
UC Berkeley
UC Berkeley Previously Published Works

Title
Ensemble crowd perception: A viewpoint-invariant mechanism to represent average crowd 
identity

Permalink
https://escholarship.org/uc/item/35r926mk

Journal
Journal of Vision, 14(8)

Authors
Leib, AY
Fischer, J
Liu, Y
et al.

Publication Date
2014

DOI
10.1167/14.8.26
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35r926mk
https://escholarship.org/uc/item/35r926mk#author
https://escholarship.org
http://www.cdlib.org/


Ensemble crowd perception: A viewpoint-invariant
mechanism to represent average crowd identity

Allison Yamanashi Leib $University of California, Berkeley, Berkeley, CA, USA

Jason Fischer $

University of California, Berkeley, Berkeley, CA, USA
Massachusetts Institute of Technology,

Cambridge, MA, USA

Yang Liu $University of California, Berkeley, Berkeley, CA, USA

Sang Qiu $University of California, Berkeley, Berkeley, CA, USA

Lynn Robertson $University of California, Berkeley, Berkeley, CA, USA

David Whitney $University of California, Berkeley, Berkeley, CA, USA

Individuals can rapidly and precisely judge the average of
a set of similar items, including both low-level (Ariely,
2001) and high-level objects (Haberman & Whitney,
2007). However, to date, it is unclear whether ensemble
perception is based on viewpoint-invariant object
representations. Here, we tested this question by
presenting participants with crowds of sequentially
presented faces. The number of faces in each crowd and
the viewpoint of each face varied from trial to trial. This
design required participants to integrate information
from multiple viewpoints into one ensemble percept.
Participants reported the mean identity of crowds (e.g.,
family resemblance) using an adjustable, forward-
oriented test face. Our results showed that participants
accurately perceived the mean crowd identity even
when required to incorporate information across
multiple face orientations. Control experiments showed
that the precision of ensemble coding was not solely
dependent on the length of time participants viewed the
crowd. Moreover, control analyses demonstrated that
observers did not simply sample a subset of faces in the
crowd but rather integrated many faces into their
estimates of average crowd identity. These results
demonstrate that ensemble perception can operate at
the highest levels of object recognition after 3-D
viewpoint-invariant faces are represented.

Introduction

There is a duality to perceptual processing. Our
visual system is severely limited, and yet we have a rich
phenomenological impression of the world. The limi-
tations we face include attentional capacity, speed of
neural processing, short-term memory, visual crowd-
ing, temporal crowding, and change blindness (Bentin,
Allison, Puce, Perez, & McCarthy, 1996; Bonneh, Sagi,
& Polat, 2007; Duncan, Ward, & Shapiro, 1994; Luck
& Vogel, 1997; Simons & Levin, 1997; Whitney & Levi,
2011). Despite the striking limitations of vision (and
perception in general) that have been uncovered
experimentally, our subjective visual experience seems
rich with detail. What is the content of this rich
perception? Gist information, which is readily and
quickly perceived in scenes (Oliva & Torralba, 2006;
Potter, 1975; Rousselet, Joubert, & Fabre-Thorpe,
2005), may underlie the subjective richness of percep-
tion, and ensemble or summary statistical information
may be the basic unit of gist perception (Alvarez, 2011;
Haberman & Whitney, 2012).

The visual system takes advantage of redundancies
in the scene by extracting summary statistics from
groups of similar items. For example, a person viewing
a complex outdoor scene will probably not examine
every leaf on every tree. Instead, his or her visual
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system will take advantage of redundant leaves and
efficiently compute average statistics, such as mean leaf
color, shape, or size. This type of group statistical
analysis is referred to as ensemble coding. Such
ensemble information may allow the observer to
recognize that he or she is viewing a forest or even
categorize a tree (e.g., conifer or deciduous).

Importantly, statistical summaries can be generated
very rapidly before the visual system has time to
localize or discriminate any particular individual item
in the scene (Ariely, 2001; Haberman & Whitney, 2007,
2011). As such, ensemble codes are functionally very
useful. Observers may achieve an accurate ensemble
percept while distracted by another task (Alvarez &
Oliva, 2008). Similarly, observers can effectively
ensemble code while experiencing change blindness
(Haberman & Whitney, 2011) or while experiencing
visual crowding (Fischer & Whitney, 2011). Even
individuals with neurological impairments, such as
prosopagnosia or unilateral neglect, may gain access to
useful ensemble information although discrimination of
individual faces/objects is impaired (Demeyere, Rze-
skiewicz, Humphreys, & Humphreys, 2008; Pavlov-
skaya, Bonneh, Soroker, & Hochstein, 2010;
Yamanashi Leib, Landau, Baek, & Chong, 2012;
Yamanashi Leib, Puri, et al., 2012). Because ensemble
information is achieved so rapidly and is unhindered by
many perceptual limitations, it is theorized that
ensemble percepts contribute significantly to our
perceptual awareness of the world, including the
updating of visual working memory (Brady & Alvarez,
2011), guiding attention (Alvarez, 2011), outlier detec-
tion (Haberman & Whitney, 2010, 2012), and hierar-
chical organization in scene perception (Alvarez, 2011).

