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Foundation models for fast, label-free 
detection of glioma infiltration

Akhil Kondepudi1,2, Melike Pekmezci3, Xinhai Hou1,2, Katie Scotford4, Cheng Jiang1,2, 
Akshay Rao1, Edward S. Harake1, Asadur Chowdury1, Wajd Al-Holou5, Lin Wang1, 
Aditya Pandey5, Pedro R. Lowenstein5, Maria G. Castro5, Lisa Irina Koerner6,  
Thomas Roetzer-Pejrimovsky7,13, Georg Widhalm6, Sandra Camelo-Piragua8, 
Misha Movahed-Ezazi9, Daniel A. Orringer10, Honglak Lee11, Christian Freudiger12, 
Mitchel Berger4, Shawn Hervey-Jumper4 ✉ & Todd Hollon1,5 ✉

A critical challenge in glioma treatment is detecting tumour infiltration during 
surgery to achieve safe maximal resection1–3. Unfortunately, safely resectable 
residual tumour is found in the majority of patients with glioma after surgery, 
causing early recurrence and decreased survival4–6. Here we present FastGlioma, a 
visual foundation model for fast (<10 s) and accurate detection of glioma infiltration 
in fresh, unprocessed surgical tissue. FastGlioma was pretrained using large-scale 
self-supervision (around 4 million images) on rapid, label-free optical microscopy, 
and fine-tuned to output a normalized score that indicates the degree of tumour 
infiltration within whole-slide optical images. In a prospective, multicentre, 
international testing cohort of patients with diffuse glioma (n = 220), FastGlioma  
was able to detect and quantify the degree of tumour infiltration with an average  
area under the receiver operating characteristic curve of 92.1 ± 0.9%. FastGlioma 
outperformed image-guided and fluorescence-guided adjuncts for detecting 
tumour infiltration during surgery by a wide margin in a head-to-head, prospective 
study (n = 129). The performance of FastGlioma remained high across diverse patient 
demographics, medical centres and diffuse glioma molecular subtypes as defined by 
the World Health Organization. FastGlioma shows zero-shot generalization to other 
adult and paediatric brain tumour diagnoses, demonstrating the potential for our 
foundation model to be used as a general-purpose adjunct for guiding brain tumour 
surgeries. These findings represent the transformative potential of medical 
foundation models to unlock the role of artificial intelligence in the care of patients 
with cancer.

The importance of detecting tumour infiltration within surgical speci-
mens during an operation has been recognized for over a century7. 
Despite our best efforts to deliver precision healthcare to patients with 
cancer, residual tumour after surgery is a major public health problem 
in the United States and globally8. For solid cancers and brain tumours, 
residual tumour results in worse quality of life, decreased patient sur-
vival and increased burden on healthcare systems2,3,9,10. Rates of residual 
tumour have not improved over the past two decades, and corrective 
surgical procedures and post-surgical treatment have an estimated 
total cost of more than US$1 billion annually in the United States9,11.

Here we present FastGlioma, an open-source, artificial intelligence 
(AI)-based diagnostic system for detecting brain tumour infiltration in 

fresh, unprocessed, unlabelled surgical tissue at the patient’s bedside 
(an interactive demo is available at https://fastglioma.mlins.org).  
Conventional microscopy analysis with haematoxylin and eosin 
(H&E)-stained tissue during surgery is slow, resource intensive and 
reliant on a shrinking pathology workforce12. FastGlioma solves these 
limitations by combining rapid, user-friendly, bedside optical micros-
copy and visual foundation models trained on a diverse dataset of 
over 11,000 surgical specimens and 4 million unique microscopy 
fields of view. Foundation models, such as the GPT-4 and DALL-E3 
models, are AI models that are trained on massive, diverse datasets 
and can be adapted to a wide range of downstream tasks13–16. Founda-
tion models for medical AI have the potential to solve challenging 
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clinical tasks by requiring little to no task-specific annotations to 
achieve good generalization performance and clinically meaning-
ful results17–19. FastGlioma combines visual foundation model train-
ing and efficient fine-tuning strategies to generalize across patient 
demographics, healthcare systems and WHO brain tumour diagno-
ses with minimal supervised training. As a general-purpose surgi-
cal adjunct, FastGlioma provides physicians with real-time, accurate 
and clinically actionable diagnostic information within seconds 
of tissue biopsy that can improve the surgical care of patients with 
brain tumours, thereby increasing patient quality of life and overall  
survival.

Visual foundation model training
The FastGlioma workflow starts during the surgical resection of 
a brain tumour (Fig.  1). Fresh tissue specimens are sampled at 
the surgical margins of a resection cavity to detect microscopic 
tumour infiltration. Specimens are imaged at the patient’s bedside 
using stimulated Raman histology (SRH)—a rapid, label-free, sub- 
micrometre-resolution optical imaging method20,21. A major advan-
tage of SRH over other intraoperative imaging methods is that image 
contrast is generated from the intrinsic biochemical properties of 
the specimen and does not rely on stains, dyes or labels. SRH images 
can be acquired in either full-resolution mode (∼100 s) or fast mode 
(∼10 s, lower resolution) depending on the clinician’s preference and 
the clinical context (Extended Data Fig. 1). Whole-slide images range 
from 1 mm2 to 10 mm2 and are divided into smaller, non-overlapping 
fields of view, or patches, for model input. The FastGlioma founda-
tion model training dataset was acquired from 13 medical centres 
and includes imaging data from over 3,000 patients, spanning 
the diagnostic spectrum of central nervous system tumours and 
human cancers (Extended Data Fig. 2). We developed a two-stage 
self-supervised learning method specifically designed for training 

vision transformer architectures on whole-slide microscopy images22. 
First, patch features are extracted using a patch tokenizer trained 
using hierarchical self-supervised learning23 (Extended Data Fig. 3a,b).  
Second, whole-slide image features are learned by generating two 
views of the same whole-slide image by randomly splitting, crop-
ping and masking the patch tokens. Both views then undergo a 
feedforward pass through a vision transformer, with the patches 
as input tokens, and a whole-slide self-supervised objective is mini-
mized24 (Extended Data Fig. 3c). Using this two-stage strategy to 
train a vision foundation model on the full SRH dataset, we obtained 
high-quality whole-slide representations and state-of-the-art per-
formance on a previously benchmarked multiclass brain tumour 
diagnosis task25. The classification task includes diagnosing the 
most common brain tumour types, including diffuse lower-grade 
and malignant gliomas with variable amounts of tumour infiltra-
tion. The high-quality patch-level and slide-level self-supervised 
training results in minimal trade-off between imaging speed/resolu-
tion versus model performance, with fast SRH reaching a mean class 
accuracy of 88.0 ± 2.1% versus full-resolution SRH at 90.2 ± 3.0% 
(Extended Data Fig. 3c). The proposed vision foundation model 
training strategy enables clinicians to seamlessly analyse multiple 
specimens throughout the tumour resection without sacrificing model  
performance.

Fine-tuning for infiltration scoring
Fine-tuning can improve task-specific foundation model perfor-
mance26; however, a major disadvantage of fine-tuning is the need 
for new large and annotated datasets16. Biomedical datasets are chal-
lenging to obtain, making efficient fine-tuning strategies essential 
to ensure safe and effective medical AI performance. To adapt our 
SRH foundation model for tumour infiltration detection and scor-
ing, we developed a data-efficient ordinal representation learning 
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Fig. 1 | FastGlioma workflow. A patient with a suspected diffuse glioma 
undergoes surgical resection. During tumour resection, the surgeon samples 
tissue from the surgical margin. The portable SRH imaging system acquires 
microscopy images in the operating room, performed by a single technician 
using simple touchscreen instructions. A freshly excised surgical specimen  
is loaded directly into a custom microscope slide and inserted into the SRH 
imager without the need for tissue processing. Additional details on image 
acquisition are provided in Extended Data Fig. 1. SRH images can be virtually 
stained using an H&E-like colour scheme for clinician review as shown above20. 
A whole-slide SRH image is divided into patches and each patch undergoes a 
feedforward pass through a patch tokenizer (Extended Data Fig. 3a). The patch 
tokens, plus an appended classification token <CLS>, are then input into a 
whole-slide SRH encoder that is a vision transformer. The patch tokenizer and 

whole-slide encoder are pretrained as a visual foundation model using large- 
scale self-supervision (Extended Data Fig. 3b). For tumour-infiltration scoring, 
a slide scorer model is fine-tuned to output a normalized continuous score 
between 0 and 1 that predicts the degree of tumour infiltration within the whole- 
slide image that corresponds to a four-tier whole-slide ordinal infiltration scale 
as defined by expert neuropathologists (Extended Data Figs. 2 and 4). Ordinal 
labels are weak because they apply to the slide level only. Despite the weak 
labels, FastGlioma provides regional interpretability by identifying areas 
within whole-slide SRH images with a high probability of tumour infiltration. 
Scale bars, 100 μm. Tumour resection and microscopy slide images were 
adapted from ref. 4. The operating room graphic was adapted from ref. 48. The 
neural network architectures were adapted from https://alexlenail.me/NN-SVG/.

