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ABSTRACT OF THE DISSERTATION

Exploring the hydromorphology of arctic river deltas for process understanding and for
projecting their response to climate change

By

Lawrence M. Vulis

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Irvine, 2023

Professor Efi Foufoula-Georgiou, Chair

River deltas are fascinating, ecogemorphologically complex landscapes at the river-coastal

interface which are rich in biodiversity, are economic hotspots due to their major food pro-

duction and ports, and are home to more than 340 million people, although composing only

0.57% of the global land surface. They are vulnerable to sea level rise, human actions from

upstream, and increased erosion from more severe storm activity. Arctic river deltas are

especially at high risk from climate change induced impacts, in part due to their unique

permafrost features. In particular, thermokarst lakes, which are formed by the thaw of ice-

rich permafrost, are expected to both expand and drain under future warming, reconfiguring

deltaic hydrology and impacting the arctic carbon cycle. Yet studies focusing on thermokarst

lake dynamics and trends in deltaic environments are limited.

In this dissertation we first place arctic river delta morphologic variability in a global context

through a multiscale characterization of river delta shoreline structure (Chapter 2). Then,

we interrogated thermokarst lake processes in arctic river deltas through analysis of sum-

mertime surface water dynamics to infer permafrost presence (Chapter 3), development of

a methodology for the extraction of perennially inundated lakes from a long remote sensing

record to explore relationships of thermokarst lake size distributions with climate (Chap-
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ter 4), and characterization of thermokarst lake patterns towards inferring permafrost and

geomorphic processes on arctic deltas (Chapter 5).

The results of this dissertation advance our understanding of the link between observed delta

morphology and the dominant forcings which have formed deltas, provide the first quanti-

tative framework for studying the spatial distribution of thermokarst lakes in terms of their

size and location for delta comparison and for tracking their temporal changes, as well as for

constraining and evaluating physics-based models. Some open questions are posed that re-

quire future study and targeted field observations to connect processes to their expression on

the landscape and increase our confidence for future projections of the hydrogeomorphology

of arctic deltas in response to global warming.
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CHAPTER 1

Introduction

River deltas are ecogeomorphically critical landscapes that form the interface of rivers

and standing waterbodies (Overeem et al., 2005). Their nutrient rich and fertile soils have

contributed to deltas hosting up to 340 million people across the world (Edmonds et al.,

2020). A number of global megacities and major entry ports are located on river deltas, e.g.

the Hanoi on the Hong, Shanghai on the Yangtze, New Orleans on the Mississippi, Bangkok

on the Chao Phraya, Vancouver on the Fraser, and the majority of the nation of Bangladesh

lies on the Ganges Brahmaputra delta. The complex distributary channel networks of deltas

are biogeochemical reactors which modulate the pathways of nutrients such as nitrogen,

phosphorous, and carbon to coastal waters (Knights et al., 2020) which has ramifications

for coastal ecosystems (Lique et al., 2016). The combined direct economic revenue and

ecosystem services of major rivers deltas was estimated in 2015 to be in the trillions of

US dollars per annum (Giosan et al., 2014). This economic and environmental importance

motivates the need to understand physical processes which influence delta dynamics and the

environmental risks facing deltas.

Deltas are fundamentally highly dynamic landscapes which naturally construct and lose

land due to a combination of fluvial and marine processes (Passalacqua et al., 2021). River-

ine deposition drives delta growth through channel-building while waves rework sediment

via longshore transport parallel to the coast and tides construct and widen channels via

bidirectional flow (Galloway, 1975). The interaction of riverine, wave, and tidal forcings and

the multiple spatio-temporal scales at which they operate result in the stunning degree of

1



variability in delta morphology seen globally (Bhattacharya & Giosan, 2003; Fagherazzi et

al., 2015; Hoitink et al., 2017; Jerolmack & Swenson, 2007; Konkol et al., 2022; Perignon et

al., 2020; Tejedor et al., 2016, 2017). Yet a robust quantitative framework to relate delta

morphology to the relative influence of rivers, waves, and tides does not yet exist, ham-

pering our ability to make projections of delta morphology under future changes in these

forcings arising from sea level rise (Nienhuis et al., 2023), riverine discharge and sediment

load changes (Overeem & Syvitski, 2010; Stadnyk et al., 2021), increased coastal storm ac-

tivity (Emanuel, 2013), and direct anthropogenic modification (Hackney et al., 2020; Xu et

al., 2019).

In the Arctic, river deltas are influenced not only by rivers, waves, and tides but by

periglacial processes such as river ice formation which leads to river ice break up and erosion

(Prowse et al., 2011), sea ice induced decrease in wind-fetch and therefore coastal erosion

(Barnhart et al., 2014), permafrost-induced soil cohesion (Woo, 2012), and thermokarst

(i.e. thaw lake) formation (French, 2017; Grosse et al., 2013). Of particular interest are

thermokarst lakes which are formed by the thaw of ice-rich permafrost and supported by

further hydraulically impermeable permafrost beneath and around them. A warming arctic

is expected to lead to lake cover change, although satellite observations of thermokarst lakes

over the remote sensing record have recorded both increasing and decreasing trends in lake

cover depending on local geology, temperature, hydrology, and permafrost zonation (Arp et

al., 2011; Chen et al., 2012; Jones et al., 2011; Nitze et al., 2018; Plug et al., 2008; Smith et

al., 2005). Moreover, the dynamics of thermokarst lakes within the context of the complex

distributary channel networks on the delta planform are not well understood. As these

lakes act as sediment and nutrient reservoirs, influencing the delivery of riverine material

to the arctic ocean and both atmospheric and aquatic carbon cycling (Cunada et al., 2021;

Emmerton et al., 2007; Squires et al., 2009), it is critical to understand thermokarst lake

processes on deltas to inform projections of future lake cover change.

2



This dissertation advances the understanding of the link between form and process on

global and arctic river deltas through (1) development of quantitative morphologic classifi-

cation of river deltas through multiscale characterization of their shorelines, (2) analysis of

summertime surface water dynamics to infer permafrost presence on arctic deltas, (3) devel-

oping a methodology for extraction of thermally relevant lakes from a long remote sensing

record to explore relationships of thermokarst lake size distributions to climate, and (4)

characterization of thermokarst lake patterns towards inferring permafrost and geomorphic

processes on arctic deltas.

In Chapter 2, we analyze river deltas through the lens of their shorelines. Delta shoreline

morphology has long been hypothesized to encode information on the relative influence

of fluvial, wave, and tidal forcings on delta formation and evolution. However, rigorous

quantification of delta morphology and how it relates to forcing is still lacking. We introduce a

new multiscale geometric framework which characterizes river delta morphology via measures

of its shoreline structure, and use these measures to separate deltas into morphological

classes (called morphotypes) and to infer the dominant forcing of each morphotype. We

then show that the dominant forcings inferred from shoreline structure generally align with

those estimated via relative sediment fluxes, while positing that misalignments arise from

spatiotemporal heterogeneity in deltaic sediment fluxes not captured in the flux estimates.

In Chapter 3, we analyze summertime waterbody dynamics on arctic deltas in order to

understand the spatial distribution of permafrost. We hypothesize that summertime wa-

terbody shrinkage rates on arctic deltas are controlled by proximity to the delta channel

network due to a spatially explicit pattern in active layer thickness and near surface hydro-

logic connectivity. We document such a pattern in two Alaskan deltas using 27 summers of

remote sensing imagery from Landsat and evaluate alternative drivers of this pattern includ-

ing sub-pixel resolution channels which would result in spurious high waterbody shrinkage

closer to the channel network and systematically shallower waterbodies closer to the channel

3



network. We find that a thicker and deeper active layer is the most likely explanation for

the observed lake shrinkage pattern and suggest the potential of investigating waterbody

dynamics, from readily available satellite data, for inferring permafrost patterns which are

hard to measure directly over large spatial domains.

In Chapter 4, we characterize thermokarst lake size distributions and their relationship to

climate. The significant interannual hydrologic variability of arctic deltas hampers inference

on the spatial variability of lake cover, in particular when considering the short summer-

time window of optical spaceborne observations available for monitoring lake dynamics. We

present a pan-Arctic study of 12 arctic deltas wherein we classify observed waterbodies

into perennial lakes and ephemeral wetlands capitalizing on the historical record of remote

sensing data. We provide evidence that thermokarst lake sizes are universally lognormally

distributed and that historical temperature trends are encoded in lake sizes, while wetland

sizes are power law distributed and have no temperature trend.

In Chapter 5, we use the lake dataset generated in Chapter 4 to analyze lake spatial

patterns on arctic deltas to mine information on permafrost and geomorphic processes. We

introduce a suite of information theoretic measures to characterize lake spatial distribution

and lake cover, and utilizing these along with traditional measures we document a weak

relationship between lake spatial coverage and climate. We then show that lake patterns are

spatially structured on all deltas and that surface hydrologic connectivity between lakes is

spatially variable within and across deltas, positing that such patterns reflect geomorphic

process differences that can be explored for process understanding. For example, combining

these analyses with higher resolution satellite imagery and field data may improve estimates

of spatially distributed permafrost cover and inform our understanding of permafrost devel-

opment in deltaic environments, which is important for carbon and nutrient cycling under a

changing climate.

In Chapter 6, we present concluding remarks and perspectives for future research in

4



temperate and arctic deltas.

The above chapters are presented in stand-alone format based on peer-reviewed published

articles or manuscripts under consideration in scientific journals. Collaborative research that

contributed significantly to the ideas, analyses, and results presented in this dissertation

includes analysis of numerically simulated deltas to link sediment flux budget and delta

morphology, development of a process-based effective resolution of channel network topology

and geometry, and analysis of the controls on the progradation of delta channel network tips.
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CHAPTER 2

River delta morphotypes emerge from multi-

scale characterization of shorelines

2.1 Introduction

River deltas are complex ecogeomorphic landscapes which are home to upwards of 300 mil-

lion people due to their fertile soils and rich ecosystems (Edmonds et al., 2020). Their

intricate hydromorphology controls nearshore biogeochemical function (Knights et al., 2020;

Zoccarato et al., 2019), connectivity between surface and subsurface hydrogeology and reser-

voirs (Sawyer et al., 2015), coastal resilience (Hoitink et al., 2020; Tognin et al., 2021),

and ecosystem services (Adams et al., 2018). Deltas are particularly vulnerable to climate

change due to their low relief, coastal proximity, and large populations (Edmonds et al.,

2020; Hoitink et al., 2020). It is therefore critical to understand how sea level rise and

changing riverine sediment loads will impact these systems (Chadwick et al., 2020; Nienhuis

et al., 2023) and towards this goal, developing a quantitative framework which links the

driving forces forming deltas to delta morphology and function is imperative. Fifty years

ago, Galloway (1975) introduced the paradigm that river deltas are shaped by the interplay

of progradational riverine forcings and erosional marine (wave and tide) forcings, which has

steered subsequent research on river delta evolution (e.g., Ainsworth et al., 2011; Anthony,

2015; Bhattacharya & Giosan, 2003; Nienhuis et al., 2020; Seybold et al., 2007). The relative

balance of these forcings and the multiple spatio-temporal scales at which they operate result
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Figure 2.1: The morphologic variability of Earth’s deltas. River deltas show differences
in shoreline structure attributed to the relative balance of river, wave, and tidal sediment
fluxes Galloway (1975). Yellow dots show locations of a globally distributed sample of 54
deltas analyzed in this study. Satellite imagery courtesy of Landsat and Google Earth.

in a stunning degree of variability in shoreline structure and channel network geometry and

topology (Fagherazzi et al., 2015; Hoitink et al., 2017; Jerolmack & Swenson, 2007; Konkol et

al., 2022; Tejedor et al., 2016, 2017). Rivers act to prograde the delta planform at the large

scale and increase roughness at fine scales via the growth of mouth bars and distributary

channel expansion (Fagherazzi et al., 2015; Wolinsky et al., 2010). Waves generate along-

shore transport that diffuse sediment along the shoreline at fine scales but can lead to spits

at coarser scales (Ashton & Giosan, 2011) and suppress mouth-bar development (Jerolmack

& Swenson, 2007). Tidal forces widen distributary channels and construct headless channels

which lack connections to the upstream river, roughening the shoreline at multiple scales

(Hoitink et al., 2017; Nienhuis et al., 2018). Recently, the relative magnitudes of the forcings

in the Galloway framework have been quantified via a sediment flux approach (Nienhuis et

al., 2020). However, shoreline shape, a crucial ingredient in the qualitative morphological

classification originally posed by Galloway (See Table 2 in Galloway (1975)), has not been
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quantified in a way to be able to bear out significant differences between visually distinct

deltas, nor has been shown to have a clear relationship with forcings, e.g. (Baumgardner,

2015). This is in part because analysis of shoreline structure has typically focused on a

single length scale using metrics such as shoreline variability (Straub et al., 2015), rough-

ness or rugosity measures (Baumgardner, 2015; Caldwell & Edmonds, 2014; Geleynse et al.,

2012), and shape factors (Lauzon et al., 2019; Wolinsky et al., 2010). Such metrics do not

necessarily measure shoreline structure at process length scales, neither do they capture the

multiscale variability caused by the interplay of the three driving forces. Here, we propose a

process-informed multiscale set of river delta shoreline metrics which combine geometric and

spectral measures to develop a quantitative classification of delta morphology. Our approach

utilizes localized analysis of shoreline structure both in space and wavenumber domains in

order to isolate features corresponding to different processes acting at multiple scales. Un-

supervised clustering of the shoreline morphometrics identifies 5 classes of morphologically

similar deltas, i.e. delta morphotypes. Based on the values of the process-targeted metrics,

dominant forcings are attributed to each morphotype, which we then show to generally align

with the dominant forcings quantitatively estimated by their relative sediment fluxes (Ap-

pendix: A; Nienhuis et al. (2020)). We hypothesize that misalignments between the two are

due to spatiotemporal heterogeneity in the sediment fluxes which are not captured by their

estimated values. The novel delta morphology classification and comparison to sediment

fluxes informs our understanding of how the form and function of these densely populated

and biogeochemically rich landscapes might respond to projected changes in sediment fluxes,

relative sea level rise, and anthropogenic modification (Chadwick et al., 2020; Edmonds et

al., 2020; Hariharan et al., 2022; Hoitink et al., 2020; Moodie & Nittrouer, 2021; Nienhuis et

al., 2020; Syvitski & Saito, 2007). It also offers potential application in inferring paleoclimate

from ancient delta deposits and interpreting extraterrestrial delta morphology.
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2.2 Multiscale Characterization of Delta Shorelines

We analyzed the shorelines of 54 global river deltas across a representative range of sizes

and morphologic variability, including systems with wave-influenced, river-influenced, and

tide-influenced features (see Appendix A; Figure 2.1; Syvitski & Saito (2007)). River delta

shorelines were defined using the Opening Angle Method (OAM) with a critical angle of 45◦

(Shaw et al., 2008). To define a shoreline, the OAM requires a binary water mask, which

was obtained by thresholding water occurrence masks from the Landsat-derived, 30-m spatial

resolution Global Surface Water dataset (Pekel et al., 2016). We defined three scales at which

delta shoreline structure exhibits variability which are linked to the balance of river, tide, and

wave forcings: a macroscale (overall delta planform), mesoscale (mouth width scale), and

microscale (beach scale). We developed metrics to capture the variability at those scales as

discussed below. At the macroscale, riverine sediment deposition leads to delta progradation

and growth into the receiving basin and generates extrusional shapes (i.e. convex shoreline;

Caldwell & Edmonds (2014); Galloway (1975)). When wave-driven alongshore transport

removes the majority of riverine sediment flux, the delta has no protrusion, and is linear (i.e.

mostly flat shoreline; Nienhuis et al. (2018)). Lastly, tidal forcings erode subaerial sediment

into the nearshore and construct a subaqueous shoal (Hoitink et al., 2017). This net erosion

from land leads to a funnel-shaped, concave subaerial delta, or estuary, which intrudes into

the surrounding landscape (i.e. a concave shoreline). We therefore measured the curvature

of the entire shoreline (Figure 2.2; Jammalamadaka & Sengupta (2001)), to classify deltas

as convex (extrusional), concave (intrusional), or flat (see Appendix A).

At the mesoscale, the influence of rivers, waves, and tides on channel mouths dictates

multiple intermediate scales of variability on the shoreline. Tidal forces widen mouths ex-

ponentially (Nienhuis et al., 2018) which leads to multiscale undulations in the shoreline,

for example on the Amazon or Indus deltas. Rivers form mouth bars and bifurcations lead-
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Figure 2.2: Example of the multiscale features of shoreline structure on the Ma-
hakam Delta, Indonesia. The shoreline of the delta, defined using the Opening Angle
Method (OAM) with a critical angle of 45◦, shows multiple scales of variability. At the
macroscale, a delta may be convex due to river deposition, flat due to wave-driven along
shore transport, or concave due to tidal widening and estuarine conditions. This is mea-
sured here by the ratio between the radius of curvature and the length of the shoreline. (B)
Mouths formed by rivers and tides lead to undulations in the shoreline at a scale determined
by the relative river and tide fluxes. (C) At the microscale, waves diffuse sediment parallel
to the coast and smooth the shoreline, while rivers and tides roughen it. (D) To measure
meso- and microscale variability, the 2D shorelines are mapped to a univariate signal defined
as the distance from each point along the shoreline to the center of curvature, dc(s), where
s is the distance along the shoreline. (E) The wavelet transform is used to estimate the
fraction of variance contributed by the mouths, fM , marked in red in the preceding panels,
and the Gini-corrected Finescale Variance gFSV , i.e. the variance from scales (wavelengths)
between 300 to 1000 m.
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ing to small but numerous mouths which result in intermediate to fine scale undulations

in the shoreline, for example in the Dnieper delta. Lastly, wave-driven sediment transport

prevents mouth bar formation (Jerolmack & Swenson, 2007) and reduces the number of

channels (Broaddus et al., n.d.), resulting in long shorelines with few, small undulations, for

example in the Ebro delta. To measure the contribution of mouths to the overall variability

of the shoreline structure, we first projected the shoreline into a univariate spatial-series

by recording the distance from each point along the shoreline to the center of curvature

of the macroscale shape of the delta. Then, we identified sections of the shoreline spatial-

series corresponding to the mouths and measured via localized wavelet transforms (Kumar &

Foufoula-Georgiou, 1994) the fraction of variance contributed by the mouths, fM (Appendix

A; Figure 2.2).

