σj

2 measured the between-individual variability.
The third metric was the correlation, r, and it determined

whether, even in the presence of an absolute change, the
ordering of the samples was similar for 2 conditions. For
each metabolite, we estimated the correlation between the
2 conditions when the other conditions were set to ideal
states (i.e., 30 minutes of clotting, 0 minutes of refrigeration,
and 0 thaws). As a benchmark, we compared observed
correlations with the correlation between duplicates under
gold-standard conditions. It is important to note this gold-
standard correlation represents, in theory, an upper bound for
other correlations—that is, the limit of what can be observed
given baseline laboratory error.

Our fourth metric, the expected number of associations,
measured the potential effects on research results when
samples are not completely handled consistently. To eval-
uate this, we constructed a hypothetical case-control study
with 1,000 cases, 1,000 controls, and examination of 1,000
metabolites. We varied the proportion of handling conditions
between cases and controls. Two of the scenarios were
designed to be “realistic” and involved assigning 1% and
5% of cases to an alternate handling condition while controls
were all assigned the set of gold-standard conditions. Such
discrepancies could occur in a prospective study due to mod-
est bias in handling or, alternately, if case:control matching
criteria allowed prior thaws for cases so investigators could
exploit previously measured biomarkers (e.g., genomewide
association study data). Two scenarios were less realistic,
where 25% and 100% of cases were assigned alternate
handling conditions. An example could be a case-control
study in which case samples collected in a clinical setting are
left standing too long because the attending nurse/technician
has other priorities, while control samples collected at home
are promptly put on ice after clotting, since the attending
nurse/technician has few competing obligations during the
visit. Using estimates from above, along with standard devi-
ations, we estimated the number of false-positive associa-
tions observed.

For each metabolite, we estimated the probability of false-
positive associations (PF) as the probability that a hypothet-
ical case-control study, which treated a fraction, π, of the
cases and controls differently, would falsely declare that a
metabolite was significantly associated with the outcome.
We then approximated the PF for clotting time by

PFj = �
(

zα/2 + πβ̂C
j

σ̂j
√

2/n

)
,

where zα/2 is the α/2 quantile for the standard normal dis-
tribution, � is the cumulative distribution for the standard
normal distribution, β̂C

j and σ̂j are estimates from the linear
mixed model, and n (n = 1,000) represents the number of
individuals in each arm. We then estimated the expected

Am J Epidemiol. 2021;190(3):459–467
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Table 1. Characteristics of Volunteers in a Study of Sample
Handling Conditions and the Serum Metabolome, Beltsville Human
Nutrition Research Center (US Department of Agriculture), 2016

Characteristic
No. of

Persons
%a

Age, years

<30 3 23.1

30–55 5 38.5

>55 5 38.5

Sex

Male 6 46.2

Female 7 53.9

Body mass indexb

18.5–24.9 6 46.2

25.0–29.9 4 30.8

≥30.0 3 23.1

Current smoking 1 7.7

Alcohol consumptionc 4 30.8

Coffee consumptionc 9 69.2

Current medication use 7 53.9

Nutritional supplement usec 7 53.9

a Percentages may not sum to 100 because of rounding.
b Weight (kg)/height(m)2.
c Within the last 48 hours.

number of false-positive associations by PF × 1, 000, where
PF is the average of PFj over all 628 measured metabolites
from our study and 1,000 is the number of metabolites in our
hypothetical case-control study.

Because of our small study size, we employed bootstrap-
ping methods (28, 29) to obtain bias-adjusted estimates and
correct the distribution of effects (Web Tables 3 and 4).
However, such bias adjustments did not substantially affect
the results.

Analyses were performed in R, version 3.5.1 (R Founda-
tion for Statistical Computing, Vienna, Austria), and SAS,
version 9.4 (SAS Institute Inc., Cary, North Carolina).

RESULTS

Thirteen volunteers (7 females and 6 males) were re-
cruited (Table 1, Web Table 2). More than three-quarters
of the participants were ≥30 years of age, and the major-
ity were overweight/obese. One participant identified as
a smoker, while more than half reported medication use.
A majority of participants reported having consumed cof-
fee and nutritional supplements during the 48 hours prior
to questionnaire completion, whereas fewer than one-third
reported alcohol consumption.