Importantly, ensemble coding can be successfully
accomplished across numerous perceptual domains.
For instance, observers can accurately estimate the
average speed of moving objects, the average orienta-
tion and position of targets, and the average size of
items in a set (Ariely, 2001; Chong & Treisman, 2003;
Dakin & Watt, 1997; M. Morgan, Chubb, & Solomon,
2008; M. J. Morgan & Glennerster, 1991; M. J.
Morgan, Watamaniuk, & McKee, 2000; Motoyoshi &
Nishida, 2001; Parkes, Lund, Angelucci, Solomon, &
Morgan, 2001). Statistical summary also occurs for
faces (de Fockert & Wolfenstein, 2009; Haberman &
Whitney, 2007), suggesting that summary statistical
information may be calculated even at the highest level
of individual object recognition. However, it remains
unclear from previous research whether statistical
summaries are computed on 2-D image information or
on 3-D viewpoint-invariant representations of objects.

Some previous work began to approach this
question. For example, Chong and Treisman (2003)
first addressed the question of whether statistical
summary is based on merely the physical attributes of

an object or whether it is based on the perception of an
object. They asked participants to extract the mean size
from a group of circles and found that participants’
estimates were based on a psychological scale (Teght-
soonian, 1965) rather than on the geometric area of the
circle. Additionally, Im and Chong (2009) required
participants to make mean judgments of size using the
Ebbinghaus illusion and found that extraction of the
mean was based on the perceived size, not the physical
size, of the objects.

These results are consistent with the idea that
ensembles are formed on object-centered viewpoint-
invariant representations. However, size illusions (in-
cluding the Ebbinghaus illusion) may occur early in
visual processing (Murray, Boyaci, & Kersten, 2006;
Schwarzkopf, Song, & Rees, 2011), operating on 2-D
image properties. Im and Chong’s (2009) results leave
open the possibility, then, that summary statistical
processes are restricted to 2-D representations (and
their 2-D context).

To address the question of whether statistical
summary operates on viewpoint-invariant representa-
tions, one approach is to use real objects or faces. We
and others have explored statistical summary in faces
and demonstrated that participants are able to precisely
and efficiently estimate the average expression and
identity of a crowd (de Fockert & Wolfenstein, 2009;
Haberman & Whitney, 2007, 2009; Neumann,
Schweinberger, & Burton, 2013). Haberman and
Whitney (2007, 2009) found that participants’ perfor-
mance degraded when faces in the crowd were inverted,
scrambled, or contained added noise. This result may
suggest ensemble coding of high-level face information.
However, in all of these experiments, the face images
were 2-D, and a summary statistical process that
operates over 2-D holistic descriptions of the faces
could account for these results. Similarly, a recent study
by Neumann and colleagues (2013) also demonstrated
ensemble identity perception across different photo-
graphs of celebrities, suggesting that ensemble coding is
based on the identity of the members in the crowd and
not the photos themselves. However, all of the stimuli
had similar ‘‘head angle and gaze direction’’ (Neumann
et al., 2013). Thus, the question of whether ensemble
coding can operate on viewpoint-invariant representa-
tions remains unanswered.

The goal of our study was to test whether ensemble
percepts of crowds are based on viewpoint-invariant
representations. We tested this by presenting rotated
faces one at a time during a 900-ms window. This serial
presentation served to approximate the natural scan-
ning humans engage in when evaluating crowds. This
type of presentation may also serve to simulate a crowd
streaming past the observer (e.g., students coming out
of a classroom, passengers disembarking an airplane,
etc.). Our paradigm required participants to incorpo-
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rate faces from multiple viewpoints into the ensemble
percept. We found that observers were able to quickly
and efficiently perceive the average facial identity in a
crowd even when the faces were displayed in different
orientations. The results demonstrate that summary
statistical perception operates on viewpoint-invariant
representations of faces. This is the strongest evidence
to date that ensemble perception can occur at the
highest levels of visual object processing.

