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Diego, La Jolla, CA, USA
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cDepartment of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 
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Abstract

Heparan sulfate proteoglycans are found at the cell surface and in the extracellular matrix, where 

they interact with a plethora of proteins involved in lipid homeostasis and inflammation. Over the 

last decade, new insights have emerged regarding the mechanism and biological significance of 

these interactions in the context of cardiovascular disease. The majority of cardiovascular disease-

related deaths are caused by complications of atherosclerosis, a disease that results in narrowing of 

the arterial lumen, thereby reducing blood flow to critical levels in vital organs, such as the heart 

and brain. Here, we discuss novel insights into how heparan sulfate proteoglycans modulate risk 

factors such as hyperlipidemia and inflammation that drive the initiation and progression of 

atherosclerotic plaques to their clinical critical endpoint.

INTRODUCTION

Despite significant therapeutic progress made over the last 3 decades cardiovascular disease 

remains globally the leading cause of death for both men and women [1, 2]. The majority of 

cardiovascular disease-related deaths are caused by complications of atherosclerosis, a 

disease characterized by thickening of the arterial wall and narrowing of the arterial lumen. 

Atherosclerosis is a very complex, maladaptive inflammatory process initiated by 

accumulation of apolipoprotein (apo) B-lipoprotein remnants, such as chylomicron remnants 

and low-density lipoproteins (LDL), in the matrix beneath the endothelial cell layer (or 

intima) of large and medium-sized arteries [3]. Fatal or life-threatening complications occur 

when the narrowing of arteries reduces blood flow to critical levels in vital organs, such as 

the heart and brain, causing unstable angina, myocardial infarction, or stroke.
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Many of the cardiovascular disease risk factors are influenced by the composition and 

expression of proteoglycans in different tissues. In this review, we summarize recent studies 

focused on the impact of heparan sulfate proteoglycans (HSPGs) on hypertriglyceridemia 

and atherosclerosis development and resolution. A primer is provided to describe the process 

underlying the initiation and progression of atherosclerosis for readers unfamiliar with these 

subjects. A detailed discussion follows on the role of HSPGs in LDL and triglyceride rich-

lipoprotein (TRL) metabolism and their impact on atherosclerosis.

ATHEROSCLEROSIS INITIATION AND PROGRESSION

Atherosclerotic lesions initiate by the trapping of remnant lipoproteins in the underlying 

extracellular matrix of damaged or activated arterial endothelium [4, 5]. Plaques develop 

predominantly at sites of altered hemodynamic flow (low shear stress and non-linear or 

turbulent flow) such as branch points and sites with increased vascular curvature. The exact 

mechanism behind the increased lipoprotein permeability at these sites remains unclear, but 

it may be related to the misorientation of endothelial cells and altered barrier function of the 

endothelial layer [6]. Elevated levels of circulating apoB-lipoprotein levels further promote 

trapping of remnant lipoproteins in the subendothelial matrix. Trapped remnant apoB-

lipoproteins undergo aggregation by vascular proteoglycans and oxidation mediated by 

lipoxygenases and reactive oxygen species, generating oxidized LDL (oxLDL). Oxidized 

phospholipids released during the latter process activate the overlying endothelium by 

stimulating expression of chemokines and adhesion molecules that attract and mediate 

migration of monocytes, T cells and neutrophils into the intima [3, 7]. Monocytes entering 

the plaque differentiate into macrophages and internalize aggregated LDL and oxLDL 

particles. Due to these modifications remnant lipoproteins are no longer recognized by the 

LDL receptor (LDLR), whose expression is inversely modulated by cellular cholesterol 

levels. Instead, cholesterol-rich lipoprotein remnants get internalized via phagocytosis or 

scavenger receptors without constraints and induce massive cholesterol accumulation 

turning macrophages into lipid droplet-laden cells, called foam cells. These foam cells are 

retained and progressively accumulate in the subendothelial matrix in the lesions with 

ensuing chronic low-grade production of cytokines and chemokines. As a result, naïve 

macrophages entering the plaque to clear the modified remnant lipoproteins and then 

differentiate into pro-inflammatory macrophages as opposed to the alternatively-activated or 

resolving macrophages [8]. These proinflammatory macrophages in turn attract more 

monocytes, T cells and neutrophils, amplifying a chronic inflammatory response [9, 10]. 

The continuous accumulation of inflammatory macrophages secreting cytokines, such as 

interleukin (IL)-1β, IL-6 and tumor-necrosis factor, locks the system in a state of non-

resolving chronic inflammation [11]. Over time, the aforementioned sterile inflammation 

intensifies and transitions the lesions into more complex advanced plaques with narrowing 

of the arterial lumen and deposition of fibrous elements. An adaptive resolution-repair 

response, including efferocytosis of apoptotic foam cells and formation of a fibrous cap, 

prevents an overwhelming majority of lesions from causing clinical symptoms [12]. A small 

subset of lesions progress to produce significant clinical effects and death as a result of 

plaque rupture, thrombus formation and subsequently arterial occlusion [13].
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A decline in cardiovascular disease-associated mortality was initiated by promoting lifestyle 

changes in combination with LDL cholesterol lowering drugs that either increase hepatic 

LDLR expression (statins and proprotein convertase subtilisin/kexin type 9 [PCSK9] 

inhibitors) or reduce cholesterol absorption (ezetimibe) [14, 15]. Unfortunately, an 

expanding variety of at-risk populations and residual risk after LDL lowering therapies are 

responsible for a recent halt in this downward trend. In part this is driven by the increased 

prevalence of modifiable risk factors other than LDL cholesterol levels, such as diabetes, a 

high body-mass index and obesity, hypertension, decreased high-density lipoprotein (HDL) 

and elevated plasma triglyceride levels or hypertriglyceridemia,.

HYPERTRIGLYCERIDEMIA, AN IMPORTANT CARDIOVASCULAR DISEASE 

RISK FACTOR

Intense LDL lowering by statins caused a significant decline in deaths caused by 

cardiovascular disease. Recently this decline in deaths reached a plateau and 

hypertriglyceridemia is now considered a prevalent risk factor driving this stagnation [15]. 

With a population incidence of 20–28%, hypertriglyceridemia, is defined as plasma 

triglyceride levels above 150 mg/dL (1.7 mM). Plasma triglyceride levels are determined by 

an intricate balance between de novo synthesis in the liver (very low-density lipoproteins, 

VLDL), intestinal absorption of dietary fats (chylomicrons), lipolysis in the peripheral 

circulation, and hepatic clearance. Chylomicrons and VLDL released into the circulation 

undergo rapid lipolytic processing primarily by lipoprotein lipase (LPL) immobilized on the 

capillary endothelial surface in oxidative tissues (heart, skeletal muscle and brown adipose 

tissue) and storage tissues (white adipose tissue). Lipolysis results in triglyceride hydrolysis, 

release of free fatty acids and production of triglyceride-rich remnant lipoproteins (TRLs) 

including smaller VLDL and intermediate-dense lipoproteins (IDLs). Free fatty acids are 

utilized locally for energy production or stored until fasting conditions liberate them from 

adipose tissue. The generated TRL remnants undergo rapid clearance in the liver by 

receptors located on the basal membrane of hepatocytes facing the space of Disse. If the 

circulation time of TRLs is prolonged, for example in receptor mutants, they can undergo 

further hydrolysis. Lipid exchange proteins (e.g. cholesterol exchange transfer protein 

[CETP] and acyltransferases [lecithin cholesterol acyltransferase, LCAT] generate LDL 

particles that are predominantly cleared by the LDLR in the liver and in peripheral tissues.

LPL AND HSPGs

Proteoglycans are a distinct subset of glycoproteins ubiquitously expressed by all animal 

cells, as integral components of the glycocalyx and the extracellular matrix [16]. 