For our first metric, we evaluated APD, the absolute
percentage difference in metabolite levels when a single
condition varied (Table 2; complete results are given in
Web Table 5 (parts A–I)). When extending clotting time

from 30 minutes to 120 minutes, we estimated the “median
effect” across metabolites as 9.08% (IQR, 3.44–19.83).
When increasing refrigeration time from 0 minutes to 24
hours, the median effect was 4.75% (IQR, 1.99–10.36).
Finally, when increasing the number of thaws from 0
to 4, the median effects for ice, refrigerator, and room
temperature thaws were 10.05% (IQR, 4.40–18.69), 7.25%
(IQR, 3.05–16.28), and 5.54% (IQR, 2.94–9.85). Notably,
room temperature thaws performed much better than ex-
pected. Metabolites of clinical significance showed some
vulnerability to handling conditions as well—for example,
cholesterol (2.49%–26.79%), glucose (0.28%–24.35%),
lactate (1.12%–108.90%), and thyroxine (4.45%–30.69%).
Although we did not aim to identify statistically significant
effects for individual metabolites, many individual findings
were nonetheless significant (Web Table 6). We found that
5.06% of P values (n = 31 metabolites) were below the
Bonferroni-corrected level of significance (α = 7.96e-5)
when testing effects of clotting time, 3.16% (n = 19) were
below that level for refrigeration time, and 4.78% (n = 30)
were below it for 4 refrigerator thaws. If one were using
more liberal significance thresholds, the percentage of t
tests identified as significant would substantially increase.

We also assessed APD according to metabolite superpath-
way (Figure 3). For nearly all conditions, effects were small-
est for xenobiotics, intermediate for amino acids and lipids,
and highest for “other” metabolites. Similarly, the range of
effects (5th–95th percentiles) was smallest for xenobiotics,
intermediate for amino acids and lipids, and large for “other”
metabolites. For example, when considering 4 refrigerator
thaws, the APD ranged from 0.4% to 14% for xenobiotics,
from 0.6% to 34% for lipids, from 0.6% to 74% for amino
acids, and from 1.1% to 100% for “other” metabolites.

For the second metric, we evaluated the ND obtained by
altering 1 condition (Table 2; complete results are given in
Web Table 7 (parts A–I)). When extending clotting time
from 30 minutes to 120 minutes, we estimated the median
effect as 0.101 standard deviations (IQR, 0.032–0.257).
When increasing refrigeration time from 0 minutes to 24
hours, the median effect was 0.056 standard deviations
(IQR, 0.019–0.143). When switching from 0 thaws to 4
ice thaws, the median effect was 0.101 standard deviations
(IQR, 0.038–0.237). Other thawing temperatures and fewer
than 4 thaws had less pronounced effects. Although it was
not an aim of our study, we identified several metabolites
that could potentially be indicators of sample handling:
adenosine, azelaic acid, bilirubin (E,E)∗, glycylvaline, and
suberic acid (Web Table 7).

For our third metric, we evaluated f for comparisons
of metabolite levels under gold-standard conditions versus
when a single condition varied (Table 2; complete results
are given in Web Table 8). Duplicate gold-standard samples
had a median correlation of 0.89 (IQR, 0.72–0.96), which
was the expected ceiling for observed correlations in this
analysis given normal measurement error. When comparing
clotting times of 30 minutes and 120 minutes, we found
the median f value to be 0.87 (IQR, 0.68–0.96). When
comparing refrigeration times of 0 minutes and 24 hours,
we observed the median f to be 0.85 (IQR, 0.67–0.96), and
for 0 and 4 refrigerator thaws, the median f was 0.84 (IQR,

Am J Epidemiol. 2021;190(3):459–467
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Table 2. Median (and Interquartile Range) Absolute Percent Difference and Normalized Difference in Serum
Metabolite Levels From Altering a Single Sample Handling Condition, as Well as Estimated Correlations Between
Metabolite Levels Under 2 Conditions, Beltsville Human Nutrition Research Center (US Department of Agriculture),
2016

Comparison
Difference in Serum Metabolite Levels

Correlation
(r)a

APD ND

Clottingb 9.08 (3.44–19.83) 0.101 (0.032–0.257) 0.87 (0.68–0.96)

Refrigerationc 4.75 (1.99–10.36) 0.056 (0.019–0.143) 0.85 (0.67–0.96)

Thawingd

1 thaw

On ice 4.74 (1.85–9.89) 0.048 (0.016–0.118) 0.89 (0.74–0.96)

In refrigerator 6.04 (2.32–13.56) 0.062 (0.019–0.160) 0.88 (0.75–0.96)

At room temperature 4.65 (1.79–10.12) 0.062 (0.024–0.142) 0.86 (0.67–0.96)