Methods

Participants

In Experiment 1, we tested four participants.
Participants’ ages ranged between 24 and 34 (M ¼ 31,
SD¼ 4.96). In Experiment 2, we tested four partici-
pants as well (two participants who were also in
Experiment 1). Participants’ ages ranged between 21
and 35 (M¼ 28, SD¼ 6.58). In Experiment 3, we tested
three participants (three participated in one or more of
the previous experiments). Participants’ ages ranged
between 24 and 35 (M ¼ 27.33, SD ¼ 4.93). Each
participant provided informed consent in accordance
with the institutional review board guidelines of the
University of California, Berkeley. All participants
were familiar with the three identities of the photo-
graphed individuals.

Stimuli

To create our stimuli, we began with three distinct
identities (Identity #1, Identity #2, Identity #3). We
linearly morphed these identities using Fantamorph
Deluxe, creating 47 morphs between each identity.
There were 47 morphs between Identity #1 and Identity
#2, 47 morphs between Identity #2 and Identity #3, and
47 morphs between Identity #3 and Identity #1 (see
Figure 1). The original photos were created by
photographing the individuals rotated at different
orientations under uniform lighting conditions. This
yielded a stimulus array with 144 pictures in total,
including the original photos. We created four different
arrays of stimuli. In one array, the faces were forward
oriented (08); in a second array, the faces were oriented
at 22.58 rightward; in a third array, the faces were
oriented at 22.58 leftward; and in the fourth array, the
faces were oriented at 908 leftward (see Figure 1).
(Different models were used in the actual experiment,
but these models preferred not to have their photos
published.) The maximum and minimum luminance in
the pictures was 44.65 and 213.70 cd/m2, respectively.
The average maximum Michelson contrast was 0.60.

Each face subtended 5.068 · 3.538 of the visual angle.
All stimuli were viewed on a Macbook Pro laptop
monitor with a resolution of 1152 · 720 pixels and a
60-Hz refresh rate. We used Psychophysics Toolbox
(Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in
Matlab to present the stimuli.

Experiment 1

Experiment 1 task

During each trial, the computer program selected 18
faces surrounding a randomly chosen mean value.
Importantly, the mean face was never displayed; rather,
the faces surrounding the mean value were displayed to
participants. Displayed faces ranged from�25 to þ25
steps away from the mean in increments of 10 units
(�25,�15, �5, 5, 15, 25 units around the mean). The
temporal order of the displayed faces was randomized.
Faces of a given value were repeated three times in an
18-face display whereas faces of a given value were not
repeated when the set size was below 18 (see further
description of varying set sizes below). In Experiment 1,
participants viewed sequentially presented faces ori-
ented at 22.58 leftward. The faces were presented on a
white background in the center of the screen with a
maximum spatial jitter of 2.638 on the x-axis and 1.858
on the y-axis. The faces were drawn from the stimulus
array in Figure 1b, and the participants were asked to
judge the average identity of the sequentially presented
faces. Each face was presented for 50 ms with a 50-ms
interstimulus interval (ISI). Three hundred thirty-four
milliseconds after the display disappeared, a single
random test face was presented centrally, and partic-
ipants adjusted the test face to match the mean identity
of the crowd by using the computer mouse to scroll
through the array of stimuli (144 choices in all).
Importantly, the array of possible test faces were
forward oriented. Although there were 18 faces in each
set, in each trial, we varied the proportion of the faces
that were visible such that either one, two, four, or 18
faces were visible (6%, 11%, 22%, or 100% of the set).
There were 100 trials of each subset condition in
Experiment 1, 200 trials of each subset condition in
Experiment 2, and 100 trials of each subset condition in
Experiment 3. Our experimental design is similar to a
paradigm employed by Haberman, Harp, & Whitney
(2009) used to explore temporal ensemble coding. The
notable exception is that the orientation of the display
and test faces was altered in our design. By manipu-
lating the proportion of faces presented, we were able
to evaluate whether participants integrated more and
more faces as they became available. This has the
power to rule out random guessing or judging the set of
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18 faces based on just a small number of displayed
faces. To the extent that observers integrated multiple
rotated faces into a summary statistical percept, their
sensitivity to the average of a set of 18 faces would have
improved with more face samples (i.e., sensitivity to the
mean of 18 should improve with increasing proportion
of the set available).

Experiment 1 analysis

In order to analyze participants’ accuracy for each
trial, we used the following equation: Error¼Mean of
the Whole Display (in morph units) – Participants’
Response (in morph units). By calculating the error for
each trial in this manner, we were able to obtain an
error distribution for the each condition. Next, we

computed the mean of the error distribution using the
following equation: Average Error (AE)¼ x̄ (Absolute
Value Error Distribution) and the standard deviation
of the distribution of error using the following
equation: Standard Deviation of Error (SDE) ¼ r
(Error Distribution). This allowed us to assess the
accuracy and precision of participants’ responses
respectively.

In each trial, the computer program calculated a
mean for 18 faces. If the participant based his or her
estimate of the mean on all of the available informa-
tion, the error distribution should systematically
decrease as more information became available.

