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Abstract

We propose a novel network formation game that explains the emergence of various hierar-

chical structures in groups where self-interested or utility-maximizing individuals decide to

establish or severe relationships of authority or collaboration among themselves. We con-

sider two settings: we first consider individuals who do not seek the other party’s consent

when establishing a relationship and then individuals who do. For both settings, we formally

relate the emerged hierarchical structures with the novel inclusion of well-motivated hierar-

chy promoting terms in the individuals’ utility functions. We first analyze the game via a static

analysis and characterize all the hierarchical structures that can be formed as its solutions.

We then consider the game played dynamically under stochastic interactions among individ-

uals implementing better-response dynamics and analyze the nature of the converged

networks.

1. Introduction

Hierarchies are ubiquitous forms of organization. Not surprisingly, early comparative studies

between administrative and economic hierarchies, and other studies of hierarchies in the the

context of political organization, date back to the beginning of the twentieth century [1, 2].

Since then, their study has encompassed a large variety of disciplines like, for example, labor

and organizational economics [3–5], moral and evolutionary psychology [6–9], anthropology

[10] and sociology [11, 12]. We remark that in the economics literature, the importance of

hierarchies also comes from the study of firms: the structure of firms can be understood as

hierarchical structures in production organizations (e.g., superiors having veto power over

subordinates to access productive assets) [13, 14]. In general, the empirical study of the emer-

gence of hierarchical structures in social networks has benefited from advancements in the

field of sociometry [15], and, theoretically, graph theoretical analysis has proven to be a useful

tool for structural analysis of general hierarchical structures [16]. In this paper, we adopt a

game theoretical perspective to study the emergence of hierarchical structures through what is

known as network formation games. We propose a game and analyze how its play leads to the

emergence of hierarchies. The importance of our approach stems from the fact that this game

theoretical study allows us to investigate the underlying structures in the individual utilities
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that promote the emergence of hierarchies from self-interested individuals. Then, the impor-

tance of this work is that it defines micro-mechanisms on the individual level that can lead to

the emergence of hierarchical structures on the macro-level.

To the best of our knowledge, there is no previous study about the emergence of hierarchi-

cal network structures from a network formation perspective. However, we briefly mention

that there has been a considerable body of literature on the study of hierarchies from other

game theoretical perspectives [17]. For example, there are studies in the literature about alloca-

tion rules that take into account explicit hierarchical relationships among the agents (e.g.,

[18]), and about the analysis of games where agents have veto power over the actions of other

players as a result of an underlying hierarchical structure (e.g., [19]).

On the other hand, there is a mature body of work in the network formation game literature

related to other applications. Generally speaking, in a network formation game, self-interested

or utility-maximizing agents decide to form or severe links (interpreted as some sort of rela-

tionship) with other agents so that they can form network structures that maximize some util-

ity or allocation value. The structure of connections resulting from playing the game induces

an emergent network whose topology can have different interpretations according to the spe-

cific application the game is modeling. The literature on network formation games has a long

trajectory which historically started from a cooperative perspective, and has later devised a

huge boom from a non-cooperative perspective [17, 20]. We present an overview of the litera-

ture on network formation games according to a classification of different previous

approaches, this classification also introduces relevant technical terms that will be useful in

this paper. For other more algorithmic perspectives to the subject in terms of solutions con-

cepts and efficiency, not mentioned in this review, we refer to the textbook treatment of the

subject in [21, Chapter 19]. Network formation games have been analyzed via a static analysis,
that is, the analysis of solution concepts that describes the emergence of particular “stable” net-

works as a result of the agents playing the game. Additionally, they have also been analyzed via

a dynamic analysis, that is, the study of the emergence of a subset (or possibly all) of the net-

works defined by the static analysis (also known as equilibrium selection) as the result of some

defined dynamic rules that describe the evolution of the agents’ actions [22, 23]. For example,

[24] uses Nash equilibrium as solution concept, whereas [25] uses the solution concept called

pairwise stability (first introduced in [26]); and both works establish a dynamical analysis of

convergence towards “stable” networks in their respective solution concept. The two solution

concepts mentioned above are the ones that have been typically used in applications where the

efficiency of the formed network was the main focus of study; however, in general, solution

concepts are proposed (and sometimes renamed) depending on the specific application to

study from the network formation perspective (whether there is only a static analysis or a

dynamic one too). For example, other solution concepts exist like the generalization of pair-

wise stability called strong stability also studied in the context of network efficiency [27], or

like the solution concept introduced in [28] which is particularly tailored for the problem of

routing traffic on networks.

Broadly, the literature on network formation games can be classified according to the

nature of the agents that play the game and/or the nature of the connections they can establish.

We discuss first the possible nature of the agents. Traditionally, a first distinction is whether

the agents are non-consensual or consensual. A non-consensual agent i can establish links uni-

laterally with agent j without j’s consent, i.e., without j having to agree to accept such link (see,

e.g., [24]); and a consensual i is the one who needs j’s consent or approval to establish a link

(see, e.g., [25, 29, 30]). Another second major distinction regarding the agents is whether they

all have the same structure in their utility or payoff function, i.e., the rewards or costs of mak-

ing/maintaining/severing a link is the same for any agent, which is know as the homogeneous

PLOS ONE A network formation game for the emergence of hierarchies

PLOS ONE | https://doi.org/10.1371/journal.pone.0255990 August 12, 2021 2 / 26

https://doi.org/10.1371/journal.pone.0255990


case; or whether they have different structures in their utility function, which is the heteroge-
neous case [31].

Regarding the distinction on the nature of the connections that agents can establish, net-

work formation games can be classified depending on whether the formed network is undi-
rected (i.e., the edge or link between agents i and j has no direction) or directed (i.e., every edge

or link has an intrinsic direction, so that an edge can be directed from i to j). The interpreta-

tion is that an undirected edge between i and j gives a two-way benefit of flows, i.e., the utility

generated by this edge benefits both i and j. On the contrary, a directed edge from i to j has a

one-way flow of benefits since the utility generated by this edge benefits i but may or may not

benefit j [24, 31]. Examples of undirected relationships are friendships, collaborations (e.g., co-

authorship), mutual insurance, etc. Examples of directed relationships arise naturally in com-

munication networks (e.g., someone send an email to another person), loan relationships, sub-

ordinate-authority relationships, buyer-seller relationships, etc. We refer to [32, Chapter 5] for

more discussion on the use of undirected vs directed graphs in game theoretical modeling.

We stress that not all network formation games in the literature have been studied from a

dynamic analysis (indeed, all the classifications presented above only have to do with the static

analysis aspect). A first classification from a dynamic analysis is to consider whether the agents,

at any time-step of the (discrete) evolution of the game, are myopic (e.g., [24, 25, 30]), i.e., they

want to only maximize their current utility at any time step, or, otherwise, foresighted (e.g.,

[33–35]), i.e., they also want to maximize their (expected cumulative) future utility. Myopic

agents are a more reasonable assumption in contexts where agents live in a big and/or complex

network, where it is virtually impossible for a single agent to completely predict how her

actions would influence over the rest of the whole network and thus how current actions will

affect future utility.

1.1 Contributions

Our first main contribution is to propose, to the best of our knowledge, a first study on the

emergence of hierarchical structures from the perspective of network formation games. We

propose a game which allows us to study and understand how self-interested or utility-maxi-

mizing individuals lead to the emergence of networks with hierarchical structures. In particu-

lar, our work shows this through the judicious inclusion of well-motivated hierarchical

promoting terms in the utility functions of the agents. We assume all agents are homogeneous,

i.e., all agents have the same structure in their utility function and so that performing the same

actions (making/maintaining/severing a link) incur in the same costs and rewards for any

agent. We also assume that all individuals can be of two types: non-consensual or consensual.

For each type, we perform a static analysis of the emergent network structures that satisfy the

solution concept proposed for our game and which is closely related to other notions in the

classic literature of network formation games. Then, we present a dynamic analysis where we

analyze the dynamic formation of these networks as a result of a stochastic process of pairwise

interactions among agents playing better-response dynamics.

Our second contribution is a complete static analysis where we show that network struc-

tures with different levels of hierarchy emerge as equilibrium networks, i.e., as solutions of the

game, for any type of agents. In particular, individuals within the same level or rank of hierar-

chy in these structures can only have cooperative relationships. Moreover, we provide theoreti-

cal results that show the relationship between the structure or topology of the formed

equilibrium network and the different parameters in the utility function of the agents. Then,

we provide intuitive interpretations of these theoretical results and their implications in real-

world or practical scenarios. Finally, we show that all possible equilibrium networks that can

PLOS ONE A network formation game for the emergence of hierarchies

PLOS ONE | https://doi.org/10.1371/journal.pone.0255990 August 12, 2021 3 / 26

https://doi.org/10.1371/journal.pone.0255990


be formed by non-consensual agents in any game are a strict subset of the ones that are possi-

ble to be formed in the same game by consensual agents.

Our third contribution is to analyze our proposed network formation game when it is

played dynamically starting from any fixed initial graph. In such dynamic setting, agents are

stochastically chosen to perform an action and they play their better-response dynamics. We

show that the networks, being formed dynamically, eventually converge to some equilibrium

network in finite time. Finally, we show that for any type of agent, the topology of the con-

verged hierarchical network, besides depending on the parameters of the utility functions, also

depends on the particular realization of the underlying stochastic process (i.e., the solution

path).

It is important to notice that the scope of our work, as seen in the previous contributions,

does not include the analysis of the efficiency or social welfare of the resulting equilibrium

networks in the game (e.g., we do not explore problems such as determining the factors that

lead to a more/less efficient equilibrium network), and, as mentioned in the conclusion, we

leave this analysis as future work. Instead, we focus on the full characterization and genera-

tion of equilibrium networks as hierarchical structures, from both a static and dynamic

analysis.