4 thaws

On ice 10.05 (4.40–18.69) 0.101 (0.038–0.237) 0.85 (0.67–0.95)

In refrigerator 7.25 (3.05–16.28) 0.099 (0.038–0.247) 0.84 (0.63–0.94)

At room temperature 5.54 (2.94–9.85) 0.088 (0.042–0.166) 0.91 (0.78–0.97)

Abbreviations: APD, absolute percent difference; IQR, interquartile range; ND, normalized difference.
a Duplicate gold standard (30 minutes of clotting, 0 minutes of refrigeration, and 0 thaws): r = 0.89 (IQR, 0.72–

0.96).
b 30 minutes of clotting vs. 120 minutes of clotting.
c 0 minutes of refrigeration vs. 24 hours of refrigeration.
d Compared with 0 thaws.

0.63–0.94). Since correlations did not substantially decrease
across conditions, there appears to be little loss in signal
provided that handling is 100% consistent for all samples.

Finally, we estimated our fourth metric, the number of
false-positive associations that result when applying coun-
terfactual changes in sample handling to our hypothetical
case-control study (Table 3). We found that even modest
changes in sample handling can markedly increase the num-
ber of research findings that are false-positive results. For
example, in a scenario where 5% of cases and 0% of controls
have undergone 1 ice thaw, we estimated that 12 false-
positive associations would be observed. For any scenario,
if the number of true-positive associations was less than 20,
the rate of true-positive results could ultimately be low (e.g.,
<50%).

DISCUSSION

In this sample handling study, each condition that we
tested affected serum metabolite levels. We quantified these
effects for 628 metabolites and ranked each metabolite by
its potential to yield biased associations in epidemiologic
research. We further corroborated prior reports showing,
somewhat surprisingly, that samples with suboptimal han-
dling can yield metabolite-disease associations like those
of ideally handled samples, if handling is 100% consistent.
However, we also deconstructed this simplistic model of
100% handling consistency—an ideal rarely achieved in
epidemiologic research—and showed that even minor depar-
tures from 100% consistency can cause substantially biased

results. A complete index of handling effects is available in
Web Tables 5, 7, and 8 and features results for metabolites
of clinical interest (e.g., cholesterol) as well as metabolites
of specialist interest (e.g., dietary biomarkers for nutritional
epidemiologists).

Our finding that all sample handling conditions affected
circulating metabolite levels was broadly similar to what
prior investigators have reported (12–14, 16, 18), though
we tested more conditions and more metabolites than most
of those studies. In general, handling effects were most
pronounced for clotting time and 4 thaws on ice and in
the refrigerator. The effects were modest for a majority of
metabolites (<10% change for 66% of comparisons) but
substantial for some (>40% change for 4% of comparisons).
For metabolites measured in clinical chemistry, such as
glucose or cholesterol, even modest handling effects could
result in misdiagnoses.

Because the impact of sample handling on epidemiologic
associations depends not just on sample handling effects
but also on the degree of variability between individuals
(akin to the intraclass correlation coefficient and its link
with effect size (30)), we further calculated a measure of
handling effects that benchmarks sample handling effects
to between-individual variability and ranked metabolites
according to this measure. Through this, we identified a sub-
set of metabolites that may be particularly indicative of past
sample handling—namely adenosine, azelaic acid, biliru-
bin (E,E)∗, glycylvaline, and suberic acid. Such metabo-
lites could help researchers identify the handling history of
biospecimens and/or flag biased results. Few studies have
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Figure 3. Box plots showing the median (and interquartile range) absolute percent difference in metabolite levels for each of 8 different
experimental conditions in a study of sample handling conditions and the serum metabolome, by metabolite superpathway, Beltsville Human
Nutrition Research Center (US Department of Agriculture), 2016. Median values (horizontal lines) represent the change in the median metabolite
level as sorted by absolute percent difference; for example, for amino acids, the metabolite at the median of the refrigeration distribution is
hydantoin-5-propionic acid, with a 4.04% absolute difference. “Other” superpathways include carbohydrate (n = 21), cofactors and vitamins
(n = 20), energy (n = 11), nucleotide (n = 28), and peptide (n = 24).

attempted to identify sample handling indicators, and none
have been validated for population research (11, 13–17, 31).
Future studies should test the performance of the sample
handling indicators we identified under conditions typical
of epidemiologic studies.