https://alexlenail.me/NN-SVG/
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method called ordinal metric learning that was implemented using 
an existing, previously annotated SRH tumour-infiltration dataset4.  
The tumour-infiltration dataset is 100× smaller than the foundation 
SRH dataset (around 100 versus approximately 10,000 images) and 
was annotated by three expert neuropathologists (lead pathologist, 
M.P.). The pathologists ranked the degree of tumour infiltration within 
each SRH image on a consensus four-tier scale: (0) normal brain tis-
sue/no tumour; (1) atypical cells/possible tumour but not definitive;  
(2) sparse tumour infiltration; (3) dense tumour infiltration. Each speci-
men then underwent H&E staining and tumour-marker-specific immu-
nohistochemistry, such as isocitrate dehydrogenase-1/2 (IDH) and p53, 
to confirm tumour-infiltration scores4. Using this tumour-infiltration 
dataset, ordinal metric learning fine-tunes the SRH foundation model 
by maximizing the latent distance, or metric, between whole-slide 
SRH images with different degrees of tumour infiltration (Extended 
Data Fig. 5a,b). Moreover, the increased efficiency of ordinal metric 
learning stems from enforcing that the model ranks images based 
on their tumour infiltration by performing a pairwise comparison 
between all images in a training mini-batch. The model then implic-
itly learns similar representations for whole-slide SRH images with 
the same degree of tumour infiltration and the representations are 
appropriately ordered in the whole-slide embedding space (Extended 

Data Fig. 5c). The fine-tuned model uses a linear slide scoring layer 
to output a single scalar value between 0 and 1 that indicates the 
degree of tumour infiltration within a whole-slide SRH image, pro-
viding clinically actionable information for each specimen within 
seconds of biopsy. In addition to assessing surgical margins, Fast-
Glioma can identify specimens with dense tumour infiltration early 
in the surgical resection to obtain high-yield diagnostic tissue for 
intraoperative and final pathologic diagnosis. We demonstrate that 
ordinal metric learning outperforms other state-of-the-art ordinal 
regression methods, especially when training data are limited, achiev-
ing a mean area under the receiver operator characteristic curve 
(mAUROC) of 88.7 ± 1.6% on hold-out testing using the SRH infiltration  
dataset.

Prospective testing of FastGlioma
We tested the fine-tuned FastGlioma model in a multicentre, pro-
spective cohort of patients with diffuse glioma to evaluate how the 
model generalizes across different continents, medical centres, patient 
demographics and WHO diffuse glioma molecular subgroups. Model 
testing was designed as a single-arm, non-inferiority, diagnostic clini-
cal trial with a minimum sample size of 565 SRH specimens for both 
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Fig. 2 | Prospective clinical testing results. a, The prediction results for the  
full prospective, international, multicentre testing cohort of patients with 
diffuse glioma (n = 220) are shown. ROC curves (mean ± s.d.) show the average 
performance for predicting four levels of tumour infiltration. Subgroup 
analysis is shown in Extended Data Fig. 6. SRH foundation model pretraining 
showed strong prediction performance without fine-tuning. When fine- 
tuning with ordinal metric learning, FastGlioma had a 3.2% increase in overall 
performance. FastGlioma outperforms models trained using standard 
supervised training (84.7 ± 1.1% mAUC) as shown in Supplementary Table 4.  
b, Box and whisker plots, shown in the standardized quartile format, of 
FastGlioma infiltration scores by ground-truth value. Scores had strong 
correlation with ground-truth ordinal scores (ρ = 0.77, 95% confidence 
interval = 0.74–0.78). Individual scores are shown in a histogram and 

correspond to AUROC values in a. c, FastGlioma performance on full- 
resolution (FR) versus low-resolution SRH images. Data are mean ± s.d. 
FastGlioma allows for a 10× increase in imaging speed with minimal 
performance trade-off. d, Whole-slide SRH representations are plotted on  
a linear discriminant axis. FastGlioma-learned representations rank 
whole-slide SRH images on a near-linear tumour-infiltration axis. e, Subgroup 
analysis by WHO adult-type diffuse glioma subtypes (ROC curves are plotted 
as mean ± s.d.). FastGlioma performs well across all three adult-type diffuse 
gliomas. Importantly, FastGlioma performs well on lower-grade gliomas in 
which tumour infiltration and tissue cellularity can be low (Extended Data 
Fig. 7). Low-grade and lower tumour infiltration are major challenges for 
other surgical adjuncts, such as fluorescence-guided surgery. WT, wild type.
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IDH-mutant and IDH-wild-type diffuse gliomas (1,130 total specimens). 
All specimen processing and annotation was performed using the 
validated four-tiered tumour-infiltration rating system described 
above. Three tertiary medical centres across the United States and 
Europe were included as testing recruitment sites: University of Cali-
fornia San Francisco (UCSF), New York University (NYU) and Medical 
University of Vienna (MUV). Patients were recruited as a consecutive 
cohort of adult patients (aged ≥18 years) with diffuse gliomas who 
underwent tumour resection. A total of 220 patients were included 
(Extended Data Fig. 2), resulting in 767 IDH-mutant specimens and 
659 IDH-wild-type specimens. FastGlioma achieved a mean AUROC 
of 92.1 ± 0.9% for differentiating the four degrees of diffuse glioma 
infiltration (Fig. 2a). Normalized infiltration scores were strongly 
correlated with ground-truth ordinal labels, with a correlation coef-
ficient of ρ = 0.77 (95% confidence interval = 0.74–0.78, P = 0.00) 
(Fig. 2b). Importantly, visual foundation model pretraining allowed 
FastGlioma to generalize to the fast, low-resolution images acquired 
at 10× imaging speed without a clinically significant reduction in pre-
diction performance (<1% decrease) (Fig. 2c). SRH foundation model 
fine-tuning with ordinal metric learning resulted in the FastGlioma 
representing whole-slide SRH images on a linear infiltration axis that 
stratifies SRH images according to their ground-truth infiltration 
label (Fig. 2d). Model performance and infiltration scores were con-
sistent across patient demographics, including sex, age and race. 
mAUROC remained high across medical centres: UCSF (92.1 ± 0.2%), 
MUV (88.6 ± 0.13%) and NYU (92.9 ± 0.1%) (Extended Data Fig. 6a,b). 
While other surgical adjuncts can be limited to a single brain tumour 
diagnosis, FastGlioma was intentionally designed as a general-purpose 
model for all diffuse gliomas and degrees of tumour infiltration. 

FastGlioma maintained accurate tumour-infiltration scores despite 
the significant cytological and histoarchitectural differences related to 
tumour grade, molecular genetics, treatment effect or WHO subtypes 
(Fig. 2e and Extended Data Fig. 6c–e). Lastly, FastGlioma outperforms 
cellularity/segmentation-based methods for tumour detection by 
a large margin with a >10% mAUROC performance increase, espe-
cially in regions of lower cellularity or tumour densities (Extended  
Data Fig. 7).

Interpretability and zero-shot results
Interpretable visualizations that highlight regions of tumour infiltra-
tion within whole-slide images are essential to ensure safe, reliable 
and trustworthy predictions27. We developed a visualization strategy 
that takes advantage of FastGlioma’s self-supervised training and gen-
eralization performance, called few-shot visualizations. For a query 
SRH region or patch, few-shot visualizations use a small support set of 
physician-selected SRH patch examples as keys to assess feature simi-
larity (around ten images). The support set includes a diverse selection 
of diffuse gliomas and normal brain parenchyma SRH patch examples. 
FastGlioma few-shot visualizations compare the query cosine similarity 
with tumour keys and the dissimilarity with normal keys to generate 
tumour-infiltration heat maps. Few-shot visualizations are a flexible 
foundation-model-based interpretability framework that can accom-
modate any support set selected by pathologists, clinicians or investiga-
tors. Adding or changing support set examples does not require model 
retraining. Figure 3 shows interpretable few-shot FastGlioma visuali-
zations from the prospective testing medical centres. The heat maps 
demonstrate slide-level segmentation of tumour-infiltrated regions. 
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Fig. 3 | General and interpretable FastGlioma predictions. Diffuse glioma 
specimens from the four study medical centres are shown. Specimens span  
the full diagnostic spectrum of WHO adult-type diffuse gliomas. Few-shot 
visualizations highlight regions of tumour infiltration contained within surgical 
specimens using a support set of expert-physician-selected SRH patch keys  
to match the underlying SRH query features using FastGlioma. As a visual 
foundation model, FastGlioma requires few examples (around 10, University  
of Michigan images only) to achieve interpretable tumour-infiltration 

visualizations that generalize across medical centres and degrees of tumour 
infiltration. FastGlioma predictions and visualizations are consistent across 
diverse histological features, including dense tumour, infiltrated normal brain 
parenchyma, tumour-associated immune cell infiltration and atypical cells. 
FastGlioma differentiates between increased cellularity due to tumour cell 
infiltration versus non-neoplastic cells, such as red blood cells (RBCs). Additional 
detailed few-shot visualizations are provided in Extended Data Fig. 8. Scale bars, 
100 μm. The maps were created using Vecteezy.
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Visualization quality generalizes across medical centres, degrees of 
tumour infiltration and molecular subgroups (Extended Data Fig. 8). 
Similar to FastGlioma tumour-infiltration scoring, few-shot visualiza-
tions reliably identify regions of tumour infiltration despite variations 
in the underlying histological features. FastGlioma learned invariant 
tumour-infiltration representations across the molecular subgroups 
of diffuse gliomas (Extended Data Fig. 8a,b). Importantly, FastGlioma 
demonstrates medical foundation model properties with zero-shot 
generalization. FastGlioma achieves accurate tumour-infiltration 
detection and few-shot visualization for non-glioma brain tumour diag-
noses, including metastatic brain tumours, primary central nervous 
system lymphomas, embryonal tumours and meningiomas (Extended 
Data Fig. 9). These results demonstrate the advantage of visual founda-
tion models for medical AI applications and the potential to generalize 
to other human cancers without requiring extensive model retraining 
or fine-tuning.