Whereas, if the participant used only a small subset
of faces to determine their estimate of the mean, their
error distribution would remain relatively constant
even when more information (i.e., larger number of

Figure 1. Illustration of the four different stimulus arrays used in the experiments. Each stimulus array began with three original

pictures. We created 47 morphs in between each picture for a total of 144 pictures in each array. (A) The forward-facing stimulus

array. (B) The leftward-facing 22.58 stimulus array. (C) The rightward-facing 22.58 stimulus array. (D) The leftward-facing 908 stimulus

array.
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faces) was revealed. The predicted pattern of error is
shown in Figure 3.

Experiment 1 results

We analyzed participants’ performance relative to
the mean of the whole set and found that the averaged
group data matched the predicted pattern for ensemble
coding.

When averaging across subjects, we used the formula
for pooled standard deviation. The formula for pooled
standard deviation is as follows:

S2
p ¼
ðn1 � 1ÞS2

1 þ ðn2 � 1ÞS2
2 þ . . .þ ðnk � 1ÞS2

k

ðn1 � 1Þ þ ðn2 � 1Þ þ . . .þ ðnk � 1Þ
Participants’ accuracy and sensitivity increased as

more information (i.e., more faces) became available. A
one-way ANOVA revealed a significant main effect of
set size: Accuracy¼ F(3, 9) ¼ 19.224, p , 0.001, gp2 ¼
0.865; sensitivity¼ F(3, 9) ¼ 20.623, p , 0.001, gp2 ¼
0.873. Participants performed better as set sizes
increased (AE Set Size 1¼ 25.97, AE Set Size 2¼ 25.37,
AE Set Size 4¼ 21.72, AE Set Size 18¼ 16.95; SDE Set
Size 1¼32.19, SDE Set Size 2¼31.93, SDE Set Size 4¼
27.74, SDE Set Size 18¼ 21.77). To determine whether
participants were gaining information past four faces,
we compared bootstrapped samples (Efron, 1986). A
comparison of four and 18 set size bootstrapped
samples revealed that participants were performing
significantly better in the 18-face condition (six
identities repeated three times) compared to the four-
face condition for both accuracy (p , 0.001) and
precision (p , 0.001). This indicated that participants
increasingly integrated the available information into
the ensemble code beyond four stimuli, suggesting that

much of the multidirectional information was assimi-
lated into the ensemble percept.

We were primarily interested in exploring whether
participants can ensemble code a large crowd (up to 18
faces), and the subset design allowed us to confirm that
participants were integrating the available information
into their large crowd judgment.

However, a beneficial property of the subset design is
that it also allows us to measure the participants’
accuracy and sensitivity when discriminating a single
face. The equation used for this analysis is Display
Error¼Display Face Value – Participant’s Response.
We compared participants’ performance when they
were engaged in an ensemble coding task compared to

Figure 2. The sequence of trial events in Experiment 1. Subjects

viewed sequentially presented faces oriented 22.58 leftward

(this example shows a set size containing four faces). Each face

was presented for 50 ms with a 50-ms ISI. After the stimuli

disappeared, the participant could access all 144 faces in the

forward-facing stimulus array by scrolling the mouse left or

right. The participant had unlimited time to choose the mean

identity of the crowd via mouse scroll.

Figure 3. Participants’ predicted error relative to the average of

the 18 faces in the set as a function of the proportion of faces

that are presented. The x-axis in each graph shows the

proportion of faces from the set of 18 that were visible to

observers. The y-axis shows the error (inversely proportional to

sensitivity). (A) The predicted pattern of errors if the participant

bases his or her estimate of the set mean on a single randomly

viewed face. In this scenario, if the observer uses one face on

which to base a judgment, he/she will not take new information

into account. As a result, the participants’ error remains

constant even when more faces are revealed in the set. (B) The

predicted pattern of errors if the participant integrates several

faces into his or her estimate of the mean. In this scenario, the

participant is incorporating much of the available information

into his or her estimate of the mean. As a result, the error

systematically decreases as a larger proportion of the set of

faces is presented.
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a single face discrimination task. In this comparison,
the participant’s response was not compared to the
mean of the 18 faces, but rather, the participant’s
response was directly compared to the individual face
presented. We compared the bootstrapped distribu-
tions of single face discrimination versus ensemble
coding. These revealed that participants were more
accurate (p , 0.001) and precise (p , 0.001) when
judging crowd characteristics compared to single face
discrimination. These results highlight the benefits of
ensemble coding. When participants were shown a
single face for a limited period of time, they only
achieved a noisy representation of the face. However,
as sample size increased, presumably, noise was
cancelled out and greater precision was achieved.