Like 2 prior studies, we found that metabolite values cor-
related highly across different handling conditions (11, 17),
with most correlations being greater than 0.85. This find-
ing indicates that, even if sample handling affects metabo-
lite levels, relative ranks are preserved across conditions
(Web Figure 2). Given that most epidemiologic analyses
of metabolomics data are done on relative concentrations,
this finding further implies that observed associations may
be similar across handling conditions, even if handling is
suboptimal. This assumes 100% consistent handling, how-
ever—which is rarely, if ever, achieved in large study popu-
lations.

To our knowledge, our study was the first to evaluate the
potential biases that could result from inconsistent handling,
and our results were sobering: Even trivial inconsistencies
in handling by case status could yield many false-positive
associations, making it difficult to discern signal from noise
among significant results. For example, when 5% of cases
are handled differently than controls, the number of false-
positive associations detected can be as high as 54. This
number may seem high given modest average effects of
sample handling, but false-positive associations are driven
by the subset of metabolites with large handling effects.
These results may be especially problematic and accumulate
rapidly in case-control settings, especially in studies where

handling may be differential by case status (e.g., where case
and control samples are collected by different technicians or
at different locations) or where specimens are collected after
some participants have been identified as cases.

We extended prior studies by delving deeper into the 2
components of thawing conditions, time and temperature.
Our study evaluated effects of thawing temperatures using
a “minimum thaw,” which provides a more equitable com-
parison of thawing temperature than was used in existing
studies. We found, surprisingly, that room temperature thaws
outperformed ice and refrigerator thaws in terms of mini-
mizing effects on metabolite levels. Overall, the main factor
affecting metabolite levels appeared to be the duration of
the thaw. This suggests that the overnight thaws used by
many laboratories may be excessively long and detrimental
to research. Short room temperature thaws of less than 20
minutes (depending on volume) may give superior perfor-
mance in comparison with these long cold thaws. Short
room temperature thaws also would allow for more flexible
scheduling of laboratory work, since samples would not
need to be thawed for hours prior to aliquoting or analysis.

In aggregate, prior studies on sample handling effects
have reached inconsistent conclusions, variously reporting
no effects (11, 15, 17, 19), modest effects (12, 14, 18), or
large systemic effects like those in our study (13, 16). By
exploring the full set of relevant handling metrics, our study
shows that these seemingly disparate conclusions are rec-
oncilable. Sample handling affects levels of many metabo-
lites, though effects for many metabolites may be modest.
Samples with suboptimal handling may yield epidemiologic
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Table 3. Estimated Number of False-Positive Associationsa for Each
of 8 Experimental Conditions in a Hypothetical Study of Sample
Handling Conditions and the Serum Metabolome, Beltsville Human
Nutrition Research Center (US Department of Agriculture), 2016

Condition

Proportion of Case and
Control Samples Handled

Differently

0.01 0.05 0.25 1.00

Clottingb —c 21 111 216

Refrigerationd 1 17 86 217

Thawinge

1 thaw

On ice — 12 181 447

In refrigerator — 22 205 459

At room temperature — 12 170 375

4 thaws

On ice — 54 381 688

In refrigerator 3 41 196 386

At room temperature — 8 92 244

a Calculated using sample handling variability, 1,000 cases/1,000
controls, 1,000 metabolites, and a Bonferroni-adjusted α value.

b 30 minutes of clotting vs. 120 minutes of clotting.
c A dash indicates that less than 1 metabolite would be classified

as false-positive.
d 0 minutes of refrigeration vs. 24 hours of refrigeration.
e Compared with 0 thaws.

associations like those of perfectly handled samples, but
only if handling is 100% consistent. Exploration of the full
set of sample handling metrics is needed to resolve these
seeming contradictions, and we strongly encourage investi-
gators in future studies of sample handling to take a similar
approach.

Limitations of our study include the use of relative metab-
olite concentrations and an incomplete assessment of the
human metabolome (600 metabolites instead of more than
100,000 (32)). Because we lacked absolute concentrations,
the metabolites we identified as proxies for sample handling
may have been limited in their ability to predict handling in
other populations. Sample handling effects could be altered
or amplified by interactions between handling conditions.
Although our study design would allow us to examine these
interactions, the tests for effectively evaluating this would
require a much larger sample than that used in our study.
Finally, we did not evaluate how differences in sample
handling that are nondifferential with respect to case status
may affect epidemiologic associations. This is a complex
topic for which further theoretical work is still needed.

In sum, our study provides a guide to understanding
effects of sample handling in a metabolomics context. We
encourage further research on this important topic, partic-
ularly research evaluating how nondifferential sample han-
dling may affect epidemiologic associations.
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