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Abstract 

 Spinels with nominal composition Li1.02Al0.25Mn1.75O3.97S0.03, Li1.02Al0.25Mn1.75O4 

and Li1.02Al0.15Mn1.85O3.96S0.04 have been evaluated for their suitability as positive 

electrode materials in rechargeable lithium ion batteries for electric (EV) and hybrid 

electric vehicle (HEV) applications. 7Li magic angle spinning (MAS) NMR, XRD, and 

EDS experiments indicate that sulfur is most likely present as a trace impurity on the 

surface of the spinel particles rather than substituting for oxygen ions in the bulk, so it is 

unlikely to account for the previously reported enhanced cyclability of this material. 

Rather, the unusual particle morphology produced during calcination of some samples in 

the presence of sulfur compounds appears to impede (but does not completely prevent) 

conversion to the tetragonal phase that occurs at 3V vs. Li, and ameliorates the capacity 

fading associated with it. These materials exhibit reduced rate capability and capacity at 4 

V, making them unsuitable for high energy density (EV) or high power density 

applications (HEV). 



Introduction 

The synthesis and electrochemical behavior of LiAl0.25Mn1.75O3.97S0.03, a novel 

sulfur-doped spinel, have recently been described.1, 2 In contrast to other manganese 

oxide spinels, it has been reported to show excellent reversibility even when cycled at 3V 

vs. Li or at elevated temperatures. Although power management considerations preclude 

utilization of capacity on both the 3 and 4V plateaus in batteries for vehicular 

applications, stable electrode materials that can withstand over-discharge and other abuse 

conditions are necessary to obtain the desired long cycle life of the cell stacks.  Because 

of severe cost constraints3 associated with devices intended for electric vehicles (EVs) 

and hybrid electric vehicles (HEVs), less expensive manganese oxide spinels would make 

particularly attractive replacements for cobalt and cobalt nickel oxides currently used in 

lithium ion batteries, provided that cycling problems can be overcome. Spinels may be 

particularly well suited for HEV batteries, because high energy density is not required, 

but high power density is. 

Capacity fading upon cycling of Li/LiMn2O4 cells has been attributed to 

irreversible oxidation of electrolyte,4, 5 dissolution of manganese ions in acidic electrolyte 

solutions and formation of defect spinel near the end of charge (particularly above 55 

ºC),6, 7 and disconnection of particles associated with the tetragonal phase conversion that 

occurs at 3V vs. Li.8 The latter may also occur at 4V during high-rate discharges.9 

Development of new electrolytes,10 partial substitution of manganese with lithium11 or 

other transition metals,12 and protective coating of particles with lithium carbonate,13 zinc 

oxide,14 or LiCoO2
15 have substantially improved cyclability in recent years. The severe 

capacity loss associated with reduction of spinels past an average Mn oxidation state of 
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3.5 and transformation to a tetragonal phase may, however, still be problematic during 

high rate discharges. 

It is interesting to note that capacity fading associated with discharge onto the 3V 

plateau is greatly ameliorated for ball-milled spinel samples,16 and for those obtained 

through sol-gel synthesis.17 In addition, several research groups have noted that spinels 

obtained through electrochemical transformation of orthorhombic LiMnO2
18, 19, 20 or O3-

LiMnO2 obtained via ion-exchange of NaMnO2
21 cycle much better at 3V vs. Li than 

conventionally prepared materials do. This improvement, in some cases, has been 

attributed to the presence of nanometer sized domains16, 20 that provide ferroelastic 

accommodation of transformation strains. This strongly suggests that particle 

morphologies, grain sizes, and microstructures play a critical, if complex, role in 

determining the electrochemical reversibility of spinels discharged at 3V. 

In light of these observations, the unusual particle morphology of 

LiAl0.25Mn1.75O3.97S0.03 shown in references 1 and 2 is striking, and is probably more 

relevant to the enhanced capacity retention than the S-doping (to which the authors 

attribute the improved stability). Partial substitution of S for O in the bulk is not expected 

to occur in a spinel structure, where the oxygen array is nearly cubic close-packed, 

because of the large discrepancy in ionic radii (1.32 Å for O2-, 1.84 Å for S2-).22 It is more 

probable that the detected S is present as a slight impurity or substitutes exclusively at the 

surface. It would be rather surprising if trace levels of S present on the surface prevented 

particle breakdown associated with the stresses of phase conversion at 3V (although other 

effects, such as slowing Mn dissolution, are plausible). 
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A goal of this study was, therefore, to better understand the cycling behavior of 

LiAl0.25Mn1.75O3.97S0.03 in view of these facts, and also to determine its potential 

usefulness as a cathode material for lithium ion batteries intended for hybrid electric 

vehicle applications. 