An alternative explanation is that increased exposure
duration affected participants’ performance in both
conditions. Although each face was shown for the same
exposure duration (50 ms), as set size increased, the set
of faces was shown for longer and longer durations (set
size · 50 ms). Thus, the set of 18 faces was shown for
the longest total duration. Therefore, we ran a second
experiment and equalized exposure duration.

Experiment 2

Experiment 2 task

This experiment was similar to Experiment 1 except
that we varied the amount of exposure time to the
individual faces. One face was shown for 850 ms, two
faces were shown for 434 ms each, four faces were
shown for 217 ms each, and 18 faces (six identities
repeated three times) were shown for 50 ms each. The
ISI was 50 ms across all conditions. The design
minimized the differences in total exposure time to
faces for all conditions. If subjects incorporate multiple
faces into their judgment of the set mean, we would still
expect to find a downward slope in their response error,
similar to the slope observed in Experiment 1. This

would indicate that participants integrated additional
information into their estimate of the mean as more
faces became available, regardless of exposure dura-
tion.

Experiment 2 results

Again, we analyzed participants’ performance in
relation to the mean of the 18-face set. We used a one-
way ANOVA with set size as the main factor and again
found a significant main effect of set size. Participants’
accuracy and precision increased as more information
(i.e., more faces) became available: Accuracy, F(3, 9)¼
75.157, p , 0.001, gp2¼ 0.962 (AE Set Size 1¼ 18.90,
AE Set Size 2¼ 15.83, AE Set Size 4¼ 13.83, AE Set
Size 18¼ 11.50); precision, F(3, 9)¼ 53.132, p , 0.001,
gp2¼ 0.947 (SDE Set Size 1¼ 23.28, SDE Set Size 2¼
20.36, SDE Set Size 4¼ 17.76, SDE Set Size 18¼ 15.10).
We explored this main effect by comparing boot-
strapped samples and found that there was a significant
difference between each set size with performance
systematically increasing beyond four faces. See Table 1.

Once again, although our primary question was to
determine if participants exhibit ensemble coding
behavior when viewing faces displayed in multiple
orientations, we also compared participants’ perfor-
mance when they were engaged in an ensemble coding
task versus a single face discrimination task using the
separate display error analysis. Although the group
average for single face discrimination was higher
compared to crowd discrimination, this difference was
only trending toward significance for both accuracy
and precision when we compared the bootstrapped
samples (p ¼ 0.064, p ¼ 0.058).

Experiment 3

In the first two experiments, we tested our partici-
pants’ abilities to integrate information from one
orientation (22.58) and choose the mean identity from a
different orientation (forward facing). Participants
successfully chose the mean identities of the sets even
though the test faces were presented in a different
viewpoint. However, it is possible that participants
encoded the individual faces as 2-D images, averaged
those images, and then mentally rotated the ensemble.
In this case, the ensemble is still calculated on the basis
of the retinal image, and only the ensemble represen-
tation itself would be transformed into a different
viewpoint. Alternatively, participants may have en-
coded the individual faces as 3-D representations and
then integrated these representations into one ensemble
percept. In Experiment 3, we sought to determine if

Comparison of bootstrapped samples

One versus two

faces Displayed

Two versus four

faces Displayed

Four versus 18

faces Displayed

Accuracy p , 0.001 p , 0.001 p , 0.001

Precision p ¼ 0.008 p ¼ 0.026 p ¼ 0.006

Table 1. Performance between set size conditions in Experiment
2. Notes: The table shows the p values for each comparison.
Error drops significantly as more faces are displayed to the
participants. This result suggests that participants are integrat-
ing new information as it becomes available and not basing
their response on one or two randomly selected faces.

Journal of Vision (2014) 14(8):26, 1–13 Yamanashi Leib et al. 6



participants could integrate faces from multiple view-
points into one ensemble code. We minimized the
possibility that participants would use purely retinal
images by presenting faces of different orientations in
rapid succession. Because the displayed faces were
presented leftward facing, rightward facing, and full
profile, it was not advantageous for participants to
average the retinal images. Averaging of 2-D images in
multiple orientations would yield a distorted image that
provides minimal information. In order to achieve
successful performance in the task, participants would
need to encode the individual faces as view-invariant
representations.

Experiment 3 task

The third experiment was identical in design to
Experiment 2 except that the individual faces in the
display appeared in multiple orientations: leftward
oriented at 22.58, rightward oriented at 22.58, and
leftward oriented at 908 (Figure 6). As in both of the
previous experiments, face values (distance from the
mean) could be repeated up to three times in the 18-face

set. However, the repeated face values were drawn
randomly from three orientations; therefore, viewpoint
homogeneity was minimized. Although viewpoint was
chosen randomly, there was one constraint: Identical
viewpoints could never be repeated sequentially. Thus,
in the smaller subsets, no condition contained homog-
enous orientations. The exposure time also was
identical to Experiment 2. This design ensured that
improvements in performance observed in large set
sizes were not merely due to exposure duration effects.
In Experiments 1 and 2, a 2-D image-based averaging
of the face images could result in a potentially
meaningful image. However, in Experiment 3, averag-
ing the 2-D face images would yield an identity that was
not meaningful.