Proteoglycans are distinguished from other glycoproteins by the covalent attachment of one 

or more long linear glycosaminoglycan chains (Fig. 1). The sulfated glycosaminoglycan 

chains (heparan sulfate, heparin, chondroitin/dermatan sulfate, and keratan sulfate) are the 

most negatively charged biopolymers found in nature varying in length from 40–300 sugar 

residues (~20–150 nm) and charge densities of up to −4/disaccharide. The degree and 

pattern of sulfation is highly variable and creates binding sites for various proteins, including 

growth factors, membrane receptors, proteases and their inhibitors, apolipoproteins, lipases, 

and various extracellular matrix proteins. Proteoglycans regulate cell-cell and cell-
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extracellular matrix interactions, serve as co-receptors for growth factor signaling and 

endocytic clearance receptors, and enable formation of depots for growth factors gradients of 

morphogens during development. Due to their localization, ubiquitous expression and dense 

negative charge, proteoglycans are involved in some way in many, if not all, physiological 

and pathophysiological processes including lipid metabolism and atherosclerosis [16, 17].

Typical HSPGs contain 1–3 HS chains, and additionally can contain chondroitin sulfate/

dermatan sulfate (CS/DS) and other types of glycans such as asparagine-linked N-glycans 

and threonine/serine-linked mucin-type O-linked glycans. In total there are 19 known 

HSPGs subdivided into four categories based on their cellular localization (Table 2): (i) 

transmembrane proteoglycans (syndecan 1–4, betaglycan, CD44v3, NRP1, APLP2, CD47), 

(ii) the cell surface glycophosphatidylinositol (GPI)-anchored proteoglycans (glypicans 1–

6), (iii) the secreted extracellular matrix proteoglycans (agrin, collagen XVIII and perlecan) 

and (iv) the intracellular secretory vesicle proteoglycan serglycin. It is important to note that 

HSPGs may not contain the full complement of HS chains and can possess chains of 

different lengths, thus creating great heterogeneity. Recent advances in glycoproteomic tools 

have allowed identification of previously unknown proteoglycans, confirming the suspicion 

that the number of HSPGs may be underestimated [18, 19].

HSPGs are important regulators of plasma triglyceride levels because of their impact on 

LPL-mediated lipolysis and hepatic TRL clearance. LPL is synthesized predominantly by 

myocytes, adipocytes and macrophages and is presented on the lumenal side of the 

endothelium in tissue capillaries where it can process VLDL and chylomicrons and release 

free fatty acids in the local environment (Fig. 2) [20]. For many years it was assumed that 

endothelial HSPGs were responsible for the retention and presentation of LPL on the 

lumenal side of capillary beds [21, 22]. The HSPG-LPL concept was supported by 

observations that binding of LPL to cultured endothelial cells was abrogated by heparin 

lyases or added heparin and that many of the apolipoproteins (apo) on TRLs, such as ApoE 

and ApoAV, also bound HS allowing approximation of LPL and TRLs [23]. Furthermore, 

LPL contains multiple heparin-binding domains and an intravenous injection of heparin 

releases LPL into the circulation, presumably by liberation of endothelial cell-bound 

enzyme. However, it was subsequently shown that glycosylphosphatidylinositol-anchored 

high-density lipoprotein binding protein 1 (GPIHBP1) is the primary receptor for LPL [24]. 

Initially assumed to be an endothelial-specific HDL binding receptor, it became clear that 

mice and humans lacking functional GPIHBP1 present with severe hypertriglyceridemia due 

to absence of LPL presentation on the luminal face of capillary endothelium [25–27]. This 

important interaction was missed in prior studies because the isolation and cultivation of 

endothelial cells results in complete loss of GPIHBP1 expression. GPIHBP1 binds to LPL 

via a negatively charged cysteine-rich Ly6-domain, thus explaining why heparin can 

displace the enzyme from the complex. GPIHBP1 not only presents and stabilizes the 

catalytic activity of the LPL homodimers [28], but it also shuttles the enzyme from the 

basolateral side of the endothelia to the lumenal side [29]. Interestingly, transport and 

presentation of LPL occurs in regions on the capillary endothelium devoid of a glycocalyx, 

where margination (i.e. binding) of TRLs can occur (Fig. 2) [30].
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An intriguing finding in GPIHBP1-deficient (Gpihbp−/−) mice was that LPL did not 

spontaneously diffuse into lymph and circulation [29, 31]. Instead plasma LPL in Gpihbp−/− 

mice is much lower and the enzyme accumulates in endothelial interstitial spaces where it 

can be released upon heparin injection [29, 32]. This retention was not mediated by 

endothelial HSPGs based on studies of Ndst1fl/flTie2Cre+ mice which express endothelial 

HSPGs with less sulfated HS chains; Ndst1fl/flTie2Cre+ mice are normolipemic with no 

detectable differences in plasma LPL mass and activity, endothelial LPL presentation or 

TRL margination. Bishop et al. provided in vivo evidence suggesting that interstitial HSPGs 

might be responsible for retention of LPL. Collagen XVIII (COL18) is one of the major 

basement membrane HSPGs produced by endothelial cells [33] and its genetic manipulation 

resulted in lower circulating LPL mass and activity, fasting hypertriglyceridemia and 

postprandial dyslipidemia [34]. Humans with Knobloch Syndrome caused by a null 

mutation in the vascular form of COL18 also present lower than normal plasma LPL mass 

and activity and exhibit fasting hypertriglyceridemia [34]. Fasting and postprandial 

dyslipidemia were explained by the fact that loss of COL18 resulted in thickening of the 

basement membrane, which delayed transport of LPL from its sites of production in the 

parenchyma to GPIHBP1 on the basolateral side of the endothelium, thus reducing luminal 

LPL presentation [34].

The observations in COL18-deficient mice suggest that the HS chains attached to the protein 

core bind and retain LPL in the interstitial space (Fig. 2). Allan et al. showed that treatment 

with heparin lyase of histological slides of heart and brown adipose tissue from Gpihbp−/− 

mice released the accumulated interstitial bound LPL thereby confirming that the HS chains 

attached to interstitial HSPGs (most likely COL18) are responsible for this robust retention 

[31]. These authors found that LPL can transfer from HSPGs on cultured cells to soluble 

GPIHBP1, GPIHBP1-coated agarose beads, and nearby GPIHBP1-expressing cells, most 

likely due to weak association of LPL with HS compared to higher affinity for GPIHBP1. 

The question remains if this dynamic transfer of LPL between HSPGs and GPIHBP1 is 

affected by metabolic stress or dysfunction.

HEPATIC HEPARAN SULFATE CONTRIBUTES TO TRL CATABOLISM

The HS chains on HSPGs assemble by the copolymerization (catalyzed by a heterodimer 

complex between EXT1 and EXT2) of alternating N-acetylated glucosamine and glucuronic 

acid residues on a tetrasaccharide primer (glucuronic acid-galactose-galactose-xylose-) that 

is covalently bound to a serine residue in the extracellular matrix proteoglycans and on 

extracellular domain of the core proteins of membrane proteoglycans (Fig 1). The chains 

undergo various modifications (Fig. 1B) that convert subsets of N-acetylated glucosamine 

residues to N-sulfated glucosamine units (catalyzed by members of the NDST family of 

enzymes), epimerization of nearby glucuronic acid residues to iduronic acid (catalyzed by a 

C5 epimerase), and additional sulfation reactions at C6 of glucosamine units, C2 of uronic 

acids, and C3 of N-sulfoglucosamine units (catalyzed by HS6ST, HS2ST and HS3ST 

isozymes, respectively) [35, 36]. These reactions generally occur in the Golgi, using 

nucleotide sugars and an activated form of sulfate (PAPS). Mature HSPGs at the cell surface 

or in the extracellular matrix can undergo further modification by extracellular heparanase, 

which cleaves the chains at a limited number of sites and sulfatases (SULF 1 and 2) that 
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selectively remove sulfate groups from the C6 position of glucosamine residues. These post-

synthetic modifications can release bound proteins and modulate signaling reactions relevant 

to atherosclerosis [37, 38]. Heparanase activity will also render core proteins (such as 

syndecans) more susceptible to cleavage by sheddases consequently affecting their residence 

time on the cell surface [39].