Experimental 

Spinels of approximate compositions Li1.02Al0.25Mn1.75O3.97S0.03 and 

Li1.02Al0.25Mn1.75O4 were synthesized from Li(CH3COO)•2H2O, Mn(CH3COO)2•4H2O, 

Li2S (optionally), and Al(NO3)3•9H2O by a modification of the sol-gel procedure 

described in references 1 and 2, and also by a solid state method.  When 

Li1.02Al0.25Mn1.75O4 was the objective, Li2S was omitted and enough extra 

Li(CH3COO)•2H2O was used to ensure that a phase pure sample with Li:M ratio of 1.02 

(where M=Mn +Al) was produced. All samples were first heated to 500 ºC for 10 hours 

to decompose the acetates, then ground and reheated to 800 ºC in air for ten hours. A 

final calcination at 800 ºC under flowing oxygen for ten hours was then carried out. A 

commercially available LiMn2O4 spinel from Merck (Selectpur SP30, lot # C50339; 

1.01075.1000 EF 291315, EM Industries) and samples of Li1.02Al0.15Mn1.85O3.96S0.04 

given to us by Dr. Hyun Joo Bang of Illinois Institute of Technology were also 

investigated. Table 1 summarizes the samples used, the sources, and the designations 

used throughout this paper to refer to the materials. 

A Siemens D5000 diffractometer was used to obtain x-ray powder diffraction 

patterns on the samples, with monochromized Cu Kα radiation (λ = 1.54 Å). Particle 

sizes were determined with a Beckman Coulter particle size analyzer (model LS 230, 

with Small Volume Module), and a scanning electron microscope (ISI-DS 130C dual 
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stage) with an attached x-ray energy dispersive spectrometer (EDAX model DS130 144-

10, with amplifier model 184) was used to determine the approximate composition and to 

observe the particle morphologies. 

7Li MAS NMR experiments were performed at 38.95 MHz on a Bruker AMX-

100 spectrometer with a Doty probe equipped with a 7 mm rotor.  To prevent the loss of 

data in the beginning of the free induction decay (FID) due to the probe recovery time, a 

Hahn echo sequence (90°−τ−180°−τ−acq.) was used; the τ value was rotor synchronized 

(τ = 1/spinning speed).  A 90° pulse width of 1.5 µs and a recycle delay of 0.5 s were 

used.  All experiments were carried out at room temperature and with spinning speeds of 

10 kHz.  All the spectra were referenced in frequency relative to 1M LiCl aqueous 

solution at 0 ppm. 

The samples were hand ground and passed through a 75 µm sieve before being 

made into electrodes.  Electrode mixtures containing 80 or 84 wt. % active material, 8 wt. 

% Kynar PVdF binder ((grade 2801-00, lot # 97C8118, Elf Atochem North America, 

Inc., Technical Polymers Department), 4 or 6 wt. % SFG-6 synthetic flake graphite 

(Timcal Ltd., Graphites and Technologies) and 4 or 6 wt. % 50% compressed acetylene 

black in N-methylpyrrolidone were spread onto aluminum foil current collectors using a 

doctor blade. To some mixtures, a small amount of Pelseal Bonding Agent 65 (Pelseal 

Technologies, LLC) was added according to the manufacturer’s directions to prevent 

cracking. Electrodes were dried overnight in air and then in a 120ºC vacuum oven for at 

least 8 hours, and some were roll-pressed prior to use. For coin cells with lithium anodes, 

5/8” diameter electrodes were punched out and weighed individually to determine 

loading. This was typically 5-15 mg/cm2 of active material. Laminate electrodes 
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containing the IT sample (see Table 1) were donated to us by Dr. Bang and contained 12 

wt. % C black, PVdF binder, and about 2.5 mg/cm2 active material. Coin cells were made 

as described in Reference 3 and pressed using a Hohsen 2032 coin cell press. A MacPile 

II (Bio-Logic, SA, Claix, France) was used for galvanostatic cycling experiments.  