FastGlioma as a surgical adjunct
Finally, we evaluated the feasibility and safety of FastGlioma as a sur-
gical adjunct by simulating an interventional clinical trial in which 
surgical resections are guided by FastGlioma predictions. FastGlioma 
predictions (experimental arm) were compared in a head-to-head, pro-
spective comparison against standard-of-care intraoperative surgical 
adjuncts (control arm): image-guided surgery with magnetic resonance 
imaging (MRI)-based neuronavigation and fluorescence-guided sur-
gery with 5-aminolevulinic acid (5-ALA). Both adjuncts have been stud-
ied in clinical trials that demonstrated improved extent of resection 
and decreased postoperative residual tumour volume28,29. In total, 129 
patients with diffuse glioma, a subset of the above prospective cohort, 
were included, resulting in 624 surgical specimens with matched Fast-
Glioma predictions and radiographic features (contrast enhancement/
FLAIR) and/or 5-ALA status for each surgical specimen according to 
previously published and validated protocols4,30 (Supplementary 
Table 3). We evaluated both study arms on the classification task of dif-
ferentiating surgical specimens with the ground truth label of normal 
brain (score 0) versus dense tumour infiltration (score 3). Errors on this 
task are clinical high-risk errors because they represent actionable and 
decisive predictions: normal brain predictions signal to stop resection, 
dense tumour signals to continue resection if otherwise safe. Fast-
Glioma outperformed both image-guided and fluorescence-guided 
methods for detecting tumour infiltration by a wide margin (Fig. 4a). 
FastGlioma achieved an AUROC of 98.1% compared to 76.3% for FLAIR 
positivity, 71.8% for contrast enhancement and 89.0% for 5-ALA fluores-
cence. A major challenge in diffuse glioma surgery is interpreting FLAIR 
positivity, which can indicate tumour infiltration or cerebral oedema, 
or both. FastGlioma was able to correctly differentiate tumour infiltra-
tion and cerebral oedema in FLAIR-positive regions, with an AUROC of 
98.7% (ref. 31) (Supplementary Fig. 2). Next, we analysed these results 
for each study patient to identify the number of patients that had one 
or more high-risk tumour miss errors, or false-negative predictions, 
for both study arms. Tumour miss errors place patients at high risk of 
dense, safely resectable residual tumour left within the resection cavity 
after surgery. Only 3.8% (5 out of 129) of patients in the FastGlioma arm 
had at least 1 high-risk tumour miss compared with 24.0% (31 out of 
129) in the surgical adjuncts arm (Fig. 4b). Patients who undergo dif-
fuse glioma resections guided using current standard-of-care surgical 
adjuncts alone are potentially at 6.3× increased relative risk of dense, 
safely resectable residual tumour after surgery compared to including 
FastGlioma as a surgical adjunct. FastGlioma powered by real-time, 
label-free, optical imaging with SRH overcomes the inherent limita-
tions of existing adjuncts, such as insufficient tumour fluorescence, 
non-specific radiographic features and brain shift, enabling more 
precise and effective surgical care of patients with diffuse glioma30,32,33 
(Extended Data Fig. 10).

Discussion
Here we present FastGlioma, an open-source medical foundation model 
for fast, label-free detection of diffuse glioma infiltration during sur-
gery. Within seconds of tissue sampling, FastGlioma accurately predicts 
the degree of tumour infiltration in fresh, unprocessed surgical speci-
mens from both IDH-wild-type glioblastomas and IDH-mutant diffuse 
gliomas. FastGlioma outperforms standard-of-care image-guided and 
fluorescence-guided intraoperative methods for tumour-infiltration 
detection by a substantial margin. FastGlioma can be generalized to 
other paediatric and adult brain tumour diagnoses, demonstrating its 
potential as a general-purpose medical foundation model for guiding 
brain tumour surgery.
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Fig. 4 | Simulated clinical trial results. a, The results of the prospective 
simulated clinical trial comparing FastGlioma with current standard- 
of-care surgical adjuncts. Both FastGlioma and SRH foundation models 
outperform image-guided and fluorescence-guided surgical methods by a 
wide margin for differentiating normal/gliotic brain (score 0) from dense 
tumour infiltration (score 3). The performance boost results from FastGlioma 
predicting directly on high-resolution, label-free SRH images without 
requiring indirect labels of infiltration, such as 5-ALA fluorescence or 
contrast enhancement. b, Graphical summary of the patient-level 
false-negative rates in the prospective cohort. To ensure fair and clinical 
representative comparison, false-negative rates were calculated for the 
optimal surgical adjunct given the patient’s diffuse glioma subtypes: FLAIR 
for IDH-mutant diffuse gliomas and contrast enhancement and 5-ALA was 
used for IDH-wild-type tumours. False-negative errors on the score 0 versus 
score 3 classification task represent high-risk tumour misses and place the 
patient at the highest risk of residual tumour after surgery resection. The 
FastGlioma study arm had a 3.8% false-negative/tumour miss rate compared 
with 24.0% in the standard-of-care surgical adjuncts arm. The results indicate 
a potential 6.3× decrease in the relative risk of residual tumour within 
resection cavities by using FastGlioma to guide tumour resections. Detailed 
classification results are provided in Extended Data Fig. 10.
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FastGlioma has the potential for immediate clinical impact on 

improving the comprehensive management of patients with diffuse 
glioma. The prognostic importance of the extent of resection and 
residual tumour burden has been reproducibly demonstrated in mul-
tiple independent international clinical studies2,3,6,34. FastGlioma 
represents an innovative departure from existing surgical adjuncts 
by rapidly identifying tumour infiltration at microscopic resolu-
tion using AI, nearly eliminating the potential risk of residual dense 
tumour within glioma resection cavities. AI-based computer vision 
and visual foundation models can minimize reliance on radiographic 
features, contrast enhancement or extrinsic fluorescent labels to 
optimize the extent of resection and achieve safe maximal tumour  
removal.

Worldwide, over 18 million people will be diagnosed with can-
cer annually35. The importance of delivering safe, timely and affordable 
cancer surgery has been identified as a major area of improvement in 
the global fight against cancer8. Global cancer initiatives have recom-
mended incorporating new technologies, including advanced imag-
ing modalities and AI, into cancer surgery36. SRH and FastGlioma are 
accessible and affordable surgical adjuncts for cancer surgery. Future 
studies will focus on applying a similar FastGlioma workflow to other 
human cancers, including lung, prostate, head and neck, and breast 
cancer37,38.

As part of the growing field of AI-based diagnostics39–41, FastGlioma 
is a rapid and scalable alternative to conventional wet-lab methods. 
Conventional intraoperative pathology using smear preparation and 
frozen sectioning is limited in diagnostic and clinical value. Histo-
logical diagnosis20,42, tumour recurrence43, molecular classification44 
and tumour-infiltration detection are now possible through an inte-
grated bedside SRH-AI platform. SRH visual foundation models can 
enable computational staining for histological diagnoses, molecular 
markers and tumour infiltration within fresh, unprocessed cancer  
specimens.