Different cell and animal models are used to study the structure and function of HSPGs, 

especially in the context of physiological and pathophysiological processes. One approach 

relies on germ-line or tissue-specific mutation of HSPG core proteins and biosynthetic 

enzymes in vivo, and siRNA-mediated silencing or CRISPR/Cas9 gene targeting techniques 

in vitro. Many of the enzymes, including Ext1, Ext2, Ndst1, Hs2st, and Hs6st1 are critical 

during development, thus necessitating conditional and/or temporal inactivation using the 

Cre-LoxP system in mice (Fig. 1) [40–47]. In contrast to loss of function mutations, 

transgenic overexpression of biosynthetic genes rarely results in noticeable alteration in the 

content or composition of HSPGs probably due to their presence in catalytic excess. 

However, overexpression of individual proteoglycan core proteins, heparanase and SULF1 

and SULF2 can profoundly affect HSPG structure and function.

It had long been recognized that hepatic HSPGs were important for the clearance of remnant 

TRLs based on the observation that infusion of bacterial heparin lyase into the portal vein of 

rats delayed TRL clearance [48–50]. With an average chain length of 40–60 disaccharides 

carrying ~1.3 sulfates per disaccharide, liver HS is considerably more sulfated and slightly 

shorter in length compared to most other tissues [51–53]. Structural studies in mice lacking 

biosynthetic enzymes established the structural features on liver HS required for TRL 

binding. Hepatocyte-specific inactivation of Ndst1 (Ndst1fl/flAlbCre+) and Hs2st 
(Hs2stfl/flAlbCre+) expression in the mouse established that both N-sulfation and 2-O-sulfate 

groups on liver HS are required for binding of the TRL [54, 55]. Mice lacking either of these 

enzymes presented with fasting and postprandial hypertriglyceridemia as well as delayed 

clearance of injected human TRLs to the same extent as observed in Ext1fl/flAlbCre+ mice, 

which fail to make HS chains [56] (Fig. 1).

NDST1 inactivation reduced overall HS sulfation on hepatocytes by 50% due to coupling of 

the biosynthetic reactions (including 2-O- and 6-O-sulfation), rendering the normally highly 

sulfated liver HSPGs incapable of binding apolipoproteins exposed on the TRLs [54, 57, 

58]. Similar fasting and post-prandial hypertriglyceridemia was also observed in 

Hs2stfl/flAlbCre+ mice. For biosynthetic reasons, the reduction of 2-O-sulfation results in a 

nearly stoichiometric increase in the levels of 6-O-sulfation and N-sulfation [55], suggesting 

that 6-O-sulfation and N-sulfation of glucosamine residues might be less important for TRL 

binding. However, competition experiments using chemically N-desulfated, re-N-acetylated 

heparin, 2-O-desulfated heparin and 6-O-desulfated heparin showed that N-sulfate and 2-O-

sulfate groups were required to block binding, whereas 6-O-sulfate groups were not [55]. 

Consistent with this idea, inactivation of hepatic 6-O-sulfotransferase Hs6st1 in mice 

(Hs6st1fl/flAlbCre+) did not result in hypertriglyceridemia [55]. These observations suggest 

that N- and 2-O-sulfation are necessary for TRL binding and uptake. Loss of either one will 

therefore result in defective HSPG-mediated hepatic TRL clearance.
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While initial results in mice suggested that 6-O-sulfation was not required for interaction of 

TRLs with HS, a subsequent study suggested that elevated expression of the HS endo-6-O-

sulfatase, SULF2, correlated with hypertriglyceridemia in Type 2 diabetic (T2D) mouse 

models (db/db mice) and human obese patients [59–61]. Increased SULF2 expression was 

associated with reduced 6-O-sulfation of hepatic HS and impaired VLDL binding to 

hepatocytes isolated from db/db mice [59, 62]. Inhibition of hepatic SULF2 expression with 

an antisense oligonucleotide increased 6-O-sulfation as well and corrected the 

hypertriglyceridemia by normalizing postprandial TRL metabolism [62]. These results 

suggest a relevant role for 6-O-sulfation in mediating TRL binding to HS, presumably 

catalyzed by another member of the Hs6st family of sulfotransferases. In obese human 

patients a SNP in SULF2 was associated with elevated postprandial TRL levels, as well as 

Hba1c ( a marker for hyperglycemia) and plasma glucose levels [60, 61]. These findings 

suggest that SULF2 may modulate insulin reception and resistance and in this way alter 

TRL clearance [63–65].

The C5 epimerase, GLCE, converts glucuronic acid to iduronic acid, the more prevalent 

uronic acid substrate for 2-O-sulfation [35] (Fig. 1). An association was noted between 

heterozygous mutations in GLCE (single nucleotide polymorphisms in its coding sequence), 

reduced plasma HDL cholesterol, and elevated triglyceride levels in a Turkish cohort [66]. 

However, it remains unclear if the SNPs alter the expression, enzymatic activity or substrate 

recognition by the enzyme. Heterozygous Glce mice (Glce+/−) on an Apoe−/− background 

had a significant moderate elevation in both plasma triglyceride and total cholesterol on a 

high-fat diet compared to Apoe−/− mice [66]. On a wild-type background Glce+/− mice do 

not present with hyperlipidemia and so it remains to be determined if the hyperlipidemia in 

Apoe−/−Glce+/− mice results from impaired TRL clearance, altered LPL activity/localization 

or altered VLDL or chylomicron production.

Transgenic mice overexpressing the human heparanase gene showed the importance of HS 

in TRL metabolism [67, 68]. Overexpression of heparanase under control of the chicken β-

actin promoter results in a 95% reduction in the HS chains attached to hepatic proteoglycan 

core proteins without leading to an overall decrease in hepatic HSPG expression [67, 69]. 

Heparanase transgenic mice have fasting and postprandial hypertriglyceridemia due to 

delayed hepatic clearance of postprandial TRLs without alterations in post-heparin plasma 

LPL activity. Despite earlier reports [67], no differences in food consumption and body 

weight were observed when mice were fed a high-fat diet [67, 68]. Although the data is 

consistent with the idea that HSPGs act as receptors for remnant clearance, the constitutive 

overexpression of heparanase in multiple tissues generates a significant amount of HS 

oligosaccharides in the circulation. It is possible that these HS fragments occupy HS-binding 

sites on apolipoproteins on TRLs before they enter the space of Disse and thereby 

competitively prevent interaction of TRLs with HSPGs on the cell surface of hepatocytes. It 

is also peculiar that the hyperlipidemic phenotype was only observed on a high fat diet and 

not a chow diet. Under these conditions, the animals likely developed insulin resistance 

(T2D), which will augment hepatic VLDL output and decrease clearance via both HSPG-

dependent and HSPG-independent mechanisms [63–65]. Interestingly administration of the 

heparanase inhibitor, PG545, to chow-fed Apoe−/− mice reduced plasma glucose levels but 
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had no significant impact on plasma triglyceride levels [70]. Whether PG545 impacts plasma 

triglyceride metabolism in animals fed a high-fat diet is unknown.