1.2 Notation and preliminary modeling

Let N = {1, . . ., n} be the finite set of agents, and, throughout the paper, consider n� 3. Let

ij≔ (i, j)2N × N. Any element of N is a node of the directed graph (digraph) G, and G is thus

defined by a set of ordered pairs between different elements of N. (Strictly speaking, a graph is

a pair (N, E), where N is the node set N and E is the edge set E; however, for simplicity, we

adopt a notation traditionally used in the network formation literature (e.g., see [20]) and refer

to the graph by its edge set; we let the context specify the node set.) An element ij 2 G is called

an edge from i to j. Let G + ij≔ G[{ij} and G − ij≔ G\{ij}.
We define N inði;GÞ ¼ fj 2 N j ji 2 Gg and N outði;GÞ ¼ fj 2 N j ij 2 Gg, with the in-

degree of i being dinði;GÞ ¼ jN inði;GÞj. Given G and i 2 N, if N inði;GÞ ¼ ; (N outði;GÞ ¼ ;)
then i is a source (sink). If ji 2 G and ij =2 G, then we say ij is a single edge; and, if ij, ji 2 G then

we say i and j have an undirected edge. A graph is complete if there is an undirected edge

between any pair of nodes.

Whenever there exists a sequence of edges ik1, . . ., km−1 j that connects i with j with no edge

appearing more than once and no node appearing more than in two edges, we say that there

exists a path of length m between i and j. Whenever j = i in the previous path, we say that this

path is a cycle containing i. We denote by C(G) the condensation graph of G, and by Γ(i, G) the

connected component of i 2 N. Graph G is acyclic if it has no cycles, i.e., it has no paths of one

node to itself. A directed cycle is any cycle that contains at least one single edge.

We refer to Section 6 for basic graph theoretical terminology and concepts that will be used

throughout the paper.

1.2.1 New notation and definitions. Given a directed acyclic graph G0 and a node i of G0,
the level of i, denoted by ℓi(G0), is the largest number of arcs or edges from any source node of

G0 to i. Also, for digraph G, the level of i denoted by ℓi(C(G)), is the largest number of arcs in

C(G) from any source of C(G) to the strongly connected component containing i. See Fig 1(a).

We also define N s
inði;GÞ ¼ N inði;GÞ n fj 2 N inði;GÞ j ij 2 Gg and ds

inði;GÞ ¼ jN
s
inði;GÞj.

Consider a graph G and any i 2 N. Given a node k 2 N s
inði;GÞ, we define Pi(G, k) = {i}[{j 2

N|kj 2 G and ij, ji 2 G} and PiðGÞ ¼ \k2N s
inði;GÞ

PiðG; kÞ. We use the term undirected connected

component whenever all edges of the connected component are undirected, and we call it com-
plete connected component when additionally it is a complete subgraph.
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Given an undirected connected component that contains nodes i and j, we say the undi-

rected edge ij, ji 2 G is critical if Γ(i, G)6¼Γ(i, G − ij).
Finally, throughout the paper, we use the terms agent, node and individual interchangeably,

as well as the terms network and graph, and the terms edge and link.

2 Proposed model and game

In our model, any single edge ij is a pairwise relationship that describes an unambiguous hier-

archical or authority relationship where agent j has a higher hierarchy or exercises some

authority over i; so we say j is a supervisor of i, and, respectively, that agent i is a subordinate of

j. This simple concept has been used extensively in the game theory literature [32]. On the

other hand, whenever i and j have an undirected edge, we understand that they have a collabo-

rative or cooperative relationship, and thus, they must share the same hierarchical status and

no agent is the subordinate of the other one. Accordingly, we have that N s
inðj;GÞ is the set of

j’s subordinates, Pj(G, i) is the set of j’s collaborators who also have i as a common subordinate,

and Pj(G) is the set of j’s collaborators who have the same subordinates as j. See Fig 1(b) and

1(c).

2.1 Utility definition

We first specify the costs and rewards that any agent incurs according to our proposed model.

(i). Subordinate-collaborative reward: From an organizational perspective, this represents

the positive reward an individual obtains by being the subordinate or collaborator of

another competent agent. For example, consider agent i wants to pursue her own goals

(e.g., as an employee), then she will seek direction and help from perhaps an equally or

better skilled person (e.g., a competent boss or co-worker). This reward can also be inter-

preted as an exogenous reward (e.g., a salary) that an agent receives by working for or

with other people inside an organization. We represent the subordinate-collaborative

reward per link by the positive constant γ.

(ii). Hierarchical reward: Individuals who have a higher hierarchical status or position

receive an inherent reward for being in a higher position of power. For example, in com-

panies, political organizations, and public institutions, individuals with higher hierarchi-

cal positions can exert more influence than those in lower positions (e.g., leaders or

directives have more influence over ordinary individuals in the society or over their

political base). Then, the reward for these individuals comes from the strength of their

influence and the reach of the consequences of their decisions. Mathematically, it is

Fig 1. Graphs and notation. In (a), we number the levels of all nodes in a directed acyclic graph. In (b), given two

agents i and j, we represent relationships of subordination in the upper figure (here, i is j’s subordinate), and

collaboration in the lower figure. In (c), N inði;GÞ ¼ fj;mg, N inðj;GÞ ¼ fi;mg, N
s
inði;GÞ ¼ N s

inðj;GÞ ¼ fmg,
N inðk;GÞ ¼ N s

inðk;GÞ ¼ fig, Pi(G, m) = Pj(G, m) = Pi(G) = Pj(G) = {i, j}.

https://doi.org/10.1371/journal.pone.0255990.g001
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natural that if i and j both appear in some cycle, then agent i has no authority or any

hierarchical power over j, and so i must have the same hierarchical reward as j. There-

fore, two agents in the same strongly connected component have the same reward. In

summary, we model the hierarchical reward for agent i in the graph G as a (strictly)

monotonic function which takes as an argument the level of i. Formally, the hierarchical

reward for an agent i situated in the network G is

Hð‘iðCðGÞÞ ð1Þ

We call H the reward function, and we assume it is non-negative and (strictly) mono-

tonic (e.g., we have that H(0)�0). Intuitively, the monotonic property of H means that

individuals with higher positions of status are better rewarded.

(iii). Management cost: An individual i who is in charge of a group of people incurs on a man-

agement cost directly proportional to the number of her subordinates. There are two

possible reasons for this. First, leading or directing more subordinates requires more

managerial or logistic work, thus demanding more energy than doing it with a smaller

group, since i has to respond to the demands of more people. Naturally, people who col-

laborate with i (i.e., any j such that ij, ji 2 G) do not incur a management cost to i. Sec-

ond, from an organizational perspective, a supervisor i is responsible for the group she

leads, and she also needs to report to her immediate superiors (i.e., the people, if any, to

whom she is a subordinate) about how the people she is responsible for are performing.

This reporting task, obviously, requires more work when i is directing larger groups.

Observe that management costs must be reduced if i is part of a team of people who also

manage or direct her same subordinates since this team will collaborate with her

and thus reduce the workload on i. Formally, we model the management cost as

c
P

k2N s
inði;GÞ

1

jPiðG;kÞj
(observe that this quantity is well-defined) for some positive constant

c> 0. The chosen functional form for the management cost captures the qualitative

behaviors mentioned above: the larger the number of subordinates of i (i.e., the larger

the set N s
inði;GÞ), the larger the cost; and the larger the number of collaborators (i.e., the

larger the set Pi(G, k) with k 2 N s
inði;GÞ), the smaller the cost.

We conclude that the utility of an individual is the sum of her subordinate-collaborative

and hierarchical rewards minus her management cost.

Definition 2.1 (Utility function). The utility that an individual i incurs given a graph G is

uiðGÞ ¼ jN outði;GÞjgþHð‘iðCðGÞÞ � c
X

k2N s
inði;GÞ

1

jPiðG; kÞj
ð2Þ

Clearly, if i has no connections and no other agent is her subordinate in G, then ui(G) = 0.

Example 1: We present a couple of graphs for which we compute the utilities of some agents

to better illustrate the calculation using Eq (2). Consider Fig 2. If G is as in (a), then

uiðGÞ ¼ 2gþ Hð1Þ �
3

2
c; ujðGÞ ¼ gþ Hð1Þ �

1

2
c;

ukðGÞ ¼ Hð2Þ � c; umðGÞ ¼ 2gþHð0Þ:
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If G is as in (b), then

uiðGÞ ¼ 2gþHð2Þ � c; ujðGÞ ¼ gþHð2Þ � 2c; ukðGÞ ¼ gþ Hð2Þ � c:

2.2 Game formulation and solution concept

Having defined the utility that individuals obtain from their membership in the network G, we

now complete the definition of our proposed network formation game in strategic (or normal)

form [36]. An agent i 2 N can only perform two types of actions over the network G: establish-

ing an edge ij so that ij 2 G, or severing an existing edge ij so that ij =2 G. Regarding the agent’s

type, we say i is consensual whenever i requires j’s agreement to establish the link ij; otherwise,

i is non-consensual whenever she can perform such action irrespective of j’s agreement.

Definition 2.2 (Hierarchical network formation game). A hierarchical network formation

game G is defined by the set of homogeneous agents N = {1, . . ., n}, with n� 3, the utility func-
tion for any agent i 2 N as defined in (2). Let Ai ¼ f0; 1g

n be the action space of i 2 N, so that
any ai ¼ ðaijÞ 2 Ai is an action (or pure strategy) for agent i. Given a graph G, we say agent i has
taken action aij = 1 if ij 2 G; and, otherwise, has taken action aij = 0 if ij =2 G. Let (γ, H, c) be the
utility parameters that define the payoff of any agent as in Definition 2.1, and a = (a1, . . ., an) be
the action (or pure strategy) profile which takes values from the set A ¼ ðA1; . . . ;AnÞ. Then, we
represent the hierarchical network formation game G by the tuple ðN; u;A; g;H; cÞ along with
the specification of whether all agents are consensual or non-consensual.