Finally, at the microscale, wave-driven alongshore transport diffuses sediment along the

coast and smooths shorelines (Ashton et al., 2001), while rivers and tides introduce variability

from distributary and headless channels (Wolinsky et al., 2010). Therefore, we measured the

fine scale variance (FSV ), as the variance at wavelengths of 300 to 1, 000 m, to capture

these differences (Figure 2.2). The lower bound is the result of the minimum reliable scale

above which discretization, aliasing, and smoothing effects do not affect the spectra, while

the upper bound is an approximation of the range of scales within which waves act to smooth

shorelines and below which large scale features such as spits begin to emerge. The results

are robust to shifting the upper bound from 800 to 1, 100 m (Appendix A). Furthermore,

in order to separate shorelines that may have equal fine scale variance but relatively more

power at larger wavelengths compared with shorelines that have relatively less power at

those wavelengths, the FSV is adjusted by the degree of heterogeneity over the spectral

range by multiplying by a spectral Gini coefficient, g, defining the gFSV . The spectral Gini

coefficient is a measure of the deviation of the spectra from white noise, i.e. a random signal

with a flat spectrum (Appendix A). With these three metrics we are able to quantitatively

compare the shoreline morphology of river deltas and explore the possible emergence of
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distinct morphotypes.

2.3 Shoreline Morphometric Space

The proposed shoreline metrics construct a three-dimensional Shoreline Morphometric Space

(SMS) within which deltas can be positioned and compared (Figure 2.3). To objectively

and robustly identify clusters that categorically classify deltas within this space, we used an

unsupervised machine learning algorithm, k-prototypes (a modification of k-means clustering

that accounts for categorical predictors such as the macroscale shape; Huang (1998)). Five

morphotypes, i.e., clusters of morphologically similar deltas, self-emerge from the three-

dimensional SMS (Figure 2.3) and are displayed in Figure 2.4. Note that the identified

clusters are robust and stable as found by randomly resampling 80% of the deltas and

repeating the clustering procedure, obtaining an identical grouping of delta morphologies in

97% of simulations.

The first morphotype is denoted as the “tidal morphotype” as it contains concave and

flat systems with mouth-dominated shorelines and low finescale variance, indicative of tide-

domination (Figure 2.4), for example, the Fly and Amazon deltas. It also includes valley-

confined systems like the Ob and Yenisei due to their wide mouths. The second morphotype is

denoted as the “river morphotype” as it contains systems characterized by an intermediate

fraction of variance contributed by mouths, are rough at fine scales, and have a convex

planform, for example, the Selenga and Mississippi deltas. Valley-confined deltas such as

the Dnieper and Don, which are concave and flat but have high fine scale variability, are

also included as part of the river morphotype. The third morphotype is denoted as the

“wave morphotype” as it contains systems which are flat, lacking a subaerial protrusion

formed by river deposition, and smooth at fine scales, for example, the Eel and Orange

deltas. The fourth morphotype is denoted as the “river-wave morphotype” as it contains
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Figure 2.3: The Shoreline Morphometric Space (SMS). Deltas shorelines are posi-
tioned in the three-dimensional space constructed by the macroscale shape, fM , and gFSV
metrics. Unsupervised clustering of the SMS using k-protoypes reveals five self-emergent
delta morphotypes, i.e. classes of morphologically similar systems. The relative position
of the deltas in the SMS elucidates the dominant forcing acting on each morphotype, e.g
increased fM a signature of greater tidal influence. The classified deltas are shown in Figure
2.4. The arrow indicates the shift in the SMS position of the river distributary section of the
Parana shoreline (ParanaRO) compared with the shoreline of the entire Parana, see text for
details.
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systems which are convex, smooth at fine scales, typically have spits or flying spits, and little

to no variability contributed by mouths, for example, the Ebro and Rhone deltas. Lastly,

the fifth morphotype is denoted as the “river-tide morphotype” as it contains convex deltas

with tidally widened mouths and headless channels, resulting in intermediate variability

contributed by mouths, for example, the Mahakam and Orinoco deltas.

The dominant forcings determined by the quantitative classification of shorelines corre-

spond with expert assessment of the dominant forcings based on qualitative comparisons of

delta morphology (Ainsworth et al., 2011; Nienhuis et al., 2020) suggesting that shoreline

structure carries a distinct signature of the processes that generated that delta. An inter-

esting further step is to check whether the inferred dominant forcings align with the relative

sediment fluxes driven by each forcing, for which we use the recently developed sediment

flux estimation framework of Nienhuis et al. (2020).

2.4 Are Delta Morphotypes AlignedWith Relative Sed-

iment Fluxes?

Each of the 54 deltas was projected onto the ternary Galloway diagram according to the

relative sediment flux transported by rivers, waves, and tides as estimated in Nienhuis et al.

(2020)(Figure 2.5). Before contrasting delta morphotypes with their relative sediment fluxes

we note a few important issues which we anticipate to cause discrepancies in the mapping

between the morphotype and dominant sediment flux. First, the marine sediment fluxes are

estimated using simplified, although nonlinear, physical models which transform tidal ampli-

tudes and offshore wave-climate into tidal and wave sediment fluxes, respectively. Therefore,

any uncertainty in the tidal amplitude and wave climate will propagate into uncertainty in

the sediment flux estimate. Second, sediment fluxes are estimated using single, represen-
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Figure 2.4: Deltaic morphotypes identified from the SMS. The deltas corresponding
to the five morphotypes which emerged from the SMS (Figure 2.3). Shorelines are shown in
orange with underlying imagery from Landsat or Google Earth.
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tative locations for wave climate, tidal amplitude, and fluvial discharge, not acknowledging

possible multi-mouth or multi-lobe structure (Nienhuis et al., 2020). Moreover the sediment

fluxes are estimated using contemporary wave climate, tidal amplitude measurements, and

modelled, pre-anthropogenically-influenced riverine discharge and sediment loads (Appendix

A; Nienhuis et al. (2020)), and represent snapshots of the relative sediment flux, while delta

morphology represents the temporally integrated effect of the forcings acting on the delta

(Syvitski et al., 2022). Accordingly, any significant spatiotemporal heterogeneity or non-

stationarity in the fluxes over each delta’s evolution might not be reflected in the contem-

porary sediment flux estimates. Therefore, some misalignments between delta morphotype

and dominant sediment flux are expected, hoping however, that a general agreement will

emerge. The delta morphotypes are found to generally have relative sediment fluxes in line

with the dominant forcings expressed in their shoreline structure (Figure 2.5). For example,

the river morphotype and wave morphotype deltas lie in the right corners of the Galloway

diagram, and the river-wave morphotype deltas span the space in-between these two end

member classes with varying degree of relative tidal influence. However, it is noted that this

partitioning does not correspond to a simple ternary dissection of the Galloway space where

deltas with a single forcing contributing more than 50% of the total sediment flux align with

a morphotype dominated by that forcing. Rather, deltas in the river morphotype typically

have relative river sediment flux in excess of 80%, although there are notable outliers. A

similar observation is made for deltas in the wave morphotype. Morphological expression

of dominance by a single forcing is therefore limited only to small corners of the Galloway

space.

Of interest are the morphologically similar deltas which appear scattered or as misalign-

ments between shoreline-inferred dominant forcing and dominant relative sediment flux in

the Galloway diagram, as these yield valuable insight into the relationship between observed

shoreline structure and the relative sediment fluxes. As discussed before, some outliers arise

due to the uncertainty in the sediment fluxes. For example, deltas in the tidal morphotype
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Figure 2.5: Comparison of delta morphotypes to sediment flux budget. The 54
deltas are positioned in the Galloway diagram using their relative sediment flux and colored
by their morphotype emergent from the shoreline morphometric space (Figure 2.3). Delta
morphotypes tend to fall in contiguous regions of the Galloway space which are outlined with
dashed lines. Misalignments highlight spatiotemporal heterogeneity in the relative sediment
fluxes not captured by their contemporary estimates Nienhuis et al. (2020).

17



such as the Kolyma and Tigris-Euphrates have relatively low tidal sediment fluxes, despite

displaying clear tidal widening. We suspect that this results from under-estimation of the

tidal sediment fluxes for these deltas. Similarly, river morphotype deltas such as the Colville,

Kuparuk, and Apalachicola, are characterized by abundant mouthbars but have high esti-

mated wave sediment fluxes which are expected to inhibit mouthbar formation (Jerolmack

& Swenson, 2007). The Kuparuk and Apalachicola are associated with valley-confined or

sheltered shorelines where wave climate data may be particularly uncertain. These misalign-

ments highlight that the shoreline morphometric approach may be more robust than the

sediment flux approach for delta classification as it is less sensitive to its defining parameters

(e.g. critical angle or range considered for fine scales; see Appendix A).

Further misalignments of interest are the river-tide morphotype deltas and tide morpho-

type deltas which are scattered across a range of relative tidal influence. This mixture arises

as the river-tide and tide morphotypes consist of deltas with intermediate to high fraction

of variance contributed by mouths (fM) due to headless and wide channels. However, the

river-tide morphotype consists solely of deltas that are convex at the macroscale, e.g. the

Irrawaddy, Indus, and Mahakam, which is a signature of historical progradation of the delta

planform due to fluvial deposition. Also deltas such as the Zambezi and Rufiji are convex

with wide headless channels and have abundant tidal mangroves (Anthony et al., 2021; Erfte-

meijer & Hamerlynck, 2005), suggesting historical significant river and tidal influence, but

have otherwise smooth, sandy shorelines and translating spits indicating recent wave influ-

ence. This suggests that although these systems at present have large relative tidal sediment

fluxes, the estimated relative sediment fluxes do not capture the historical river dominance

which constructed them. Thus, as tides widen and preserve former distributary channels

(Hoitink et al., 2017), and the timescale for waves to erase the convex depositional system

formed by river progradation could be on the order of centuries (Nienhuis et al., 2016), the

signature of a river remains on its delta long after it has stopped flowing. Therefore, care-

ful consideration must be given to possible temporal heterogeneities in each of the sediment
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fluxes when computing their relative values and assessing the alignment between morphotype

and relative sediment flux (Syvitski et al., 2022). This is especially critical for characterizing

morphologic response to sediment flux changes, e.g., decreasing riverine sediment delivery or

changes in wave climate, and for projecting delta futures under climate change.

Lastly, we hypothesize that some of the misalignments arise because the morphologic

metrics are computed along the length of the entire shoreline, although the sediment fluxes

are computed via point estimates and don’t convey information on spatial heterogeneity in

the forcings acting on the delta. For example, the Parana delta lies in the wave morphotype

although it has a complex distributary network in its southern half and is dominated by

riverine sediment flux (Figures. 2.3,2.4,2.5). However, the Parana’s depositional environment

is unique as the Uruguay river runs parallel to its northern shore (Milana & Kröhling,

2015), which we posit acts as a longshore current that smoothens the shoreface but is not

captured by the global sediment flux estimation framework which only includes wind-driven

longshore transport. To test this hypothesis, we computed the three multiscale metrics of

shoreline structure only on the section of the shoreline between the active distributaries in

the southern section, terming it ParanaRO, and found that the ParanaRO indeed lies in

the river morphotype (Figure 2.3), in agreement with its dominant riverine sediment flux

(Figure 2.5).

Note that the defined framework to characterized shoreline structure allows us to further

explicitly interrogate explicitly spatial variability in shoreline structure, e.g. may arise from

marine reworking of abandoned distributary lobes following channel avulsion. Investigation

into deltas with lobes of distinct morphology may lead to separation of these deltas within the

SMS and could shed further light on the alignment between sediment flux and morphotype.

However, the framework for estimating sediment fluxes (Nienhuis et al., 2020) will likely

need to be adjusted to account for highly spatially variable sediment fluxes given multi-

lobe or multi-mouth structures or variable wave climate (Syvitski et al., 2022). We note
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that combining shoreline metrics with metrics of network complexity (Konkol et al., 2022;

Tejedor et al., 2015a,b, 2016, 2017) may help to separate deltas further within the SMS

and identify subnetworks that need to be treated separately in terms of their morphology

and sediment fluxes. In particular, network information may disaggregate the relatively

large river-tide morphotypes and the tide morphotypes, with a possible separation of the

valley-confined Ob and Yenisei deltas from estuarine systems such as the Kolyma, Ganges

Brahmaputra, and Colorado. This further sub-division of deltas may also be able to yield

insight into the influence of other controls on delta morphology including grain size (Caldwell

& Edmonds, 2014), valley confinement, cold region processes, or sea level history (Nienhuis et

al., 2023; Overeem et al., 2022). Interestingly, no systematic signature of near-shore sea-ice,

permafrost, or river-ice was detected on shoreline structure (Lauzon et al., 2019; Overeem

et al., 2022; Piliouras et al., 2021), except for a lack of wave influenced arctic systems which

may relate to the short wind fetch present due to sea ice (Barnhart et al., 2014) or the

presence of a shallow subaqueous ramp dampening wave runup and breakup at the subaerial

shoreline (Overeem et al., 2022).

2.5 Conclusions

We have introduced a novel quantitative framework to classify river delta morphology based

on a multiscale characterization of delta shoreline structure through geometric and spectral

metrics which form a three-dimensional shoreline morphometric space (SMS). Unsupervised

classification of 54 deltas projected in the SMS reveals self-emergent morphologically similar

deltas, i.e. delta morphotypes which are further associated with dominant forcings based on

the metrics. We then found that dominant forcings inferred from shoreline structure gen-

erally align with the dominant forcings quantitatively estimated by their relative sediment

fluxes. We posit that misalignments arise due to possible spatiotemporal variability in the
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dominant forcings not captured in the relative sediment fluxes, providing a basis for more de-

tailed analysis of those deltas. The proposed shoreline morphologic classification framework

relies on readily available satellite imagery making it easily applicable for remote, poorly

instrumented coastlines and basins as well as on extraterrestrial bodies, for which forcings

are not available.
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CHAPTER 3

Channel Network Control on Seasonal Lake

Area Dynamics in Arctic Deltas

3.1 Introduction

Lakes play a key role in the hydrologic and biogeochemical cycles of arctic deltas, serving as

hotspots of methane and carbon dioxide emissions (Squires et al., 2009; Tank et al., 2009).

Thus, understanding lake response to permafrost thaw and constraining lacustrine emission

estimates is critical for forecasting trajectories of the polar north (Elder et al., 2018; Wik

et al., 2016) as arctic deltas alone are estimated to contain 90 ± 37 Pg-Carbon (Schuur

et al., 2015), compared with 860 Pg-Carbon in the atmosphere (Le Quéré et al., 2018).

Annual methane emissions from lakes have been estimated using a nonlinear dependence

on lake area, typically computed using mean annual lake area (Bastviken et al., 2004).

However, remote sensing studies of arctic lake area dynamics across various geomorphic

settings and on seasonal to annual time scales have found seasonally variable lake area

extent depending on proximity to river source, lake morphometry, and underlying permafrost

content (Chen et al., 2012, 2013; Jepsen et al., 2013; Rey et al., 2019; Rover et al., 2012;

Smith et al., 2005). For example, Cooley et al. (2019) found that in 2017 on the Mackenzie

Delta, lake areas had decreased from their June maximum by 8 − 12% in August. This

temporal variability contributes to uncertainty in the arctic carbon budget, especially given

the nonlinear dependence of methane emissions on lake area. Lake and wetland coverage also
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modulate surface albedo, therefore understanding variable water extent is key for modeling

the land surface energy budget of the Arctic (Vonk et al., 2015). In addition, long-term

trends of lake area extent over the past several decades are highly spatially heterogeneous,

and seasonal variability in lake sizes is of the same order of magnitude as observed decadal

trends (Chen et al., 2013), indicating the need to understand seasonal heterogeneity for trend

quantification and uncertainty reduction of energy and carbon budgets.

Physical drivers of spatial variability in lake area dynamics include depth to permafrost,

as the negligible hydraulic conductivity of frozen soil limits groundwater flow, inhibiting

hydrologic connectivity between lakes and their surroundings (Walvoord & Kurylyk, 2016).

For example, remote sensing studies on the Yukon Flats floodplains found that thicker active

layers and associated near-surface (i.e., shallow) hydrologic connectivity were linked with

higher rates of lake area loss and interannual variability in lake area for some lakes closer

to the channels, compared with lakes surrounded by shallow permafrost farther from the

channels (Rey et al., 2019). Furthermore, field observations on the Colville Delta, Yukon-

Kuskokwim Delta, and other arctic floodplains have found that the river network imposes a

pattern on the permafrost and vegetation distribution on the delta through repeated flooding

and inundation of the areas closer to channels, leading to a thicker active layer (Viereck, 1973;

Zheng et al., 2019) and denser vascular vegetation (Jorgenson, 2000; Jorgenson et al., 1997),

which may drive patterns in seasonal lake area change. In addition, higher sedimentation

rates in lakes closer to the channels may also contribute to systematically shallower lakes

(Jorgenson et al., 1997), which would then exhibit higher rates of summertime shrinkage

under equal evaporation rates.