Heterozygous loss of EXT1 or EXT2 enzyme activity is associated with a moderate 

reduction in HS chain length and results in the development of a bone disease called 

Hereditary Multiple Exostoses [40, 41, 71, 72]. Compound inactivation of EXT1 and LDLR 

in mice resulted in a moderate fasting hyperlipidemia, suggesting again that chain length is 

important for HS mediated TRL clearance [56]. However no significant impact was seen in 

mice heterozygous for EXT1 or in patients with Hereditary Multiple Exostoses. These 

findings suggest that partial deficiency in the LDLR sensitizes TRL clearance to alteration in 

HS chain length. Taken together, the studies of Ndst1, Hs2st, Ext1 loss-of-function mutants 

and heparanase overexpression studies provide genetic evidence that HSPGs participate in 

TRL clearance in vivo.

HEPATIC SYNDECAN-1, AN INDEPENDENT REMNANT CLEARANCE 

RECEPTOR

Hepatocytes express multiple HSPGs, raising the question as to the identity of the relevant 

HSPG active in TRL metabolism. Early in vitro studies of CHO cells showed that 

syndecan-1 (SDC1) will bind and internalize VLDL enriched with LPL. Subsequent studies 

in mice confirmed that SDC1 is the dominant proteoglycan receptor that facilitates natural 

remnant particle clearance in vivo under fasting and post-prandial conditions [73–75]. 

Inactivation of SDC1 expression was associated with elevated plasma triglyceride levels due 

to impaired hepatic remnant uptake, and the effect was selective based on lack of lipid 

phenotype in Sdc3−/− and Sdc4−/− mice [73]. Furthermore, induction of a disintegrin and 

metalloproteinase 17 (ADAM17) causes shedding of hepatic SDC1 (Fig. 3) and reduces 

TRL clearance, resulting in fasting hypertriglyceridemia in mice [76]. SDC1 is also the 

primary HSPG receptor responsible for uptake and binding of TRL remnants by human 

hepatocytes and human hepatoma cells [76]. Thus, there is compelling genetic and 

biochemical evidence that SDC1 acts as an endocytic receptor.

Syndecan-1 is a type I transmembrane protein bearing up to three HS and two chondroitin/

dermatan sulfate chains (Fig. 3). Treatment of human hepatocytes with heparin lyases 

revealed that HSPG dominate the receptor binding sites, representing at least 90% of the 

binding capacity, and accounting for ~50% of remnant clearance [76]. Internalization of 

SDC1 and delivery of bound lipoproteins to lysosomes occurs relatively slowly (t1/2 ~30–45 

min) through clathrin- and caveolin-independent, raft-dependent endocytosis, and likely 

involves oligomerization of SDC1 [49, 77, 78]. Compared to the fast internalizing receptors, 

LDLR (t1/2 ~10 min) and LRP1 (t1/2 ~0.5 min??), clearance through SDC1 is rather slow. 

However, the binding capacity of SDC1 for remnants exceeds the capacity of LDLR and 

LRP1 by at least an order of magnitude, most likely due to the multivalency afforded by the 

multiple HS chains on SDC1. Under fasting conditions, occupancy of SDC1 is likely less 

than 10% of its capacity, whereas LDLR and LRP1 may be saturated via TRL and LDL 

binding. Thus, one function of SDC1 receptors may be clearance of remnants under post-
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prandial conditions. As discussed below, SDC1 receptors also remove a unique subset of 

TRL remnants of characteristic size and apolipoprotein composition (Fig. 4).

The idea that SDC1 is an independent endocytic receptor was originally controversial. 

Initially it was proposed that hepatic HSPGs capture the incoming remnant TLRs in the liver 

sinusoid and then handoff the remnants to the cell surface receptor LRP1 [58]. It was also 

suggested that formation of an HSPG-LRP1 complex is required for internalization of HSPG 

bound TRLs via its association with this rapid endocytic receptor [79]. These possibilities 

cannot be fully excluded, but ample evidence strongly infers that SDC1 is an independent 

endocytic remnant receptor in its own right [80]. An important observation is that 

hepatocyte-specific ablation of Lrp1 does not result in accumulation of plasma triglycerides 

unless Ldlr expression is also absent [81–83]. Crossing Ldlr−/−Lrp1fl/flAlbCre+ mice with 

Ndst1fl/flAlbCre+ aggravated the dyslipidemia, demonstrating unequivocally that the HSPG 

receptors can act independently [82, 84]. Reciprocal, coordinate regulation of LDLR and 

LRP1 with SDC1 apparently does not occur, and unlike LDLR and LRP1 expression, SDC1 

expression is not affected by alterations in circulating cholesterol levels.

The structural elements of the SDC1 core protein that mediate hepatic remnant 

internalization remain to be established. In vitro alanine scanning mutagenesis of the SDC1 

cytoplasmic domain using a hybrid FcR-SDC1 construct revealed the presence of a 

juxtamembrane endocytic motif, MKKK (Fig. 3) [77]. Upon ligand binding this MKKK 

motif is responsible for SDC1 dissociation from tubulin, phosphorylation of the cytoplasmic 

tail and subsequent internalization of the complex. The relevance of the MKKK endocytosis 

motif for TRL clearance in vivo has not yet been determined. Interestingly the MKKK motif 

is also present in SDC3 and SDC4 (but not SDC2) suggesting that other regulatory elements, 

or its localization and/or level of expression differentiate SDC1 as the dominant HSPG 

clearance receptor. Further studies of SDC1 are needed to understand how its structure 

relates to its capacity to bind and internalize remnant particles (Fig. 3).

The SDC1-mediated TLR internalization process also requires binding of intracellular 

adaptor proteins such as Src kinase, cortactin and flotilin-1 (FLOT1) to the SDC1 

cytoplasmic domain [77]. Interestingly, hepatic Flot1 expression is reduced in murine T2D 

models presenting with hypertriglyceridemia. Rescue of liver Flot1 expression in these 

models corrected the hyperlipidemia by improving hepatic TRL clearance [77]. These 

results suggest that reduced FLOT1 binding to SDC1 is partially responsible for the T2D 

associated hypertriglyceridemia. However, other studies of streptozocidin-induced T1D in 

Ndst1fl/flAlbCre+ mice demonstrated that hypertriglyceridemia under these conditions was 

not related to hepatic HS assembly [85].

SYNDECAN-1 CLEARS REMNANT LIPOPROTEINS ENRICHED IN APOCIII

Remnant TRLs released after LPL mediated lipolysis are not uniform in size, charge, or 

composition [57, 82, 84]. Evidence suggests that SDC1 preferentially clears TRL remnants 

with a diameter between 20–40 nm enriched with ApoE and ApoAV (Fig. 4) [57, 82, 84]. In 

contrast LDLR and LRP1 favor binding of TLRs that are 30–60 nm in diameter and enriched 

for ApoE [82]. Binding of TRLs to SDC1 requires simultaneous binding to ApoE and 
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ApoAV to HS, but is independent of ApoB, even though all three apolipoproteins can bind to 

heparin [57]. Removal of ApoAV from TRLs or antibodies to ApoAV prevented TRL 

binding to purified HS and SDC1 and blocked SDC1-mediated uptake of TRLs by human 

hepatoma cells. In mice, the absence of either ApoE or ApoAV results in profound 

accumulation of small TRLs in the circulation, which correlates with increased 

atherosclerosis development [57]. Thus, SDC1 is responsible for clearing small, more 

atherogenic TRLs.