As it is usual in the literature on network formation games, we only consider pure strategies

throughout the paper. We also consider that any agent i 2 N is self-interested or utility-maxi-

mizing and so she wants to chose the action profile that maximizes her utility (2).

Remark 2.1 (About the game’s modeling scope). Firstly, we observe that an agent can only
add or remove an outgoing edge, i.e., she decides who supervises her or who she wants to work
for. This captures scenarios where people can decide to join (or apply for) a specific team at work
or some program, and are able to quit when desired. In the case of non-consensual agents, since
an agent always accepts an incoming edge, this assumption does not capture scenarios where
managers have more power selecting their employees compared to the power employees have in
selecting their managers. However, this scenario is captured in the case of consensual agents:
agents have the managerial power to select or hire which individuals will be their subordinates
from the pool of applicants.

Secondly, we observe that an agent cannot remove an already established incoming edge.
When the agents are consensual and agent i wants to form edge ij, j decides whether to accept or
refuse to form the edge ij; however, once j accepts and this edge is formed, j cannot removed it at
any later time. This models a sense of responsibility on the agents: an agent accepts to supervise

Fig 2. Network examples.

https://doi.org/10.1371/journal.pone.0255990.g002
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an individual (whether the type is non-consensual or consensual) knowing that she will not be
able to arbitrarily stop her supervision later. This also models situations where an ex-ante con-
tract protects subordinates from being indiscriminately fired, but does not model scenarios where
there is more managerial power in firing employees.

We propose and use the following solution concept for hierarchical network formation

games:

Definition 2.3 (Equilibrium network). A network G is an equilibrium network when, for
any i, j 2 N,

(i). if ij 2 G then ui(G)>ui(G − ij) and;

(ii). if ij =2 G, then

• for non-consensual agents: ui(G)>ui(G + ij),

• for consensual agents: either ui(G)>ui(G + ij), or, if ui(G)�ui(G + ij) then uj(G)>uj(G +

ij).

Remark 2.2 (Connection to other solution concepts). The concept of an equilibrium network
becomes the concept of strict Nash equilibrium whenever the agents are non-consensual, and it
becomes the concept of pairwise stability when the agents are consensual (with the difference that
our concept employ strict inequalities in contrast to the definitions of pairwise stability found in
other works, e.g., [26]).

If there exists some edge ij with i, j 2 N that can be added (or severed) so that ui(G + ij)�
ui(G) (or ui(G − ij)�ui(G)), i.e., so that some condition on the utilities of i as described in Defi-

nition 2.3 is violated, then we say that i has an incentive or intention to establish (or sever) the

link ij respectively. Obviously, when any agent has an incentive to severe some link, then G is

not an equilibrium network for any type of agents. However, if agent i has an incentive to

establish a link, then G is not an equilibrium network for non-consensual agents, but may or

may not be one for consensual agents (recall that for consensual agents, the addition of the

edge ij also depends on j).
We conclude by providing some further interpretations and intuition on the agents’ types.

A non-consensual agent i can be thought of being “greedy” because i accepts any agent that

intends to be her subordinate or collaborator. Intuitively, we can think of greediness from two

perspectives: as a bounded rationality aspect, since i can accept more subordinates even though

this would mean a negative impact on her utility; or perhaps as a foresightedness feature of i,
since i may accept any subordinate with the hope of having a larger future hierarchical reward.

On the other hand, we can think of a consensual agent i as being “non-greedy” since she does

not want to acquire more subordinates than what she can really handle, i.e., if acquiring more

subordinates will affect her utility negatively.

Remark 2.3 (About the homogeneity assumption). Our network formation game assumes
that all agents have the same structure in their utility function, i.e., there is an assumption of
homogeneity in the nature of the agents. We recognize this assumption could be a strong one for
individuals in a society; however, we provide two reasons to motivate such assumption.

Firstly, the homogeneous case is the simplest possible setting to study a new concept related to
network formation—in our case, the emergence of hierarchies. Indeed, in the development of the
literature on network formation games, the homogeneous case has inexorably been the first or
default choice for studying a new concept without worrying about “tweaking” multiple model
parameters (such as different individual costs and rewards for every agent) to obtain relevant
behaviors in the game.
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Secondly, since the simpler homogeneous case is a particular case of the heterogeneous case,
we can expect that proving the emergence of hierarchical structures in the former case implies the
emergence in the latter one. Then, future works can study the expansion of our results to the het-
erogeneous case, where, for example, we could study how different individual costs and rewards
can be mapped to specific topologies of hierarchical structures formed by our game. For example,
we could obtain results on how an agent can change her own preferences and skills (and so her
utility structure) in order to change her social status inside the emerged hierarchy (e.g., individu-
als who aim to be in high-ranked managerial positions against ones who stay in lower-level posi-
tions of subordination).

3 Static analysis

3.1 Hierarchical structures

We introduce a useful class of networks that abstracts and represents the concept of hierar-

chies. Intuitively, agents with a higher level have higher positions of power, and formally, this

is true, since agents with a higher level have a greater hierarchical reward (see Eq (1)). When k
different connected components have the same level ℓ, we say there are k components per level

ℓ. If the maximum level that any agent in the network has is ℓ, then we say the network has ℓ +

1 levels.

Definition 3.1 (Hierarchical structures). A (weakly) connected digraph G is a hierarchical

structure if each connected component is an undirected subgraph, and it is additionally a
sequential hierarchy if there is only one connected component per any level, and, if there is more
than one level, then any node has a single edge towards any other node of a higher level.

A hierarchical structure G has the particularity that any of its connected components are

composed of agents that form strong collaborative units or teams, i.e., all agents in a connected

component are collaborators. Thus, G is naturally a hierarchical representation of the organi-

zation, power and/or influences among teams of people (with the understanding that a team

may be composed of a single individual). Now, a sequential hierarchy G is a hierarchical repre-

sentation in which there is only one team at each rank or level of the hierarchy. Observe that a

particular trivial case of a hierarchical structure which is also a sequential hierarchy is when

the network is complete, i.e., all agents form a unique team. See Fig 3 for examples of hierarchi-

cal structures.

Fig 3. Examples of hierarchical structures. Consider each subfigure, (a) and (b), as an example of a digraph G which

has its condensation graph C(G) represented by the graph with white-colored nodes on the left, and which has a

subgraph corresponding to the nodes A and B of C(G) represented by a graph with gray-colored nodes on the right. In

(a) we have a particular example of a hierarchical structure which is not a sequential hierarchy, whereas in (b) we have

a hierarchical structure which is a sequential hierarchy. In both cases, all agents corresponding to node A in C(G) have

level 2, whereas all agents corresponding to node B in C(G) have level 1.

https://doi.org/10.1371/journal.pone.0255990.g003
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Observe that a pyramidal structure is formed by a hierarchical structure with two or more

levels, generally with one connected component per any level, and such that the number of

agents that have a lower level is greater than the ones that have a higher one. This type or class

of graphs is easily found in real life hierarchies; for example, military organizations (there are

less generals than colonels, but less colonels than lieutenants, etc.) and clerical hierarchies in

the Catholic church [37] (there is only one Pope, and more bishops, but there are less bishops

than priests) have this type of hierarchies. Moreover, it is known that many companies natu-

rally adopt a pyramidal structure for its management organizations [38], with the CEO or pres-

ident at the top, followed by a small executive leadership or vice-presidents, followed by tiers

of middle managers, and all the way down to the lowest level employees.

3.2 Solution analysis

Now, we introduce the main results for this section. All relevant proofs can be found in

Section 7.

Theorem 3.1 (Non-consensual agents). Consider non-consensual agents. A network G is an
equilibrium network for some game G if and only if it is a sequential hierarchy that satisfies the
following conditions:

(i). If the network has k> 1 levels, then the following condition holds:

Hð‘Þ � Hð‘ � 1Þ > gþ c
jPiðGÞj þ jfj j ‘jðCðGÞÞ < ‘gj

jPiðGÞjðjPiðGÞj þ 1Þ

� �

ð3Þ

for any i, j 2 N such that ℓi(C(G)) = ℓ and ℓj(C(G)) = ℓ − 1 with 0< ℓ� k − 1.

(ii). If there exists some critical edge ij, ji 2 G, then

Hð‘þ 1Þ � Hð‘Þ < gþ c 1þ
jfj j ‘jðCðGÞÞ < ‘gj

2

� �

where ‘iðCðGÞÞ ¼ ‘ � 0: ð4Þ

Moreover, there exist sequential hierarchies that are not equilibrium networks for any hierar-
chical network formation game.

Remark 3.2 (Interpretation of Theorem 3.1). The importance of Eqs (3) and (4) is that they
relate the agents’ utility parameters (γ, H, c) with the specific topology of the sequential hierarchy
G resulting from the hierarchical network formation game with non-consensual agents.