We propose that rigorously quantifying from remotely sensed data the seasonal dynamics

of lake area extents as a function of their positions relative to the channel network will add

valuable insight into the hydro-geomorphologic functioning of these systems, which is hard to

directly measure in the field. It will also provide a means for improved estimates of carbon
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and energy fluxes, which are nonlinearly dependent on lake area extents. In this paper

we present a detailed analysis of summertime lake shrinkage in two arctic deltas (Yukon

and Colville) as a function of the distance to the nearest channel and document a highly

structured variability which is specific to each delta, providing a signature of the system’s

hydro-geomorphologic structure and seasonal dynamics. Through consideration of possible

explanatory variables (surface connectivity, temperature, and vegetation spatial structure)

we propose predominant physical mechanisms for the observed patterns and suggest the

attractive possibility of using remote sensing observations of lake area seasonal change to

augment mechanistic understanding of arctic hydro-geomorphology.

3.2 Deltas, Data, and Channel Network Extraction

We studied the summertime lake area dynamics of two Alaskan deltas: the Yukon (apex at

62◦N, 3, 415 km2, discontinuous permafrost zone) and the Colville (apex at 70◦N, 549 km2,

continuous permafrost zone) (Figure 3.1). The two systems have different climates, riverine

sediment characteristics, and morphologies. The Yukon is characterized by abundant lakes

but a lack of permafrost features such as polygonal tundra, a sediment load primarily of silty

and sandy material (Dupre & Thompson, 1979), a mean annual air temperature of −1.2◦C,

and a mean summer air temperature of 11.6◦C (NOAA GSOD Station 702005). The Colville

is characterized by numerous lakes and permafrost features including ice-wedges and frost

mounds, and has a sediment load of mainly sand and gravel (Walker, 1998), mean annual air

temperature of −11.0◦C, and mean summer air temperature of 6.2◦C (NOAA GSOD Station

700637). Estimates of near-surface permafrost presence indicate a 98% chance of observing

permafrost within 1 m of the surface on the Colville ((Pastick et al., 2015); Figure 3.1a),

with active layer thickness between 36 and 100 cm, and vegetation composed of willows,

sedges, and bryophytes (Jorgenson et al., 1997). This is in contrast with the 17% chance of
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near-surface permafrost on the Yukon ((Pastick et al., 2015); Figure 3.1a), indicating active

layer thickness in excess of 1 m and/or the complete absence of permafrost, and vegetation

composed of willows and sedges (Jorgenson, 2000).

To analyze lake area changes on the deltas, we used the Global Surface Water (GSW)

data set which provides monthly 30-m spatial resolution, Landsat-derived global water cover

masks from March 1985 to December 2018 (Pekel et al., 2016). We present analysis of the

monthly lake shrinkage rates from June to July (summer), the months which have the greatest

data availability and correspond to the period post-snowmelt and streamflow recession (see

Appendix B for further information). Data availability and quality (e.g., missing data due

to clouds, Landsat 7 striping, and snow cover) are variable during the time of record, so

we applied a threshold of at least 60% of the delta (excluding the channel network) being

resolved (i.e., classified as land or water), which was met for 10 summers on the Yukon and for

16 summers on the Colville (Figure B.2). To compare lake shrinkage rates from year to year,

we used the Interactive Multisensor Snow and Ice Mapping System 24-km daily snow cover

data set, available from 1997 till present, to compute the date of snow cover disappearance

as the date when less than 15% of the study area was classified as snow (Helfrich et al., 2007;

National Ice Center, 2008).

Computing lake area change as a function of the distance to the nearest channel required

first extracting the Delta Channel Network (DCN) and second computing the distance of

every pixel (land or water) to the nearest channel. Automatic channel network extraction

for river deltas has recently been advanced with the Python package RivGraph (Schwenk et

al., 2015), which utilizes water coverage imagery to extract and skeletonize the DCN. We

found that no major channels avulsed or lake breaching took place on either delta during the

period of record and therefore used a constant DCN (see Appendix B for more details).

To reduce the effect of channelized flow, only water bodies (e.g., inundated depressions,

ponds, and lakes, hereafter collectively referred to as lakes) disconnected from the channel
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network were considered in our analysis. We also utilized higher resolution DigitalGlobe

imagery to account for small streams not visible in Landsat (see section 3.4). Once the DCN

was extracted and the disconnected lakes were identified, we computed the shortest linear

distance of every land or water pixel to the nearest channel, dnc, a calculation equivalent

to the distance transform of a binary image (Haralick & Shapiro, 1992). The probability

distribution functions of dnc for both deltas are provided in Appendix B.

3.3 Summertime Lake Area Dynamics as a Function of

Distance to the Nearest Channel

We tested the control of the DCN on summertime lake area dynamics by quantifying the lake

shrinkage rate, S, using a pixel-based monthly shrinkage estimate, Sp, as a function of dnc.

Sp is computed as the fraction of water area loss from 1 month to the next, in our case from

June to July (see description of data availability and calculations in Appendix B). We found

that both deltas, for every year in the period of record (2001–2018), showed a robust pattern

in lake shrinkage rates (Figures 3.2a and 3.2c) with a systematic decrease of shrinkage rates

farther away from the channels, reaching almost a constant rate after a distance characteristic

of each delta (approximately 1, 500 m for Yukon and 2, 000 m for Colville). The interannual

variability in the magnitude of Sp was identified as being associated with differences in the

day of snow cover disappearance, with a higher shrinkage rate when snow cover disappeared

later in the year, in our case closer to June; see Figures 3.2a and 3.2c. As the shrinkage

pattern seems robust from year to year and is modulated only in magnitude, we estimated

the weighted average normalized water area loss, S̄p , as a function of dnc, shown in black

in Figures 3.2a and 3.2c, where the weights were proportional to the number of valid (i.e.,

resolved) pixels each year in each distance bin. The observed summertime shrinkage signal

is apparent in over 26 years of data over the two deltas, indicating that the topology and

26



(a)

(d)

(b)

(e)

(c)

Yukon

Colville

Figure 3.1: Study areas and illustration of seasonal lake area shrinkage. (a) A map
of the near-surface permafrost probability from Pastick et al. (2015) and the locations of
the Colville and Yukon deltas. (b) A Landsat 8 scene (falsely colored in R-Surface Water
Infrared, G-Near Infrared, B-Green) taken on 6 July 2014 over the Yukon Delta, with the
study zone outlined in blue. (c) The same over the Colville Delta on 12 August 2014. (d)
The classified June 2008 water mask from the Global Surface Water (GSW) data set, with
land in gray, channels in light blue, lakes in white, and no data in dark gray. (e) The lake
area shrinkage from June to July 2008 is depicted with water that drained or evaporated
marked in red, water that remained water in dark blue, and land shown in black.
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geometry of the channel network leave a signature on the spatial pattern of lake shrinkage.

While Sp can be computed in summers with missing data (e.g., due to cloud cover), this

pixel-wise approach neglects the spatial context of the water pixels, i.e., lumps all water pixels

together irrespective of their arrangement within specific water bodies. We know, however,

that the location of a water pixel, e.g., an interior versus exterior pixel of a lake, is subject

to different hydro-geomorphologic processes and thus analyzing shrinkage rates within an

object-based context can provide complementary and physically interpretable information.

This object-based approach, however, can only be performed on imagery with sufficient

data quality (i.e., with a negligible fraction of no data pixels). To implement an object-

based approach we used an iterative morphological erosion operation (see Figure 3.2 inset;

(Haralick & Shapiro, 1992)) to classify water pixels according to their position in the different

lakes. Specifically, we classified them as belonging to an internal perimeter (IP), with IP1

indicating the shoreline perimeter of a lake, IP2 the next internal perimeter, etc. We then

estimated a monthly lake shoreline shrinkage rate, SIPi
, computed as the fraction of water

area loss of water pixels in IPi, as a function of dnc. We note that the weighted average of

SIPi
for all i, with weights proportional to the number of IPi pixels over the total number of

water pixels, will converge to Sp when all IPs are considered, i.e., when the morphological

erosion operation has “eroded” all lakes to their center-point. We highlight the results of this

object-based analysis for the first three IPs on the summer of 2014, when both deltas had over

99% of the nonchannel study area resolved, and compare them with the pixel-based analysis

results made over multiple years. The shrinkage rate of the shoreline perimeter of lake bodies

(IP1) for year 2014 shows a well-behaved decreasing pattern as a function of dnc (Figures 3.2b

and 3.2d). On the Yukon, a steady but slower decrease in SIP2 and SIP3 is observed compared

with SIP1 . On the Colville, SIP2 and SIP3 decrease with dnc albeit they are more variable.

Independent of distance, as expected, the most external IPs have a higher rate of shrinkage,

but decay to similar distances compared with the pixel-based shrinkage rate, Sp. Given that

this method is a more direct representation of lake shrinkage compared to the pixel-based
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Figure 3.2: Summertime lake shrinkage as a function of the distance to the nearest
channel. (a, c) Shrinkage rate, estimated by the monthly fraction of water area loss SP as
a function of dnc, for 26 summers, each curve marked by the date of snow disappearance on
the Yukon (a) and the Colville (c) with the weighted average shrinkage rate curve shown in
a black dotted line. (b, d) The results of the lake shoreline shrinkage from an object-based
analysis are shown for 2014 on the Yukon (b) and for 2014 on the Colville (d), with the
pixel-based estimate shown in light blue as comparison. The inset in (b) highlights the first
three Internal Perimeters (IPs) of a sample lake in black, red, and blue, with the remaining
water shown in light blue.
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approach and that similar patterns and length scales of shrinkage rates are identified, this

result strongly supports the existence of a spatial organization of lake shrinkage rates around

the channel network. It also validates the use of a pixel-based estimate which enables lake

shrinkage rates to be quantified more readily even when there is missing data in the water

masks.

3.4 Physical Attribution of the Spatial Pattern of Sum-

mertime Shrinkage

We explored three physical mechanisms that may contribute to the observed spatial pattern

of shrinkage: surface connectivity of lakes closer to the channels via very narrow pathways

not detected in the Landsat imagery of 30-m resolution, systematically shallower lakes closer

to the channels versus farther away, and enhanced vegetation coverage and a thicker active

layer closer to the DCN.

3.4.1 Drainage Due to Subpixel Surface Connectivity

At the 30-m spatial resolution of GSW, unresolved structural connectivity, e.g., narrow tie

channels (Rowland et al., 2009), may lead to the mischaracterization of lakes as disconnected.

The higher shrinkage rates may then be due to these subpixel channels, and therefore the

decreasing shrinkage rate a signature of sub 30-m DCN structure. To test this, we randomly

sampled between both deltas a total of 1, 069 lakes identified from the GSW imagery and

used DigitalGlobe (0.31 to 0.65 m spatial resolution) imagery available via Google Earth to

identify subpixel channel connectivity (see Appendix B for dates). Channel-lake connectivity

was manually determined based on the observed presence or absence of small, connected

channels over the summer months (June to August) as in Chen et al. (2013). On the Yukon
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we sampled 809 out of 12, 745 lakes in 2014, and found 547 lakes disconnected from the

channel network. On the Colville we sampled a total of 260 out of 1, 409 lakes in 2014, and

found 211 disconnected.

To evaluate the DCN control on shrinkage rates we used the GSW imagery to compute Sp

for the subsampled lakes identified as disconnected at the DigitalGlobe 0.6-m resolution. We

found that these lakes exhibited decreasing Sp as a function of dnc up to 1, 500 m (Figures

3.3a and 3.3d), albeit the patterns are less smooth due to the small sample sizes. These

results indicate that the higher shrinkage rates closer to the DCN are not the result of

surface connectivity by narrow (< 30 m width) channels, but rather the result of near-

surface hydro-geomorphologic processes.

3.4.2 Systematic Control on Lake Depth as a Function of Distance

to the Nearest Channel

Lakes located closer to the DCN in general have higher inundation and sedimentation rates

than lakes farther away, as indicated by the classification of Jorgenson (2000), and therefore

might be shallower (i.e., lower height to width ratios closer to the DCN). Systematically

shallower lakes closer to the DCN could then have higher shrinkage rates, even with equal

evaporation rates. Here we wanted to test the hypothesis that systematic lake depth increase

with distance is not the primary cause for the observed higher shrinkage rate closer to the

channels. However, there is a lack of delta-wide lake bathymetry measurements to validate

this hypothesis. As a proxy to bathymetry, we used water surface temperatures, positing

that shallower lakes will likely have warmer surface temperatures than deeper lakes. We used

Landsat Thermal Infrared (TIR) band-derived land surface temperature (LST) (Malakar et

al., 2018) to analyze surface water temperatures over individual Landsat scenes. To obtain

LST data from TIR reflectance, a thermal emissivity ϵ for each pixel must be specified, which
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Figure 3.3: Examining physical mechanisms for increased lake shrinkage closer to
the delta channel network. (a, d) Comparison of the 2014 water area shrinkage rates
of all lakes disconnected from the channel network as inferred from the Landsat images
at 30-m resolution (same as in Figures 3.2a and 3.2b) and a subset of lakes disconnected
from the channels as inferred from high resolution (0.6 m) to rule out that subpixel surface
connectivity not seen in Landsat cannot explain the observed structured shrinkage patterns.
(b, e) Average surface temperature of water pixels in internal perimeter IP2 (a proxy for lake
depth) is independent of distance from the channel network indicating that lake depth is not
the primary cause for the observed higher shrinkage rates closer to the channels. (c, f) Mean
NDVI of June land pixels spikes and decreases on the Yukon (c), and steadily increases on
the Colville indicating presence of barren sandbars next to the channels (f). (g) Schematic
illustrating that the enhanced shrinkage, S, closer to the DCN is predominantly caused by
increased near-surface storage and flow, a result of increased heat content near the channel,
and modulated by higher evapotranspiration rates due to denser vegetation content on the
Yukon.
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is constant over water. To discard water LST variability due to emissivity heterogeneity, we

analyzed only pixels classified as water both in the GSW and LST data set, i.e., pixels with

ϵ greater than 0.99 in the spectral range of the Landsat 8 TIR.

Visual inspection of the Landsat scenes showed that the centers of lakes do not show

significant temperature variability, likely due to a depth threshold being achieved where

the water surface temperature is not primarily controlled by lake depth. To account for

differences in lake morphology and for the fact that lakes are generally smaller closer to

the channel network (Figure B.4), we analyzed the temperature on the outer edges of the

lake (e.g., IP2). We found that the average outer perimeter water temperature was nearly

constant, i.e., independent of dnc (Figures 3.3b and 3.3e). As we explicitly account for the

position of a water pixel relative to the edge of the lake it lies in, this analysis specifically

tests whether there are systematically warmer, and thus shallower, lake banks closer to the

DCN. The nearly constant temperature observed across the edges of lakes on the deltaic

surface does not support the hypothesis of systematically shallower lakes closer to the DCN,

implying that lake depth is not the primary control of the observed shrinkage pattern.

3.4.3 Enhanced Near-Surface Connectivity and Vegetation Den-

sity by the DCN

Extensive field studies on the Colville and the Yukon-Kuskokwim delta have found that in

permafrost affected fluvial landscapes, the coevolution of landforms, permafrost, and vege-

tation imprints distinct spatial patterns on the geomorphology and ecology of the landscape

(Jorgenson, 2000; Jorgenson et al., 1997; Shur & Jorgenson, 2007). These studies have doc-

umented a gradient in vegetation density and type with distance from the channels, with

barren sandbars immediately around the channel network, followed by vascular vegetation

including willows and shrubs in the active floodplain around the DCN, compared with greater
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sedge and bryophyte density in the inactive floodplain farther from the DCN, indicative of

deeper active layer thickness near channels (Jorgenson et al., 1997, 1998; Jorgenson, 2000).

In the active floodplain, higher rates of sedimentation limit organic matter deposition and

permafrost aggradation, while the inactive floodplain has a thicker organic layer, which in-

sulates and protects frozen soil contributing to shallower depth to permafrost (Jorgenson et

al., 1998). On the Colville, visual inspection showed that the channel network is abutted

by barren sandbars, while on the Yukon the channel network is generally enveloped by land

cover with high near infrared reflectance, colored in green in Figure 3.1b, indicative of greater

vegetation density and photosynthetic activity (Laidler et al., 2008). Given greater sand de-

position immediately around the DCN and enhanced vegetation content on the floodplain

closer to the DCN (Jorgenson et al., 1998), greater shrinkage rates may be due to greater

subsurface flow pathways (due to deeper active layers) and higher evapotranspiration rates

(Figure 3.3g). Due to a paucity of field observations of subsurface flow and evapotranspira-

tion rates spanning the spatial and temporal domains analyzed, we examined DCN control on

vegetation coverage using Landsat-derived Normalized Difference Vegetation Index (NDVI)

as a proxy for vegetation density and therefore evapotranspiration rates.