Experiment 3 results

We conducted a one-way ANOVA identical to the
analysis in the previous experiments. Once again, we
explored participants’ performance in relation to the
mean of the set of 18 faces, using set size as the main
factor. As before, we found a significant main effect of

Figure 4. Group results for Experiment 1. (A) Subjects’ accuracy and precision relative to the entire set of 18 faces. The negative slope

shows the integration of information into the ensemble percept. As more information (i.e., faces) became available (x-axis), the

reported ensemble face approached the mean of the 18 faces. Improvement in performance continued beyond four faces, indicating

that at least four faces were integrated into the ensemble percept. (B) Subjects are significantly more precise and accurate when

judging the average identity of a group of faces compared to judging the identity of a single face. Participants benefit from

redundancy or noise reduction in ensemble coding by averaging out the error that might be present in single face discrimination.

Error bars represent the standard deviation of 1,000 bootstrapped samples. The shaded regions represent the 95% confidence

intervals of the bootstrapped distributions. The formula and description of bootstrapping are included in the supplementary material.
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set size with participants performing more accurately
and precisely as more information became available:
Accuracy, F(3, 9)¼ 40.584, p , 0.001, gp2¼ 0.953 (AE
Set Size 1¼19.231, AE Set Size 2¼13.83, AE Set Size 4
¼ 12.70, AE Set Size 18 ¼ 10.64); precision, F(3, 9) ¼
23.140, p , 0.001, gp2¼ 0.920 (SDE Set Size 1¼ 24.01,
SDE Set Size 2 ¼ 17.96, SDE Set Size 4¼ 16.91, SDE
Set Size 18 ¼ 14.06). One again, participants’ perfor-
mance continued to improve between four- and 18-face
set size conditions, suggesting that more than four faces
were integrated into the ensemble code.

We compared bootstrapped samples and found that
participants performed significantly more accurately
(p , 0.008) and precisely (p¼ 0.008) in the 18 set size
condition compared to the four set size condition. This
analysis addressed whether participants ensemble
coded faces displayed in multiple viewpoints, and we
found that participants did ensemble code faces even
when orientation were divergent.

We also compared performance in Experiment 2
versus performance in Experiment 3. There were no
significant differences between performance in the 18
set size between the two experiments for either accuracy
(p¼ 0.774) or precision (p¼ 0.872), suggesting that
diverse orientations in the display set in Experiment 3
did not hinder ensemble coding performance. Although
our primary interest was whether participants could
ensemble code faces displayed in multiple viewpoints,

we also compared participants’ performance when they
were engaged in an ensemble coding task compared to
a single face discrimination task using the separate
display error analysis. Just as in previous experiments,
we compared bootstrapped samples of performance
during single face discrimination versus 18-face crowd
discrimination. In Experiment 3, participants were
significantly more accurate (p ¼ 0.008) and more
precise (p¼ 0.008) in the crowd condition. The results

Figure 5. Group performance for Experiment 2. (A) Sensitivity and accuracy calculated relative to the entire set of 18 faces. The

negative slope shows the integration of information into the ensemble percept. As more information (i.e., faces) became available (x-

axis), perceived ensemble identity approached the mean of the 18 faces. Improvement in performance continued beyond four faces,

indicating that at least four faces were integrated into the ensemble percept. Error bars represent the standard deviation of 1,000

bootstrapped samples. The shaded regions represent the 95% confidence intervals of the bootstrapped distributions.

Figure 6. The sequence of trial events in Experiment 3.

Participants viewed a sequence of faces oriented 22.58 leftward,

22.58 rightward, and 908 leftward (pseudorandom sequence in

each trial). This particular example shows a set size of four faces

although participants can view set sizes up to 18. After the

stimuli disappeared, participants chose the mean identity of the

crowd via mouse scroll (identical to Experiments 1 & 2).
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from Experiment 3 suggest that participants can
incorporate 3-D images into the ensemble percept.
Participants’ performance clearly increased as more
information became available even when the combi-
nation of 2-D images was minimally informative.