We start by interpreting Eq (3). A first observation is that this equation specifies how the
increment in the hierarchical reward between the current level ℓ and the previous level ℓ − 1, i.e.,
Δ(H)≔H(ℓ) −H(ℓ − 1), restricts the number of agents that can exist at level ℓ, i.e., |Pi(G)|. Inter-
estingly, the larger the increment Δ(H), the smaller the smallest possible number of agents with
level ℓ, that can exist in an equilibrium network. (To analyze this fact in the right-hand side of
Eq (3) observe that the function x 7! xþa

xðxþ1Þ
with x> 0 and positive constant a, is monotonically

decreasing.) From an organizational point of view, this can be interpreted as follows: whenever
there is a large difference in power between two consecutive levels in the hierarchy of an organiza-
tion, we can then expect to find less people in the higher level. For example, in a company, there
are fewer executives than managers. Therefore, the equilibrium networks from Theorem 3.1 are
able to model a pyramidal structure with N levels by, for example, enforcing monotonic incre-
ments in the hierarchical reward (e.g., H(1) −H(0)<H(2) −H(1)<. . .<H(N) −H(N − 1)).

Moreover, this reflects a natural organizational phenomenon: the salary difference between
higher positions in an organization are more accentuated than between lower positions.
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A second observation of Eq (3) is the following: if inequality (3) is satisfied for greater values
of the management cost parameter c, then it is possible to find a greater number of agents with
level ℓ. This has an intuitive explanation: more agents can be found on level ℓ because this implies
that any agent in this level has more collaborators with whom to reduce the management cost
that otherwise would be larger due to the larger value of c.

We now interpret Eq (4). First observe that, since the equilibrium networks are sequential
hierarchies, all connected components are complete subgraphs. Therefore, whenever there is a
critical edge, it must belong to a connected component of two nodes. Then, Eq (4) says that agent
i with level ℓ and who has a critical edge, has no incentive in severing its collaborative tie with j if,
for example, her subordinate-collaborative reward γ is large enough to counteract the increase on
the hierarchical reward that she would get by severing her critical edge. This condition seems
restrictive because it implies an upper bound on Δ(H), however, we remark that this condition is
only present whenever a critical edge exists, i.e., whenever a group of only two people exist for
some level. Indeed, later in this paper, in Theorem 4.4, a result is presented where agents dynami-
cally play the hierarchical network formation game and a network with no critical edges is
formed.

Theorem 3.3 (Consensual agents). Consider consensual agents. A network G is an equilib-
rium network for some game G if and only if G is composed by one or multiple hierarchical struc-
tures and G satisfy the following conditions:

(i). If a hierarchical structure in G has k> 1 levels, then

Hð‘Þ � Hð‘ � mÞ > gþ c
X

p2N s
inði;GÞnfjg

jPiðGþ ij; pÞj � jPiðG; pÞj
jPiðG; pÞjjPiðGþ ij; pÞj

� �

þ
c

jPiðG; jÞj
> 0 ð5Þ

for any i, j 2 N belonging to this hierarchical structure and such that ji 2 G, with ℓi(C(G))

= ℓ� k − 1 and ℓj(C(G)) = ℓ −m for any appropriate 0�m� ℓ.

(ii). If there exists i, j 2 N such that ℓi(C(G)) = ℓ� 0 and ℓj(C(G)) = ℓ −m� 0 for any appro-
priate 0�m� ℓ, and such that there exists no path from i to j (whether i and j belong to
the same hierarchical structure or not), then

Hð‘þ 1Þ � Hð‘ � mÞ < c: ð6Þ

(iii). If there exists a critical edge ij, ji 2 G such that ℓi(C(G)) = ℓ� 0 and ℓi(C(G − ij)) = ℓ + 1,

then

Hð‘þ 1Þ � Hð‘Þ < gþ c
X

p2N s
inði;GÞ

jPiðG; pÞj � jPiðG � ij; pÞj
jPiðG; pÞjjPiðG � ij; pÞj

� �

þ c: ð7Þ

Moreover, there exist hierarchical structures, which are possibly sequential hierarchies, that
are not equilibrium networks for any hierarchical network formation game.

Remark 3.4 (Interpretation of Theorem 3.3). From Theorem 3.3 we conclude that consensual
agents allow the formation of a wider variety of hierarchical structures than non-consensual
agents. Indeed, given a game G with non-consensual agents, any of its equilibrium networks is
also an equilibrium network for the same game but with consensual agents. We also remark that
consensual agents allow equilibrium networks that are not connected. See Fig 4.
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Therefore, we note that Eqs (5) and (7) from Theorem 3.3 are the more general versions of Eqs
(3) and (4) from Theorem 3.1, respectively, and, despite having a more intricate expression,
inherit a similar qualitative interpretation from their counterparts (as explained in Remark 3.2).

Eq (6) can only be present in the case of consensual agents (i.e., it has no counterpart for non-
consensual agents) for two reasons. The first reason is that it must be satisfied, for example, when
the equilibrium network consists of two or more hierarchical structures, or if the equilibrium is a
hierarchical structure whose condensation graph has multiple sources. The second reason is that
this condition is a result of the non-consensual interaction: considering the statement (ii) of the
theorem, if agent i wants to establish a connection with j (observe that i has a higher level than j),
j will not consent i’s intention of becoming her subordinate if the increase of management cost is
larger than the increase of hierarchical reward that j would obtain from having i as a
subordinate.

It is easy to construct games with consensual agents in which one or multiple sequential

hierarchies (including complete networks) are equilibrium networks. The next proposition

gives other non-trivial examples of equilibrium networks for a game with consensual agents.

Proposition 3.5 (Examples of equilibrium networks for consensual agents). Consider any
hierarchical structure G with more than one level, one complete connected component per any
level whose size is greater than two, and such that the only existing edges in the graph are as fol-
lows: for any i, j 2 N with ℓi(C(G)) = ℓ and ℓj(C(G)) = ℓ + 1, pk 2 G for any p 2 Γ(i, G), k 2 Γ(j,
G). Then,

(i). G, or

(ii). any network composed by two or more (isolated) hierarchical structures with the same
properties as G and the additional property that |Pi(G)|� |Pj(G)| for any i, j 2 N with
ℓj(C(G)) = ℓi(C(G)) − 1> 0.

is an equilibrium network for some game with consensual agents.
Remark 3.6 (Existence of hierarchical structures that are not solutions of the game). As

mentioned by both Theorems 3.1 and 3.3, there exist hierarchical structures that cannot be equi-
librium networks of any hierarchical network formation game, i.e., there exist hierarchical

Fig 4. Condensation graphs of equilibrium networks. We depict the condensation graph of a network G containing

three isolated hierarchical structures that are possible to result as a solution to a hierarchical network formation game

with consensual agents (provided the adequate utility parameters exist). Notice that each isolated network has the

topology of another possible equilibrium network for consensual agents, but not for non-consensual ones.

https://doi.org/10.1371/journal.pone.0255990.g004
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structures which are distinct from the equilibrium networks of all possible tuples
ðN; u;A; g;H; cÞ that define a game with either consensual or non-consensual agents.

4 Dynamic analysis

We now explore the emergence of hierarchical structures when agents play a hierarchical net-

work formation game dynamically, which we call the network formation process.
Definition 4.1 (Network formation process). Consider a hierarchical network formation

game G and any fixed graph Go. At each time step t = 0, 1, . . .:

(i). Consider the action profile at time t as a(t) = (a1(t), . . ., an(t)) and the respective emergent
network as G(t). If t = 0, then consider G(0) = Go.

(ii). Select a pair of agents (i, j), i 6¼ j, randomly and independently from N × N with all possible
pairs of different agents only having positive probabilities of being selected according to
some time-invariant distribution.

(iii). Then:

(a). For non-consensual agents:

aijðt þ 1Þ

¼ argmaxa�ij2f0;1guiða�ij; a� ijðtÞÞ;

if maxa�ij2f0;1guiða�ij; a� ijðtÞÞ > uiðaðtÞÞ

2 f0; 1g n faijðtÞg; otherwise

:

8
>>>><

>>>>:

ð8Þ

(b). For consensual agents: let first i consider the action a�ij as if she was a non-consensual
agent. If ij 2 G(t), then aijðt þ 1Þ ¼ a�ij. Now, if ij =2 G(t) and a�ij ¼ 1, then since i is a
consensual agent, we have that aij(t + 1) = 1 if and only if uj(G(t) + ij)�uj(G(t)) (oth-
erwise, obviously, aij(t + 1) = 0).

Remark 4.1 (Agents in the network formation process). The network formation process, as
clearly seen in Definition 4.1, implements a better-response dynamics for each agent, in which
each utility-maximizing agent plays the game sequentially and myopically, i.e., they maximize
their current utility (given the constraint of their actions) without any foresightedness or being
forward-looking. We remark that the network formation process implements a better-response
dynamics because an agent i can only consider the addition or deletion of a single edge per time
step. If, on the other hand, i is able to select the best pure strategy in her action space Ai per time
step, i.e., being able to alter multiple edges at the same time, we would say the network formation
process implements a best-response dynamics.

Note, however, that when the agent’s utility is the same irrespective of what action she can
take in the next time step, she will prefer changing her action in the next time step (since the
action space has only two states, this simply means switching her current action in the next time
step). Myopic agents are a natural assumption when networks are big or complex, since in this
case it is hard for an agent to trace all the past actions from every other member of the network
or predict what the repercussion of her actions will be over the rest of agents. Likewise, myopic
agents have the least cognitive and informational requirements about the history of the played
game: they only need to remember what happened in the previous time-step. These assumptions
have been widely used in the literature, e.g., [24]. We also remark that pairwise selection of
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agents in dynamic settings of network formation games (as in step (ii) from Definition 4.1) has
been widely used in the literature of network formation games, e.g., [25].

Formally speaking, the network formation process induces a homogeneous Markov chain

M whose state space is the set of all possible graphs with N nodes (defined by all possible

action profiles the agents can take), and whose transition probabilities are immediately defined

as an induced measure from the underlying pairwise selection process defined in step (ii) from

Definition 4.1. See Fig 5 for an example of a one-step transition in the network formation

process.