Unexpectedly the TRLs circulating in Ndst1fl/flAlbCre+ mice also contain an abundance of 

ApoCIII, an apolipoprotein not known to bind HS chains or heparin. ApoCIII is a 8.8 kDa 

glycoprotein mainly produced in the liver, and to a lesser extent in the intestine, and is 

present in TRL, LDL and HDL particles [86]. The importance of ApoCIII in triglyceride 

metabolism became clear when inactivating mutations affecting its expression in humans 

were shown to correlate with lower plasma triglycerides [87] and protect against 

cardiovascular disease [88–90]. Similarly, transgenic expression of Apoc3 in mice results in 

hypertriglyceridemia [91], whereas a null mutation in Apoc3 decreases triglyceride levels 

[92]. Initially, ApoCIII was thought to raise triglyceride levels by inhibiting LPL-dependent 

lipolysis [93, 94]. Recently, it has become apparent that ApoCIII inhibits clearance of TRL 

remnants via LDLR and LRP1 and not by inhibiting LPL [84, 95, 96]. These studies also 

showed that ApoCIII accumulates on plasma TRLs in mice lacking hepatic SDC1, but not in 

mice lacking LDLR and/or LRP1 (Fig. 4), suggesting that SDC1 specializes in clearance of 

small, ApoCIII-rich atherogenic TRLs.

Recent studies have shown that administration of Apoc3 antisense oligonucleotides reduced 

fasting triglycerides by 35–50% in mice defective in hepatic Ndst1, Lrp1, or Ldlr, and in 

animals with combined deletions of Ndst1 and Lrp1 or Ldlr [84]. However, administration of 

Apoc3 antisense oligonucleotides to mice lacking both Lrp1 and Ldlr had no effect on 

plasma TG levels. Furthermore, reduction of ApoCIII production enhanced the rate of 

clearance of TRLs in mice expressing only LDLR and LRP1 (i.e., lacking SDC1), but had 

no effect in mice expressing only SDC1 (i.e., lacking LDLR and LRP1). These findings 

reinforce the notion that ApoCIII prevents clearance through the LDLR/LRP1 axis, and that 

SDC1 can mediate clearance of TRLs independently of ApoCIII [84]. Thus, SDC1 is the 

primary receptor responsible for clearance of ApoCIII-rich TRLs, consistent with the 

observation that mice expressing functional SDC1 have very little ApoCIII on circulating 

TRLs [84]. Hepatic TRL clearance becomes increasingly more reliant on SDC1 in 

pathophysiological conditions that dramatically increase ApoCIII expression such as high fat 

feeding, insulin resistance and T2D [84]. T2D also increases expression and secretion of 

SULF2 in hepatocytes, reducing 6-O-sulfation of HS. The combination of these factors 

along with increased VLDL production and impaired LRP1 translocation might explain the 

severe hypertriglyceridemia often manifested by T2D patients.

HEPARAN SULAFTE PROTEOGLYCANS PRESENT PCSK9

In contrast to TRLs, LDL particles are eliminated from the circulation independently of 

SDC1 receptors and only through ApoB-mediated binding to LDLR. Mutations in LDLR or 

APOB genes cause familial hypercholesterolemia, an autosomal dominant genetic disorder 
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characterized by hypercholesterolemia [97]. SNPs in the proprotein convertase subtilisin/

kexin type 9 (PCSK9) are also associated with familial hypercholesterolemia [97], reflecting 

the ability of PCSK9 to reduce cell-surface LDLR expression on hepatocytes. Binding of 

PCSK9 to the EGF-A domain of the LDLR allows formation of a PCSK9-LDLR complex, 

which undergoes endocytosis and lysosomal degradation [98, 99]. By inducing lysosomal 

degradation, PCSK9 prevents LDLR recycling back to the plasma membrane, thus reducing 

LDLR receptor content. When expressed at high levels, PCSK9 diminishes hepatic LDL 

clearance and raises circulating LDL-cholesterol [99]. Monoclonal antibodies directed 

against PCSK9 increases LDL clearance and are now prescribed to lower the incidence of 

cardiovascular disease in patients [100].

There is still a great deal of mystery surrounding the mechanism behind the PCSK9-

mediated lowering of hepatic LDLR expression. In fact, many lines of evidence suggest the 

existence of liver-specific co-receptors or adaptor proteins for PCSK9 [101, 102]. Glypican 

3 (GPC3), a member of the family of GPI-anchored HSPGs (Table 2), was identified in a 

proteomic search as an extracellular interaction partner that could regulate the PCSK9-

LDLR complex formation [101]. Reciprocal co-immunoprecipitation experiments in 

hepatoma cell lines (HepG2 and Huh7) overexpressing a tagged PCSK9 established that 

GPC3 binds mature secreted PCSK9 as well as intracellular unprocessed pro-PCSK9. Stable 

knockdown of GPC3 in hepatoma cells resulted in increased LDLR protein expression 

(without affecting LDLR mRNA expression) and greater LDL uptake [101], whereas GPC3 

overexpression had the opposite effect, i.e. less PCSK9 mediated degradation of LDLR. The 

physiological relevance of some of these findings has been questioned because GPC3 

expression in adult liver is almost undetectable [101, 103]. GPC3 expression in embryonic 

liver suggests that it might play a role in modulating PCSK9 during embryogenesis or liver 

regeneration [101, 103].

It remains unclear if the interaction of the HS chains on GPC3 mediates the interaction with 

PCSK9. In order to detect HSPGs on a Western blot one needs to enzymatically remove the 

HS chains using heparin lyases. In the absence of such a treatment the variable number and 

length of the attached HS chains render the HSPG heterogeneous in mass, which in Western 

blots manifests as a ‘smear’ of immunoreactive material at a higher molecular weight than 

predicted from the amino acid sequence of the core protein. Co-immunoprecipitation of 

PCSK9, however, identified a distinctly sharp band for GPC3 on Western blot in the absence 

of heparin lyase treatment suggesting that PCSK9 mostly interacts with unglycosylated 

GPC3 core protein. This observation might explain why mutant mice lacking HS 

biosynthetic enzymes do not present with elevated plasma cholesterol levels [48, 54–57, 84].

Gustafsen and colleagues recently established that PCSK9 binds heparin using an affinity 

column [102]. Addition of heparin to HepG2 cells increased LDLR expression and 

correlated with increased secretion of PCSK9 in the medium. Mutation of the heparin-

binding site on PCSK9 impaired PCSK9-mediated downregulation of LDLR expression in 

HepG2 cells and in mice [102]. The heparin binding site is opposite to the LDLR binding 

domain. Thus, exogenous heparin may displace PCSK9 from cell surface HSPGs and 

prevent its presentation to the LDLR. However, monoclonal antibodies targeting the PCSK9 

heparin-binding site do not affect PCSK9-LDLR interactions [102], but these antibodies 
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have the same therapeutic effects in mice as the PCSK9 monoclonal antibody, Evolocumab, 

which targets the binding of PCSK9 binding to LDLR [100]. Interestingly, heparanase 

transgenic mice present with elevated circulating PCSK9 levels and increased hepatic LDLR 

expression [102]. Possibly, the binding of PCSK9 to cell surface HSPGs may be a 

mechanism to sequester PCSK9 after its secretion or to facilitate its internalization.

HEPARAN SULFATE, A KEY MODULATOR OF LDL RETENTION

ApoB is present on TLR remnants, IDL, LDL, and Lipoprotein(a) [Lp(a)], an LDL-like 

lipoprotein in which ApoB is covalently linked to Apo(a). A great body of work supports the 

idea that the key initiating event in atherogenesis is the retention, or trapping, of cholesterol-

rich ApoB-containing lipoproteins. Particles of ≤70 nm in diameter can enter the 

subendothelial space in large and mid-sized arteries via a poorly understood pathway of 

transendothelial movement [104]. Once trapped the ApoB-lipoproteins within the arterial 

wall undergo oxidation and covalent modification and generate a maladaptive local immune 

response that causes atherosclerosis initiation and progression [5]. According to this 

‘response-to-retention’ hypothesis, proteoglycans mediate remnant lipoprotein retention 

(Fig. 5). The arterial extracellular matrix is rich in chondroitin and dermatan sulfate 

proteoglycans such as versican and biglycan, as described in great detail by Wight and 

colleagues [105, 106].