The SRH visual foundation model can facilitate generalization of 
FastGlioma to other human cancers. Foundation models will have a 
central role in the safe and effective deployment of AI in healthcare and 
clinical medicine17,45,46. Large and diverse medical datasets combined 
with high-quality self-supervised training results in better performance 
and less bias across a wide range of complex clinical and diagnostic 
tasks18,47. Here we demonstrate how visual foundation models can 
facilitate tumour detection across patient demographics, medical 
centres, molecular genetics and brain tumour diagnoses. In conclu-
sion, FastGlioma represents the transformative potential of medical 
foundation models to unlock the role of artificial intelligence in the 
care of patients with cancer.
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Methods

Study design
We had three main objectives for this study: (1) train a vision trans-
former model on a large and diverse dataset of SRH images using 
self-supervision to develop the first SRH visual foundation model; 
(2) fine-tune the visual foundation models to develop FastGlioma for 
detection and quantification of diffuse glioma infiltration in fresh, 
unprocessed surgical specimens; (3) validate FastGlioma in a prospec-
tive, multicentre, international cohort of patients with diffuse glioma 
and compare results to current surgical adjuncts. We adopted the 
common working definition of a foundation model: (1) any machine 
learning model that is (2) trained on a large and diverse dataset using 
(3) self-supervision at scale and (4) can be adapted to a wide range of 
downstream tasks13. We also added to this definition (5) evidence of 
zero-shot generalization to new, unseen data. Foundation modelling 
had not been previously investigated in studies on the clinical appli-
cations of SRH and we focused on tumour infiltration as the most 
clinically important and ubiquitous problem in cancer surgery as the 
major downstream tasks. We aimed to design FastGlioma to detect 
microscopic tumour infiltration for all diffuse glioma molecular sub-
types. A major data-centric contribution of this work was develop-
ing a multicentre, international, label-free SRH tumour-infiltration 
dataset annotated by expert neuropathologists. Preliminary results 
demonstrated the feasibility of generating this complex biomedical 
dataset4. Moreover, previous studies that combine SRH and AI were 
done such that the same imaging dataset was used both for human 
interpretation and AI model training42,44. Here we aimed to push the 
limits of AI-based computer vision performance in lower image resolu-
tion/faster image acquisition regimes at 10 times the speed of conven-
tional SRH imaging. Finally, we aimed to demonstrate the feasibility of 
using FastGlioma as a surgical adjunct and compare tumour detection 
performance with existing image-guided and fluorescence-guided 
surgical adjuncts.

SRH imaging
All of the images in our study were acquired using intraoperative 
fibre-laser-based stimulated Raman scattering microscopy21,49. The 
NIO Imaging System (Invenio Imaging) was used for all training and 
testing data collection. We have provided a detailed description of the 
imager and laser configuration in previous studies20,49. In brief, a pump 
beam at 790 nm and a Stokes beam with a tuneable range from 1,015 nm 
to 1,050 nm was used to stimulate the surgical specimens. The settings 
allow for access to the Raman shift spectral range between 2,800 cm−1 
and 3,130 cm−1. Images were acquired as 1,000 pixel-width strips with an 
imaging speed of 0.4 Mpx per strip. In normal imaging mode, each strip 
row is acquired independently in a left–right manner using a custom 
beam-scanning20,21. Two image channels are acquired sequentially at 
2,845 cm−1 (CH2 channel) and 2,930 cm−1 (CH3 channel) Raman wave-
number shifts. A stimulated Raman signal at 2,845 cm−1 represents 
the CH2 symmetric stretching mode of lipid-rich structures, such as 
myelinated axons. A second Raman peak at 2,930 cm−1 corresponds 
to protein- and nucleic acid-rich regions such as the cell nucleus and 
collagen. As all SRH strips are acquired through standard horizontal 
line scanning20,21,49, low-resolution SRH images can be generated by 
directly downsampling SRH strip rows by a downsampling factor, such 
as 1/2, 1/4, 1/8 and so on. Halving the line sampling factor corresponds 
to a 2× imaging time savings. In fast imaging mode, single-channel 
images with a user-specified downsampling factor are acquired. The 
whole-slide SRH images are then split into 300 × 300 pixel patches 
without overlap using a sliding raster window over the full image. All 
models are trained using 16-bit, raw, greyscale SRH images. For the 
purposes of the study, SRH images were acquired as two-channel images 
(2,845 cm−1, 2,930 cm−1) for pathologist’s review to determine ground 
truth tumour-infiltration labels.

SRH dataset
Clinical SRH imaging began at the University of Michigan (UM) on 1 June 
2015 following Institutional Review Board approval (HUM00083059). 
All patients with a suspected brain tumour were recruited for intraop-
erative SRH imaging in a prospective manner. The inclusion criteria 
were as follows: patients who were undergoing surgery for (1) suspected 
central nervous system tumour and/or (2) epilepsy, (3) subject or dura-
ble power of attorney was able to provide consent and (4) preoperative 
assessment that additional tumour specimens would be available in 
addition to what is required for clinical pathologic diagnosis. Exclusion 
criteria were (1) grossly inadequate tissue, (2) insufficient diagnostic 
tissue (for example, haemorrhagic, necrotic) or (3) imaging malfunc-
tion. A similar imaging protocol was implemented at 12 other medical 
centres with clinical SRH imaging deployed in their operating rooms. 
A total of 2,799 patients, 11,462 whole-slide SRH images and approxi-
mately 4 million unique 300 × 300 pixel SRH patches were included 
for SRH foundation model training. Dataset statistics and diagnostic 
information are provided in Extended Data Fig. 2.

SRH foundation model training
SRH foundation models consist of two modular components trained 
using self-supervision: the patch tokenizer and the whole-slide 
encoder.

Patch tokenizer training with hierarchical discrimination. In stand-
ard vision transformers, converting small, fixed-size image patches, 
such as 8 × 8 or 16 × 16 pixel patches, into tokens can be done by flat-
tening. This tokenization strategy is not feasible due to the size of 
whole-slide SRH images (>6,000 × 6,000 pixels). We therefore devel-
oped a data-driven patch tokenization method that leverages the inher-
ent patient-slide-patch hierarchy of SRH images to define a hierarchi-
cal discriminative learning task23. We previously demonstrated that 
hierarchical discrimination, called HiDisc, outperforms instance dis-
crimination methods for biomedical microscopy computer vision 
tasks. HiDisc uses self-supervised contrastive learning such that posi-
tive image patches are defined based on a shared ancestry in the 
patient-slide-patient data hierarchy. The HiDisc loss is a summation of 
three losses, each of which corresponds to instance discrimination at 
a level of the patch-slide-patient hierarchy. We define the HiDisc loss 
at the level ℓ to be:
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where λℓ is a weighting hyperparameter for level ℓ in the total loss. As 
HiDisc is a self-supervised representation learning method, we used 
the full SRH dataset as shown in Extended Data Fig. 2a. We found that 
HiDisc patch tokenization improved classification performance com-
pared with ImageNet transfer learning (Extended Data Fig. 3c).

Patch encoding was accomplished using the ResNet-34 architecture 
as the backbone feature extractor and a one-layer multilayer percep-
tron to project the embedding to 128-dimensional latent space for 
HiDisc self-supervised training50. We performed ablation studies over 
the batch size, learning rate and loss hyperparameters to optimize 
performance on the SRH7 dataset. The encoder was trained using 
a batch size of 512 and an AdamW optimizer with a learning rate of 
0.001 on a cosine decay schedule with warmup for the first 10% of 
training iterations for a total of 100,000 iterations on the foundation 
SRH dataset. To train using the HiDisc loss, the mini-batches were 
constructed by first selecting 64 patients, followed by sampling two 
slides per patient, two patches per slide and finally applying two 
random augmentations per patch, yielding 512 patches. The patch, 
slide and patient losses were weighted equally, and the temperature 
was set to 0.7. All of the patch experiments were performed using 
mixed-precision and data parallelism on four NVIDIA A40 GPUs, tak-
ing up to 3 days. We performed additional ablation experiments with 
open-source foundational patch encoders to assess the quality of 
HiDisc feature learning compared with other pretrained models19 
(Supplementary Table 4).

Whole-slide encoder. A major contribution of this work was develop-
ing an efficient and effective method for whole-slide self-supervised 
training with vision transformer architectures. The major advantage 
of vision transformers for whole-slide inference in computational pa-
thology and optical imaging is their ability to handle large and variably 
sized images. The whole-slide self-supervised learning strategy is a 
Siamese architecture that requires two random transformations of 
the same whole-slide image. The slide-level transformation strategy 
is as follows. First, the whole slide is split into two mutually exclusive 
patch sets (splitting). Next, two random spatial crops are selected from 
the whole-slide image (cropping). Finally, 10–80% of patches from a 
crop are dropped (masking). This strategy is ideally suited for vision 
transformers because it allows for variable sized inputs and random 
dropping of patch tokens/spatial regions within a whole-slide image. 
After generating two transformed views, we then minimize a variance–
invariance–covariance (VICReg) self-supervised objective function51. 
VICReg is well suited for whole-slide encoding because it is computa-
tionally efficient, does not require negative examples and maintains 
high expressivity by avoiding dimensional collapse52.

The whole-slide transformer consists of 2 hidden layers with dimen-
sion 512, with 4 attention heads per layer. The output of the transformer 
is distilled into a <CLS> token, with seven additional register tokens 
employed to stabilize training53. Positional information is learned con-
currently in a Fourier feature positional embedding generator net-
work54. The Fourier feature and MLP hidden dimension of this network 
are 96 and 36, respectively. For self-supervision purposes, a one-layer 
MLP was trained to project the embedding to 128-dimensional latent 
space. The VICReg objective was used for whole-slide self-supervised 
training, with the coefficients being 10, 10 and 1 for the variance, invari-
ance and covariance losses, respectively. Pretraining was done with an 
effective batch size of 256 and the AdamW optimizer with a learning rate 
of 3 × 10−4 for 100 epochs on a single NVIDIA Titan V100 GPU. Check-
points were saved every 10 epochs, with the optimal one selected using 
slide-level metrics on the histological brain tumour diagnosis task with 
a hold-out validation set. A schematic of SRH foundation model training 
is shown in Extended Data Fig. 3. Detailed model training configura-
tions, including batch size, learning rate and other hyperparameters, 
are shown in Supplementary Table 6 and are available at GitHub (https://
github.com/MLNeurosurg/fastglioma).