A 12-cm2 pouch cell was assembled with a Li1.02Al0.25Mn1.75O3.97S0.03 cathode and 

a natural graphite anode. The anode consisted of 90% natural graphite (Superior Graphite 

Co.) and 10% PVdF (Kureha) on a Cu foil current collector. The cathode consisted of 

84% Li1.02Al0.25Mn1.75O3.97S0.03 (JP), 4% SFG-6 (Timcal Ltd), 4% carbon black, and 8% 

PVdF on an Al foil current collector. The cathode was pressed before assembly into the 

cell. The ratio of anode to cathode theoretical capacity was 1.4:1. A minimum amount of 

electrolyte (1M LiPF6 in EC/DEC, LP40 from EM Science) was used in the cell to 

unmask issues with respect to electrolyte oxidation, and the separator was Celgard 2300 

(thickness 25 µm). This pouch cell was cycled between 3.0V to 4.3V by a Maccor battery 

cycler at room temperature.  

 

Results and Discussion 

Materials Characterization 

 X-ray powder diffraction patterns were typical of phase-pure manganese oxide 

spinels for samples listed in Table 1, except for SSS, which contained a trace of Mn2O3 as 

an impurity (<5 wt. %). A lattice parameter of 8.19 Å was calculated for materials made 

in-house, consistent with the partial Al substitution. The patterns appeared essentially 

identical to one provided to us of the IT sample (no lattice parameter was given). 

 6 



 Scanning electron microscopy was used to investigate spinel samples. Figures 1 

and 2 show representative samples of IT and JP powders, respectively. IT consisted of 

small, idiomorphic particles about 1-2 µm across, whereas JP was composed of 

irregularly-shaped particles ranging in size from sub-micron to several microns across. 

Most particles appeared porous rather than faceted like the IT sample, and were lightly 

fused together during the calcination process into larger agglomerates. A few particles 

with smooth edges were observed, although these were rare. Small amounts of sulfur 

were detected with EDAX in the smooth particles (such as the one in the upper center of 

Figure 2), but not in the porous or irregular ones.  Samples made by sol-gel without Li2S 

(GFS) and those made by solid state reactions with (SSS) and without (SFS) Li2S had 

similar appearances to that of the JP material. As was the case with JP, sulfur did not 

appear to be distributed evenly throughout the SSS sample, and was present at levels 

barely detectable by EDAX. 

Porous powders result from the decomposition of acetates and release of CO2 gas 

during calcination. The presence of sulfur compounds during heating apparently limits 

the fusion of particles and results in the greatly altered and unusual particle morphology 

seen in IT. Excess sulfide ion (in the form of Li2S) was used during the synthesis of JP 

and SSS, as with IT.  Because it is extremely difficult to control the hydrolysis and 

oxidation reactions of Li2S during either sol-gel or solid state processing, the particle 

morphology seen in IT could not be easily reproduced, however. 

Figure 3 shows 7Li MAS NMR results for the samples listed in Table 1. All 

spectra contain broad resonances at approximately 520 ppm and large spinning-sideband 

manifolds, characteristic of the NMR spectra of paramagnetic manganese oxides with an 
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average manganese oxidation state of close to 3.5.23 A shift in the peak position to higher 

frequency and an increase in the breadth of the isotropic resonance, in comparison to the 

undoped spinel lithium manganese oxide (which is not shown here), are consistent with 

the increase in the Mn oxidation state and increased variety of the local environments, 

respectively, caused by the Al substitution.  However, there is no noticeable effect on the 

patterns due to the S-doping. For example, the spectra of GFS, JP, and IT are very similar 

in peak position and the breadth of the isotropic resonance and the intensity of the 

spinning sidebands.  This lack of spectral change suggests that anionic substitution is not 

taking place inside the lattice.  Peaks for samples made by the sol-gel method (IT, JP, and 

GFS) are broader than for those made by solid state reaction (SSS and SFS), indicating 

more variety in the Li local environments of the former.  This broadening could arise, for 

example, if aluminum is not evenly distributed throughout the grains or even the 

individual unit cells of the spinels.  

Lithium coin cells  

 Figure 4 shows voltage profiles of Li/1M LiPF6, EC-DMC/JP and IT coin cells, 

discharged at 0.1 mA/cm2. Electrodes JP3-1a and JP3-2a, which contained 80 wt. % 

active material and 12 wt. % total carbon (6 wt. % graphite and 6 wt. % carbon black) 

could be discharged farther than electrodes JP2-1a and JP2-2c, which contained 84 wt. % 

active material and 8 wt. % total carbon (4 wt. % graphite and 4 wt. % carbon black). 