We proceed to analyze the convergence properties of the network formation process. All

relevant proofs can be found in Section 8.

Definition 4.2 (Invariant networks). Consider the network formation process. An invariant

network G� is any network such that if G(t) = G� then, with probability one, G(t + 1) = G�.
Proposition 4.2. A network is invariant for the network formation process if and only if it is

an equilibrium network.

Proof. Consider any invariant network G� and any (i, j)2N × N (with i 6¼ j). Consider first

non-consensual agents. If ij 2 G� then it must follow that ui(G�)>ui(G� − ij); otherwise, if

ui(G)�ui(G� − ij), then item (iii) from Definition 4.1 implies that i will change her action in

the next time step and thus the topology of G�, which gives a contradiction. A similar proof

can be done to show that if ij =2 G�, then ui(G�)>ui(G� + ij); and by Definition 2.3, conclude

that G� is an equilibrium network. Now, for consensual agents, it only suffices to analyze what

happens when ij =2 G� and ui(G�)�ui(G� + ij), i.e., the case in which, agent i’s action in the next

time step would be 1 if she was non-consensual. In such case, according to item (iii) from Defi-

nition 4.1, it must follow that uj(G� + ij)<uj(G�), so that i has no consent from j and will not

change her current action 0 in the next time step. This implies, according to Definition 2.3,

that G� is an equilibrium network.

Given an equilibrium network, it is easy to show it is also an invariant network from Defini-

tion 2.3 and the fact that only a pair of agents is selected per time step in the network formation

process.

Formally speaking, Proposition 4.2 tells us that a network G is an absorbing state of the

Markov chain M if and only if it is an equilibrium network.

Problem 4.3 (Important problems). The first and most important problem to solve is whether
(i) the network formation process, which results from the agents playing (myopic) better-response
dynamics starting from a fixed arbitrary initial graph, can lead convergence to an equilibrium
network, or (ii) if the individuals may never settle down in forming an invariant network so that
their formed networks are continually oscillating between different configurations. Once

Fig 5. Example of a one-step transition in the network formation process. At some time t� 0, we have an emergent

network G(t) with its condensation graph GC(t). Assume the pair of agents (i, j) is chosen at time t by the network

formation process, with i such that Γ(i, G(t)) corresponds to node A and j such that Γ(j, G(t)) corresponds to node B in

GC(t). Then GC(t + 1), which is the condensation graph of G(t + 1), is as shown in the figure for non-consensual agents,

and for consensual agents if and only if H(2) −H(0)�c.

https://doi.org/10.1371/journal.pone.0255990.g005
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convergence to an equilibrium network is proved, a second natural problem is the further explo-
ration of the specific structures or topology of the formed equilibrium networks.

Theorem 4.4 (Convergence of the network formation process). Consider the network for-
mation process, with an arbitrary initial network Go, for a game G with a fixed type of agents
and such that H(ℓ + 1) −H(ℓ)>γ + cN for any integer 0� ℓ� N − 1. With probability one, G(t)
one, converges in finite time to an equilibrium network with no critical edges and such that it is
connected (according to the conditions stipulated in Theorem 3.1 or Theorem 3.3 depending on
the type of agents).

The following corollary follows from the proof construction of Theorem 4.4.

Corollary 4.5 (Convergence starting from an empty graph). Consider the network formation
process with an empty initial network Go = ;, for a game G with a fixed type of agents and such
that H(ℓ + 1) −H(ℓ)>γ + cN for any integer 0� ℓ� N − 1. With probability one, G(t) converges
in finite time to an equilibrium network with only single edges and such that it is connected
(according to the conditions stipulated in Theorem 3.1 or Theorem 3.3 depending on the type of
agents).

Remark 4.6 (Analysis of results). There are important remarks to make about the conver-
gence results for consensual agents. In general, the final or converged network from the network
formation process (for any type of agents) depends on both the initial network and the specific
realization path of the underlying stochastic process, i.e., the final network is a random function
of the initial conditions. This is known as path dependence [24]: depending on the initial graph,
there may be a positive probability of converging to more than one invariant network, provided
this is allowed by the utility parameters and the topology of the initial graph. See Example 2 for
an illustration of this phenomenon. Finally, notice how starting the network formation process
from an empty graph greatly reduces the final topology of the possible converged equilibrium net-
work (e.g., compare Corollary 4.5 to Theorem 4.4).

We provide a small example to illustrate the observations made in Remark 4.6 regarding

path dependence.

Example 2: (Simple examples of network formation processes and path dependence) Con-

sider the network formation process starting from an empty graph with three agents, i.e., N =

{1, 2, 3} for some game.

Consider first consensual agents in a game with utility parameters such that H(1) −H(0) =

H(2) −H(1)>γ + c, and consider (a, b, c) to be any permutation of elements of N. Then, if the

first three selected pairs are {(a, b), (a, c), (c, b)}, then the process converges to the invariant

network G1(a, b, c) = {ab, ac, cb} with probability one. However, if the first two selected pairs

are {(a, b), (b, c)}, then the process converges to the invariant network G2(a, b, c) = {ab, bc}
with probability one. We conclude that, when starting from an empty graph, the equilibrium

networks G1 and G2 (for different values of (a, b, c)) have a positive probability of being the

invariant network towards which the network converges to, i.e., there is path dependence.

Now, consider non-consensual agents. If the utility parameters of the game are such that 0

<H(1) −H(0)<γ + c, then the converged network is a complete network with probability one,

i.e., no matter what is the realization of the stochastic process, the network always converges to

a complete one. Now, assume H(1) −H(0)>γ + c. First consider H(2) −H(1)>γ + c. Then, the

converged network has a structure of the form G = {ab, ac, bc}, where any possible permutation

(a, b, c) of elements of N has a positive probability of appearing. Similarly, if H(2) −H(1)<γ +

c, then the converged network has a structure of the form G = {ab, bc, cb, ac} where any possi-

ble permutation (a, b, c) of elements of N has a positive probability of appearing. In conclusion,

if H(1) −H(0)<γ + c then there is path dependency; otherwise, if H(1) −H(0)>γ + c then

there is no path dependence.
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5 Conclusion

In this paper we propose, to the best of our knowledge, the first network formation game

model that explains the emergence of hierarchical structures in a society. We consider both

non-consensual and consensual agents, and study the different topologies of hierarchies that

can emerge as solutions of a game. Moreover, we develop a network formation process in

which the agents play stochastically the game sequentially and myopically, and characterize the

possible final formed networks. We learn that the introduction of hierarchical rewards that

increasingly benefit the agents of higher hierarchy or power, is crucial in determining both the

total number of levels in the final hierarchical structure and the maximum number of individ-

uals that can share the same level. Moreover, we learn that it is plausible that individuals within

the same level cooperate with each other.

Our paper motivates future work on the analysis of hierarchical structures, like, for exam-

ple, the proposal of new models that can display either a narrower or a wider variety of other

forms of hierarchies than the ones presented in this paper. One way to possibly achieve this, is

by the judicious incorporation of heterogeneous agents in the game that may have different

structures of subordinate-collaborative or hierarchical reward; see, for example, Remark 2.3.

Another possible future work is to define different dynamic processes of network formation

that perhaps can drive the agents to different equilibrium selection outcomes and study why

such phenomena may happen.

As pointed out in Remark 2.1, a direction of future research is to extend our proposed

game to allow agents to severe incoming connections from her subordinates. Moreover, a sec-

ond research direction is to study the effect of stability of the equilibrium networks of the

game, and further study the conditions that could lead more or less efficient equilibrium net-

works in terms of the game parameters. Finally, from an organizational point of view, it is rele-

vant to theoretically understand under what conditions are flat or steep hierarchies preferable

in terms of the game’s parameters.

6 Basic graph theoretical definitions

Consider a directed graph (digraph) G. Graph G is strongly connected whenever there exist a

path between any two of its nodes; and, by convention, any graph composed by a single node

is in itself strongly connected. We say that i and j are weakly connected when, if we consider all

edges of G being undirected, there exists a path from one of these nodes to the other, and we

say that G is (weakly) connected if any two nodes are (weakly) connected. If G is not connected,

then any connected subgraph such that no other node of G is connected to any of its nodes, is

called an isolated network.

A (strongly) connected component of G is a subgraph of G that is strongly connected and

such that no additional edges or nodes from G can be included in the subgraph without violat-

ing its property of being strongly connected. We can partition the nodes of G according to

which connected component they belong to. The condensation graph of G is the graph result-

ing from contracting every strongly connected component of G into a single node, and it is an

acyclic graph.

7 Proofs for the static analysis section

We first introduce a couple of useful technical results.

Lemma 7.1. For both non-consensual and consensual agents, an equilibrium network cannot
have directed cycles, and thus, only has undirected connected components. In particular, for the
case of non-consensual agents, all connected components are complete subgraphs.
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Proof. By contradiction, consider an equilibrium network G and a single edge ij 2 G such

that a directed cycle involving the node i exists with the edge ij belonging to such cycle. We

analyze whether j has an incentive to start a collaboration with i. Observe that H(ℓj(G)) = H
(ℓj(G + ji)), |Pj(G, k)|� |Pj(G + ji, k)| for any k 2 N s

inðj;GÞ with k 6¼ i. Then,

ujðGþ jiÞ � ujðGÞ

¼ gðjN outðj;GÞj þ 1Þ þHð‘jðGþ jiÞÞ � c
X

k2N s
inðj;GÞnfig

1

jPjðGþ ij; kÞj

0

@

1

A

� gjN outðj;GÞj þHð‘jðGÞÞ � c
X

k2N s
inðj;GÞ

1

jPjðG; kÞj

0

@

1

A

¼ gþ c
X

k2N s
inðj;GÞ

1

jPjðG; kÞj
�

X

k2N s
inðj;GÞnfig

1

jPjðGþ ij; kÞj

0

@

1

A

> 0:

Thus, j has an incentive to establish the edge ji. For non-consensual agents, this would con-

tradict the fact that G is an equilibrium network, and so G cannot have single edges in any con-

nected component, which implies that all connected components are undirected subgraphs.