SRH foundation model evaluation
Validation of the foundation model was performed on a multiclass SRH 
brain tumour diagnostic task. This dataset consists of 3,560 whole-slide 
images from 896 patients (852,000 total patches). Diagnostic classes 
are normal brain, high-grade glioma (HGG), low-grade glioma (LGG), 
meningioma, pituitary adenoma, schwannoma and metastatic tumour. 
In all previous benchmarking studies, training required supervised 
filtering of nondiagnostic patches and patch-level average pooling for 
whole-slide inference, which is known to degrade performance42–44. 
Here we demonstrate that high-quality self-supervised patch and 
whole-slide representation learning with vision transformers bypasses 
the need for preprocessing, filtering or patch-level voting/averaging. 
We used nearest-neighbour classification (k-NN) for SRH foundation 
model evaluation. First, we generated whole-slide representations 
for both the training and testing data. Next, the k-NN classifier was 
used to match each slide in the testing dataset to the k most similar 
representations in the training dataset as determined by their cosine 
similarity. We set k = 10 in our experiments for all models to ensure 
consistent results. This enables us to determine a class prediction for 
each slide in the testing dataset. We then calculate the mean class accu-
racy (MCA) and mean average precision (mAP) for the seven-class task 
for slide metrics (Extended Data Fig. 4). Whole-slide representations 
were visualized using t-distributed stochastic neighbour embedding 
(t-SNE) to qualitatively assess slide representations with respect to 
tumour classes. Embeddings for k-NN and subsequent evaluations 
were generated on a single NVIDIA Titan V100 GPU.

Fine-tuning with ordinal representation learning
Our SRH foundation models were specifically developed to adapt to 
downstream diagnostic tasks for clinical decision support. Here we 
aimed to fine-tune the foundation model for the detection and quan-
tification of tumour infiltration using intraoperative SRH imaging. 
While diffuse glioma infiltration is a continuous random variable, the 
majority of previous work modelled glioma infiltration as an ordinal 
variable4,55, such that expert pathologists score the degree of tumour 
infiltration on a discrete, ordered scale. We fine-tuned the foundation 
model using the glioma-infiltration dataset from a previous study4. 
The dataset consists of 161 surgical specimens imaged using SRH from 
35 patients. The degree of tumour infiltration in each SRH image was 
scored on a scale from 0 to 3 by three independent expert neuropathol-
ogists, where 0 is no tumour present; 1 is mildly cellular tissue either 
due to reactive gliosis or with scattered atypical cells, without definitive 
tumour; 2 is tumour present but in mild/sparse density; and 3 is mod-
erate to severe density of tumour cells. This dataset is approximately 
100 times smaller than the SRH foundation model training dataset and 
approximately 10 times smaller than the calculated sample size for 
model testing. Owing to this extreme data sparsity for fine-tuning, we 
developed a general, data-efficient, few-shot ordinal representation 
learning method called ordinal metric learning. Ordinal metric learn-
ing aims to minimize the feature distance, or metric, between images 
with the same ordinal rank. Moreover, it implicitly learns to order 
images based on their ordinal label by performing a pairwise com-
parison between all images in a mini-batch. Ordinal metric learning 
accomplishes this by applying a binary cross entropy objective on the 
distance d s s= −i j i j,  between scores for all possible pairs of images in a 
mini-batch to enforce the image with the higher label is assigned a 
higher score. The following loss equation accomplishes this:
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I  is the set of all images in the minibatch. B i( ) is the set of all images 
in I  except for those with the same label as the anchor image i, L i( ), 
denoted as,

i i( ) = \ ( ), (8)B I L

A schematic of ordinal metric learning is shown in Extended Data 
Fig. 4.

Ordinal metric learning was used to train the FastGlioma model 
and included fine-tuning the slide encoder and a one layer linear slide 
scorer. Tumour-infiltration labels were balanced by whole-slide over-
sampling of the minority classes during training. The model was trained 
with a batch size of 16 and adjusted learning rate of 1.875 × 10−5 for 100 
epochs. The best checkpoint was selected using a hold-out validation 
set. To evaluate the SRH foundation model, a standard linear evalua-
tion protocol was followed with only the slide scorer being trained. 
Our linear evaluation protocol is similar to other self-supervised visual 
representation learning methods, such as SimCLR56 or DINO57, where 
the visual feature extractor is frozen and a final classification/regres-
sion layer is trained.

Tumour-infiltration scoring metrics
To evaluate the performance of FastGlioma in distinguishing vari-
ous levels of diffuse glioma infiltration, we employ two key metrics: 
mAUROC and mean absolute error (MAE). The MAE is calculated by 
passing the FastGlioma whole-slide logit through a sigmoid activation 
function to rescale between 0 to 1. Similarly, the ground truth labels, 
which range from 0 to 3, are also normalized to 0 to 1. We then compute 
the MAE by measuring the average absolute difference between the 
rescaled logits and the normalized labels. The mAUROC provides a 
straightforward metric to assess FastGlioma’s ability to discern between 
different degrees of tumour infiltration. mAUROC is calculated as the 
average of the AUROC for three binary classification tasks: 0 versus 123,  
01 versus 23 and 012 versus 3. This metric reflects the ordinal label 
distribution and emphasizes the clinical diagnostic task.

Prospective testing of FastGlioma
Our prospective FastGlioma clinical testing included a primary and 
secondary end point. The primary end point was to validate FastGlio-
ma’s ability to reproducibly and accurately detect tumour infiltration 
within SRH images across patient populations, demographics, medical 
centres and diffuse glioma subgroups. The secondary end point was 
to compare the performance of FastGlioma with the standard-of-care 
methods for intraoperative tumour-infiltration detection currently in 
use for brain tumour surgery.

Primary testing end point: SRH-based tumour-infiltration detec-
tion. Our primary study end point was to achieve a diagnostic perfor-
mance for detecting diffuse glioma infiltration in SRH images on par 
with previous SRH classification tasks, such as intraoperative tissue 
diagnosis and molecular classification42,44. We designed the primary 
testing using the same principles as a single-arm, non-inferiority  
diagnostic clinical trial42,44. To obtain a minimum sample size estimate, 
we used previous studies that combined SRH and AI to classify normal 
brain versus any tumour tissue. Previously reported accuracy values 
range from 89.3 to 95.8% with an average value of 93.2% (±3.6%)42–44,55. 
We used this average value to define the expected performance, the 
equivalence/non-inferiority limit was set to 5%, the alpha value to 
2% and the power to 90%, resulting in a sample size value of 565 SRH 
images obtained from surgical margins. We aimed to achieve this 

sample size for both IDH-wild-type and IDH-mutant diffuse gliomas 
to ensure generalizability and reproducibility across diffuse glioma 
molecular subtypes as defined by the WHO. The calculation resulted in 
a final minimum sample size of 1,130 surgical specimens. Prospective 
patient recruitment was continued until minimum sample sizes were 
reached in both IDH-mutant and IDH-wild-type cohorts. All sample 
size calculations were performed using the epiR package (v.2.0.46) 
in R (v.3.6.3). Ground-truth SRH tumour-infiltration labels were pro-
vided by the on-site study pathologists (M.P., M.M.-E., T.R.-P.). All 
pathologists were provided with written and video instructions for 
SRH tumour-infiltration scoring using the four-tiered system by our 
primary study pathologist (M.P.).

Secondary testing end point: FastGlioma comparison with image- 
and fluorescence-based surgical adjuncts for tumour-infiltration 
detection. Our secondary study end point was to compare the Fast-
Glioma intraoperative workflow (experimental arm) with the two most 
common surgical adjuncts for identifying tumour infiltration intra-
operatively (control arm) in a simulated prospective surgical trial.  
‘Simulated’ terminology is used because FastGlioma is not approved by 
the Food and Drug Administration or European Medicines Agency to 
guide treatment decisions, such as extent of tumour resections. How-
ever, we aimed to demonstrate the feasibility and safety of using FastGli-
oma to guide resections by predicting on surgical specimens sampled 
at the resection margin of patients with diffuse glioma. FastGlioma 
predictions in this setting produce the actionable information needed 
to guide resection and simulates the clinical setting that FastGlioma 
would be deployed. FastGlioma was compared in a head-to-head pro-
spective comparison study to (1) image-guided surgery with MRI-based 
neuronavigation and (2) fluorescence-guided surgery with 5-ALA. Both 
methods have been shown to improve the extent of resection in ran-
domized controlled trials28,29. In general, neuronavigation and 5-ALA 
fluorescence can indicate the presence of tumour infiltration but, in 
contrast to FastGlioma, do not quantify the degree of infiltration. For 
the purposes of this study and others30, tumour detection using neuro-
navigation or 5-ALA was treated as a binary indicator, for example, yes/
no contrast enhancement, yes/no 5-ALA fluorescence. To perform a fair 
comparison between FastGlioma and the surgical adjuncts, we designed 
this secondary end point to differentiate normal brain tissue (score 0) 
versus dense tumour (score 3). We focused specifically on this task be-
cause errors are clinical high-risk errors and these tumour-infiltration 
scores are actionable and decisive: score 0 means stop resection, score 
3 means continue resection if otherwise safe. Moreover, this strategy 
avoids biasing performance results in favour of FastGlioma, which 
provides a continuous score that can differentiate degrees of tumour 
infiltration. We aimed to show that FastGlioma was non-inferior to both 
neuronavigation and 5-ALA fluorescence for detecting tumour within 
surgical specimens collected at the margin of resection cavities during 
surgical resection. Details of generating the matched SRH/MRI/5-ALA 
specimen dataset as a subset of the primary testing endpoint data are 
described below.