Elevated circulating levels of TRL remnants, LDL, and Lp(a) increases the chance that these 

ApoB-lipoproteins get trapped in the extracellular matrix of the arterial vessel wall at 

susceptible sites, often associated with regions of turbulent blood flow [4, 5]. The difference 

between susceptible and resistant sites in arteries does not reflect the overall transendothelial 

influx of apoB-lipoproteins, but rather by retention of infiltrating lipoproteins [107]. 

Evidence supports that HS as well as chondroitin/dermatan sulfate in the arterial 

extracellular matrix drives retention of remnant lipoproteins. One of the prominent HSPGs 

in the arterial extracellular matrix is perlecan (HSPG2), a multidomain 450 kDa core protein 

containing three HS chains [108, 109]. Perlecan is abundantly present in atherosclerotic 

lesions and increases in content when early lesions progress to advanced plaques [110, 111]. 

Apoe−/− mice heterozygous for perlecan present with greater atherosclerosis burden 

compared to Apoe−/− mice suggesting its importance in cardiovascular disease [112]. Tran-

Lundmark et al. assessed the importance of HS chains attached to perlecan in mediating 

LDL retention by studying an HS-deficient perlecan mouse (Hspg2Δ3/Δ3) generated by 

inactivating exon 3 coding for a segment of the protein containing the HS attachment sites 

(serine residues 65, 71 and 76 in Domain-I) [113, 114]. Crossing Hspg2Δ3/Δ3 mice with 

hypercholesterolemic Apoe−/− mice resulted in a dramatic reduction in vascular LDL 

retention and atherosclerosis formation. Paradoxically, the subendothelial LDL influx in the 

arteries was greater than in Apoe−/− mice. Because perlecan serves both as a structural 

barrier and retentive molecule, the increased influx was explained by loss of barrier activity. 

The findings support the notion that the capacity to retain remnant lipoprotein rather than 

influx rate, determines early (and possibly advanced) development of atherosclerosis. 

Overall the experiments underscore the importance of HS in the arterial extracellular matrix 

for LDL retention (Fig. 5). Domain II in the perlecan core protein can also bind and retain 

LDL in the extracellular matrix [111]. This HS-independent interaction relies upon sialic 
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acid residues associated with the mucin type O-glycans on Domain II. Interestingly, 

Hspg2+/− and Hspg2Δ3/Δ3 mice on a chow diet or on a Western diet did not present with 

hypertriglyceridemia or hypercholesterolemia even when crossed with hyperlipidemic 

mouse models (Ldlr−/− and Apoe−/− mice) [34, 112, 113]. Thus, perlecan seems to play a 

primary role in arterial biology related to atherosclerosis, rather than lipid metabolism in the 

circulation, liver or other peripheral tissues.

ENDOTHELIAL HEPARAN SULFATE AND ATHEROSCLEROSIS 

DEVELOPMENT

Trapped remnant lipoproteins in the subendothelial matrix undergo oxidation and 

modification by malondialdehyde, and the modified phospholipids activate the overlying 

endothelium, resulting in expression of cell adhesion molecules and attraction of 

inflammatory cells, including neutrophils and monocytes ([115–118]. Evidence in mice 

support that in atherosclerosis monocyte rolling on activated endothelium is mediated by P-

selectin [119] and adhesion is driven by vascular cell adhesion molecule-1 (VCAM-1) and 

integrin α4β1 [120–124]. Once leukocytes bind to the endothelium a set of chemokines and 

their complementary receptors direct monocyte transmigration into the subendothelium by 

penetrating endothelial junctions or possibly by transmigration. A number of chemokines 

play a key role in intimal leukocyte accumulation [116, 125]. CCL2-CCR2 and the CCL5-

CCR1/CCR5 promote accumulation of the classical proinflammatory Ly-6Chigh subset of 

monocytes [126] [127–129]. Fractalkine (CX3CL1)-CX3CR1 in contrast seems to mediate 

recruitment of Ly6Clow monocytes [128–130]. Monocyte recruitment in mouse 

atherosclerotic lesions persists during lesion progression and is directly proportional to the 

severity of the lesion [131].

Heparin binds to both P-selectin and L-selectin and block their interaction with their 

endogenous glycoprotein ligands [132–134]. Endothelial HS is important for leucocyte 

extravasation via L-selectin as well as for the presentation and signaling of many of the 

aforementioned cytokines (Fig. 5) [46, 134–137]. Yet, very little is known about the impact 

of endothelial HS on the initiation and progression of atherosclerotic lesions. Baeyens et al 

studied the impact of SDC4 on atherosclerosis [6]. SDC4-deficient mice (Sdc4−/−) crossed 

onto ApoB100/100Ldlr−/− mice had a massive atherosclerotic plaque burden and developed 

lesions in regions normally devoid of plaques as a consequence of endothelial misalignment 

due to the loss of SDC4 [6, 138, 139]. The misalignment amplified endothelial inflammation 

by promoting NF-κB activity and reducing anti-inflammatory kruppel-like factor-2 and −4 

activities [140, 141].

Reduced sulfation of endothelial HS in Ndst1fl/flTie2Cre+ mice results in increased rolling 

velocity of neutrophils and reduced firm adhesion to the endothelium in cremaster muscle 

venules [135, 142]. Inactivation of HS3ST1 in mice (Hs3st1−/−), an enzyme involved in 

installation of sulfate groups at C3 of N-sulfoglucosamine residues in HS and formation of 

the antithrombin binding site (Fig. 1), had a similar effect after LPS-induction of leukocyte 

rolling [142]. These findings suggest that antithrombin binding to HS can compete or 

prevent proper leukocyte extravasion. Although antithrombin binding sites are typically 
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abluminal in normal tissues, binding was prominent across the endothelium at 

atherosclerosis prone sites [142]. Initial attempts to study this interaction in 

hypercholesterolemic mice failed due to the embryonic lethality of Hs3st1 deficiency, but 

this question can now be addressed by backcrossing the strain onto a pure C57Bl/6 

background [143] (Esko et al, unpublished). Analysis of the human HS3ST1 gene showed 

that SNP rs16881446G/G in the HS3ST1 gene is associated with reduced HS3ST1 mRNA 

expression in human primary endothelial cells and is overrepresented in a population with 

more severe coronary artery disease (Fig. 5) [142]. These findings are quite provocative and 

suggest that subtle changes in endothelial HS composition could play a role in atherogenesis 

[46, 134–137].

Studies of neutrophil depletion and enhancement in hypercholesterolemic mice has 

established a causal role for neutrophils in atherosclerosis development [144, 145]. 

Neutrophil infiltration amplifies local lesion inflammation by secretion of cathelicidin and 

cathepsin G thereby promoting adhesion and recruitment of monocytes by the endothelium 

[144, 146–148]. In addition to release of proteases and reactive oxygen species (ROS), 

neutrophils can in response to cholesterol crystals release large web-like structures of DNA 

and neutrophil-derived proteins by a process known as NETosis (neutrophil extracellular trap 

(NET) formation) [147][146]. In atherosclerotic plaques NETs stimulate production of 

cytokines by lesion macrophages and Type-I Interferons (IFNs) by plasmacytoid dendritic 

cells (Fig. 5) ([147, 149]. On the luminal side of the endothelium NETs are observed in 

close proximity to proteoglycan-rich areas of erosion-prone human plaques, suggesting that 

neutrophils induce endothelial cell death and promote plaque erosion and thrombus 

formation [146, 150]. Many aspects of neutrophil recruitment and neutrophil host-defense 

mechanism are regulated or influenced by HS on the endothelium or neutrophil [46, 134–

137]. Recent observations established that neutrophil HS are an important component of 

NETs (Fig. 5) [151]. The strong connection between HS and neutrophil biology encourage 

further studies on the importance of endothelial and neutrophil HS on atherosclerosis disease 

progression.