Individual Landsat scenes from June to August 2014 over both deltas were used to com-

pute the mean NDVI of land, as identified from the June 2014 GSW water mask, as a

function of dnc (Figures 3.3c and 3.3f). On the Colville, an increase in NDVI with dnc is

observed for both Landsat scenes, which is due to the sparsely vegetated sandbars adjacent

to the channels, that undergo frequent ice scouring and reworking (Jorgenson et al., 1998),

thus significantly decreasing the mean NDVI. On the Yukon, a sharp increase in NDVI fol-

lowed by a decrease until 1, 500 m from the channel is observed, which corresponds to some

sandbars present on the edge of the DCN, followed by dense vegetation which decreases as

a function of dnc. These interpretations are consistent with field survey photos provided by

N.J. Pastick; see also Pastick et al. (2014). The overall average NDVI in the colder Colville

delta is relatively lower than in the warmer Yukon delta and indicates sparser vegetation and
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lower photosynthetic activity. However, as indicated by transects from field surveys done

on the Colville between 1992 and 1996, the deepest thaw depth and coarsest soil is located

in these sandbars (Jorgenson et al., 1997), which implies greater water storage capacity

and hydraulic conductivity closer to the DCN. The relatively shallower thaw depths on the

colder Colville delta have less near-surface storage and flow capacity than the warmer Yukon

delta, which likely contributes to the steeper gradient in shrinkage rates (Figures 3.2a and

3.2c). The presence of deeper thaw zones closer to waterbodies in the Arctic is supported

by numerical modeling and observational evidence (Rowland et al., 2011; Woo, 2012). For

example, comparison of a borehole located 6 m versus 145 m from the edge of a fjord in

Svalbard showed significantly higher maximum and average temperatures throughout the

soil profile at the site closer to the fjord (Kristensen et al., 2008). In addition, heat ad-

vection from near-surface flow accelerates heat transport, preventing permafrost formation

or thawing existing permafrost (Aas et al., 2019; McKenzie & Voss, 2013; Rowland et al.,

2011; Walvoord & Kurylyk, 2016; Wellman et al., 2013). Empirical estimates of near-surface

permafrost indicate that the probability of observing shallow permafrost increases with dis-

tance from the channel network (Pastick et al., 2015) (Figure B.5). These studies provide

evidence that waterbodies and water flow modify subsurface flow pathways via modulation of

temperature-controlled soil permeability; therefore, enhanced shrinkage due to near-surface

connectivity may act as a positive feedback by maintaining a deeper active layer thickness

and in turn amplifying near-surface storage and flow. This effect is likely present near all

lakes (Figure 3.3g), not only near the DCN, and contributes to the length scale of DCN

control on shrinkage rates.
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3.5 Conclusions

Analysis of the summertime surface lake area dynamics of arctic deltas indicates that lake

area extent primarily decreases following snowmelt, and that the monthly shrinkage rate

strongly depends on the distance from the channel network, with higher shrinkage rates

closer to the channels. This signal is detected every summer over a combined 26 years of

satellite observations over two deltas of different climate and morphology. This seasonal

lake shrinkage signal should be considered in future estimates of lacustrine methane emis-

sions, e.g., those based on nonlinear relationships between methane emission and lake area

(Bastviken et al., 2004), to constrain uncertainties in the arctic carbon budget. Higher rates

of decreasing water coverage closer to the channels will imply a spatially heterogeneous but

structured distribution of methane emissions within a delta which must be accounted for in

regional or global assessments and also in projected trends (Cooley et al., 2019). The higher

shrinkage rates seen closer to the channel network are likely primarily caused by enhanced

near-surface storage and flow closer to the channels and by denser vegetation coverage, a

signature of the coevolution of landforms, permafrost, and ecology of these arctic landscapes.

As the observed pattern is therefore controlled, in part, by physical processes that are dif-

ficult to measure in the field (i.e., near-surface flow and storage), this analysis presents the

potential for partial inference of such processes from targeted analysis of readily available

Landsat imagery. The spatial and temporal variability of surface and subsurface hydrologic

connectivity of lakes in arctic deltas and future trends under warmer temperatures is of

the utmost importance for assessing and constraining estimates of carbon emissions and for

providing quantitative metrics of change. For example, permafrost thaw and associated in-

creasing hydrologic connectivity (Walvoord & Kurylyk, 2016) may shift colder systems such

as the Colville to experience increased near-surface flow, altering residence and transport

times of water and nutrients on the delta. Future work will expand the analysis to a larger

set of arctic deltas (Piliouras & Rowland, 2020), and use connectivity theory (Tejedor et al.,
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2015a,b, 2018) to quantitatively study the topology of the complex channel-lake networks of

arctic deltas and their expression on the patterns of seasonal lake shrinkage rates.
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CHAPTER 4

Climate Signatures on Lake And Wetland Size

Distributions in Arctic Deltas

4.1 Introduction

Coastal river deltas are landscapes at significant risk from sea level rise and sediment depri-

vation (Nienhuis et al., 2020; Syvitski et al., 2009). Arctic deltas are likely more vulnerable

than their temperate counterparts due to the presence of thermokarst lakes in permafrost,

which are sensitive to rapid Arctic warming (Emmerton et al., 2007; Piliouras & Rowland,

2020; Walker, 1998). Pan-arctic thermokarst lake coverage is responding to warmer temper-

atures in complex ways, as temperature-driven ground ice loss drives lake growth through

retrogressive thaw slumping along lake shorelines (Grosse et al., 2013) but also generates

surface and subsurface hydrologic connectivity that can cause lake drainage (Grosse et al.,

2013; Jones et al., 2020; Rowland et al., 2011; Yoshikawa & Hinzman, 2003). Observed

changes in lake area over the last 50 years have shown both positive and negative trends

depending on local hydrology, climate, permafrost zonation, ice content, landscape age, and

geomorphic setting (Arp et al., 2011; Chen et al., 2012; Jones et al., 2011; Nitze et al., 2018;

Plug et al., 2008; Smith et al., 2005). Irrespective of whether lake coverage is expanding

or decreasing, the reorganization of thermokarst lake cover will have significant implications

for polar atmospheric carbon fluxes (Engram et al., 2020; Grosse et al., 2013; Petrescu et

al., 2010; Rowland et al., 2011; Van Huissteden et al., 2011; Walter Anthony et al., 2018).
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Moreover, thermokarst lakes in deltas modulate the transport of riverine freshwater, sedi-

ment, and nutrient fluxes to the Arctic ocean, by trapping and holding sediment (Marsh et

al., 1999; Piliouras & Rowland, 2020) and modifying the residence times and pathways of

nutrient transport through the delta (Cunada et al., 2021; Emmerton et al., 2007; Lesack

& Marsh, 2010; Squires et al., 2009; Tank et al., 2009). Therefore, changing deltaic lake

coverage and its spatial distribution will also alter the timing and magnitudes of riverine

fluxes to the Arctic Ocean, which has broader implications for near-shore circulation and

ecosystem productivity (Lique et al., 2016).

We hypothesize that lake size variability and spatial arrangement across arctic deltas

(Figure 4.1) may encode information on climate influence in permafrost environments, akin

to how channel network structure is a signature of the riverine, tidal, and fluvial fluxes,

which shape temperate deltas (Nienhuis et al., 2016, 2018; Tejedor et al., 2015a,b, 2016,

2017) (see also (Seybold et al., 2007; Zanardo et al., 2013) for the signature of climate

in fluvial networks). In particular, we hypothesize that two primary drivers of lake size

variability across deltas are ice content and climate and test this hypothesis quantitatively.

Physically we expect that colder deltas have thicker permafrost, which is able to support

larger lakes by preventing connection to the sub-permafrost groundwater table that can lead

to eventual lake drainage (Grosse et al., 2013; Walvoord & Kurylyk, 2016; Yoshikawa &

Hinzman, 2003) or diminished lake growth rates. We also expect that deltas with greater

soil ice fraction will have larger lakes as soil ice acts as a subsurface hydraulic barrier, while

soil ice melt induces subsidence and therefore lake growth. The hypothesized relationships

between lake size and ice content or temperature would be useful for constraining physical

models and predicting the future of arctic delta morphology in a warmer climate.

However, a challenge in assessing the climatic signature on thermokarst lake sizes is the

significant interannual (Grosse et al., 2013; Rey et al., 2019) and seasonal variability (Chen et

al., 2012, 2013; Cooley et al., 2019; Vulis et al., 2020) in lake area, which makes it difficult to
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distinguish perennial waterbodies (lakes) from ephemerally inundated depressions (wetlands)

using the short summertime window of available spaceborne observations. In particular, sea-

sonal water may inundate ephemeral wetlands, which would be misidentified as perennially

inundated lakes from remote-sensing imagery. The processes underlying ephemeral wetland

versus perennial lake formation are distinct, as lakes are the result of thermokarst-driven

growth and evolution (Grosse et al., 2013), while wetlands are the result of hydrologic vari-

ability (Le & Kumar, 2014), and as defined in this study, only seasonally inundated. These

ephemerally inundated wetlands likely have less significant thermal impacts on the landscape

than lakes, and are thus expected to lack a relationship with delta climate. In the remainder

of this study, we present a methodology to mine the historical Landsat imagery record to

distinguish lakes and wetlands, and then characterize their respective size distributions as

well as their potential dependence with climate.

4.2 Study Sites, Data, and Lake and Wetland Extrac-

tion

Lake and wetland size distributions on 12 arctic deltas characterized by a range of air tem-

perature and ice content across Siberia (Indigirka, Kolyma, Lena, Nadym, Ob, Pur, Yana,

and Yenisei), Canada (Mackenzie), and Alaska (Colville, Kobuk, and Yukon) were examined

(Figure 4.1). The deltas include those formed by the six arctic rivers with the greatest dis-

charge and other major rivers along the Siberian and Alaskan coastlines. Lakes and wetlands

were extracted over the subaerial portion of each delta, which was delineated using Google

Earth. Delta Mean Annual Air Temperature (MAAT) was obtained from 2000 to 2016 using

the 15-km spatial resolution Arctic Systems Reanalysis V2 (Bromwich et al., 2018). Delta

soil ice content was estimated from a 12.5-km spatial resolution ice classification map (Brown

et al., 1997). To distinguish between hydrologically perennial lakes and ephemeral wetlands,
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Figure 4.1: Arctic deltas examined in this study. Twelve arctic deltas (see colored
open circles in the central panel for location) were examined along a range of Mean Annual
Air Temperature (MAAT) and ice content. The central map shows delta locations, colored
by 2000-2016 mean MAAT, estimated from the Arctic Systems Reanalysis V2 (Bromwich
et al., 2018), and underlain by Arctic permafrost zonation(Obu et al., 2019). Summertime
Landsat-8 scenes of 5 out of the 12 delta are shown with waterbodies identified from a single
July Global Surface Water mask (Pekel et al., 2016) colored in pink.
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we utilized the spatiotemporal interannual variability of water coverage over each delta from

1999 to 2018. We used the Landsat-derived, 30-m spatial resolution Global Surface Water

(GSW) data set, which provides monthly composited water masks from March 1984 to De-

cember 2018 that classify the landscape into 30-m pixels that are land, water, or no data (i.e.,

unable to classify due to cloud cover, Landsat-7 striping, or snow and ice cover) (Pekel et

al., 2016). Due to sparse data availability prior to 1999 on most deltas, we only analyzed the

period from 1999 to 2018, and to remove the effect of significant snowmelt and spring time

flooding, we restricted our analysis to July water masks similar to other studies (Muster et

al., 2019; Nitze et al., 2018). We only examined the subaerial portion of each delta, manually

delineated using Google Earth.

To identify and separate lakes from wetlands, we first computed for every pixel i the

July “water pixel occurrence,” wi, as the fraction of Julys from 1999 to 2018 for which

the pixel was classified as water, discarding no-data pixels (Figure 4.2a). The water pixel

occurrence wi can take values from 0 to 1, with wi = 1 if and only if the pixel was classified

as water for the whole record, and wi = 0 if and only if the pixel was classified as land

for the whole record. Second, we identified a reference year, y∗, with water coverage on

the subaerial delta closest to that of the temporal average over the 20-year period of record

and sufficient data quality (i.e., greater than 99% pixels classified as land or water and

no significant georeferencing (collocation) errors) and used this year to identify individual

waterbodies using 8-neighbor connected component analysis (see Appendix C, Figures C.1 to

C.3 for details on selection of y{ast). Third, we classified the waterbodies identified in year

y∗ into lakes and wetlands using the water pixel occurrence, wi. For each waterbody, Oy∗

k ,

we computed the “occurrence index” Bk as the mean of wi for all pixels within Oy∗

k , which

corresponds to the fraction of pixels within the waterbody that were on average occupied by

water over the 20 years (Julys) of record. A waterbody was then classified as a lake if Bk

exceeded a threshold value θ and as a wetland if Bk was less than θ. We evaluated the results

over a range of θ values, from θ = 0.80 to θ = 0.90, to account for differences in the flooding
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regime across different deltas and to test the robustness of our results (Tables C.1 to C.3

and Figures S4 and S5 in Appendix C). The lake and wetland size distributions shown in

Figures 4.3 and 4.4 are extracted at a threshold value of θ = 0.85. Only waterbodies at least

5, 400 m2 (i.e., six pixels) in size were included in our analysis to reduce estimation errors

at small areas. We tested the robustness of our methodology by performing a duplication,

wherein we selected an alternative reference year, y∗alt, with similar water coverage and data

quality to extract waterbody extents and repeated the analysis (Appendix C, Table C.4,

and Figures C.4 and C.5). All analyses were performed in R using geospatial and image

processing packages (Gillespie, 2015; Hijmans, 2020; Pau et al., 2010; Pebesma, 2018, 2021).

4.3 Lake Size Distributions and a Proportionate Growth

Model

From a simple thermodynamical perspective, thermokarst lakes are thermal reservoirs, which

interact with their surroundings through heat exchange. In particular, unfrozen lake waters

are net heat sources, thawing the surrounding ice-rich soil, which leads to lake basin ex-

pansion (Grosse et al., 2013). As larger lakes have a larger thermal inertia, they remain

unfrozen for longer periods (Grosse et al., 2013) and maintain larger lake to soil temper-

ature gradients, which enables them to grow at faster rates. Thus, based on this simple

thermodynamical argument, and on field observations (Jones et al., 2011), we can postulate

that thermokarst lake growth is compatible with a stochastic proportionate growth model

(Crow & Shimizu, 1988; Mitzenmacher, 2004) (i.e., growth rate proportional to lake size),

where stochasticity arises from the variability of soil properties that modulate growth. A key

property of this general class of proportionate growth models is that they generate objects

(in our case lakes) with sizes obeying a lognormal (LN) distribution (Appendix C; Crow &

Shimizu (1988)). Thus, our expectation based on simple physical arguments is that arctic
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Lakes

Wetlands
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Figure 4.2: Example of waterbody classification procedure on Kolyma Delta. The
waterbody classification procedure which marks waterbodies as either perennial lakes or
ephemeral wetlands based on their July occurrence index, and the resulting size distribution.
(a) July pixel water occurrence wi over the Kolyma delta from 1999 to 2018. Brown indicates
land pixels (wi = 0) and blue indicates perennially inundated water pixels (wi = 1), with
colors in between indicating water pixels indicated only a fraction of the time. (b) The
histogram of waterbody sizes is partitioned into the relative fraction of lakes (green) and
wetlands (blue) at an occurrence index threshold θ = 0.85. (c) The probability density
function (PDF) of lake sizes in green and wetland sizes in blue, compared with waterbody
sizes in black.
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deltas should universally exhibit lakes whose sizes are lognormally distributed. In particular,

since we only observe lake sizes above 5, 400 m2 (six pixels), we expect lake sizes to follow a

truncated lognormal distribution (Equation 4.1):

fX(x; ν, β
2) =


0 for x < xmin

1
xβ

√
2π

e
−(ln(x)−ν)2

2β2

1−Φ(
ln xmin−ν

β
)

for x ≥ xmin

(4.1)

where Φ(·) is the cumulative distribution function (CDF) of a standard normal variable,

ν is the scale parameter, β the shape parameter, and xmin the minimum value at which

the LN is observed, here 5, 400 m2 (Clauset et al., 2009). When xmin approaches zero, the

denominator approaches unity and 4.1 is simply the LN distribution. Having separated lakes

and wetlands based on the methodology outlined in Section 4.2, we examined the empirical

probability density function (PDF) and exceedance probability of lake sizes (Figures 4.3a

and 4.3b). As postulated, we found that the examined lake sizes can be accurately described

by a truncated LN distribution for the whole range of lake sizes (spanning 3.5 orders of

magnitude) in the 12 deltas under study (see Quantile-Quantile (Q-Q) plots in Figure 4.3b).

The rigorous Lilliefors-corrected Kolmogorov-Smirnov (KS) test (Clauset et al., 2009) shows

that for every delta, the fitted LN distribution could not be rejected at the 5% significance

level within the range of thresholds utilized for the identification of lakes from the general

waterbody population (Tables C.1 to C.3 in Appendix C). For most deltas, the LN fit could

not be rejected over the entire range, but in several deltas the test outcome depended on

the threshold, due to the fact that the hydrogeomorphological specificities of the different

deltas can lead to potential suboptimal lake/wetland separation for certain threshold values

and ranges of waterbody sizes. Furthermore, the robustness of the revealed universality of

the LN distribution of lake sizes was confirmed by successfully testing that lake sizes are LN

distributed when alternative years were used as reference to extract waterbodies (Table C.4,

Figure C.4). Previous empirical (suggesting different distributions for arctic waterbodies)
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(Muster et al., 2019) and theoretical (suggesting a proportionate growth model) (Victorov

et al., 2019) studies have failed to demonstrate this universality because thermokarst lakes

and wetlands were analyzed together (Table C.5 and Figure C.6), and as we show in the

next section, wetlands do exhibit a different distribution.