Now, assume that agents are consensual and continue the analysis to see if i has an incentive in

accepting a link from j. We can easily show that

uiðGþ jiÞ � uiðGÞ ¼ c
X

k2N s
inði;GÞ

1

jPiðG; kÞj
�

1

jPiðGþ ji; kÞj

� �

� 0

since |Pi(G + ij, k)|� |Pi(G, k)| for any k 2 N s
inði;GÞ. Thus, i will accept collaborating with j,

and this immediately implies that G must only have undirected connected components for

consensual agents.

Now, assume we have any i, j 2 N with ij, ji =2 G belonging to the same undirected con-

nected component of G and that this connected component is not a complete subgraph.

Then, it is easy to show that ui(G + ij) − ui(G) = γ> 0, and so i has an incentive to form

the connection ij. For non-consensual agents, this contradicts G being an equilibrium net-

work, from which we immediately conclude that all connected components must be

complete subgraphs. Now, consider consensual agents. Then, it is easy to show that

ujðGþ ijÞ � ujðGÞ ¼ � c 1

jPjðG;iÞj
< 0, and so j has no incentive in accepting a single edge from

i. Thus, the connected components of G are not necessarily complete for consensual agents.

Corollary 7.1. Consider any graph G without directed cycles. Then, no agent has an incentive
to sever any single edge.

Proof. Given the graph G, consider any i, j 2 N such that ij 2 G and ji =2 G; and observe that

ui(G − ij) − ui(G) = −γ< 0.

Now, we introduce the important proofs of our Solution Analysis section.

Theorem 3.1. Throughout the proof, let TiðGÞ≔ jN outði;GÞjg. We denote by i! j the fact

that there exists a path between i and j, and, with a slight abuse of notation, we will also use it

to denote the set of edges that compose some path between i and j, so that clearly i! j� G.

(Note that there might be multiple paths between i and j and so there is some ambiguity as to

which specific path i! j refers to, but this will not be a problem throughout the paper).
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Part I: We first prove that any given sequential hierarchy as stipulated in items (i) and (ii)

of the theorem statement, is the equilibrium network for some game G. Consider a given

sequential hierarchy G. Now, we choose any c, γ> 0 and fix their values. Then, the remaining

problem is to find a reward function H so that G is an equilibrium network for the game

G ¼ ðN; u;A; g;H; cÞ. Then, for G to be an equilibrium network, we need to ensure that no

agent is able to establish new links or severe existing ones as pointed out in Definition 2.3. Let

k be the number of levels of G.

If k = 1, then the network is complete with ui(G − ij) = γ(n − 2)+ H(0) − c/(n − 1) and

ui(G) = γ(n − 1)+ H(0) for any i, j 2 N; which gives ui(G − ij) − ui(G) = −γ − c/(n − 1)<0 since

n� 3. Thus, there is no incentive for any agent of the network to severe a link, irrespective of

the function H. Thus, any non-negative monotonic function H can be chosen as the reward

function.

Let us assume now that we have k> 1.

Case 1: Assume i has level 0< ℓ� k − 1 and that she considers establishing a link with

some agent j that has level ℓ − 1 (recall that ij 2 G), which we call an immediate backward
connection. Then, uiðGÞ ¼ TiðGÞ þHð‘Þ � c jfj j ‘jðCðGÞÞ<‘gj

jPiðGÞj
and

uiðGþ ijÞ ¼ TiðGÞ þ gþHð‘ � 1Þ � c jfj j ‘jðCðGÞÞ<‘gj� 1

jPiðGÞjþ1
, and thus

uiðGþ ijÞ � uiðGÞ ¼ Hð‘ � 1Þ � Hð‘Þ þ gþ c
jPiðGÞj þ jfj j ‘jðCðGÞÞ < ‘gj

jPiðGÞjðjPiðGÞj þ 1Þ

� �

:

Having this previous expression being less than zero would suffice for a non-consensual

agent to not have an incentive to establish immediate backward links, which is the same as

choosing a function H that satisfies condition (i) of the theorem statement (observe that S
must be, indeed, strictly increasing since the sequence fjfj j ‘jðCðGÞÞ < ‘gjg

k� 1

‘¼1
is also strictly

increasing for k> 2).

Case 2: Assume i has level 0 < ℓ� k − 1 and that she considers establishing a

connection with an agent j that has level ℓ −m for m> 1 (assuming, obviously, that such

j exists). Let qℓ(G) = |{j|ℓj(C(G)) = ℓ}| be the number of agents that have rank ℓ in the

graph G. Then, uiðGÞ ¼ TiðGÞ þHð‘Þ � c jfj j ‘jðCðGÞÞ<‘gjq‘ðGÞ
and

uiðGþ ijÞ ¼ TiðGÞ þ gþHð‘ � mÞ � c jfj j m<‘jðCðGÞÞ<‘gj
q‘ðGÞ

þ
jfj j ‘jðCðGÞÞ�mgj

q‘ðGÞþ1

� �
; and thus

uiðGþ ijÞ � uiðGÞ ¼ � ðHð‘Þ � Hð‘ � mÞÞ þ gþ c
jfj j ‘jðCðGÞÞ � mgj
q‘ðGÞðq‘ðGÞ þ 1Þ

¼ �
Xm� 1

p¼0

ðHð‘ � pÞ � Hð‘ � ðpþ 1ÞÞÞ þ gþ c
jfj j ‘jðCðGÞÞ � mgj
q‘ðGÞðq‘ðGÞ þ 1Þ

:

PLOS ONE A network formation game for the emergence of hierarchies

PLOS ONE | https://doi.org/10.1371/journal.pone.0255990 August 12, 2021 18 / 26

https://doi.org/10.1371/journal.pone.0255990


Now, if (3) holds, then � Hð‘ � pÞ � Hð‘ � ðpþ 1ÞÞ < � g � c q‘� pðGÞþjfj j ‘jðCðGÞÞ<‘� pgj
q‘� pðGÞðq‘� pðGÞþ1Þ

� ��
for

any 0� p� ℓ − 1; from which it follows that

uiðGþ ijÞ � uiðGÞ

¼ � ðHð‘Þ � Hð‘ � 1ÞÞ �
Xm� 1

p¼1

ðHð‘ � pÞ � Hð‘ � ðpþ 1ÞÞÞ þ gþ c
jfj j ‘jðCðGÞÞ � mgj
q‘ðGÞðq‘ðGÞ þ 1Þ

< � g � c
q‘ðGÞ þ jfj j ‘jðCðGÞÞ < ‘gj

q‘ðGÞðq‘ðGÞ þ 1Þ
�
Xm� 1

p¼1

ðHð‘ � pÞ � Hð‘ � ðpþ 1ÞÞÞ þ gþ c
jfj j ‘jðCðGÞÞ � mgj
q‘ðGÞðq‘ðGÞ þ 1Þ

< � c
1

q‘ðGÞ þ 1
�
Xm� 1

p¼1

ðHð‘ � pÞ � Hð‘ � ðpþ 1ÞÞÞ

< 0;

and so i has no incentive to establish such new link. In conclusion, if condition (i) from the

theorem statement holds, then no agent has in incentive to establish a link with any agent that

has a lower level.

Case 3: Assume i has any level 0� ℓ� k − 1 and that she considers severing any of her

existing edges. From Corollary 7.1, we know that she has no incentive to sever any single

edge. Now, consider any agent j such that ij 2 G belongs to some undirected edge. If

the undirected edge is a critical edge, i.e., |Pi(G)| = 2, then it is easy to show that

uiðG � ijÞ � uiðGÞ ¼ � gþ Hð‘þ 1Þ � Hð‘Þ � c � c jfj j ‘jðCðGÞÞ<‘gj
2

. Having this previous

expression being less than zero would suffice for i to not have an incentive to severe the edge

ij, which is the same as choosing a function H that satisfies condition (ii) from the theorem

statement. On the other hand, if the undirected edge is not a critical edge, so that |Pi(G)| > 2,

then it is easy to show that uiðG � ijÞ � uiðGÞ ¼ � g � c jfj j ‘jðCðGÞÞ<‘gjþjPiðGÞj
jPiðGÞjðjPiðGÞj� 1Þ

< 0; and thus, i has

no incentive in severing the edge ij.
In conclusion, from all the previous analyzed cases, if G is a sequential hierarchy with more

than one level, then we only need to define the non-negative monotonic function H as stipu-

lated by the conditions (i) and (ii) of the theorem statement in order to finally obtain the

sought game G such that G is an equilibrium network for G.