MACROPHAGE HEPARAN SULFATE ATTENUATES PLAQUE 

INFLAMMATION AND PROMOTES RESOLUTION

Once monocytes enter the subendothelial extracellular matrix they differentiate into 

macrophages, which scavenge the trapped and modified remnant lipoproteins. Oxidative 

modification of apoB on LDL renders the particles unrecognizable by LDLR, but they can 

be taken up by scavenger receptors such as scavenger receptor (SR)-A, SR-BI and CD36 

[152, 153]. Loss of LDLR-mediated LDL uptake results in diminished negative feedback 

regulation of LDLR expression and cholesterol biosynthesis. The lack of negative feedback 

regulation combined with constitutive scavenger receptor activity results in unrestricted 

cellular cholesterol loading. The continuous uptake of modified ApoB-remnant lipoproteins 

turns macrophages into sedentary lipid-loaded foam cells.

Boyanovsky discovered in murine macrophage cell lines that SDC4 was a scavenger 

receptor important for the removal of LDL modified by a secretory phospholipase A2 
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(sPLA2) [154]. Loss of macrophage SDC4 reduced uptake of sPLA2-modified LDL (but not 

oxLDL), and increased SDC4 expression promoted uptake of modified LDL via 

macropinocytosis (Fig. 5). sPLA2 hydrolysis of LDL is enhanced when bound to arterial 

chondroitin and HS proteoglycans, further promoting cholesterol loading in a 

glycosaminoglycan-dependent manner [155–157]. Macrophage SDC4 was able to bind the 

sPLA2-modified LDL as well, but failed to induce foam cell formation, possibly because it 

lacks the ability to undergo macropinocytosis [154]. The atheroprotective effect of ω−3 

polyunsaturated fatty acids (such as fish oils) is suggested to be in part mediated by its 

ability to reduce macrophage Sdc4 expression and consequently foam cell formation [158, 

159]. ]

Loss of Ndst1 in murine macrophages (Ndst1fl/flLysMCre+) resulted in a decrease in overall 

HS sulfation and was associated with a marked increase in foam cell conversion induced by 

aggregated LDL (agLDL) [160]. The increased foam cell conversion was a consequence of 

increased activity of Acyl-CoA:cholesterol acyltransferase (ACAT) 1 and ACAT2, enzymes 

that convert cholesterol into cholesterol esters using long-chain fatty acyl-coenzyme A [161, 

162]. In general, the formation of cholesterol esters positively correlates with foam cell 

formation [163]. Activation of macrophages in the mutant led to greater atheroma burden 

when Ndst1fl/flLysMCre+Ldlr−/− mice were fed a high-fat diet but did not affect plasma lipid 

and lipoprotein levels [160].

The mechanism underlying the activation of macrophages in Ndst1fl/flLysMCre+ mice was 

analyzed in detail. Macrophages secrete constitutively a low level of IFN-β [164, 165], 

which binds to cell surface HS by way of a patch of positively charged residues on one face 

of the protein. Thus, cell surface HSPGs control basal activation of macrophages in a cell-

autonomous fashion by maintaining IFN-β reception in a quiescent state through 

sequestration of IFN-β. Consistent with this hypothesis, the reduced sulfation resulting from 

Ndst1 inactivation increased baseline signaling through IFN receptors 1 and 2. Reduction of 

HS sulfation increased the expression of many pro-inflammatory genes in addition to 

ACAT2, including CCL2 and CCL5, turning most monocytes into activated Ly-6Chigh 

macrophages [160]. The increased Type I IFN signaling increased lesion macrophage 

content and influx of Ly-6Chigh monocytes into established atherosclerotic lesions, creating 

a vicious cycle of foam cell conversion and attraction of even more monocytes [129, 166].

It cannot be excluded that the increased macrophage influx in to Ndst1fl/flLysMCre+ mice 

was to some extent the consequence of decreased macrophage efferocytosis in the lesions 

[12]. Loss of macrophage SDC1 was shown to delay plaque resolution and clearance of 

macrophages in a peritonitis model [160, 167]. Sdc1−/− macrophages displayed both reduced 

migration potential and reduced efferocytosis of apoptotic macrophages in a transwell 

system. Similar to Ndst1fl/flLysMCre+ mice, the loss of SDC1 was associated with increased 

inflammation and increased chemo-attraction of leukocytes [167, 168]. Of note, activated 

murine (and human) Ly-6Chigh macrophages have little to no detectable SDC1 expression 

whereas Ly-6Clow resolving macrophages and macrophages undergoing efferocytosis 

express the highest levels of SDC1 of any macrophage population subset [167, 168]. The 

increased inflammation and reduced efferocytosis correlated with a significant increase in 

atherosclerotic development in ApoE−/−Sdc1−/− mice fed a high-fat diet. Similar to the 
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Ndst1fl/flLysMCre+ mice, the lesions in ApoE−/−Sdc1−/− mice fed a high-fat diet were far 

more advanced and had a greater Ly-6Chigh macrophage content. No difference in plasma 

cholesterol levels were noted in wither model, yet one would expect to find a difference in 

plasma triglyceride levels [57]. The authors did not report if ApoE−/−Sdc1−/− mice 

accumulated atherogenic TRLs making it difficult to conclude to what extent the 

atherosclerosis phenotype was driven by the macrophage phenotype [57, 167, 168].

SUMMARY

Taken together, the various studies of HSPGs and the enzymes involved in HS formation 

demonstrate a central role played by these glycoconjugates in lipid homeostasis and 

atherogenesis. In some cases, these processes seem to depend on specific HSPGs acting in a 

cell autonomous manner in endothelial cells, neutrophils, or macrophages. So far the 

findings indicate that increased HSPG expression and sulfation are associated with reduced 

cardiovascular disease risk. Further studies are warranted of other cell types in the arterial 

wall (e.g. smooth muscle cells, dendritic cells and T-cells) and other HSPGs. The overall 

subtle changes in HS structure afforded by mutations in specific sulfotransferases (e.g. 

HS3ST1 or NDST1 in the macrophage) raise the possibility that natural variation in HSPG 

expression or composition could contribute to dyslipidemias, inflammation, and 

atherogenesis in humans [169–172]. Conditions that result in proteolytic shedding of cell 

surface HSPGs [173] or desulfation [61] and cleavage of the chains [68] might render some 

individuals more prone to cardiovascular disease [174]. Genetic association studies provide 

the first strong evidence for this hypothesis in cardiovascular disease patients [66, 142]. 

Future investigations will need to address how tissue specific and temporal differences in 

HSPGs expression and HS structure impact cardiovascular disease outcomes.
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Highlights

• We provide an overview of heparan sulfate proteoglycan structure and 

assembly

• We describe the role of matrix and membrane heparan sulfate proteoglycans 

in lipoprotein metabolism.

• We show the evidence that hepatic syndecan-1 mediates triglyceride-rich 

lipoprotein clearance.