4.4 Wetland Size Distributions and an Inundated To-

pography Model

Arctic delta wetlands are, by definition, ephemeral waterbodies emerging on the delta top

due to local ice/snow melt and riverine flooding. Therefore, wetland sizes are expected to

be highly dependent on the seasonal delta hydrology, which controls overall delta wetness

(hydrologic forcing), and delta topography; the topography in turn constitutes the spatial

layout for inundation and controls both the emergence of disjoint wetlands and their sizes for

a given forcing. The prevalence of power law distributions describing the sizes of waterbodies

emerging from landscape inundation has been extensively documented (Bertassello et al.,

2018; Cael & Seekell, 2016; Cael et al., 2015; Le & Kumar, 2014; Mandelbrot, 1982; Messager

et al., 2016). For instance, recent analysis of the sizes of wetlands identified from inundating

low-relief topography and observed wetlands in the contiguous United States were found to

exhibit power law distribution of areas consistent with inundated topography (Bertassello et

al., 2018; Le & Kumar, 2014). Therefore, our hypothesis was that the Arctic delta wetlands

will follow a similar distribution. The form of the power law PDF used in this study is given

in Equation 4.2, where x0 is the minimum size above which the power law is fit and α is the

power law exponent (Clauset et al., 2009):

fX(x;α) =
α− 1

x0

(
x

x0

)
−α

, x > x0 (4.2)
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Figure 4.3: Size distributions of lakes and wetlands extracted at occurrence index
threshold θ = 0.85. (a) Lake size probability density functions (PDFs) for the 12 deltas,
(b) lake size exceedance probabilities, and (c) quantile-quantile plots of the lognormal with
truncation from below at the minimum lake size (5, 400 m2) fitted to the lake size distri-
bution. In (b) fitted distributions whose fit to data is rejected at the 5% significance level
(Kolmogorov-Smirnov (KS) test) are in grey. (d) Wetland size exceedance probability, (e)
fitted power law exponent, α, of all 12 deltas. The exceedance probabilities in (b) and (d)
are rescaled by a factor τ , i.e. P ∗ = Pτ , for visual display and comparison of the differences
between lake and wetland size distributions on each delta. The distributions are ordered by
increasing values of α to highlight the range of observed α. For each delta, power laws are fit
to the colored points above the minimum wetland size, x0, which was optimally determined
using the procedure of Clauset et al. (2009). The power law parameter α in (d) is the scaling
exponent of the PDF.
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We observed that wetland size distributions in the 12 arctic deltas indeed show strong

evidence of being power law distributed (log-log linearity over two orders of magnitude in

Figure 3d). Using the robust methodology of Clauset et al. (2009) for power law testing

and fitting, we found that the power law hypothesis for wetland sizes could not be rejected

at the 5% significance level with a Lilliefors-corrected KS test for 11 out of 12 deltas (at

θ = 0.85, Table C.1). As with lakes, the power law distribution of wetland sizes is robust

with respect to the threshold, which establishes the separation of waterbodies into lakes and

wetlands (Tables C.2 to C.3). Moreover, the robustness of our hypothesis was verified by

extracting waterbodies and identifying wetlands in an alternative reference year, wherein

again most deltas displayed power law wetland size distributions (Table C.4, Figure C.4)

The observed power law exponents range from 1.8 to 2.8 and are similar to what has been

found for wetlands in the contiguous United States (Bertassello et al., 2018; Le & Kumar,

2014) and other waterbodies on multiple scales (Cael et al., 2015). The range in the observed

exponents at different thresholds is attributed to the hydrogeomorphic variability within and

across the deltas, and the imperfect separation between lakes and wetlands. We point out

that the evaluation of alternative models such as the LN distribution cannot be performed

on a statistical basis, for example, using the Akaike Information Criterion (Burnham &

Anderson, 2004), due to the limited sample size (for more details see Appendix C; Figure

C.8; (Clauset et al., 2009)). However, the observed power law exponents and the lack of

interpretability of the alternative distribution (e.g., LN) parameters strongly suggest that

the power law is a physically meaningful model to describe the wetland size distribution

(Appendix C). Recent literature has hypothesized that lakes in the Arctic are consistent with

landscape inundation mechanisms (Muster et al., 2019). This hypothesis was grounded on the

finding that empirical statistics of waterbodies obey two relationships (a linear relationship

between conditional mean and conditional variance and a hyperbolic relationship between

conditional mean and conditional skewness), which are consistent with those arising from an

inundation model experiment (Muster et al., 2019). However, as we show here (Appendix
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C, Figure C.9), these same relationships arise from a proportionate growth model and an

LN distribution, cautioning their use for distinguishing between the power law and LN

probability distributions and for making physical inferences.

4.5 Climate Trends

How thermokarst lake coverage on arctic deltas will respond to projected 21st century warm-

ing is a question of critical interest due to the impacts on methane emissions (Engram et al.,

2020; Petrescu et al., 2010; Van Huissteden et al., 2011), the release of old carbon (Grosse

et al., 2013; Rowland et al., 2011), replumbing of surface-subsurface hydrologic partition-

ing (Walvoord & Kurylyk, 2016), and changes in water and biogeochemical cycling to the

ocean (Piliouras & Rowland, 2020; Piliouras et al., 2021). Discovering robust relationships

between lake size distributions and climate variables such as temperature and soil ice content

would provide valuable insight into the future of lake coverage on arctic deltas. Given the

clear differences in lake versus wetland size distributions (Figure 4.3) and their associated

generative processes, we reemphasize the hypothesis that only lake sizes should encode the

signature of climate through temperature and ice content, while ephemeral wetlands should

be agnostic to it. We have tested this hypothesis by analyzing the relationships between

mean lake and wetland size (areal extent) with respect to MAAT and soil ice content. The

data suggest that the mean thermokarst lake size increases by 9 · 104 m2, that is, doubling,

over a 12◦C decrease in the average 2000 to 2016 MAAT (Bromwich et al., 2018), indicating

that colder deltas have significantly larger lakes on average (Figure 4.4a). Modern MAAT

may not be representative of paleoclimatic temperature variability; however, mean lake size

also has a significant linear relationship (p = 0.023, bootstrap p = 0.023, and R2 = 0.42)

with delta apex latitude, which is a reasonable proxy for historical temperature differences

between the deltas, strongly supporting a temperature to lake size relationship. Mean lake
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size also generally positively relates to soil ice content, as higher ice content on the delta may

support lake growth due to greater settlement from ice melt (Grosse et al., 2013), with lower

ice content associated with smaller lakes (Figure 4.4a). A similar trend between lake sizes

and MAAT is observed when an alternative reference year is used to extract waterbodies in

(Figure C.5a), supporting the robustness of this dependence. On the other hand, the data

show no relationship between mean wetland size and MAAT (Figures 4.4b and S5b). Also

expected, but confirmed, mixing the two waterbodies makes it hard to detect the climatic

signal on the landscape. Indeed, a joint analysis reveals a non-significant relationship with

MAAT (Figure C.6d).

The observed relationship for mean lake size and MAAT is attributed to the greater

capacity of colder deltas to support large lakes due to their presumably thicker and cooler

permafrost, which prevents sub-lake taliks from connecting to the sub-permafrost ground-

water table (Walvoord & Kurylyk, 2016). This connection in low relief deltaic environments

would reduce lake level as river stage recedes through the summer, transitioning the margins

of perennially inundated lakes to ephemerally inundated, thereby reducing lateral thermal

fluxes from the lake to the surrounding permafrost, that is, diminishing lake growth and

decreasing the observed size of perennially inundated lakes (Figures 4.4c and 4.4d). Such an

effect would be clearest in large lakes that have deep taliks (Grosse et al., 2013), and indeed,

we found that the peripheries of large lakes were inundated more often on average over the

period of record on warmer deltas compared with colder deltas (see Figure 4.4e). Note that

the fraction of the periphery that remains water (inundated) on average over the period of

record was quantified as the mean wi of all pixels bordering each lake (in an 8-neighbor

sense), and the average value for the large lakes (defined as those with areas between 105

and 106 m2) is reported for each delta.

Such a relationship between MAAT and lake periphery inundation may also occur due to

evapotranspiration rates being higher on warmer deltas, which leads to greater lake margin
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Figure 4.4: Lake and wetland size climate trends. (a) Scatterplot between mean
lake size and MAAT showing a significant relationship between the two, with bootstrap
p = 0.0264 and Spearman rank correlation −0.5 (p = 0.1038). A significant trend between
the 90th percentile of lake sizes and MAAT (p = 0.041, bootstrap p = 0.0366, and R2 = 0.36)
was also found (not shown). (b) Scatterplot between mean wetland size and MAAT showing
lack of a significant relationship. (c and d) The relationship between lake size and MAAT is
attributed to colder deltas having thicker permafrost, which prevents lakes from connecting
to the sub-permafrost aquifer. In warmer deltas, connection to the sub-permafrost aquifer
leads to greater lake level change over the summer, driving increased variability in inundation
along the peripheries of lakes, and diminishing rates of thermally driven lateral expansion.
(e) Scatterplot between the fraction of the periphery of large lakes that remains water on
average over the period of record and MAAT shows a weak (i.e., p = .0527, bootstrap
p = 0.0551) linear relationship, supporting the proposed mechanism (c and d).
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loss. However, we found that average June-July precipitation minus evapotranspiration (P-

ET, i.e., the vertical hydrologic budget) (Bromwich et al., 2018) over the delta is uncorrelated

with MAAT, and therefore P-ET does not explain the relationship between delta temperature

and how often lake peripheries are inundated (Figure C.6d). This mechanism could be

validated in future studies by imaging subsurface permafrost structure across the deltas,

which has been done in other lake-rich permafrost environments (Rey et al., 2019).

4.6 Perspectives and Conclusions

By harnessing more than 20 years of remote sensing data over the Arctic, we have devel-

oped a methodology to classify waterbodies, depending on their year-to-year variability as

lakes (perennial) and wetlands (ephemeral). The statistical distributions of lake and wetland

sizes are distinct and appear to be universal across arctic deltas, reflecting the respective

underlying mechanisms driving the formation and evolution of those waterbodies. Specifi-

cally, it was found that thermokarst lake sizes obey a lognormal distribution, which can be

interpreted as the emergent signature of the thermal mechanism driving lake formation and

growth. On the other hand, wetland sizes may be described by a power law distribution,

which is compatible with landscape inundation models relevant to ephemeral waterbodies

(Bertassello et al., 2018; Le & Kumar, 2014). The difference between the underlying forming

mechanisms leads also to different expectations with respect to possible relationships with

climatic variables. Indeed, our results reveal a significant trend between mean lake size and

mean annual air temperature, supporting the hypothesis that colder environments are able

to grow and sustain larger thermokarst lakes, while no signature of climate is found in the

mean wetland sizes. The power law exponents of the wetland size distributions were found

to range between 1.8 and 2.8 (a smaller exponent indicates a thicker tail of the PDF) in

line with what has been observed in other regions (Bertassello et al., 2018; Cael et al., 2015;
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Le & Kumar, 2014) and further analysis of high-resolution topography is expected to pro-

vide additional insight on this range. The decreasing trend of mean lake size with warmer

temperatures found here can form the basis for future lake area change projections; how-

ever, recognizing that the relationship from the 12 examined deltas, although statistically

significant, explains only 40% of the variance and lake change may display significant spatial

variability (Chen et al., 2012). These relationships provide some of the first quantification

of climate influence on delta morphology along with other recent work on channel network

structure (Lauzon et al., 2019; Piliouras et al., 2021). Spatially resolved permafrost depth

and ground ice content on the deltas (Rey et al., 2019), as well as analysis of physically based

models forced with different climate scenarios (Coon et al., 2019; Overeem et al., 2018) is

needed to better understand cause-and-effect and derive relationships that can serve as the

basis of projections of landscape change (e.g., increased water ephemerality under warming

scenarios) and associated carbon cycle impacts in specific delta environments. Major arctic

deltas store approximately 91± 39 Pg-Carbon, potentially making them significant sources

of future carbon emissions (Schuur et al., 2015), motivating the need for further study of the

biogeochemical cycling in these landscapes.
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CHAPTER 5

Characterizing lake patterns to understand ge-

omorphologic and climatic processes on arctic

deltas

5.1 Introduction

Abundant thermokarst lakes on arctic deltas play an important role in modulating the trans-

port of riverine sediment to the coast and controlling the timescale and transport of nutrients

such as phosphorous, carbon, and nitrogen (Cunada et al., 2021; Emmerton et al., 2007;

Squires et al., 2009). Thermokarst lakes are formed by the thaw of ice-rich permafrost and

are sensitive to climatic drivers; both increasing and decreasing trends in lake cover have

been documented depending on local permafrost extent, topography, geology, temperature,

and precipitation (e.g., Chen et al., 2013; Nitze et al., 2018; Plug et al., 2008; Rey et al.,

2019; Veremeeva et al., 2021).

An additional significant source of uncertainty underlying the observed trends is the flashi-

ness of arctic hydrology which results in seasonal and interannual variability in lake extents.

For example, Chen et al. (2012) showed that in the Yukon Flats floodplains, interannual

variability in lake extent can be on the same order of magnitude as documented longer-term

trends. Later work in the same region showed that floodplain waterbodies exhibit several

classes of temporal dynamics, ranging from flashy to perennially inundated, which are hy-

54



pothesized to be interlinked with permafrost depth (Rey et al., 2019). In a pan-Arctic study,

Cooley et al. (2019) also showed varying seasonal change in lake area across four arctic re-

gions of differing geology and climate. Focusing on arctic river deltas, Vulis et al. (2021)

controlled for hydrologic variability on each delta by identifying lakes that were perennially

inundated over a 20-year period. They found that colder deltas have significantly larger

average lake size, which was attributed to a thicker and deeper permafrost layer in colder

deltas.

However, extensive analysis of the spatial distribution of lake patterns and dynamics is

still lacking. Prior work examining lake cover has generally commented on the distinct ge-

ometries and patterns formed by lakes (Figure 5.1; e.g. Grosse et al., 2013), but quantitative

insight into spatial distributions of these patterns is lacking. Muster et al. (2019) presented

visually distinct spatial patterns of lakes but did not perform extensive analysis of these

patterns, only of the lake size distributions. Rey et al. (2019) clustered waterbodies based

on their temporal dynamics but did not consider their spatial context. Arp & Jones (2009)

documented that the bulk statistics of lake cover, such as the lake density (i.e. the number

of lakes per unit landscape area) and lake area fraction (i.e. limnicity, the fraction of land-

scape area taken up by lakes) varied across regions of Alaska and called for future research

into studying the spatial organization of lakes in these specific regions to build process un-

derstanding. Recent studies have examined the spatially explicit pattern of lake coverage

and dynamics, but only in limited settings. For example, Vulis et al. (2020) showed that on

two arctic deltas, summertime lake area shrinkage is inversely related to the distance to the

distributary channel network due to an inferred thinner permafrost layer near rivers.

In this study we ask whether there are distinct patterns of lakes within deltas, what

controls these patterns, and whether there exist any relationships of lake characteristics to

climatic or geomorphic variables. We attempt to answer these questions through analysis

of the database of lake cover on 12 arctic deltas introduced in Vulis et al. (2021). We
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introduce several tools to characterize lake patterns at multiple spatial scales, which offer

the potential for physical inference into climate and geomorphic control on lake formation.

The study is organized from a top-level bulk statistical characterization of lake patterns

towards identification and discussion of specific regions and processes identified across deltas.

In section 5.2 we first introduce the study sites and lake database used for lake pattern

quantification. In section 5.3 we examine bulk lake cover statistics on each delta, including

new information-theoretic based descriptions of the lake size distribution and lake spatial

cover, and the relationship of bulk lake cover statistics to climate. In section 5.4, we examine

lake distribution through location analysis and show that lakes are non-randomly distributed

on the delta planform. In section 5.5, we examine the spatial variability of surface hydrologic

connectivity between lakes and discuss implications for deltaic dynamics and for the detection

of permafrost. Conclusions are presented in section 5.6.

5.2 Study zones and extraction methods

Twelve deltas across the Arctic which span a range of sizes and climatology were examined

(Table 5.1). The selected deltas include those formed by the largest rivers entering the

Arctic Ocean by discharge (Mackenzie, Yukon, Kolyma, Lena, Yenisei, and Ob), as well as

other significant lake-containing deltas in Alaska (Colville and Kobuk) and Siberia (Pur,

Nadym, Yana, and Indigirka). The twelve deltas consist of river-dominated, river-tide, and

tidally dominated systems (Table 1; Vulis et al. (in review)). The deltas lay on a gradient

of permafrost zonation (Obu et al., 2019), soil ice volume (Brown et al., 1997), and mean

annual air temperature (MAAT, estimated from 2000 to 2016, Bromwich et al. (2018)). We

use the methodology of Vulis et al. (2021) to extract lakes, wherein lakes were identified

by first extracting waterbodies from a year, y∗, with average hydrology (i.e. average water

cover) in July, selected to represent post-flood conditions (see Vulis et al. (2021) for details).
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Mackenzie

Kobuk Ob

Kolyma

Figure 5.1: Arctic delta locations and lake patterns. Map of the twelve arctic deltas
under study with examples of lake patterns on four example deltas, after Vulis et al. (2021).
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Waterbodies below a minimum mapping unit of 5, 400 m2 (6 pixels) were not considered for

further analysis. Then the July water occurrence, wJ
i , which is defined as the fraction of

years over the period of record (1999 – 2018) that a pixel was identified as water in July

was computed. For each waterbody identified in y∗, the average waterbody occurrence,

i.e. average of wJ
i for all pixels within the waterbody, was computed and then waterbodies

were classified as lakes if the average waterbody occurrence exceeded a threshold of 0.85.

Note that for two valley-confined deltas, the Nadym and the Pur, we found that water

levels stabilized in August rather than July, and therefore we altered the procedure and

used August as a reference month. In these deltas, y∗ was selected as a year with average

hydrology in August and the August water occurrence wA
i was used for later classification.

This led to classification of fewer waterbodies as wetlands and more robust extraction of

perennial lake cover. This change in the methodology did not impact the findings of Vulis

et al. (2021), namely a significant relationship between mean lake size and MAAT, and the

emergent lognormal distribution of lake sizes.