Prospective testing dataset
Three medical centres acted as external FastGlioma testing sites: UCSF, 
NYU and MUV. Each medical centre prospectively enrolled patients 
for testing. Inclusion criteria were: (1) patient age, ≥18 years; (2) a 
suspected diffuse glioma on preoperative radiographic imaging; and  
(3) planned brain tumour resection. Exclusion criteria included:  
(1) aborted tumour resection; (2) non-glioma final pathology; and  
(3) SRH imager malfunction. We aimed to accurately simulate the clini-
cal setting that FastGlioma would be implemented for surgical inter-
ventions. Study neurosurgeons were therefore instructed to sample 
surgical margins at their discretion to identify microscopic tumour 
infiltration within the tumour resection cavity. We aimed to provide as 
minimal instruction as possible to account for surgeon/user variability 



during FastGlioma testing. After intraoperative SRH imaging, surgical 
specimens were removed from the premade microscope slide and 
preserved in formalin for downstream tissue processing (Extended 
Data Fig. 1). Each SRH image was scored postoperatively by an onsite, 
board-certified neuropathologist with dedicated training and expertise 
in intraoperative SRH imaging. Our central neuropathologist (M.P.) 
provided verbal and video instructions for tumour-infiltration scor-
ing. We used the previously developed and validated protocol for 
0–3 tumour-infiltration scoring4. For the primary testing end point 
that is evaluated at the image level, SRH tumour-infiltration scores 
provided by the neuropathologists were used as the ground truth. 
For the secondary testing end point that is evaluated at the specimen 
level, neuronavigation coordinates, radiographic features (that is, 
contrast enhancement, FLAIR positive) and 5-ALA fluorescence status 
were recorded in real-time by a study technician for each specimen. 
Secondary end-point testing was completed at UCSF by a dedicated 
study technician (K.S.) and central neuropathologist (M.P.) to stand-
ardize all matched data collection. To optimize for the secondary 
testing endpoint, annotated data from UM, NYU and MUV were used 
to fine-tune FastGlioma. After intraoperative SRH imaging, the speci-
men was extracted from the premade microscopy slide and sent for 
downstream whole-slide/specimen analysis using H&E/immunohis-
tochemistry testing as previously detailed4. Specimen-level ground 
truth tumour-infiltration scores were determined based on whole-slide 
analysis. This strategy allows for an unbiased comparison between all 
three surgical adjuncts.

FastGlioma versus cellularity-based tumour-infiltration scoring
The cellularity within the SRH whole-slide images was calculated to be 
the average number of cells per 300 × 300 pixel SRH patch. The number 
of cells was determined using an SRH single-cell segmentation model 
training using full supervision. Specifically, a Mask R-CNN model with 
a ResNet-50 backbone pre-trained on the Microsoft COCO dataset was 
fine-tuned on 1,000 annotated SRH patches of normal brain and 6 
different brain tumour diagnoses58. The final model predictions were 
filtered with a non-maximal suppression algorithm to remove over-
lapping cell bounding boxes with >20% area and predictions with less 
than 80% confidence. Correlation between cellularity and FastGlioma 
tumour-infiltration score was calculated using Pearson’s correlation 
coefficient. To evaluate whether cellularity can be used to detect diffuse 
glioma infiltration, the surrogate tumour-infiltration score for a whole 
slide was calculated using the cellularity value. This was then used to 
calculate the mAUROC across the three different tumour-infiltration 
tasks to compare with FastGlioma infiltration scores as shown in 
Extended Data Fig. 7.

Few-shot visualizations and model interpretability
We aimed to develop a whole-slide visualization method that can accu-
rately and flexibly identify regions of tumour infiltration within SRH 
images to improve model interpretability. Studies on vision transform-
ers have generally relied on plotting self-attention coefficients to gen-
erate data visualizations57. Unfortunately, this strategy does not 
guarantee uniformly high attention coefficients on foreground/tumour 
infiltrated regions and is known to produce spurious high attention 
coefficients in background regions53. We therefore developed a 
few-shot visualization strategy that uses a curated support set of expert 
physician-selected SRH patches, or keys, that include diverse examples 
of normal brain parenchyma and diffuse glioma subtypes. This strategy 
takes advantage of the representational power of the self-supervised 
patch tokenizer to identify similar SRH features within any given 
whole-slide field-of-view. Specifically, for any SRH patch query, xq, 
within a whole-slide SRH image, we calculate the dot product between 
the tokenized query patch zq and a support set of tokenized keys, S. We 
first determine whether the query patch is foreground/diagnostic by 
determining if the maximal dot product across the support set exceeds 

a threshold, ϕ. If not, then the patch is classified as background. If the 
query dot product exceeds ϕ for any patch in the support set, we then 
assign it a few-shot visualization score, sq. This is defined as the differ-
ence between the maximum dot product from the tumour exemplars 
in the support subset, Stumour, and the maximum dot product from the 
normal exemplars, Snormal:
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visualizations. This visualization strategy has the advantage of leverag-
ing both the feature similarity between tumour patches and the dis-
similarity between tumour and normal patches. If a patch has a high 
similarity to any of the tumour exemplars and high dissimilarity with 
the normal exemplars, then s >0q , and vice versa. Empirically, 10 or less 
patch exemplars per subset can yield high-quality and interpretable 
visualizations using FastGlioma. Moreover, this strategy demonstrates 
good zero-shot generalization to non-glioma brain tumour diagnoses 
without needing to add tumour-specific examples (for example, men-
ingioma or medulloblastoma exemplars) to the support set, as shown 
in Extended Data Fig. 10.

Computational hardware and software
SRH images were processed using an Intel Core i76700K Skylake Quad-
Core 4.0 central processing unit with our custom Python-based (v.3.9) 
mlins-package. We used the pydicom package (v.2.3.1) to process the 
SRH images from the NIO Imaging System. All archived postprocessed 
image patches were saved as 16-bit TIFF images and handled using 
the tifffile package (v.2020.10.1). All models were trained using the 
University of Michigan Advanced Research Computing (ARC) Armis2 
high-performance computing cluster. Visual patch and whole-slide 
encoders were trained on NVIDIA A40 and Titan V100 graphical pro-
cessing units (GPUs), respectively. Evaluations were performed on 
NVIDIA Titan V100 GPUs. All custom code for training and inference 
can be found in our open-source FastGlioma repository. Our models 
were implemented in PyTorch Lightning (v.1.8.4). We used the ImageNet 
pretrained ResNet-34 model from torchvision (v.0.14.0). Scikit-learn 
(v.1.4.1) was used to compute performance metrics on model predic-
tions at both training and inference. Additional dependencies and 
specifications can be found at our GitHub page (https://github.com/
MLNeurosurg/fastglioma).

Ethics and inclusion statement
Our research was approved by the University of Michigan institutional 
review board (HUM00083059) and the methods were carried out in 
accordance with the institutional review board’s guidelines, regulations 
and policies. All human participants who met the inclusion criteria as 
stated above were included in the study.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The FastGlioma model parameters will be made publicly available 
for investigational use only under a Creative Commons Attribu-
tion Non Commercial Share Alike 4.0 license through HuggingFace  
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(https://huggingface.co/mlinslab/fastglioma). Institutional Review 
Board approval was obtained from all of the participating institutions 
for SRH imaging and data collection. Restrictions apply to the avail-
ability of raw patient imaging or genetic data, which were used with 
institutional permission through IRB approval for the current study, 
and are therefore not publicly available. All data sharing between medi-
cal centres is regulated through data use agreements with the study 
authors. A similar data sharing protocol may be established for inter-
ested investigators. Public access to an open-source repository of SRH 
images can be found at OpenSRH (https://opensrh.mlins.org/). Please 
contact the corresponding authors for any requests for data sharing. 
All requests will be evaluated based on institutional and departmental 
policies to determine whether the data requested is subject to intel-
lectual property or patient privacy obligations. Data can be shared 
only for non-commercial academic purposes and will require a formal 
material transfer agreement.