IT1, which contained 12 wt. % carbon, performed similarly to JP3-1a and JP3-2a, 

although the average voltage was somewhat higher. All, however, fell considerably short 

of the theoretical capacity for Li1.02Al0.25Mn1.75O3.97S0.03 (135 mAh/g at ~ 4V vs. Li, 

assuming that Al is not redox active) contained in the JP electrodes or 
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Li1.02Al0.15Mn1.85O3.96S0.04 (140 mAh/g) contained in the IT electrodes. Discharging cells 

at somewhat lower current densities did not significantly improve utilization (Figure 5). 

All the electrodes appeared to be somewhat rate-limited, with capacity falling off as the 

current density was increased above 0.2 mA/cm2. The cycling behavior at 4V was typical 

of spinel materials, with very slight fading apparent (Figure 6), although pressed 

electrodes (e.g., JP3-2b) performed somewhat better than unpressed ones (e.g., JP3-1a). 

All cells exhibited some coulombic inefficiencies initially, although improvement to 98-

100% was seen after the first few cycles. 

JP electrodes could be discharged into the two-phase region at 3V vs. Li (Figure 

7), although considerable overpotential was observed (i.e., slope in the profile), limiting 

the capacity that could be obtained. In contrast, IT electrodes polarized almost 

immediately when discharged below 3.2V. Decreasing the current density to 50 µA/cm2 

allowed access to capacity around 3V, although this was even more severely limited than 

for the JP examples. JP electrodes showed severe capacity fading when cycled over both 

the 3 and 4V plateaus, as is usually seen with spinel electrodes (Figure 8). IT electrodes, 

on the other hand, lost capacity more slowly, probably because less material underwent 

tetragonal phase conversion and the accompanying volume change/strain per cycle.  

Figure 9 shows discharges of lithium cells with SSS, GFS, SFS, JP, and SP 

electrodes containing 8% total carbon (not pressed). All of the Al-substituted materials 

(SSS, GFS, SFS, and JP) perform worse than the unsubstituted SP sample, which could 

be nearly fully utilized at current densities of 0.5 mA/cm2 or higher. Cells containing 

materials made by solid-state reactions (SSS and SFS) had higher average operating 

voltages (i.e., less overpotential) than those made by sol-gel (JP and GFS), but capacities 
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were still lower than expected. As with JP and IT electrodes, a slow fade and some 

coulombic inefficiency was observed for all the cells cycled on the 4V plateau shown in 

Figure 10. The behavior of SSS, SFS, and GFS, when cycled over both 3 and 4 V 

plateaus, resembles that of JP rather than that of IT; i.e., capacity loss is very rapid. The 

fading rate correlates to the depth of discharge onto the 3V plateau; e.g., it is especially 

severe for the cell containing electrode SSS-14, which showed less overpotential at 3V 

than cells containing different samples. 

 The relatively poor rate capabilities and low capacities at 4V of the JP, IT, SSS, 

SFS, and GFS samples appear to be intrinsic to the materials, although increasing carbon 

content in electrodes may ameliorate these to some extent, as Figure 4 suggests.  All are 

highly substituted with Al, whether or not they were processed in the presence of S.  

Preliminary neutron diffraction studies on substituted manganese oxide spinels suggest 

that some Al is present in 8a (tetrahedral) sites.24  Even if the level of ion mixing is low, 

this could slow diffusion or block access to Li ions in tetrahedral sites, causing a lower 

than expected capacity upon discharge.  

Partial Al substitution in some manganese oxides has been shown to improve 

capacity retention upon cycling,25 but this was not observed here (compare SP3 to the 

other cells in Figure 10, for example). Thus, there appears to be no advantage to using 

manganese oxide spinels with high Al contents. Low levels of Al doping may protect 

against overcharge (and possibly Mn dissolution) and thus improve cycling, however, 

with less negative consequences for energy and power density. 