Table 5.1: Delta climate and geomorphologic properties. Note that the non-
channelized subaerial area of each delta is reported here.

Delta Area [km2] Apex Latitude [◦N] Age [ka] MAAT [◦C]7 Morphotype8 Soil Ice Volume9

Yukon 3,900 62.4 2.5 to 51,2 -1.4 River-Tide medium
Kobuk 1,200 66.9 - -4.8 River high
Nadym 2,000 65.6 - -5.6 Tide low

Ob 2,900 66.8 33 -5.9 Tide medium
Pur 2,100 66.5 2.64 -7.2 River low

Mackenzie 11,600 67.6 145 -7.6 - medium
Yenisei 6,100 69.6 73 -10.0 Tide low
Colville 400 70.2 46 -10.5 River low
Kolyma 2,900 68.7 6.53 -10.8 Tide high
Lena 13,600 71.9 74 -12.3 River-Tide high
Yana 8,500 70.8 44 -13.4 River high

Indigirka 7,400 70.6 6.53 -13.7 River-Tide high

1Dupre & Thompson (1979); 2Nelson & Creager (1977); 3Korotaev et al. (2017);
4Korotaev (2011); 5Burn & Kokelj (2009); 6 Jorgenson et al. (1998);
7Bromwich et al. (2018); 8Vulis et al. (in review); 9Brown et al. (1997)

a Dupre (1979); b Nelson et al., (1979); c Korotaev (2017, in Russian); d Korotaev (2011);

e Burn and Kokelj (2009);f Jorgenson et al., (1998); g Bromwich et al., (2018); h Vulis et

58



al., (2023); i Brown et al., 1999

5.3 Assessment of the relationship of lake cover prop-

erties with climate

5.3.1 Standard Statistics

As thermokarst lake formation is driven by the thaw of ice rich permafrost, we first asked

whether there is a climate signature on bulk lake coverage. Two common bulk lake cover

statistics that are typically used are lake density and lake areal fraction (also known as

limnicity; Grosse et al. (2013)). Lake density is defined as the number of individual lakes

(NL) over the non-channelized area of the subaerial delta Adelta. The lake area fraction is

defined as the fraction of non-channelized delta area taken up by lakes (i.e total lake area,

AL,T , over Adelta). Both metrics are computed with respect to non-channelized delta area

such that variation in channelized area between deltas does not influence the values of the

metrics.

We observe that the Mackenzie appears as a significant outlier in terms of lake density

and lake area fraction (Figure 5.2a, circled point). We hypothesize that it may be an outlier

because it formed while draining the margins of the thawing Laurentide ice sheet (Burn &

Kokelj, 2009), which may have led to large inputs of silts especially when compared with

the other deltas which were not immediately downstream of thawing glaciers. This unique

deglaciation history contributes to an estimated initial progradation age of 14, 000 years

ago, compared with estimated ages of less than 8, 000 years for the remaining deltas (Table

5.1). This combined increased progradation time with higher levels of silt may have led to

preferential conditions for the growth of the abundant thermokarst lakes observed on the
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Figure 5.2: Bulk lake cover statistics on arctic deltas. (a) Lake density, i.e. number of
lakes per unit delta island area, shows no relationship with climate and the Mackenzie delta
(MAAT = −7.6◦C, black circle) appears as an outlier. (b) Lake area fraction, i.e. fraction of
delta area taken up by lakes shows a significant increase in colder systems, when excluding
the Mackenzie delta. (c) The mean lake area to climate trend as reported in Vulis et al.
(2021) which suggests that lake area fraction (b) increases due to the presence of larger lakes.
Figure 2.
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modern delta.

Even when excluding the Mackenzie from a regression analysis, we find no statistically

significant relationship between climate, represented by MAAT, and lake density (Figure

5.2a, R2 = 0.2, p = 0.1982). However, we do observe a weak relationship between climate and

lake areal fraction when excluding the Mackenzie (Figure 5.2b, R2 = 0.36, p = 0.0498). As

there is no relationship between climate and lake density (Figure 5.2a), the weak relationship

of lake area fraction with climate may be driven by the presence of larger lakes, which would

be supported by the previously reported trend in mean lake area to MAAT (Figure 5.2c).

We also found that when not including the Kobuk delta (MAAT = −4.5◦C), there is a

significantly stronger relationship (R2 = 0.7, p = 0.0028) between climate and lake area

fraction. Although the Kobuk delta also appears to be an outlier in terms of lake density

and lake area fraction, there is no strong physical motivation for why this delta should be

excluded.

5.3.2 Information Theoretic characterization of lake cover

Although lake density and lake area fraction are commonly used measures of lake spatial

coverage, they provide limited information about the lake cover on a delta as they do not

reflect information about lake size heterogeneity. To illustrate this point, we show in Figure

5.3 four panels where each panel has an identical number of lakes (10), lake area fraction

( 0.1), density (0.03 lakes / m2), and mean lake area (30 m2), but each configuration has

a different lake size distribution, which could be a signature of process. To overcome these

limitations and account for both lake size and their number, we propose a novel set of

information-theoretic lake cover metrics, inspired from newly developed metrics of braided

river geometry (Dong & Goudge, 2022; Tejedor et al., 2022) and which can capture lake

diversity and provide additional information on lake patterns.
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𝒆𝒆𝒆𝒆𝒆𝒆: 30 m2

𝒆𝒆𝑵𝑵𝒆𝒆: 10
E[𝐴𝐴𝐿𝐿]: 30 m2

𝐴𝐴𝐿𝐿/ 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷: 0.1
Density: 0.035 lakes/m2

eLS: 105 m2

𝒆𝒆𝑵𝑵𝒆𝒆: 2.85
E[𝐴𝐴𝐿𝐿]: 30 m2

𝐴𝐴𝐿𝐿/ 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷: 0.1
Density: 0.035 lakes/m2

𝒆𝒆𝒆𝒆𝒆𝒆: 53 m2

𝒆𝒆𝑵𝑵𝒆𝒆: 5.66
E[𝐴𝐴𝐿𝐿]: 30 m2

𝐴𝐴𝐿𝐿/ 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷: 0.1
Density: 0.035 lakes/m2

𝒆𝒆𝒆𝒆𝒆𝒆: 38 m2

𝒆𝒆𝑵𝑵𝒆𝒆: 7.85
E[𝐴𝐴𝐿𝐿]: 30 m2

𝐴𝐴𝐿𝐿/ 𝐴𝐴𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷: 0.1
Density: 0.035 lakes/m2

(a) (b)

(c) (d)

Figure 5.3: Information theoretic metrics of lake cover. Every panel shows lakes
(blue) on land (brown) with identical lake area density (0.035 lakes per m2), lake area
fraction (10%), and mean lake area (30 m2), but visually distinct patterns. We introduce
an effective lake count, eNL which is based on the entropy of the lake size distribution, and
utilize it to compute an effective lake density( eNL/Adelta) and effective lake size (eLS),
which distinguish the above patterns.
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Specifically, Tejedor et al. (2022) introduced an entropic Braided Endex (eBI) to char-

acterize at the section of a multi-threaded river both the number of channels and the het-

erogeneity in their widths. Drawing on their approach and applying it to lakes, we propose

an effective number of lakes, eNL, and then define several metrics based on this quantity.

The effective number of lakes, eNL, is derived below by conceptualizing a stochastic process

based on the lake pattern and then computing the Shannon Entropy of the process.

Consider randomly selecting a water pixel from a given panel in Figure 5.3. The proba-

bility of selecting a pixel belonging to a specific lake i is given by the area of the lake, AL,i,

normalized by the total lake area AL,T , i.e. pi=AL,i/AL,T . The stochastic process defined

here has potential outcomes equal to the number of lakes, NL, with each outcome having

probability pi. When the lakes are of equal size, every outcome is equally likely, i.e. the

randomly selected pixel could belong with equal probability to any of the lakes (Figure 5.3a).

When the area of one lake is significantly larger than the others, it is much more likely that

the randomly selected pixel will fall on that lake compared with any other lake (Figure 5.3c).

This comparison can be alternatively cast by considering how surprising the outcome of

the process is. In Figure 5.3c we are less surprised when the pixel lands in the large lake and

more surprised if it lands in one of the small lakes, while in Figure 5.3a it is equally surprising

for the pixel to land in any of the lakes. This intuitive notion of surprise is mathematically

defined for any individual outcome i as − log2 pi. Note that when an outcome takes place

with probability 1, i.e. there is only one lake, then the surprise is equal to zero as the pixel

will always be chosen from that lake. Then to compare lake distributions, we compute the

expected value of the surprise of the process, which is known as the Shannon Entropy, H

(Eqn. 5.1); Cover & Joy (2006). See Tejedor et al. (2022) and references therein for examples

of the entropy used in a geomorphic context.

H = −
∑
i

pi log2 pi = −
∑
i

AL,i

AL,T

log2
AL,i

AL,T

(5.1)
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For a given number of lakes, the entropy is maximal when the probability of the randomly

selected pixel falling in any lake is equal, i.e. when all lakes have the same size, and decreases

when lake sizes are heterogeneous. For example, for the 10 lakes shown in Figure 5.3a

H = 3.32. For heterogeneous lake size distributions, e.g. Figure 5.3c, where the large lake

has an area 30 times larger than any of the other equal-sized lakes, the entropy is 1.51,

that is, the average surprise is much lower in Figure 5.3c compared with Figure 5.3a. To

transform the entropy into a more readily interpretable quantity, we consider what is the

equivalent number of lakes of equal size that would yield exactly the same entropy as the

observed distribution, which we define as the effective number of lakes, eNL (Tejedor et al.,

2022). The eNL is computed via Equation 5.2:

eNL = 2H (5.2)

As was argued by Tejedor et al. (2022) when introducing the entropic braiding index, the

eNL captures the intuitive notion of an effective count of the lakes. For example, in Figure

5.3c, the effective number of lakes is just under 2.85, while in Figure 5.3d it is 7.85, which

reflects the predominance of the larger lakes in the pattern.

5.3.3 Entropic Metrics

Based on the effective number of lakes, eNL, we propose three metrics of the lake size

distribution and lake spatial cover. We evaluate these metrics at the delta scale below and

show their utility at evaluating heterogeneity in deltaic lake patterns.

Lake Size Homogeneity

By definition, when every lake has the same exact size, eNL equals NL (Figure 5.3a)

and eNL decreases as lake sizes become more heterogeneous. Therefore, the ratio of eNL
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to NL measures the homogeneity of lake sizes. The ratio approaches 1 when lakes are all

the same size, i.e. the pattern is composed of homogeneous lakes, and tends towards zero

as eNL decreases, i.e. the pattern is composed of heterogeneous lakes (Figure 5.3). This is

similar to the channel heterogeneity metric proposed by Tejedor et al. (2022) and to entropic

diagnostics for evaluating landscape regionalizations (Nowosad & Stepinski, 2018).

We do not find that lake size homogeneity linearly depends on climate (Figure 5.4a),

but rather, that three groups of deltas emerge: very cold, heterogeneous systems (Kolyma,

Yana, Indigirka), a cold, relatively homogenous system (Yenisei), and the remainder of the

deltas which have intermediate homogeneity. For the very cold systems this arises because

there are abundant small lakes, a possible signature of early-stage lake growth, along with

very large, coalesced lakes, a signature of late-stage lake growth. On the Yenisei there are

relatively no large, coalesced lakes leading to more overall homogeneity, which may be a

signature of more uniform soil ice volume and intermediate stage lake growth. This suggests

that differences in the heterogeneity of lake sizes may be a signature of geologic variability

or lake growth history.
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Effective Lake Size

We define an effective lake size, eLS as the total lake area divided by the effective number

of lakes (Equation 3).

eLS = AL,T/eNL (5.3)

Note that the effective lake size of a lake pattern has as a lower bound the mean lake size,

but becomes larger than the mean as the lake sizes become more heterogeneous and the eNL

decreases. For arctic deltas, we find that colder deltas have significantly larger eLS, which

aligns with the previously reported relationship between climate and mean lake size. We

observe that the climate trend with eLS is steeper than the climate trend with mean lake

area, which we attribute to the presence of large coalesced lakes in the very cold deltas which

leads to more heterogeneity and a higher effective lake size. This explanation aligns with the

proposed mechanism for the climate relationship, namely that generally colder permafrost

allows for the growth and support of larger lakes on colder deltas (Vulis et al., 2021).

Effective Lake Density

Finally, we define an effective lake density as the effective number of lakes per unit area,

analogously to the lake density.

eLD = eNL/Adelta (5.4)

This metric is less sensitive than the lake density to the presence of abundant small

lakes whose count is sensitive to the satellite resolution used to extract lakes. For example,

increasing the minimum mapping unit from 5, 400 m2 (6 pixels) to 18, 000 m2 (20 pixels) on

the Yana decreases the lake density from 1.19 lakes per km2 to 0.8 lakes per km2, but only

decreases the effective lake density from 0.23 to 0.21 effective lakes per km2.
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(b)(a) (c)

Figure 5.4: Entropic measures of lake size distribution and coverage. (a) Lake
size homogeneity is given by the ratio of the effective number of lakes to the number of
lakes and shows no relationship with temperature, instead highlighting 3 groups of deltas:
low, intermediate, and high homogeneity. (b) The effective lake size shows a positive trend
with temperature corroborating that colder deltas have greater lake coverage associated
with larger lakes. (c) The effective lake density shows no relationship with temperature and
the Mackenzie has significantly larger effective density than any other delta highlighting its
uniqueness. Colorbar is same as in Figure 5.3

We observe that there is no relationship between effective lake density and temperature

and we also note that the Mackenzie stands out as having a much larger effective density

than any other delta. This further suggests that even when controlling for heterogeneity,

the Mackenzie is a delta that is unique in terms of lake coverage compared with most other

systems. Caution should therefore be taken when extrapolating field measurements and

physical inference performed in this system to the broader group of arctic deltas.

5.3.4 Discussion on delta-scale entropic metrics

We presented the three entropic metrics as an intuitive set of easily computable quantities

to characterize lake cover in the face of heterogeneity, with broad applicability outside arctic

deltas. Application to lake distributions on arctic deltas yielded insight into permafrost

process and lake formation history on the deltas. Specifically, we found that deltas group

into 3 levels of differing lake size homogeneity. The separation between the low and high
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homogeneity systems is attributed to distinct stages of lake growth in these deltas. We also

observed a steeper relationship between effective lake size and temperature than between

mean lake size and temperature, which is attributed to the presence of large coalesced lakes

in the very cold deltas that the eLS captures. Lastly, we do not observe a relationship

between effective lake density and climate, supporting that it is an increase in lake size and

not abundance that is observed in the lake area fraction with climate relationship (Figure

5.2). We note that the metrics are computed over the entire delta but can also be used to

compare heterogeneity of subregions within a delta or to track temporal variability in lake

size distribution.

5.4 Lake Spatial Distribution

Having quantified the bulk characteristics of the lake distributions using both traditional and

entropic measures, we now turn to analysis of the spatial distribution of lakes. Specifically

we expect that lake locations will contain information on soil ice volume and permafrost

degradation state, as lakes grow as the result of ice-rich permafrost degradation and that

ice-rich permafrost is hypothesized to grow only after complete channel abandonment and

cessation of flooding (Jorgenson et al., 1998). Visual inspection of the deltas does in fact

suggest the appearance of patterns in lake cover. To determine whether these patterns are

in fact significant, we tested whether lake locations exhibit clustering or whether lakes are

distributed according to complete spatial randomness (Diggle, 2013). We use a distance-

based approach, wherein we test if the observed probability distribution function (PDF)

of inter-lake distances is significantly different than the PDF of inter-lake distances under

complete spatial randomness. To measure the inter-lake distance we introduce the concept

of lake neighborhood distance.
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(a) (b)

dl,l

Figure 5.5: Defining a lake neighborhood distance. (a) Section of real lakes (black) on
the Yana delta. (b) Generalized Voronoi tessellation (Okabe et al., 2000) in arbitrary colors,
after which distances between lakes which share a Voronoi boundary are measured. The full
geometry of each lake is used to generate the Voronoi tessellation.

5.4.1 Lake Neighborhood Distance

The distances between individual spatial geometries such as lakes or islands are typically

approximated by the centroid-to-centroid distance of each object (Diggle, 2013). However

due to the multiscale nature of lake sizes, presence of irregular and non-convex lake shape,

and the dissection of the spatial domain by the channel network, such an approximation

excludes important information. Moreover, the centroid of non-convex lake geometries is

not necessarily contained within the lake, making this approximation difficult to interpret.

Therefore, we measure lake to lake distances explicitly as the minimum distance between

shorelines of two lakes, which is relatively fast to estimate using computational geometry

algorithms implemented in a geographic information system (e.g. Pebesma (2021); see Figure

5.5).

Typically, the distance distribution considered for each ith lake is either the nearest neigh-
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bor distance or the average or max distance to its k closest neighbors, where k is fixed. By

construction, the nearest neighbor distance lacks information on the distance to most neigh-

boring lakes, which can limit further interpretation of its value, so it is preferable to use

the distance to the k closest neighbors. Then consider that the number of adjacent lakes

which can fit adjacent to a given lake scales positively with the size of the lake, as very

large lakes can have more close neighbors, while very small lakes can have few neighbors.

Further consider that the distance between two distant enough lakes is necessarily influenced

by whether additional lakes lie between them. It is therefore desirable to adjust k depending

on lake size such that a scale-appropriate neighborhood can be defined.