Code availability
All code was implemented in Python (v.3.9) using PyTorch Lightning 
(v.1.8.4) as the primary machine learning framework. The follow-
ing packages were used for data analysis: pydicom (v.2.3.1), tifffile 
(v.2020.10.1), PyTorch (v.1.13.0), torchvision (v.0.14.0), pandas (v.1.5.3), 
NumPy (v.1.24.4), matplotlib (v.3.6.3), opencv-python (v.3.4.18.65) 
and scikit-learn (v.1.4.1). For data visualization and scientific plotting, 
we used R (v.3.5.2) packages ggplot2 (v.3.3.5), dplyr (v.2.1.1), and the 
tidyverse (v.1.3.1). All code and scripts to reproduce the main experi-
ments of this paper are available at GitHub (https://github.com/MLNeu-
rosurg/fastglioma) under an MIT license.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Extended FastGlioma workflow and dataset 
generation. a, FastGlioma is intended for patients with a suspected diffuse 
glioma on preoperative imaging studies. Surgical specimens are sampled from 
the patient resection cavity. During sampling, neuronavigation coordinates 
and 5-ALA fluorescence status are recorded by a laboratory technician in real 
time. Core specimens are sent for clinical pathologic testing, including 
histologic and molecular classification with SRH44, and the margin specimens 
are sent for FastGlioma prediction. Surgeons were encouraged to sample 
within the resection cavity according to their clinical judgement and context. 
b, Each surgical specimen is loaded into a premade microscope slide and 
imaged at the patient’s bedside using the NIO Imaging System (Invenio 
Imaging, Inc., Santa Clara, CA). A scout photograph of the specimen is taken 
and the imaging field of view selected by the user using simple touchscreen 
instructions. SRH imaging does not require a skilled imaging technician. SRH 
images are acquired sequentially as strips at two Raman shifts, 2845 cm−1 and 

2930 cm−1. The size and number of strips to be acquired is set by the operator 
who defines the desired image size. Images can be acquired in either two-
channel, full resolution mode or one-channel (2845 cm−1 only), low resolution 
fast mode to decrease imaging time by a factor of 10. c, Following SRH imaging, 
surgical specimens were removed from the microscope, formalin-fixed, and 
paraffin-embedded for H&E and immunohistochemistry (IHC) staining. Similar 
to previous protocols, tumour-specific IHC labels were used, if available, to 
determine the degree of tumour infiltration based on molecular genetics4.  
A neuropathologist from each institution then scores the degree of tumour 
infiltration within the SRH images and the H&E/IHC-stained slides on a 0–3 scale. 
Slide-level predictions are generated from image-level FastGlioma predictions 
by taking the average image-level prediction. Scale bars, 100 μm. Tumour 
resection and microscopy slide images were adapted from ref. 4. The neural 
network architectures were adapted from https://alexlenail.me/NN-SVG/.

https://alexlenail.me/NN-SVG/


Extended Data Fig. 2 | SRH foundation model and FastGlioma training 
datasets. a, The foundation model training dataset consisted of over 11 K 
whole slide SRH images from 13 medical centres across the United States and 
Europe. Similar to other foundation model training datasets, such as Google’s 
JFT-3B59 or Meta’s SEER60 datasets, our SRH dataset was generated ‘in the wild’ 
at the discretion of the medical centres and treating physicians. The dataset 
consisted of a diverse set of central nervous system tumours, but also contained 
specimens from other organ systems, including head and neck tumours, 
breast, prostate, and lung surgical specimens. b, The diffuse glioma infiltration 

dataset consisted of two parts. The training dataset was generated entirely 
from a previously published study evaluating tumour margin specimens with 
SRH4. No additional annotation or data collection was performed for this study. 
The multicenter diffuse glioma testing dataset was generated from three 
tertiary medical centres with brain tumour programs. Details of data collection 
and annotation can be found in the Methods section. c, Details regarding the 
patient demographics, WHO glioma subtypes, recurrence status, tumour 
grade, and institution for the prospective testing dataset are shown.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Self-supervised foundation model training.  
a, The FastGlioma patch tokenizer is trained via self-supervised hierarchical 
contrastive learning on over 4 million 300×300 pixel SRH patches. Positive 
patch pairs are generated using the patch-slide-patient hierarchy of clinical 
SRH images. Patches undergo a feedforward pass through a ResNet-34  
model and a contrastive learning objective is minimized23. b, t-SNE patch 
representations are plotted and coloured according to the ground truth whole 
slide label. Patch-level self-supervised training results in representations that 
span a tumour infiltration axis without the need for patch-level supervision.  
c, Whole slide self-supervision is accomplished by generating two views of a 
whole slide SRH image via random splitting, cropping, and masking of the 
patch tokens. The random sequence of patches in each view then undergo a 

feedforward pass through a slide transformer. The slide-level representations 
are then projected into a lower-dimensional projection space where a self-
supervised objective is minimized (VICReg51). Our whole slide self-supervised 
training strategy was benchmarked using several internal SRH classification 
metrics, including multiclass brain tumour classification. Mean class accuracy 
of ablation studies are plotted. Whole slide SRH representations are plotted via 
t-SNE and show tumour diagnosis discrimination. Trained slide transformer 
produces interpretable multi-headed self-attention maps that differentiate 
tumour infiltration from normal brain and nondiagnostic regions. Scale bars, 
100 μm. The neural network architectures were adapted from https://
alexlenail.me/NN-SVG/.

https://alexlenail.me/NN-SVG/
https://alexlenail.me/NN-SVG/
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Extended Data Fig. 4 | Ordinal metric learning for efficient ordinal 
representation learning. a, A major design challenge for FastGlioma was 
enforcing the model output to be a semantically meaningful continuous 
tumour infiltration score while being trained using discrete, ordinal labels. 
This design choice was warranted because biologic tumour infiltration is 
continuous given a surgical specimen or microscopy image. Each whole slide 
SRH image undergoes a feedforward pass through the slide encoder and slide 
scorer, which outputs a single scalar value. We then compute a pairwise 
distance matrix between each instance in the minibatch using the scores. 
Finally, a binary cross entropy (BCE) loss is computed between the pair’s dot 
product, xi·xy, and the label tij associated with the pair, defined as 1 if labeli is 
greater than labelj, and 0 otherwise. All BCE losses are summed and minimized. 
Intuitively, this representation learning strategy corresponds to ordering each 
whole slide according to the amount of accumulated ‘force’ generated by the 

other examples within the minibatch. For example, in the figure above, whole 
slides with label 3 will be maximally pushed to the right by all other examples. 
Whole slides with label 2 will be pushed to the right by two examples (0 s and 1 s) 
and to left by one example (3 s). b, We performed an ablation study on ordinal 
metric learning using the well studied and benchmarked face age estimation 
dataset (n = 24085)61,62. We show that ordinal metric learning outperforms 
other state-of-the-art ordinal regression methods and is especially effective 
when annotated data is sparse (plotted as mean ± s.d.). Ordinal metric learning 
produces a near linear subspace that orders each face image according to their 
respective ages. c, Hold-out cross validation studies were performed on our 
training dataset (n = 161) that showed improved ordinal regression performance 
on tumour infiltration scoring than other methods (ROC curves plotted as 
mean ± s.d.). d, Tumour infiltration scores are shown for ordinal metric learning 
versus other baseline strategies.



Extended Data Fig. 5 | Speed versus performance trade-off ablation 
studies. a, The NIO Imaging System can speed imaging time by acquiring only  
a single-channel image or by decreasing line scanning density. Fast SRH is a 
single channel greyscale image acquired at Raman wavenumber 2845 cm−1 and 
scanning every 5th line, which corresponds to approximately 10X speedup in 
imaging time. Examples of full resolution and low resolution images are shown. 
b, We performed hold-out cross validation ablation studies (n = 161) to examine 
the trade-off between image resolution/speed and model performance 
(plotted as mean ± s.d.). We found less than 2% decrease in mAUROC with the 
10X speed-up of Fast SRH. c, We examined how tumour infiltration scores are 

related using both full resolution and fast SRH imaging. Scores are strongly 
correlated with a Pearson correlation coefficient, r, of 0.90 and score residual 
(SFR-SFast) standard deviation of 0.102. d, A demonstration of the similarity 
between the whole slide encoder self-attention coefficients for full resolution 
versus fast SRH image. Despite significant pixel-level differences between the 
two imaging domains, self-attention and tumour infiltration scores on the 
whole slides are similar. Note in the Fast SRH row above, virtual H&E 
colorscheme is shown for visualization purposes only. The true underlying 
image is the low-resolution Fast SRH image. Scale bars, 100 μm.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Extended prospective testing results with subgroup 
analysis. a, Subgroup analysis by patient demographics. FastGlioma scores by 
sex, age, and race are shown using box and whisker plots in the standardized 
quartile format. b, Subgroup analysis by medical centre. mAUROC value is 
plotted for both FastGlioma and the SRH foundation model (plotted as 
mean ± s.d.). Performance remained high across the three external testing 
medical centres. c, Mean AUROC values are plotted by tumour grade. 
Importantly, similar performance is seen across all diffuse glioma grades, 
indicating that FastGlioma scores are not reliant on specific histologic features 
found within diffuse glioma grades. Lower grade cytologic features and low 
tumour infiltration were preliminary concerns about the performance of 
FastGlioma that did not bear out in prospective testing. Mean AUROC values 
and standard deviations are shown. d, Subgroup analysis by index/first surgery 