Discussion

Previous work on ensemble or summary statistical
perception has not clarified whether these percepts can
be formed from viewpoint-invariant object representa-
tions. If summary statistical perception operates over
the viewpoint-invariant, 3-D representations of objects,
this would broaden the applicability and usefulness of
ensemble coding throughout natural scenes, including
faces in a crowd. Experiments 1 and 2 combined
demonstrate that participants can transform either an
object or an ensemble percept from one orientation into
a new orientation. This potentially minimizes the need
to resample ensemble codes after viewing orientation
has changed. Experiment 3 demonstrates that partici-
pants can integrate multiple orientations into one
ensemble percept. Experiment 3 also demonstrates that
it is possible to formulate the ensemble percept based
on 3-D representations of objects and not merely 2-D
images. Finally, Experiment 3 demonstrates that
participants can not only successfully ensemble code
faces angled slightly away from the observer (22.58),
but they can also presumably integrate faces angled a
full 908 from the observer. This is especially indicative
of high-level processing as previous studies show that
908 profiles are not recognized by feature-based
processing alone (Hill & Bruce, 1996). Taken together,
these experiments suggest that the ensemble percept is
not strictly image-based but can operate on viewpoint-
invariant representations.

Our data highlights the precision of the ensemble-
coding process. Participants were more precise at
identifying the average of a group of faces compared to
discriminating a single face. This result is intriguing
given that faces in the group set condition were shown
for a shorter duration and in multiple orientations
whereas the single face was shown in one orientation
and for a longer duration. Ariely (2001), using low-level
objects, first hypothesized that ensemble coding could
be more precise or at least equivalent to individual
member identification. Our results show that ensemble
coding precision trumps individual discrimination in
higher-level object representations (i.e., faces), consis-
tent with ensemble coding of crowd biological motion
(T. Sweeny, Haroz, & Whitney, 2011; T. D. Sweeny,
Wurnitsch, Gopnik, & Whitney, 2013). Furthermore,
our results indicate that ensemble coding precision is
preserved in the midst of increased processing de-

mands, such as diverse orientation and briefer exposure
times.

In any averaging process, noise is reduced with a
greater number of samples. Many speculate that the
process of ensemble coding similarly benefits from
larger set sizes because of noise reduction, assuming
noise is uncorrelated (Alvarez, 2011). Our finding that
ensemble coding performance is often better than single
face discrimination may be a result of noise cancella-
tion. Robitaille and Harris (2011) offer direct evidence
for this assertion by showing that reaction time and
accuracy improve with larger sets using size/orientation
ensemble coding tasks. Robitaille and Harris’s results
pertained to low-level ensemble discriminations. Our
results complement and extend their observations as we
also see an improvement in performance as set sizes
increase but for higher-level objects.

Could the improvement in performance simply
reflect redundancy contained within the displayed
crowds? Experiments 1 and 2 allowed for the repetition
of faces. For instance, in a set of 18 faces, three face
values could be repeated. Thus, it is possible that
subjects’ enhanced performance in larger sets reflects
the benefits of redundancy (Haberman & Whitney,
2009). In our experiment, we did not directly test the
effect of redundancy; therefore, we cannot rule out that
redundancy played a role. However, significant im-
provement was still observed between set sizes of two
and four, which contained no repetition. Additionally,
in Experiment 3, although the face value (distance from
the mean) was repeated, the orientation often varied.
Thus, it is very unlikely that the improvement observed
in Experiment 3 was strictly due to repetition of the
photographic images.

Our experiments also demonstrate the efficiency of
ensemble coding. Our participants integrated objects
into the ensemble code rapidly—much more rapidly
than the response times reported for mental rotation in
depth (Duncan et al., 1994; Marotta, McKeeff, &
Behrmann, 2002; Tarr & Pinker, 1989). Mental rotation
of faces commonly occurs within 1–3 s (Marotta et al.,
2002), whereas the brief exposure times and ISIs in our
experiments did not allow for mental rotation of
individual faces before the subsequent face appeared.
Our results complement previous findings that showed a
dissociation between mental rotation and viewpoint
invariance. For instance, Farah, Hammond, Levine,
and Calvanio (1988) reported that a neurological
patient accurately recognized misoriented objects, yet
the patient was completely unable to perform mental
rotation. Conversely, Turnball and McCarthy (1996)
reported that another neurological patient was able to
successfully mentally rotate objects but was unable to
recognize objects that were misoriented. Thus, our
findings extend this dissociation into the domain of
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ensemble coding and highlight the efficiency of ensem-
ble coding even when items are diversely oriented.