• We describe the importance of neutrophil, endothelial cell and macrophage 

heparan sulfate proteoglycans in atherogenesis.
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FIGURE 1. Heparan sulfate (HS) structure.
HS biosynthesis commences by the copolymerization of alternating N-acetylated 

glucosamine and glucuronic acid residues on a tetrasaccharide primer (glucuronic acid 

(GlcA)-galactose (Gal)-galactose-xylose (Xyl)-) that is covalently bound to a serine residue 

in the extracellular domain of the core proteins of membrane proteoglycans and extracellular 

matrix proteoglycans. A, The chains undergo various modifications as shown in the top of 

the figure by red shading. The modifications occur in clusters of variable length (sulfated 

domains), which are interspersed by unmodified domains (non-sulfated domains) indicated 

in blue. B, HS biosynthetic enzymes convert subsets of N-acetylated glucosamine (GlcNAc) 

residues to N-sulfoglucosamine units (catalyzed by members of the NDST family of 

enzymes), epimerization of nearby glucuronic acid residues to iduronic acid (IdoA) 

(catalyzed by a C5 epimerase [Glce]), and additional sulfation reactions at C6 of 

glucosamine units, C2 of uronic acids, and C3 of N-sulfoglucosamine units (catalyzed by 

HS6ST, HS2ST and HS3ST isozymes). The modified domains make up binding sites for 
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protein ligands as depicted for antithrombin and ApoE. The HS chains can be further 

modified once they arrive at the cell surface or in the extracellular matrix by two 

endosulfatases (Sulf1 and Sulf2), which remove specific sulfate groups located at C6 of 

glucosamine units, or by the action of extracellular heparanase (not shown).
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FIGURE 2. The role of HSPGs in LPL metabolism.
Lipoprotein lipase (LPL) is synthesized by parenchymal cells including myocytes, 

macrophage cardiomyocytes and adipocytes. After being processed in the Golgi mature LPL 

is secreted into the interstitial spaces. Once secreted, LPL is initially captured by cell surface 

HSPGs and transferred to the interstitial HSPG, COL18 (dashed arrow). Bound LPL is then 

transferred to GPIHBP1 on the basolateral surface of capillary endothelial cells. GPIHBP1 

binding stabilizes LPL activity and allows the transendothelial transport of the LPL-

GPIHBP1 complex to the lumenal side of the endothelium. In the capillary lumen, the LPL-

GPIHBP1 complex facilitates TRL margination in regions of the endothelium devoid of 

HSPGs. The TRL-LPL-GPIHBP1 interaction allows LPL-mediated triglyceride hydrolysis 

to occur. TRLs reach a critical size thereby limiting the interaction with the LPL-GPIHBP1 
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complex and resulting in the release of TLR remnants into the circulation. LPL, Lipoprotein 

Lipase; COL18, Collagen XVIII; GPIHBP1, glycosylphosphatidylinositol anchored high-

density lipoprotein binding protein 1.
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FIGURE 3. Syndecan-1 structure and binding to remnant lipoproteins.
SDC1 is a type I transmembrane protein bearing up to three heparan sulfate and two 

chondroitin/dermatan sulfate chains. It undergoes homodimerization as well as proteolytic 

cleavage. The cleavage results in shedding of the large extracellular ectodomain bearing the 

HS chains. The short cytoplasmic tail contains the MKKK-endocytosis motif and interacts 

with a number of cytosolic proteins such as FLOT1 that play a role in clathrin- and caveolin-

independent, raft-dependent endocytosis. A TRL containing ApoCIII is shown binding to 

the heparan sulfate chains via the interaction of sulfated domains with ApoE and ApoAV. 

GalNAc, N-acetylgalactosamine
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FIGURE 4. Hepatic syndecan-1 and triglyceride-rich lipoprotein clearance.
After lipolytic processing of lipoproteins in the circulation by LPL, remnant TRLs enter the 

Space of Disse through gaps in the hepatic endothelium. The remnants clear rapidly through 

three distinct hepatocyte receptors, LDLR, LRP1 and a single HSPG, syndecan-1 (SDC1). 

SDC1 preferentially clears TRL remnants with a diameter between 20–40 nm enriched with 

ApoE, ApoAV and ApoCIII. In contrast LDLR and LRP1 favor binding of TLRs that are 

30–60 nm in diameter and enriched for ApoE and devoid of ApoCIII. LRP1 will also clear 

particles via the interaction with apoAV. Binding of TRLs to SDC1 requires simultaneous 

binding to ApoE and ApoAV to HS, but binding is independent of ApoB. Compared to the 

fast internalizing receptors LDLR (t1/2 ~10 min) and LRP1 (t1/2 ~0.5 min), clearance 

through SDC1 (t1/2 ~45 min) is relatively slow. SDC1, Syndecan-1; LDLR, Low-density 

Lipoprotein Receptor; LRP1,LDLR-Related Protein 1; n; nucleus.
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FIGURE 5. The importance of neutrophils, endothelium and macrophages HSPGs in 
atherogenesis.
Vascular HSPGs such as perlecan (HSPG2) and COL18 are responsible for trapping of LDL 

entering the subendothelial vessel wall. Trapped LDL aggregates (agLDL) undergo 

oxidation by reactive oxygen species and partial lipolysis by sPLA2, thereby generating 

modified LDL (mLDL). The process activates the overlying endothelium to express vascular 

adhesion molecule-1 (VCAM1) which stimulates infiltration of monocytes. Invested 

monocytes will differentiate into macrophages and clear mLDL via syndecan 4 (SDC4) and 

other scavenger receptors (not shown). The macrophages convert into sedentary foams cells 

that will reside in the intima of the arteries where they perpetuate a chronic inflammatory 

response that will drive further infiltration of monocytes. Monocytes expressing SDC1 and 

sulfated HSPGs will differentiate into the resolving Ly6Clow macrophages (Ly6Clow) due to 

reduced Type I interferon (IFN) signaling. Monocytes lacking HS sulfation and SDC1 are 

more susceptible to Type I IFN and differentiate into classical proinflammatory Ly6Chigh 

macrophages (Ly6Chigh) secreting cytokines such as CCL2 and CCL5 that aggravate the 

chronic inflammation. Increased Type I IFN signaling will also result in increased 

expression of ACAT1 and ACAT2 and promote foam cell conversion of Ly6Chigh 

macrophages. SDC4 can also modulate the infiltration of neutrophils and based on indirect 

observations (smaller arrows). Evidence suggests that antithrombin (AT) blocks SDC4-

mediated infiltration of neutrophils if HS3ST1 is expressed by the endothelial cells. The 

increased neutrophil influx will further increase the secretion of Type I IFN by plasmacytoid 

dendritic cells (pDC). The overall process promotes a self-perpetuating cycle, resulting in 
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excessive foam cell conversion, lipid-induced necrosis, in the formation of a necrotic core 

and unstable lesions that can rupture and clog arteries.
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Table 1.

List of Abbreviations

ACAT Acyl-CoA:cholesterol acyltransferase

ADAM17 A disintegrin and metalloproteinase 17

APO Apolipoprotein

COL18 Collagen XVIII

CS/DS Chondroitin sulfate/dermatan sulfate

FLOT1 Flotilin-1

GLCE C5 epimerase

GPIHBP1 glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1

HDL High-density Lipoprotein

HS Heparan Sulfate

HSPG Heparan Sulfate Proteoglycan

HSPG2 Perlecan

IDL Intermediate-dense Lipoprotein

IFN Interferon

IL Interleukin

LDL Low-density Lipoprotein

LDLR Low-density Lipoprotein Receptor

Lp(a) Lipoprotein(a)

LPL Lipoprotein Lipase

LRP1 Low-density Lipoprotein Receptor-related Protein 1

NET Neutrophil extracellular trap

PCSK9 Proprotein Convertase Subtilisin/Kexin type 9

SDC Syndecan

sPLA2 Secretory phospholipase A2

SR Scavenger receptor

SULF Sulfatase

T1D/T2D Type-1 diabetes/Type-2 diabetes

TRL Triglyceride-rich Remnant Lipoprotein

VLDL Very Low-density Lipoproteins
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