versus surgery for recurrent tumour (ROC curves plotted as mean ± s.d.).  
A total of 442 surgical specimens were sampled from patients with recurrent 
tumours. FastGlioma maintained good performance for detecting tumour 
infiltration in recurrent tumours, which is known to be challenging for 
intraoperative frozen sectioning42,43. e, Whole slide SRH representations are 
shown for IDH mutant and IDH wildtype diffuse gliomas. Points are coloured by 
their ground truth tumour infiltration scores. Despite differences in molecular 
features, the representation of whole slide SRH images is similarly distributed 
according to tumour infiltration. These findings demonstrate that FastGlioma 
is invariant to molecular markers, tumour subtypes, and histologic features for 
defining the degree of tumour infiltration within SRH images. This is 
contrasted with 5-ALA fluorescence which is only approved for use in 
glioblastomas, IDH-wildtype.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Cytologic analysis of FastGlioma tumour infiltration 
scores. a, Increased cellularity, or cellular density, is a cytologic feature of 
diffuse gliomas and is correlated with the degree of tumour infiltration55,63. 
However, cellularity alone is a poor predictor for tumour infiltration across 
tumour grade, diffuse glioma molecular subgroups, and degree of infiltration. 
Cellularity as a predictor performs progressively worse as degree of tumour 
infiltration decreases and with lower tumour grades4. We evaluate the 
relationship between cellularity and FastGlioma scores. Cellularity and 
FastGlioma scores have a Pearson correlation coefficient of 0.65. Consistent 
with previous results, we identify surgical specimens without tumour 
infiltration (0 s) that have cellular densities comparable to specimens with a 
low to moderate degree of tumour infiltration (1 s and 2 s). Additionally, some 
dense tumour specimens (3 s) were found to have relatively low cellularity 
(<10). Examples of both of these scenarios are shown. The kernel density 

estimates (KDE) of the FastGlioma scores demonstrate the expected ordinal 
distribution across the ground truth labels; cellularity KDEs are poorly 
distributed according to ground truth labels, especially for 0–2 scores. 
FastGlioma has a clinically significant increase in mAUROC compared to 
cellularity-based predictions. b, Cellularity versus FastGlioma scores are 
plotted by molecular subgroup. Despite differences in cytologic features 
(anaplasia, pleomorphism, nuclear-cytoplasmic ratios) across molecular 
subgroups, FastGlioma tumour infiltration scoring is consistently accurate. 
Diffuse glioma molecular subgroups show a similar correlation between 
cellularity and score values. FastGlioma effectively uses the full tumour 
infiltration score range to quantify the degree of tumour infiltration across all 
molecular subgroups. FastGlioma outperforms cellularity-based metrics for 
predicting degree of tumour infiltration. Scale bars, 100 μm.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Few-shot visualizations of diffuse glioma infiltration. 
a, A panel of whole slide SRH images across diffuse glioma molecular 
subgroups are shown. We have selected cases across the prospective testing 
medical centres. Few-shot visualizations identify tumour infiltrated regions  
in molecular oligodendrogliomas, astrocytomas, and glioblastoma. Right,  
we show insets from each whole slide image to demonstrate the diversity of 
underlying histologic and cytologic features found within diffuse glioma 
subgroups. We also show several SRH images with 0 ground truth scores from 
patients diagnosed with glioblastomas who previously underwent surgery and 
chemoradiation. SRH images show evidence of treatment effect, including 
reactive astrocytes and hyalinized blood vessels. Despite these non-neoplastic 
pathologic findings, FastGlioma gives low tumour infiltration scores and does 

not identify regions of dense tumour infiltration. However, the limitations of 
few-shot visualization are shown here with erroneous tumour matching shown 
in some regions of pathologic hyalinized vasculature. b, Similar to previous 
studies on visual foundation models64, we used principal component analysis 
(PCA) on patch features extracted by FastGlioma. PCA provides an unsupervised 
visualization strategy to better elucidate the learned patch features. We 
observe that tumour infiltrated regions are matched between SRH images 
despite changes in degree of tumour infiltration, molecular subtype, and 
histologic features. Detailed comparisons between FastGlioma scores, few-
shot visualizations, and SRH images can be found at fastglioma.mlins.org. 
Scale bars, 100 μm.
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Extended Data Fig. 9 | See next page for caption.



Extended Data Fig. 9 | Zero-shot predictions and visualizations. We 
evaluated FastGlioma’s zero-shot generalization to non-adult-type diffuse 
glioma brain tumour diagnoses. FastGlioma fine-tuning was restricted to adult-
type diffuse gliomas; here we show FastGlioma predictions on non-adult-type 
diffuse gliomas (zero-shot). Moreover, few-shot visualization heatmaps are 
shown for non-glioma brain tumours using diffuse glioma SRH keys. The figure 
shows examples of brain tumours from several broad categories, such as  
ring-enhancing lesions, paediatric gliomas, embryonal tumours, non-tumour 
lesions, and extraaxial tumours. CNS lymphomas are infiltrative brain tumours 
and can be challenging to differentiate from glioblastomas intraoperatively. 
SRH images show classic perivascular arrangement (angiocentricity) with 
tumour cells forming layers around the blood vessels. Residual microscopic 
metastatic tumour is the major cause of tumour recurrence after surgery. 
FastGlioma identified regions of microscopic residual metastatic tumour. 
Tumour infiltration from paediatric gliomas, such as diffuse midline gliomas 

and pilocytic astrocytomas, is detected by FastGlioma. Paediatric diffuse 
midline gliomas can have a spectrum of histologic morphologies that can differ 
in appearance compared to glioblastomas. Rosenthal fibres (black lobules), 
present in pilocytic astrocytomas but rare in diffuse gliomas, are not a source 
of error for FastGlioma. Acellular and nondiagnostic regions are not segmented 
as regions of tumour infiltration. Embryonal tumours have distinctive ‘small 
round blue cell’ cytologic features that FastGlioma correctly identifies as 
tumour infiltration. FastGlioma provides real-time confirmation of the absence 
of tumour infiltration during surgery, such as infarcts. Meningiomas are known 
to invade adjacent dura, which is the major source of tumour recurrence. 
FastGlioma can identify meningioma infiltration within normal dura sampled 
at the dural margin. These results provide evidence for the potential of 
FastGlioma to generalize beyond brain tumours, such as breast, lung, and 
prostate cancer. Scale bars, 100 μm.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Comparison of FastGlioma and surgical adjuncts for 
diffuse glioma resection. a, Classification performance for distinguishing 
between normal brain and dense tumour by FastGlioma versus surgical 
adjuncts on diffuse gliomas, IDH-mutation. FLAIR positivity in IDH-mutant 
gliomas is considered a radiographic marker of tumour infiltration and is used 
to define extent of resection33. In our matched cohort, FastGlioma balanced 
accuracy is +11.8% compared to FLAIR positivity. FLAIR had relatively lower 
specificity due to a higher number of false positives. Non-specific causes of 
FLAIR positivity, such as vasogenic oedema, result in decreased accuracy.  
b, Classification performance of FastGlioma versus surgical adjuncts on 
glioblastomas, IDH-wildtype. Patients with complete removal of contrast 
enhancing regions have improved progression-free and overall survival2,6.  
In our matched cohort, FastGlioma balanced accuracy is +13.8% compared to 
contrast enhancement for IDH-wildtype glioblastomas. Tumour infiltration  
is known to extend beyond regions of contrast enhancement and dense,  

viable tumour is identified in non-enhancing regions6,55. Our findings of poor 
sensitivity are consistent with previous radiopathologic correlation studies65,66. 
5-ALA fluorescence is used in glioblastoma surgery to guide surgical resection28. 
Previous studies have reported a wide range of sensitivity and specificity 
values of 5-ALA fluorescence as an indicator of tumour infiltration depending 
on tumour types, tumour grade, and recurrence status30,67,68. In our matched 
cohort, FastGlioma achieved a + 13.5% increase in balanced accuracy compared 
to 5-ALA. c, Illustrative examples of matched surgical specimens with 
FastGlioma predictions, neuronavigation coordinates, radiographic features, 
and 5-ALA status. The lower left shows concordance between FLAIR positivity 
and FastGlioma prediction with dense tumour within the specimen. Centre 
shows a specimen outside the contrast enhancing rim of a glioblastoma with 
white matter tumour infiltration identified by FastGlioma. Lower right shows 
an example of 5-ALA fluorescent positive tissue. The patient had a recurrent 
glioblastoma with associated treatment effect and reactive astrocytes.
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