The efficiency of ensemble coding also becomes
apparent when our findings are compared to results in
the visual search literature. For instance, it is com-
monly reported that individuals require 70–150 ms to
find a particular face in a display (Nothdurft, 1993;
Tong & Nakayama, 1999). Moreover, attentional
capacities are strained when items are presented at
speeds greater than 4–8 Hz (Verstraten, Cavanagh, &
Labianca, 2000) with participants reporting interfer-
ence when items are presented up to 300 ms apart
(Duncan et al., 1994). In contrast, participants in our
experiments integrated morphed faces when they were
displayed for as little as 50 ms each. Although we
cannot determine which face(s) were weighted more
heavily during the integration process, our participants
performed well when faces were displayed at a speed of
10 Hz, and participants exhibited increased accuracy at
ensemble coding with larger set sizes, suggesting that
interference was minimal even when stimuli were
presented 50 ms apart. Thus, ensemble coding may
successfully operate at the outer limits of attentional
capacity.

Previous research suggests that ensemble coding can
effectively operate even when perceptual and atten-
tional processing is limited. For instance, Haberman

and Whitney (2011) report that participants can
accurately ensemble code faces even when experiencing
change blindness. Additionally, many have reported
that participants can effectively ensemble code with
limited or impaired attention (Alvarez & Oliva, 2008,
2009; Yamanashi Leib, Landau, et al., 2012). Although
our experiment cannot explain how ensemble coding
bypasses the bottleneck of attention, our results
complement these previous reports by confirming that
ensemble coding of faces is not restricted by common
limitations of visual processing and visual attention.
Our experiments extend these finding by showing that
rapid processing is feasible even when ensemble coding
tasks demand the recruitment of high-level resources
(i.e., viewpoint-invariant mechanisms).

Although the goal of our experiments was not to
identify brain regions associated with ensemble coding,
our data suggest that it is possible for ensemble coding
to occur at the highest levels of visual object processing.
Single unit recording studies indicate that viewpoint-
invariant processing of objects occurs in extrastriate
areas (Booth & Rolls, 1998). Similarly, single unit
recordings of face-specific neurons suggest that view-
point-invariant processing of faces is associated with
neurons in ventral face-selective patches (Freiwald &
Tsao, 2010; Perrett, Rolls, & Caan, 1982). Given this
information, it is reasonable to conclude that our

Figure 7. Group results for Experiment 3. (A) Sensitivity and accuracy calculated relative to the entire set of 18 faces. The negative

slope clearly shows the integration of information into the ensemble percept. As more information (i.e., faces) became available (x-

axis), subjects got closer to the mean of the 18 faces. Improvement in performance continued beyond four faces, indicating that at

least four faces were integrated into the ensemble percept. (B) Subjects are significantly better at judging the average identity of a

group of faces than they are at judging the identity of a single face. Notably, we replicated the result from Experiment 1 even though

the group face judgment requires the integration of multiple viewpoints. Error bars represent the standard deviation of 1,000

bootstrapped samples. The shaded regions represent the 95% confidence intervals of the bootstrapped distributions.
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participants utilized input from ventral visual cortex
areas to achieve successful performance during the
ensemble coding tasks. Although previous data suggest
that ensemble coding likely occurs beyond primary
visual areas (de Fockert & Wolfenstein, 2009; Haber-
man & Whitney, 2007; Haberman & Whitney, 2009),
our results are the first to suggest that ensemble coding
utilizes input from cortical regions associated with
viewpoint invariance.

Because our experiment involved an explicit ensem-
ble coding task, we can only conclude that participants
are able to utilize information from multiple viewpoints
to formulate an ensemble code when required to. It
does not necessarily follow that participants will
automatically utilize information from multiple view-
points to formulate an ensemble percept. Future
experiments should explore whether similar results can
be achieved during implicit ensemble coding tasks.
Additionally, our experiment involved temporal pro-
cessing of faces in a crowd. Although temporal
processing of crowds is an integral aspect of daily visual
perception, spatial processing of crowds is an equally
useful aspect of visual perception. Future experiments
should investigate whether ensemble coding is equally
precise when multioriented faces are viewed in a spatial
array.

Many experiments have shown that participants can
ensemble code faces in crowds in a uniform orientation
(de Fockert & Wolfenstein, 2009; Haberman &
Whitney, 2007; Haberman &Whitney, 2009). However,
in natural scenes, items are rarely arranged in a
homogeneous orientation. Our results may help pro-
vide a bridge between low-level image-based ensemble
coding and high-level scene gist perception by showing
that viewpoint-invariant ensemble representations can
be accomplished. The results show that ensemble-
coding a large number of items can yield increased
precision compared to discriminating a single item.
Furthermore, we show that ensemble coding is
achieved very efficiently, much faster than individuat-
ing, attentionally dwelling upon, or mentally rotating a
face. Most importantly, our results are the first
demonstration that ensemble coding operates not
merely by incorporating 2-D images, but also by
incorporating 3-D, viewpoint invariant representations.

Keywords: ensemble coding, face perception, statisti-
cal summary
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