Part II: Now, we need to prove that any equilibrium network is a sequential hierarchy as

stipulated in items (i) and (ii) of the theorem statement. Consider the given equilibrium net-

work G. From Lemma 7.1 we immediately conclude that G is a hierarchical structure with

complete connected components. Note that this lemma does not specify that G must be con-

nected. However, from the proof of the same lemma, if we assume G is not connected, then

there is always an incentive for some agent to form a single edge with an agent from another

complete connected component of the same level, which by contradiction implies that there is

only one connected component per any level in G. Now, we claim that any agent in G must

have single edges towards any other agent with a higher rank than her. Assume this is not the

case and take any i, j 2 N such that ij =2 G and ℓi(C(G))< ℓj(C(G)), then it follows easily that i
has an incentive to form links with j since such action would increase her utility by γ> 0, giv-

ing a contradiction. Thus, in observance of Definition 3.1, we have proved that G is a sequen-

tial hierarchy. It should be noted that, from our previous analysis in Part I, the number of

agents in each complete connected component of G (when there is more than one level) is

determined by the utility parameters (γ, H, c) satisfying the conditions (i) and (ii) of the theo-

rem statement. This concludes the proof that any equilibrium network is a sequential hierar-

chy as stipulated in items (i) and (ii) of the theorem statement.
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Finally, assume we have a sequential hierarchy G such that there exists some level ℓ> 1

such that: 1) for any i 2 N that has level ℓ, we have jfj j ‘jðCðGÞÞ < ‘gj �
2jPiðGÞj

2

2þjPiðGÞjþjPiðGÞj
2; and

2) for any p 2 N that has level ℓ − 1, we have |Pp(G)| = 2. Then, we claim that G cannot be

an equilibrium network for any game. To see this, observe condition 1) implies
jPiðGÞjþjfj j ‘jðCðGÞÞ<‘gj
jPiðGÞjðjPiðGÞjþ1Þ

� �
� 1þ

jfj j ‘jðCðGÞÞ<‘gj
2

, which immediately implies both (3) and (4) cannot

hold simultaneously because of condition 2), for any utility parameters (γ, H, c).
Proof of Theorem 3.3. Throughout the proof, let TiðGÞ≔ jN outði;GÞjg. We adopt the same

notation introduced at the beginning of the proof of Theorem 3.1, and we additionally intro-

duce the following notation: given nodes i, j 2 N, let i!not j denote the fact that there does not

exist any path between i and j in G, and let i − j denote that i and j are (weakly) connected, i.e.,

i! j or j! i.
Part I: We first analyze the conditions under which any given hierarchical structure, as in

items (i), (ii) and (iii) of the theorem statement, is the equilibrium network for some game G.

Consider a given network G that has one or more hierarchical structures. The remaining prob-

lem is to find the utility parameters (γ, H, c) so that G is an equilibrium network for the game

G ¼ ðN; u;A; g;H; cÞ. Now, we analyze the conditions that ensure no agent has an incentive

and/or is able to form a new link or severe any existing link, so that G can be properly defined

as an equilibrium network of G.

Case 1: Assume any agent i that has level 0< ℓ� k − 1, with k> 1 being the number of lev-

els in the hierarchical structure for which i belongs to, is considering establishing a link with

any agent j that has rank ℓ −m for any appropriate m� 1, i.e., establish a backward connec-

tion. First, assume ji 2 G. Then, following a similar procedure as for Case 1 of Part I in the

proof of Theorem 3.1, we obtain uiðGþ ijÞ � uiðGÞ ¼ gþHð‘ � mÞ � Hð‘Þ þ

c
P

p2N s
inði;GÞnfjg

1

jPiðG;pÞj
� 1

jPiðGþij;pÞj

� �
þ c
jPiðG;jÞj

with |Pi(G + ij, p)|� |Pi(G, p)| for any

p 2 N s
inði;GÞ n fjg, so that i does not have an incentive to establish a link with j if the

inequality (5) from condition (i) of the theorem statement is satisfied. Assume i has an

incentive to establish this link with j, then since agents are consensual, we need to analyze if

j would consent to such action from i. Then, it is easy to show that ujðGþ ijÞ � ujðGÞ ¼

c
P

p2N s
inðj;GÞ

1

jPjðG;pÞj
� 1

jPjðGþij;pÞj

� �
� 0 since |Pi(G + ij, p)|� |Pi(G, p)| for any p 2 N s

inðj;GÞ, and

thus j would accept such proposition. Then, the sufficient and necessary condition for not

incentivizing a backward connection from i is the satisfaction of condition (i) from the theo-

rem statement. Second, assume ji =2 G and j! i. Then, it is easy to see that ui(G + ij) − ui(G) =

γ + H(ℓ −m) −H(ℓ). Assume the worst case, i.e., i has an incentive in making such connection.

Then, we find that uj(G + ij) − uj(G) = −c< 0, and so j will not accept a new link from i. Third,

assume ji =2 G and j!not i (notice that i and j may or may not belong to the same hierarchical

structure). Then, it is easy to show that i has an incentive in establishing such link, and that for

j we have uj(G + ij) − uj(G) = H(ℓ + 1) −H(ℓ −m) − c, and so j will not accept such connection

if and only if

Hð‘þ 1Þ � Hð‘ � mÞ < c: ð9Þ

Case 2: Assume any agent i that has level 0� ℓ< k − 1, with k> 1 being the number of lev-

els in the hierarchical structure for which i belongs to, considers making a forward connection

with any agent j that has rank ℓ + m for any appropriate m� 1. We already know from Part I
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in the proof of Theorem 3.1 that i has an incentive to establish a link with j. If m = 1 and i! j,

then it follows that ujðGþ ijÞ � ujðGÞ ¼ � c
jPjðG;iÞj

< 0. If m = 1 and i!not j, or m> 1 (whether i − j

or not), then uj(G + ij) − uj(G) = −c< 0. Then, we conclude that j has no incentive in accepting

a connection from i.
Case 3: Assume any agent i that has level 0� ℓ� k − 1, with k� 1 being the number of lev-

els in the hierarchical structure for which i belongs to, considers making a connection with

any agent j of rank ℓ (so that ij, ji =2 G). Then, we already know i has an incentive for making

such connection. If j 2 Γ(i, G), then we have ujðGþ ijÞ � ujðGÞ ¼ � c
jPjðG;iÞj

< 0 and thus j will

not accept such link from i. If j =2 Γ(i, G) (whether i belongs or not to the same hierarchical

structure as j), then we obtain uj(G + ij) − uj(G) = H(ℓ + 1) −H(ℓ) − c and so j has no incentive

in accepting such link from i if and only if

Hð‘þ 1Þ � Hð‘Þ < c: ð10Þ

Case 4: Assume any agent i that has any rank ℓ considers severing any of her existing

edges. From Corollary 7.1, we know that she has no incentive to sever any single edge. Now,

consider any agent j such that ij 2 G belongs to some undirected edge. If the undirected edge is

a critical edge and i can increase its level by severing the edge ij, then it is easy to show that

uiðG � ijÞ � uiðGÞ ¼ � gþHð‘þ 1Þ � Hð‘Þ � c
P

p2N s
inði;GÞ

1

jPiðG� ij;pÞj
� 1

jPiðG;pÞj

� �
� c. Then, the

condition Hð‘þ 1Þ � Hð‘Þ < gþ c
P

p2N s
inði;GÞ

1

jPiðG� ij;pÞj
� 1

jPiðG;pÞj

� �
þ c would suffice for i to not

have an incentive to sever the edge ij, which is expressed in Eq (7) from condition (iii) of the

theorem statement. On the other hand, if the undirected edge is not a critical edge, then |Γ(i,

G)|> 2 and it is easy to show that uiðG � ijÞ � uiðGÞ ¼ � g � c
P

p2N s
inði;GÞ

1

jPiðG� ij;pÞj
� 1

jPiðG;pÞj

� �
�

c < 0 since |Pi(G − ij, p)|� |Pi(G, p)| for any p 2 N s
inði;GÞ; and thus, i has no incentive in sev-

ering the edge ij.
Notice that enforcing inequalities (9) and (10) amounts to the condition (ii) of the theorem

statement. Therefore, if there exist utility parameters (γ, H, c) that satisfy the conditions (i), (ii)

and (iii) from the theorem statement, we conclude that the given sequential hierarchy is an

equilibrium network.

Part II: Now, consider a given equilibrium network G. From Lemma 7.1 we immediately

conclude that G is a hierarchical structure or is composed of isolated hierarchical structures

(since this lemma does not specify whether G is connected or not). Then, from our previous

analysis in Part I, it follows that the utility parameters (γ, H, c) must be such that the conditions

(i), (ii) and (iii) in the theorem statement are satisfied. This concludes the proof that any equi-

librium network is composed by one or multiple hierarchical structures.

Finally, we prove the existence of hierarchical structures that are not equilibrium networks

of any possible hierarchical network formation game. For the case in which the hierarchical

structures are sequential hierarchies, we can use the same construction given in the proof of

Theorem 3.1. Now, we focus on the case in which the hierarchical structures are not sequential

hierarchies. Consider a hierarchical structure G with more than one component per any level

and with complete connected components, and such that the only single edges in the graph are

as follows: for any i, j 2 N with ℓj(C(G)) = ℓj(C(G)) − 1� 0, it holds pk 2 G (and so kp =2 G) for

any p 2 Γ(i, G), k 2 Γ(j, G). Moreover, also assume |Pi(G)|> 2 for any i 2 N, i.e., there are no

critical edges in G. We immediately notice from the topology of G and our discussion above
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that the expression in Eq (5) from condition (i) of the theorem statement becomes

Hð‘Þ � Hð‘ � 1Þ > gþ c
jPiðGÞj þ jPjðGÞj
jPiðGÞjðjPiðGÞj þ 1Þ

� �

ð11Þ

for any i, j 2 N with ℓi(C(G)) = ℓ and ℓj(C(G)) = ℓ − 1, ℓ> 0. Assume G has more than one hier-

archical structure, and that one of them has ℓ + 1> 0 levels with ip 2 N denoting any agent of

such hierarchical structure such that ℓi(C(G)) = p 2 [0, ℓ − 1]. Consider any level 0< ℓ� k − 1.

Now, observe that condition (i) (using (11)) and condition (ii) imply

Hð‘Þ � Hð0Þ > ‘gþ c
X‘

p¼1

jPip
ðGÞj þ jPip� 1

ðGÞj
jPip
ðGÞjðjPip

ðGÞj þ 1Þ

 !