The presence of S in some samples had a slight beneficial effect on 4V discharge 

capacity for unknown reasons (compare JP to GFS and SSS to SFS in Figure 9), but 
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preparation method (solid state vs. sol gel) was more influential. This is probably due to 

the better homogeneity of materials prepared by solid state routes. S content did not 

appear to influence cycling behavior on the 4V plateau alone, or over both plateaus, with 

the notable exception of IT. This strongly suggests that the unusual particle morphology 

exhibited by the IT material, rather than the presence of trace amounts of S, is responsible 

for slowing the tetragonal phase transition that normally occurs at 3V vs. Li, since other 

S-containing samples (SSS and JP) did not exhibit the same characteristics. While 

operating cells over both the 3 and 4V plateaus is not practical from a power management 

standpoint, reducing the rate of tetragonal phase formation under non-equilibrium 

conditions should improve cyclability on the 4V plateau, particularly for applications that 

require high-rate discharges. Thus, manipulating the particle morphology of spinels may 

be advantageous, although a more reproducible method than processing with Li2S should 

be chosen.  

Natural graphite/spinel pouch cell 

Figure 12 shows the two formation cycles (C/25) for the pouch cell containing a 

natural graphite and a S-doped spinel (JP) cathode with 8% total carbon. The first charge 

corresponded to 150mAh/g-cathode active material. This was much larger than observed 

in the cathode half-cell (coin cell), in part because of the extremely low current density 

(about 23 µA/cm2), and in part due to irreversible processes on both electrodes. During 

the first discharge, 115 mAh/g was reinserted, somewhat higher than that obtained in coin 

cell configurations.  The irreversible capacity loss for first cycle was 22%, which is 

mostly attributable to the decomposition of electrolyte and the formation of SEI (solid 

electrolyte interface) layer on the surface of graphite.26 This anode shows only 18% first 
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cycle loss, however, when tested in the same electrolyte vs. Li metal,27 implying that 

processes at the cathode are responsible for some of the loss. 

Figure 13 shows the performance of the pouch cell during C/2 constant-current 

cycling. The capacity is lower than shown in Fig.4 due primarily to the higher current 

density (0.29 mA/cm2), while the rate of capacity fade is higher than that observed with 

this cathode in a half-cell (Figure 6). The cell coulombic efficiency was 97% during 

cycling, which is quite low for this configuration. This anode in a half-cell cycles with 

essentially 100% efficiency once the formation of the SEI is complete.27 This, and the 

coulombic inefficiencies seen in the cathode-containing coin cells suggest that oxidation 

of electrolyte is occurring. In the pouch cells, there is no reservoir of electrolyte to make 

up for losses, so capacity fading is severe due to the depletion of the lithium inventory 

and cell failure occurs rapidly. In the coin cells, which have excess electrolytic solution 

present, cycling is not impacted as severely. 

Conclusions 

 The electrochemical behavior of Al-substituted spinels prepared with and without 

Li2S was studied. The relatively high levels of Al substitution appear to decrease rate 

capability and capacity at 4V, and S-doping has little effect. One sample prepared by a 

sol-gel method in the presence of Li2S exhibited an unusual particle morphology and 

appeared to undergo tetragonal phase conversion much more slowly when cycled onto 

the 3V plateau in a lithium half-cell configuration than conventional spinels or the other 

samples in this study. This phenomenon was previously attributed to S-doping, but other 

S-doped materials without the unusual morphology did not have this characteristic. This 

suggests that tailoring the particle morphology of spinels may reduce capacity loss 
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associated with non-equilibrium tetragonal phase formation on the 4V plateau. However, 

it is difficult to control the reactivity of Li2S, so other synthetic methods for obtaining 

small, idiomorphic particles should be considered. 
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Table 1 

Spinel samples used for this study 

Spinel nominal 

composition 

Source Synthesis Designation 

Li1.02Al0.25Mn1.75O3.97S0.03 Made in-house Sol-gel, with Li2S JP 

Li1.02Al0.25Mn1.75O4 Made in-house Sol-gel, no Li2S GFS 

Li1.02Al0.25Mn1.75O3.97S0.03 Made in-house Solid state, with Li2S SSS 

Li1.02Al0.25Mn1.75O4 Made in-house Solid state, no Li2S SFS 

Li1.02Al0.15Mn1.85O3.96S0.04 Illinois Inst. of 

Technology 

Sol-gel, with Li2S IT 

Li1.03-1.06Mn2O4 Merck Selectpur SP30, lot # 

C50339 

SP 
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Figure Captions 

 

Figure 1. Scanning electron micrograph of sample IT, Li1.02Al0.15Mn1.85O3.96S0.04. 

Figure 2. Scanning electron micrograph of sample JP, Li1.02Al0.25Mn1.75O3.97S0.03. 