To address these considerations, we introduce the notion of the neighborhood of a lake

through the Voronoi tessellation of the lakes (Okabe et al., 2000) and then measure the

average distance to its neighbors. The Voronoi tessellation is an exhaustive partition of a

spatial domain which marks every point in the domain with its nearest lake and encloses

the marked areas in a polygon (Figure 5.5). Note that to identify the nearest lake, the

full geometry of each lake is utilized, not just the centroid of each lake, which is known

as a generalized Voronoi tessellation (Okabe et al., 2000). To account for the dissection of

landscape by channels which impose a necessary separation of lakes from one another, we

treat the entire channel network as a single “lake” when generating the tessellation, but

discard it from further analysis.

For every lake, its neighborhood consists of the q lakes with which it shares a side in

the Voronoi tessellation. Note that q changes from lake to lake and is a property of the

underlying spatial distribution of lakes. Finally for every lake l, we define its neighborhood

distance dl,l, as the average lake to lake distance dl,j, from lake l to its j = 1 . . . q neighbors,

including the channel if the channel is a neighbor. We then computed the distribution of dl,l

for all lakes in each delta.
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5.4.2 Non-randomness of lake locations

To determine whether the lake patterns contain statistically significant clusters of closely

packed lakes, for a large number of iterations (100) we reshuffled the real lakes on each delta

and recomputed the distribution of dl,l in each reshuffling (Figure 5.6). In order to ensure

completion of the reshuffling, lakes were placed on the landscape from largest to smallest.

We found that lakes on arctic deltas exhibit clustering, as indicated by the higher co-

efficient of variation, i.e. lower mean and higher standard deviation, in the distribution of

d(l, l) compared with complete spatial randomness (Figure 5.6). Curiously, most real deltas

exhibit a constant coefficient of variation and therefore a similar degree of clustering across

deltas. However, the Nadym delta exhibits significantly higher clustering of lakes than any

other deltas, which we explore further in sections 5.4.3 and 5.5.

5.4.3 Densely and coarsely packed lakes

The clustering of lake locations indicates that lakes on arctic deltas contain information

on the processes which form them, however the probability distributions in Figure 5.6 do

not identify where these clusters are. Due to the statistical concerns of identifying areas of

significant lake clustering in the presence of interchannel islands, on each delta we simply

identify zones of dense and coarse packing as lakes with neighborhood distances below the

25th percentile and above the 75th percentile of that delta’s dl,l PDF, respectively, and use

those to locate areas in terms of revealing information about process.

Spatially contiguous zones of densely packed lakes are observed on multiple deltas (Figure

5.7) and appear to correspond to process similarities across deltas. For example, on the

Yana, a 15-km wide marine zone is characterized by densely packed lakes stretching along

the seaward perimeter of the delta. This zone runs adjacent to the coastal delta and is also
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Figure 5.6: Non-random lake locations on major arctic deltas. The real lake dis-
tribution of the Kolyma delta is shown along with 4 examples of the randomly reshuffled
lakes, with each lake having a unique, random color. (a) The probability density function
(PDF) of the lake neighborhood distance for 100 reshufflings (black) compared with the
true neighborhood distance PDF (red), with significantly smaller mean and larger standard
deviation in the real lakes. (b) On every delta, lakes exhibit clustering as evidenced by a
larger coefficient of variation (slope) of the observed distance distributions compared with
the reshuffling. The Nadym (triangle) has a coefficient of variation equal to 0.77, indicating
greater clustering than any other delta.
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(a)
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Figure 5.7: Densely and coarsely packed lakes.Spatially cohesive zones of densely packed
lakes can be observed on the (a) Nadym, (b) Kobuk, (c) Yana, and (d) Mackenzie.

observed on the Indigirka and Kolyma deltas. In all 3 deltas, these densely packed lakes are

characterized by an eLS between 28% to 47%of the delta-wide eLS, while coarsely packed

lakes are significantly larger than densely packed lakes (Figure 5.8). Visual inspection of

the marine zone with high-resolution imagery available via Google Earth shows abundant

circular lakes at or below the Landsat resolution amidst high centered polygonal tundra,

suggesting this zone is characterized by highly degraded permafrost.

Although relationships in lake size and spacing are observed in these three deltas, there

is not a general monotonic relationship between the two across deltas, and there is not a

clear correspondence between size, spacing, and permafrost process. For example, a similar

spatially cohesive zone of high packing and small lakes is observed in the Nadym delta

but 12 − 15 km upstream of the shoreline (Figure 5.7a), while lakes are particularly sparse

in the floodplains upstream. However visual inspection shows that in areas of extensive

inundation during periods there is no evidence for polygonal tundra, suggesting a lack of

existing permafrost. The Kobuk and Mackenzie are also characterized by spatially contiguous

zones of densely packed lakes in the lower delta, but densely packed lakes are similar in size
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(a) (b)

Figure 5.8: Lake sizes in densely and coarsely packed zones. The eLS (a) and
mean lake size (b) in the densely packed zones (blue) and coarsely packed zones (b). Bars
indicate pairs of points corresponding to a single delta. Densely packed lakes range from
being significantly smaller (e.g. Yana, Indigirka) to larger (Kobuk) than coarsely packed
lakes.

to all lakes, and not significantly smaller. On the Kobuk, densely packed lakes are even larger

than coarsely packed lakes, i.e. the relationship between size and spacing is reversed. Lastly,

large blocks of spatially cohesive densely packed lakes are not observed on all deltas, e.g. on

the Yenisei. Further information is necessary to make physical inference on the drivers of

these patterns. Given that arctic deltas have extremely variable surface hydrology driven

by snowmelt and flooding, a likely source of additional useful information is the hydrologic

connectivity of the lakes on the landscape. This hydrologic connectivity is examined in the

next section.

5.5 Incorporating hydrologic connectivity

The lakes identified in this study are by definition perennially inundated and disconnected

during low-water, end of summer conditions (i.e. in August or July). However, due to
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fluvial flooding, localized snowmelt, or precipitation events, these perennial lakes may have

surface water connections by ephemeral channels or low-relief between the lakes, e.g. due to

a hierarchical depression structure from a drained thaw lake basin (see insets in Figure 5.9).

Identifying surface water connectivity between lakes can yield insight on delta hydrology and

lake storage, as well as reveal where there is extensive permafrost degradation, as inundation

inhibits permafrost growth and thaws existing permafrost (Zhang et al., 2023).

5.5.1 Detecting surface water connections between lakes

To detect lakes which may have surface water connectivity under wet conditions, we use

the same Global Surface Water (Pekel et al., 2016) water masks used for the extraction of

lakes. We first compute the water pixel occurrence for June through August, i.e. the fraction

of total time a pixel was classified as water in those 3 months over the 20 year period of

record, wJJA
i (Figure 5.9). Then, we identify wet regions, defined as contiguously connected

areas which have experienced inundation (wJJA
i > 0) during the period of record. Lastly, we

identify lake complexes (LC) as wet regions which contain 3 or more perennial lakes (which

were extracted based on the methodology detailed in Section 5.2).

5.5.2 Spatially variable hydrologic connectivity on deltas

Lake complexes reveal both heterogeneity in hydrologic connectivity within deltas and simi-

larities across deltas, offering insight into the permafrost presence on each delta. To generally

compare hydrologic connectivity on each delta we report (a) the percentage of lake area con-

tained within LCs and (b) the fraction of subaerial delta area taken up by the Voronoi

polygons associated with lakes within LCs (Figure 5.10). By both measures the Yana,

Yukon, and Lena have the lowest hydrologic connectivity of any delta, while the Kobuk,

Pur, Mackenzie, and Kolyma have among the highest hydrologic connectivity. This lack of
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Figure 5.9: Lake Complex (LC) identification. (a) Map of June to August water pixel
occurrence, wJJA

i , which is used to identify wet regions, i.e. contiguous regions which have
ever experienced inundation (wJJA

i > 0). (b-d) Highlights of lakes with varying levels of
hydrologic connectivity, along with high-resolution satellite imagery available via Google
Earth (e-g). (h) Wet regions containing at least 3 lakes (as previously identified) are termed
lake complexes and are shown in arbitrary colors, with a high density of LCs in the marine
zone and in a likely yedoma-impacted zone in the southeastern portion of the delta.

hydrologic connectivity can be seen on the Yana (Figure 5.12), where lake complexes are

observed primarily in the marine zone and near large circular and coalesced lakes in the

southeastern part of the delta. On the Kolyma and Kobuk large fractions of the delta are

occupied by LCs (Figure 5.12). Interestingly, although the Nadym (red triangle in Figure

5.6) has a large fraction of hydrologically connected lake area, these hydrologically connected

lakes do not constitute a majority of the landscape as in other systems (Figure 5.10b).

A general mechanism explaining the origin of the underlying differences in hydrologic

connectivity between deltas was not found. One hypothesis is that valley confined deltas

such as the Pur experience more spatially extensive flooding compared with progradational

deltas such as the Yukon or Lena as spring floodwaters are confined and are therefore more

likely to overtop on islands. However, counterexamples to disprove this hypothesis are found

in the Indigirka, which is progradational and shows high hydrologic connectivity and the

Yenisei which is valley-confined but has low hydrologic connectivity. A second hypothesis

is that increased hydrologic connectivity is driven by shallower local relief among lakes but

given that the ArcticDEM has uncertainty in flat landscapes on the order of local relief
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Figure 5.10: Hydrologic connectivity on each delta as measured by LC statistics.
(a) The percent of lake area present within lake complexes (LCs) and (b) the percent subaerial
delta area taken up by LCs for each delta. Neither measure shows a relationship with
temperature, suggesting hydrologic connectivity is reflective of local geomorphic process
control, not climate. Colorbar is same as in Figure 5.3.
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(decameters) and does not control for landscape inundation when retrieving elevation (Porter

et al., 2018), we cannot robustly test this hypothesis.

5.5.3 Delta process zones and projected vulnerabilities

Across deltas, the distinct spatial patterns of the lake complexes and associated lake dis-

tances and sizes reflect differences in hydrologic processes present on the deltas (Figure 5.13).

For example, ephemeral channels activated during spring fluvial flooding or snowmelt are

observed on the Kobuk and Indigirka. These suggest that those sections of the delta are able

to drain after flooding events. As such ephemeral connectivity between the DCN and lakes

can control lake biogeochemistry and the form and magnitude of carbon released into the

atmosphere from lakes (Squires et al., 2009), detecting these ephemeral channels can help

inform future work on improving deltaic atmospheric carbon emission estimates.

Another common feature across all deltas is the presence of hierarchical depression struc-

tures. These hierarchical depressions can correspond to drained thermokarst lake basins

(DTLB) or degrading high centered polygonal tundra connecting multiple existing lakes.

DTLBs typically consist of several small lakes surrounded by areas of intermediate occur-

rence, indicating areas of temporary surface water storage. The existence of DTLBs is a

signature of extensive ice-rich permafrost development which was able to form large lakes

and then drained. This suggests that these areas of the delta have rarely experienced fluvial

flooding which would degrade the permafrost (Stephani et al., 2020) and that these areas

of the delta are relatively old. The presence of the DTLBs also suggests a lack of active

fluvial reworking after drainage which would erase these features from the surface. Further

research on arctic deltas focus on detecting these drained thaw lake basins using auxiliary

information but the analysis of the spatial distribution of these features is beyond the goal

of this study which focuses on characterizing perennially inundated lakes.
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(a) (b)

(c) (d)

Figure 5.11: Lake complexes on the Yana and Kolyma deltas. (a, b) Lake complexes
on the Yana delta colored by (a) the eLS of lakes in each LC and (b) average neighborhood
distance of lakes in each LC. (c, d) The same maps for the Kolyma.
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(a) (b)

(c) (d)

(e)

Figure 5.12: Lake complexes on the Kobuk and Nadym deltas. (a, b) The Kobuk
delta and (c, d) the Nadym delta show distinct spatial patterns in LC coverage and location.
(e) An elevation transect given by the white line in (c) which shows a local depression in the
LC’s with densely packed small lakes about 10− 15 km upstream of the shoreline.
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The aforementioned marine zone is present on the Yana, Kolyma, and Indigirka delta and

consists of densely packed, hydrologically connected, small lakes (Figure 5.12i,j). The ob-

served extensive inundation of the marine zone will enhance the degradation of permafrost in

these regions (Zheng et al., 2019). Given the presence of ice wedge polygons and thermokarst

lakes, further permafrost degradation is expected to lead to further subsidence, which sug-

gests that these three deltas have coastal fringes particularly vulnerable to increased relative

sea level rise and enhanced wave activity due to sea ice loss (Overeem et al., 2022).

A similar zone of LCs containing densely packed small lakes is observed on the Nadym

delta about 12 km upstream of the coastline and spans the width of the delta. The densely

packed small lakes are located within depressions which flood regularly and connect the

lakes. Given the extensive intermediate water occurrence in this area and connectivity

between lakes, we hypothesized this zone is a large-scale depression and should functionally

serve as a retention basin with the less inundated upstream parts of the delta. A transect

taken from the ArcticDEM (Porter et al., 2018) corroborates this and shows that this zone

is 1 to 2 meters lower than the downstream coastal islands (Figure 5.12). This zone is

likely a result of widespread ice-rich permafrost degradation, thermokarst lake formation,

and eventual coalescence, which now appears as a massive seasonally inundated depression

with small perennial lakes within it.

In contrast to the extensively inundated and densely packed marine zone, are the never-

inundated and coarsely spaced or lake absent coastal fringe on the Nadym and Ob deltas.

On the Nadym the complete absence of lakes and any inundation suggests that the coastal

islands lack ice-rich permafrost altogether. High-resolution imagery from Planet Labs does

not show any evidence of permafrost features such as ice-wedge polygons either (Figure 5.13).

On the Ob the presence of coarse lakes suggests permafrost degradation has commenced,

but high-resolution imagery shows no evidence of ice-wedge polygons, suggesting there is

not widespread excess ground-ice on these islands. It is therefore not expected that further
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 5.13: Hydrologic processes and permafrost signatures. Left panels show June
to August water pixel occurrence for example process zones with right panels showing as-
sociated optical or multispectral satellite imagery to highlight distinct local features. (a, b)
Some lakes may be part of a lake complex due to ephemeral channels which likely drain the
lakes. (c, d) Some identified lakes may be part of an LC as they are the perennial remnants
of drained thermokarst lake basins. (e, f) Densely packed small lakes present in LC in the
marine zone indicate highly degrading permafrost, as supported by the presence of abun-
dant small circular lakes and high-centered ice wedge polygons. (g, h) Some lakes lacking
ephemeral inundation are located in low-centered polygonal tundra, suggesting a lack of
permafrost degradation and potential for future lake expansion. (i, j) Areas that are never
inundated and lack lakes or LC show no evidence of ice-rich permafrost.
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permafrost-induced subsidence will take place and increase the vulnerability of these islands

to relative sea level rise or permafrost.

The above examples highlight that lake spatial patterns encode information on permafrost

presence and soil ice richness. However to extract maps of soil ice volume or permafrost thick-

ness is not trivial and requires incorporation of higher resolution satellite imagery and field

data which could be used to train algorithms for landscape classification. Moreover, the ob-

served lake zones could be useful for highlighting representative areas that should be sampled

in field campaigns to improve upscaling of point and field measurements to landscape level

estimates of permafrost zonation, methane emission, and other relevant landscape properties.

5.6 Conclusions

Arctic river deltas are uniquely distinct from their temperate counterparts as they are dotted

by thermokarst lakes which are formed by the thaw of ice-rich permafrost. How this lake

cover interacts with the delta channel network and how thermokarst lakes on arctic deltas will

respond to warming and fluvial change is not yet well understood. We take steps towards

understanding thermokarst lake characteristics on deltas through a pan-arctic analysis of

thermokarst lake patterns on 12 major arctic river deltas at multiple spatial scales. We show

that:

1. Lake area fraction is typically larger in colder deltas and is associated with increased

coverage of the delta top by larger lakes and not an increase in the number of lakes

per unit delta area,

2. Heterogeneity in lake sizes is most prominent in the coldest deltas examined, which is

attributed to mixed early and late stage lake growth based on the presence of abundant

small lakes and large coalesced lakes
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3. Lakes are non-randomly distributed on deltas and there are cohesive regions of densely

packed lakes on multiple deltas which highlight areas of degraded permafrost, and

4. The degree of hydrologic connectivity between lakes varies between deltas and is spa-

tially heterogeneous, with hydrologic connectivity resulting from hierarchical depres-

sion structure (e.g. drained thaw lake basins), ephemeral channels, and extensive

permafrost degradation.

Further insight into spatially explicitly permafrost patterns may utilize high resolution

satellite imagery fused with the longer-term surface water dynamics captured at medium-

resolution (Landsat) presented here. Moreover, given the diversity in lake patterns within

and across deltas observed here, further studies on understanding the dynamics of specific

deltas through intensive field campaigns, such as the Arctic COLORS campaign on the

Yukon, Kobuk, and Mackenzie (Mannino et al., 2022), are likely necessary to project the

trajectories of specific systems under climate change.
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CHAPTER 6

Conclusions

Summary of Work

River delts are ecologically and environmentally important landscapes which are at risk

from sediment deprivation, sea level rise, and human activity (Nienhuis et al., 2020; Syvitski

& Saito, 2007; Moodie & Nittrouer, 2021). Arctic river deltas specifically are influenced

by cold region processes such as snowmelt-driven hydrology and permafrost-presence, which

puts them at high risk from projected climate change including warming and precipitation

shifts (Tokarska et al., 2020). In particular, thermokarst lakes, which are formed by the

thaw of ice-rich permafrost, are expected to both expand and drain under future warming,

reconfiguring deltaic hydrology and impacting the arctic carbon cycle Grosse et al. (2013).