; ð12Þ

Hð‘Þ � Hð0Þ < c; ð13Þ

respectively. We claim that if there exists some level ℓ such that 1 �
P‘

p¼1

jPip ðGÞjþjPip� 1
ðGÞj

jPip ðGÞjðjPip ðGÞjþ1Þ

� �

,

then there are no utility parameters that can define a game such that G is its equilibrium net-

work. To see this, observe that this condition implies c < ‘gþ c
P‘

p¼1

jPip ðGÞjþjPip� 1
ðGÞj

jPip ðGÞjðjPip ðGÞjþ1Þ

� �

for any

γ, c> 0, which makes it impossible to choose a reward function H such that conditions (12)

and (13) are satisfied, which in turn violates both conditions (i) and (ii) from the theorem.

Proof of Proposition 3.5. We analyze the conditions under which any given network as in (i)

or (ii) is the equilibrium network for some game G with consensual agents. Given the network,

the remaining problem is to find the appropriate utility parameters (γ, H, c) so that it becomes

the equilibrium network for the game G ¼ ðN; u;A; g;H; cÞ.
Consider G to be a given hierarchical structure as in statement (i) with k> 1 levels. First,

observe that since all connected components are complete subgraphs with more than two

nodes, then there are no critical edges in G, so that we do not need to analyze the satisfaction

of condition (iii) of Theorem 3.3. We immediately notice from the structure of G and the

proof of Theorem 3.3 that Eq (6) of condition (ii) from Theorem 3.3 becomes

Hð‘Þ � Hð‘ � 1Þ > gþ c
jPiðGÞj þ jPjðGÞj
jPiðGÞjðjPiðGÞj þ 1Þ

� �

ð14Þ

with ℓ> 0 and any i, j 2 N with ℓi(C(G)) = ℓ> 0 and ℓj(C(G)) = ℓ − 1. Then, it follows immedi-

ately that we can first choose any γ, c> 0 and then an appropriate non-negative monotonic

function H satisfying Eq (14) to form the sought game.

Now, consider G to be a given network as in statement (ii). Observe that all isolated net-

works in G have more than one level. First, we make the observation that, considering any

agent i, j 2 N with ℓi(C(G)) = ℓ> 0 and ℓj(C(G)) = ℓ − 1, then, from the conditions of G, the fol-

lowing inequalities hold:

jPiðGÞj þ jPjðGÞj
jPiðGÞjðjPiðGÞj þ 1Þ

�
2

jPiðGÞj þ 1
< 1; ð15Þ

since |Pi(G)| > 2.
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Using the inequality in (14), we conclude that if there exists a tuple of utility parameters (γ,

H, c) such that they satisfy the condition

gþ cUðGÞ < Hð‘Þ � Hð‘ � 1Þ < c with UðGÞ ¼ max
i : ‘iðCðGÞÞ ¼ ‘

j : ‘jðCðGÞÞ ¼ ‘ � 1

jPiðGÞj þ jPjðGÞj
jPiðGÞjðjPiðGÞj þ 1Þ

� �

; ð16Þ

then this will imply the satisfaction of conditions (i) and (ii) from Theorem 3.3 and thus create

a game such that G is its equilibrium network. We claim that such tuple exist. To see this,

notice that (15) implies cU(G)<c, and so we can choose a sufficiently small γ> 0 so that γ +

cU(G)<c, and therefore we can squeeze in the difference H(ℓ) −H(ℓ − 1)>0 (which immedi-

ately defines the reward function H appropriately) so that (16) holds.

8 Proofs for the dynamic analysis section

Proof of Theorem 4.4. For any type of agents, let E be the set of equilibrium networks. Con-

sider a set of graphs S ¼ fG1; . . . ;Gkg (with, obviously, different elements). We say S is an

invariant set in our network formation process if the following holds: for any elements

Gi;Gj 2 S, if G(t)2Gi then G(t0) = Gj for infinitely many t0 � t with probability one. Notice

that this implies that, if Gi 2 S and Gk =2S, then there is zero probability that the network

formation process starting at Gi can eventually be the network Gk. In particular, an invariant

set S has only one element if and only if this element is an invariant network (see Definition

4.2). Finally, we remark that in the literature of Markov chains, this concept of invariant set

defined above is equivalent to the concept of an irreducible closed set of persistent states

[39].

Now, according to the Decomposition Theorem of Markov Chains, the state space of the

Markov chain M can be partitioned uniquely as the union of a set of transient states (if such

set exists) and one or more invariant sets. Now, from the fact that G(t) can only take a finite

number of different topologies, or, equivalently, from the fact that the Markov chain M is

finite, it is known that, with probability one, the network G(t) enters an invariant set in finite

time (indeed, each graph in this invariant set is a non-null persistent state [39]). Obviously, if

the network formation process starts in an equilibrium network, we know from Proposition

4.2 that this finite time is actually zero. In conclusion, from Proposition 4.2, if any invariant set

S has only one element, then we conclude that G(t) converges to an equilibrium network with

probability one.

For the rest of the proof, pick any type of agents for the game. Now, given a graph G, define

the set �G as follows: �G ¼ ffi; jg j ij 2 G or ji 2 Gg.
Now, we make a couple of observations:

(a) Consider a single edge ij 2 G(t) that belongs to a directed cycle at any time t, and that i has

level ℓ. Then, it is easy to see that H(ℓ + k) is the hierarchical reward of i for the graph G(t) −
ij, for some k� 0. Now, observe that ui(G(t) − ij) − ui(G(t)) = −γ + H(ℓ + k) −H(ℓ). If k = 0,

then G(t + 1) = G(t); otherwise, if k> 0, then, from the conditions on the increments of

the reward function in the theorem statement, we get that ui(G(t) − ij)>ui(G(t)) and so

G(t + 1) = G(t) − ij.

(b) From the proof of Lemma 7.1, we conclude that: if ij belongs to a directed cycle in G(t),
then, with positive probability, ij, ji 2 G(t + 1).

Let G(to) be the graph at any time to� 0. Then, with these two observations, we can con-

struct a finite sequence of pairs of agents such that they modify the network according to the

following steps (a step can be skipped if not applicable):

PLOS ONE A network formation game for the emergence of hierarchies

PLOS ONE | https://doi.org/10.1371/journal.pone.0255990 August 12, 2021 23 / 26

https://doi.org/10.1371/journal.pone.0255990


1. eventually makes the graph connected at some time t1� to, i.e., G(t1) has no isolated net-

works (this is easy to see for non-consensual agents, and for consensual agents, it follows

from the fact that inequality (6) in item (ii) of Theorem 3.3 cannot be satisfied under the

conditions on the increments of the reward function H),

2. eventually makes the graph to have no directed cycles at some time t2� t1,

3. taking G(t2), it starts establishing one or multiple single edges that may result in the forma-

tion of new directed cycles (if any), and then immediately turn these edges into undirected

ones according to (b) (for example, for non-consensual agents, new directed edges may

appear when an agent i forms a single edge with another agent j of the same level and such

that there is a path from j to i); and repeat this process until the graph has no directed cycles

and cannot form new directed cycles at some time t3� t2; notice that G(t3) is a hierarchical

structure,

4. severs any existing critical edge in G(t3) (i.e., turns it into a single edge), and continues

doing this process until no new critical edge is found in the graph at some time t4� t3 (this

can always be done since the condition on the increments of the reward function H implies

that the inequality (7) is always not satisfied, which, from the proof of Theorem 3.3, let us

conclude that any existing critical edge can always be severed).

Notice that the graph G(t4) is still a hierarchical structure, since severing critical edges (as in

step 4) does not introduce directed cycles, nor introduce new isolated networks. Since G(t4) is

a hierarchical structure and the increments of the reward function H are large enough, there is

no incentive for any agent to establish an edge with any agent with a lower level. Notice that

for non-consensual agents, step 3) implies all agents with the same level form a complete sub-

graph. Notice also that for consensual agents, if a single edge is established between two agents

i and j with the same level in G(t4), then, for any t� t4, this single edge will not be an undi-

rected edge with probability one, nor no new directed cycle that contains i and j will be formed

with probability one. Therefore, we conclude that, for any type of agents, no new undirected

edges nor new directed cycles can be formed for any G(t)�G(t4) with probability one.

So, given the arbitrary initial network Go, let us define T to be the random time at which

G(t) becomes a hierarchical structure as characterized by G(t4). Then, it is easy to observe that

T is a stopping time and we can use the first Borel-Cantelli lemma (as in [40, Theorem 3.1]) to

prove that T<1 with probability one, since any finite sequence of pairs of agents that imple-

ments the appropriate changes in the steps 1) to 4) (if any) always exists with positive probabil-

ity at any time t. Then, we can use the strong Markov property, and assume that the network

formation process starts at T with the graph G(T). Since only new single edges may appear at

future time-steps and these single edges cannot form directed cycles, we conclude that, with

probability one, �Gðt þ 1Þ � �GðtÞ for any t� T, i.e., j�Gðt þ 1Þj � j�GðtÞj. Moreover, for any

t� T, we conclude that G(t) has a pair of agents that can establish a single edge at time t + 1 if

and only if j�Gðt þ 1Þj > j�GðtÞj with positive probability. Now, consider any invariant set S. It

follow from these observations that if GðtÞ 2 S, then j�Gðt þ 1Þj ¼ j�GðtÞj with probability one.

However, this only occurs if and only if no new single edges can be added, i.e., when jSj ¼ 1.

Then, we conclude that any invariant set is an invariant network and so that the network con-

verges to an equilibrium network.
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