Figure 3. 7Li MAS NMR patterns for spinel samples. From top to bottom: 

Li1.02Al0.25Mn1.75O4 made by sol-gel (GFS sample), Li1.02Al0.25Mn1.75O4 made by solid 

state (SFS sample), Li1.02Al0.25Mn1.75O3.97S0.03 made by sol-gel (JP sample), 

Li1.02Al0.25Mn1.75O3.97S0.03 made by solid state (SSS sample), and 

Li1.02Al0.15Mn1.85O3.96S0.04 made by sol-gel (IT sample). 

Figure 4. Discharges at 0.1 mA/cm2 of Li/1M LiPF6, EC-DMC/JP and IT cells. 

Electrodes are as follows: (—) JP3-1a, containing 12 wt. % total carbon, not pressed, (…) 

JP3-2a, containing 12 wt. % carbon, pressed, (-----) JP2-1a, containing 8 wt. % carbon, 

not pressed, and (__ __ __) JP2-2c, containing 8 wt. % carbon, pressed and (-·-·-·) IT1, 

containing 12 wt. % C. 

Figure 5. Discharges of cell Li/1M LiPF6, EC-DMC/JP3-1a at (___) 50 µA/cm2 and at     

(----) 0.1 mA/cm2. Electrode JP3-1a contains 12 wt. % carbon. 

Figure 6.  Capacity at 4V as a function of cycle number for Li/1M LiPF6, EC-DMC/JP 

and IT cells. Electrodes are as follows: (+) IT3, containing 12 wt. % C, discharged at 0.1 

mA/cm2, (ٱ) JP3-1a, containing 12 wt. %  total carbon, not pressed, discharged at 0.1 

mA/cm2, (•) JP3-2b, containing 12 wt. % total carbon, pressed, discharged at 0.2 

mA/cm2, and (×) JP2-1a, containing 8 wt. % carbon, not pressed, discharged at 0.1 

mA/cm2. 
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Figure 7. Discharges of cells Li/1M LiPF6, EC-DMC/JP3-2b at 0.2 mA/cm2 (----) and 

Li/1M LiPF6, EC-DMC/IT1 (___) at 50 µA/cm2. JP3-2b and IT1 electrodes contain 12 wt. 

% carbon. 

Figure 8. Capacity as a function of cycle number for cells Li/1M LiPF6, EC-DMC/JP3-

2b (•), discharged at 0.2 mA/cm2 and Li/1M LiPF6, EC-DMC/IT1 (ٱ), discharged at 50 

µA/cm2, over both 3 and 4 V plateaus. For ease of comparison, the first cycle over both 

plateaus was designated 1 for both cells; JP3-2b was cycled 81 times and IT1 20 times at 

4V prior to discharge below 3V. JP3-2b and IT1 electrodes contain 12 wt. % carbon. 

Figure 9. Discharges of cell Li/1M LiPF6, EC-DMC/SP2 at 0.5 mA/cm2 (—) and Li/1M 

LiPF6, EC-DMC/SSS-12 (----), SFS-B (…), JP2-1a (__ ¯), and GFS-G (__ __) cells at 0.1 

mA/cm2. All electrodes contain 8 wt. % carbon. 

Figure 10. Capacity at 4V as a function of cycle number for Li/1M LiPF6, EC-DMC/SP, 

SSS, JP, GFS, and SFS cells. Electrodes contain 8% carbon, and are not pressed. They 

are as follows: (+) SP3, discharged at 0.5 mA/cm2, ( ) SSS-15, discharged at 0.1 

mA/cm2, (♦) SFS-D, discharged at 0.1 mA/cm2, ( ) SFS-B, discharged at 0.2 mA/cm2, 

and (•) GFS-G, discharged at 0.1 mA/cm2. 

Figure 11. Capacity as a function of cycle number for cells Li/1M LiPF6, EC-DMC/SSS, 

GFS and SFS cells discharged at 0.1 mA/cm2  over both 3 and 4 V plateaus. Electrodes 

contain 8% carbon and are not pressed. They are as follows: SSS-14 (○), GFS-H ( ), 

and SFS-A ( ). Cell SFS-A was cycled four times on the 4V plateau prior to being 

discharged to 3V. 

Figure 12. First () and second ( ) charge and discharge of pouch cell, natural 

graphite/1M LiPF6, EC-DEC/JP cycled at C/25. 
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Figure 13. Capacity as a function of cycle number for pouch cell, natural graphite/1M 

LiPF6, EC-DEC/JP cycled at C/2 between 3.0V and 4.3V. 
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