Yet studies focusing on thermokarst lake dynamics and trends in deltaic environments are

limited. The goal of this work was to increase our understanding of the relationship between

process and form on arctic river deltas to pave the way for process-informed predictions of

delta response under different scenarios of change.

In Chapter 2, we introduced a new multiscale framework which characterizes river delta

morphology via process-targeted measures of its shoreline structure, and used these measures

to separate deltas into morphological classes (called morphotypes) and to infer the dominant

forcing of each morphotype. We then showed that the dominant forcings inferred from

shoreline structure generally align with those estimated via relative sediment fluxes, while

positing that misalignments arise from spatiotemporal heterogeneity in deltaic sediment
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fluxes not captured in the flux estimates.

In Chapter 3, we posed the hypothesis that summertime waterbody shrinkage rates on arc-

tic deltas are controlled by proximity to the delta channel network due to a spatially explicit

pattern in active layer thickness and near surface hydrologic connectivity. We documented

such a pattern in two Alaskan deltas using 27 summers of remote sensing imagery from

Landsat. To provide further evidence of our hypothesis, we falsified alternative hypotheses

corresponding to different mechanisms that could lead to a similar pattern, including the

existence of undetected sub-pixel resolution channels and systematically shallower waterbod-

ies closer to the channel network. We found that a thicker and deeper active layer is the

most likely explanation for the observed lake shrinkage pattern and suggested the poten-

tial of investigating waterbody dynamics, from readily available satellite data, for inferring

permafrost patterns which are hard to measure directly over large spatial domains.

In Chapter 4, we presented a pan-Arctic study of 12 arctic deltas wherein we classified

observed waterbodies into perennial lakes and ephemeral wetlands capitalizing on the his-

torical record of remote sensing data. We provided evidence that thermokarst lake sizes are

universally lognormally distributed and that historical temperature trends are encoded in

lake sizes, while wetland sizes are power law distributed and have no temperature trend.

These findings help to inform possible space-for-time projections of how warming will lead

to changes in lake size distribution on arctic deltas.

In Chapter 5, we used the lake dataset generated in Chapter 4 to analyze lake spatial

patterns on arctic deltas to mine information on permafrost and geomorphic processes. We

introduced a suite of information theoretic measures to characterize lake spatial distribution

and lake cover, and utilizing these along with traditional measures we documented a weak

relationship between lake spatial coverage and climate. We then showed that lake patterns

are spatially structured on all deltas and that surface hydrologic connectivity between lakes

is spatially variable within and across deltas, positing that such patterns reflect geomorphic
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process differences that can be explored for process understanding. For example, combining

these analyses with higher resolution satellite imagery and field data may improve estimates

of spatially distributed permafrost cover and inform our understanding of permafrost devel-

opment in deltaic environments, which is important for carbon and nutrient cycling under a

changing climate.

Overall, the results of this dissertation have improved our understanding of:

1. The link between observed delta morphology and the dominant forcings which have

formed deltas.

2. The spatial distribution of permafrost within arctic river deltas and its relationship to

lake dynamics.

3. The thermokarst lake distribution on arctic river deltas and the trajectory of deltaic

thermokarst lake coverage under climate change.

Future Perspectives

The two major research avenues pursued in this thesis, namely characterization of river

delta morphology via shoreline structure and mapping of surface water dynamics and pat-

terns in arctic deltas, still leave a number of open questions that need to be pursued in order

to improve projections of deltaic response to change.

Specifically, the multiscale framework for shoreline characterization developed in Chapter

2 has the potential for detailed elucidation of the relationship between morphology (form)

and dominant forcings (process) in evolving deltas. For example, using physics-based numer-

ical models which can simulate river delta morphodynamics, we could track both the relative

sediment fluxes contributed by rivers, waves, and tides over the lifetime of a delta and the

shoreline structure of the delta, to identify timescales of morphologic response to sediment
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flux changes, appropriate time periods over which to compute relative sediment fluxes, and

how spatial heterogeneity in sediment fluxes manifests in distinct shoreline structure. More-

over, the characterization of river delta shoreline structure could be coupled with analysis of

delta channel network structure to see what unique information is present in both features.

In arctic deltas, the methodology and techniques presented herein could be used to in-

form spatially explicit permafrost coverage and soil ice-richness by corroborating in-situ and

field measurements of soil temperatures and ice volume with remotely sensed surface wa-

ter dynamics. Remotely sensed surface water dynamics, which are spatially resolved while

field measurements are not, could then be used as predictors in machine learning algorithms

applied over large regions. This approach could be targeted to deltas but would also be ap-

plicable in floodplain environments. Such spatially distributed maps of permafrost coverage

are critical for understanding where specific zones on a delta or floodplain are going to be

most vulnerable to permafrost thaw. Moreover, numerical models of deltaic morphodynamics

and hydrology are likely necessary to make projections of deltaic morphology under climate

change. The observed surface water dynamics and patterns could be used to constrain and

inform these models.
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Stadnyk, T. A., Tefs, A., Broesky, M., Déry, S., Myers, P., Ridenour, N., . . . Gustafsson,
D. (2021). Changing freshwater contributions to the arctic: A 90-year trend analysis
(1981–2070). Elem Sci Anth, 9 (1), 00098.

Stephani, E., Drage, J., Miller, D., Jones, B. M., & Kanevskiy, M. (2020). Taliks, cry-
opegs, and permafrost dynamics related to channel migration, colville river delta, alaska.
Permafrost and Periglacial Processes , 31 (2), 239–254.

Straub, K. M., Li, Q., & Benson, W. M. (2015). Influence of sediment cohesion on deltaic
shoreline dynamics and bulk sediment retention: A laboratory study. Geophysical Research
Letters , 42 (22), 9808–9815.

Strimas-Mackey, M. (2021). smoothr: Smooth and tidy spatial features [Computer software
manual]. Retrieved from https://CRAN.R-project.org/package=smoothr (R package
version 0.2.2)
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APPENDIX A

Supplementary Material for Chapter 2

This appendix contains supplementary material for Chapter 2. The supplementary ma-

terial includes a detailed description of the methods used for shoreline characterization,

discussion on the use of the curvature operator for mapping shorelines to 1-D spatial-series,

and assessment of the morphometric classification sensitivity to the definition of the fine

scale variance.

A.1 Extended Methodology

Shoreline Extraction

The Opening Angle Method (OAM; (Shaw et al., 2008)) was used to define the shorelines of

the deltas under study. The OAM and related methods (Geleynse et al., 2012) are used in

river mouth impacted coastlines where the traditional definition for a shoreline as the land

water interface is not meaningful as the interface can extend far upstream of the actual river

mouth.

To utilize the OAM, it is first necessary to generate a binary water mask of the subaerial

extent of the delta. Water masks were generated from the Landsat-derived Global Surface

Water (GSW) dataset, which provides 30-m spatial and monthly temporal resolution water

masks from 1984 to 2018 and is available via Google Earth Engine (Pekel et al., 2016). An
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individual water mask was used for each delta. In order to account for missing data due to

cloud cover and seasonal heterogeneity in water cover, water masks were generally obtained

by thresholding the 1984 to 2018 occurrence product, which measures the fraction of time

a pixel was covered by water from 1984 to 2018. In deltas with active shorelines e.g. the

Danube or Wax Lake, the occurrence for a single representative year was used (Table S1),

i.e. maps which measure the fraction of time a pixel was covered by water for a specific

year. In the Arctic, snowmelt-driven floods from April to June lead to significant seasonal

variability in inundation and apparent subaerial delta extent, therefore the June occurrence

was used to identify maximum mouth extent (Vulis et al., 2021). When necessary, masks

were manually cleaned to edit or remove features such as jetties or rice paddies, which are

visible from contemporaneous satellite imagery and the GSW has difficulty accounting for

at its 30-m spatial resolution. Lastly, the OAM algorithm computes an opening angle on

all water pixels that lie within the convex hull of the land in the water mask, which leads

to unnecessary computations in channel sections upstream of the mouth which are entirely

blocked by land. Therefore, these upstream sections were manually marked as land which

decreased OAM runtime, as has been previously proposed (Baumgardner, 2015). The OAM

was then run on the water mask corresponding to each delta. We made computational

improvements to the OAM which significantly improved runtime, and have published this as

an R package available via GitHub (https://github.com/lvulis/ROAM). A critical angle θc

of 45◦ was then used to define the shoreline as an ordered set of coordinates SR
45 : {(x, y)45},

although we found that the emergent shoreline classification does not change when using a

critical angle θc of 50
◦. The shoreline defined in SR

45 only extends over the subaerial extent

of the delta with start and end points of the shoreline defining the limits of the delta. The

subaerial delta was visually outlined and compared with geologic maps where the extent was

not clear from Landsat imagery. Note that in several deltas, non-depositional sections of the

coastline were included in SR
45, e.g. in valley confined systems such as the Dnieper and Don,

and these were removed. Also note that the Missisippi Head of Passes, the Atchafayla, and
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Wax Lake deltas were all analyzed as separate systems due to their spatial independence in

line with other studies (Galloway, 1975; Geleynse et al., 2012; Konkol et al., 2022; Knights

et al., 2020).

Finally, to remove discretization artifacts on the shorelines which arise from being defined

at the 30-m pixel scale, the raw shoreline in SR
45 was first smoothed using a Nadaraya-Watson

kernel smoother with a bandwidth of 180-meters (Strimas-Mackey, 2021) and then resampled

at a 60-meter interval, resulting in the shoreline S45 used in the geometric and spectral

analysis.

Macroscale – Shape

To measure the shape of the delta, a circle with parameters {(xc, yc), Rc} was fit to S45 using

least squares (Jammalamadaka & Sengupta, 2001). The shoreline may correspond only to

a sector of a circle, which the least squares fit captures. The center of the circle (xc, yc)

corresponds to the center of curvature and Rc the radius of curvature. Deltas with a center

of curvature lying in the ocean are concave, while those with a center of curvature lying

over land are convex. When Rc is significantly larger than the arc length LC of the circular

sector corresponding to the shoreline, the shoreline is essentially flat. That is, when the ratio

Lc/Rc = φ, where φ is the angle of the sector, is smaller than a cutoff φmin, the shoreline

is flat. We found that a cutoff φmin = 2π/12 = 30◦ clearly separated flat from concave and

convex deltas, i.e. if the shoreline corresponds to a circular sector with a radius at least 12

times its length, it is flat.
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Mesoscale – Fraction of variance contributed by mouths

To measure the fraction of variance contributed by mouths (fM ), first sections of S45 corre-

sponding to mouths were identified by denoting which points in SR
45 are not a part of SR

90,

the shoreline corresponding to a critical angle of θc = 90◦, i.e. MR
45 = {(xi, yi)|(xi, yi) ∈ SR

45

and /∈ SR
90}. This is because OAM-defined shorelines using different critical angles do not

overlap within local concavities (e.g. mouths or embayments). This definition may include

embayments such as lagoons sheltered by spits, therefore MR
45 was manually inspected and

cleaned to represent only mouths. Lastly, the same smoothing procedure used to transform

SR
45 to S45 was used to smooth MR

45 and produce M45, which identifies the set of points in

the smoothed shoreline as mouths.

Then to measure what fraction of variability in S45 is contributed by M45 we used wavelet

analysis to locally estimate the variance in shoreline structure at multiple scales (Kumar

& Foufoula-Georgiou, 1994). For the wavelet analysis a univariate series representing the

shoreline was produced as the distance dc from every point in S45 to the center of curvature

(xc, yc), defining a signal dc(l), where l is the distance along the shoreline. For convex deltas,

the mouths show up as minima, which can be seen in the Mahakam Delta (Fig. 2.2). We

found that this mapping of the shoreline to a univariate series is preferable to approaches

such as extracting the local curvature series, which is effectively a high-pass filter removing

large scale features and is sensitive to discretization, see Appendix A.3. Note that mouth

widths are typically non-uniform within a delta, resulting in multiscale variability in the dc(l)

signal, supporting the use of localized analysis of variance in the spatial domain. Then, the

wavelet transform of dc(l) was computed using the Morlet wavelet, which has optimal time-

frequency localization, with a central frequency of 6 rad/s (Kumar & Foufoula-Georgiou,

1994). The wavelet coefficients are given by Ψk,l at a wavenumber (spatial frequency) k

and location l along the shoreline, and are used to estimate the power, Ψ2
k,l (Fig. A.2).
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Finally, the fM is defined as the ratio of the integrated wavelet power for all scales over

coefficients corresponding to the mouths, Ψk,l∈M over the total power (i.e. variance) of

the signal (Eqn. A.1), where L is the length of the shoreline and kmin and kmax are the

minimum and maximum wavenumbers, respectively. Note that typically, wavelet coefficients

inside the cone of influence (COI) are excluded from the computation of the variance as

they are impacted by edge effects. However, in some deltas the mouths may contain very

large features, sometimes spanning over one third of the length of the signal, therefore for

all deltas these coefficients were included for more robust estimation of the relative energy

in these locations.

fM =

∫ kmax

kmin

∫ L

0

Ψ2
k,l∈Mdldk/

∫ kmax

kmin

∫ L

0

Ψ2
k,ldldk. (A.1)

Microscale – Gini-Corrected Fine Scale Variance

Lastly the wavelet transform (Kumar & Foufoula-Georgiou, 1994) was used to estimate the

variance at fine scales, i.e. from 300 to 1000 meters (Eqn. A.2). Note that here edge effects

from the COI can significantly influence the estimated amount of energy at the scales of

the features under study, therefore coefficients inside the COI are excluded and the power

at each wavenumber k is normalized by the number of points at that frequency, Nk. The

sensitivity of the lower bound of 1000 meters was evaluated and no significant changes in

the classification were found (Fig. A.1).

FSV1000 =
1

Nk

∫ 1/300

1/1000

∫ L

0

Ψ2
k,ldldk. (A.2)

Although two systems may have the same variance at fine scales, one may lack structural

variability (i.e. correspond to white noise), while another may have peaks or increased

variability at distinct scales. To account for this structured variability, the power spectral
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density (PSD) of the actual shoreline spatial series is compared to a white noise series

with equivalent variance. Specifically, a spectral Gini coefficient g, which measures the total

deviation of the cumulative PSD (cPSD) from the cPSD of white noise is computed over

the fine scales, and used as a multiplier to the FSV1000, defining the gFSV = g ∗ FSV1000.

This multiplier is low when shoreline variability is similar to white noise, and high when

shoreline variability has defined structures (i.e. peaks or higher energy at finer or coarser

scales), and helps to separate deltas with similar FSV1000 but distinct modes of variability

(see Appendix A.3 for details).

All analyses were performed in R using open source geospatial, statistical, and spectral

analyses packages (Strimas-Mackey, 2021; Pebesma, 2018, 2021; Pau et al., 2010; Morgan-

Wall, 2021; Aybar, 2022; Gouhier et al., 2021).

Sediment Flux Data

Sediment fluxes for every delta were obtained from version 3 of the 932020Nienhuis et

al.Nienhuis et al. () database, which used the WBMSed hydrologic model forced with 1981

to 2010 hydroclimate and assuming no human intervention of landscape properties to es-

timate riverine sediment fluxes, QR, (Cohen et al., 2013), angular wave climate data from

WaveWatch 3.0 (Chawla et al., 2013) averaged from 1979 to 2009 to estimate wave sediment

fluxes, QW , and tidal constituents from TXPOv8 inverted from satellite altimetry measure-

ments from 1992 to 2006 (Egbert & Erofeeva, 2002) to estimate tidal sediment fluxes, QT .

To reduce uncertainty in tidal amplitude estimates associated with the delta outlet location

being located too far upstream of the coastline in the global delta database, for all deltas

tidal amplitudes from the TXPO grid were obtained at the OAM shoreline extracted at a

critical angle 90◦. This only resulted in a difference of more than 5 cm for 9 out of 54 deltas,

all with significantly widened mouths.
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Figure A.1: Insensitivity of the emergent classes to the upper bound of the
finescale variance. There is almost no discernible difference in the deltas belonging to
each emergent phenotype when adjusting the upper wavelength of the Gini-corrected Fine
Scale Variance (gFSV ) between 800 m to 1100 m. Only the Selenga and Yana switch from
the river phenotype to river-wave phenotype for an upper wavelength of 1100 m, but lay on
the boundary of the two classes.
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Sediment flux data represents a delta-wide value, see Nienhuis et al. (2020) and references

therein for details. For every delta, the relative sediment flux rx, where x represents either

the river, wave, or tide component is defined as:

rx =
Qx

QR +QT +QW

. (A.3)
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A.2 Spectral Gini Coefficient Definition

In order to help separate wave-influenced deltas which are smooth and lack distinct features

in the fine scale ranges from the river and tide influenced deltas which contain structure at

fine scales, we adjusted the finescale variance by a spectral gini coefficient. To define the

spectral gini coefficient and interpert this adjustment, first consider the wavelet-estimated

power spectral density, given by Eqn. A.4,

PSD(k) =
1

Nk

∫ L

0

Ψ2
k,ldl, (A.4)

where l is the location and k the wavenumber (scale). The spectral variance SV for a range

of wavenumbers (scales) k0 to k1 is found by integrating with respect to k:

SV =

∫ k1

k0

PSD(k)dk. (A.5)

In general, two signals may have identical SV for a given range of scales but distinct structure.

For example, white noise, which by definition has a constant PSD, i.e. PSDWN = P , and

lacks any structural variability, may have the same SV as a signal with structured variability.

To measure the deviation from white noise, consider the normalized PSD, PSD∗(k), given

in (Eqn. A.6). PSD∗(k) is analogous to a probability density function (PDF), where the

integral over the support (i.e. from k0 to k1) is 1.

PSD∗(k) =
PSD(k)

SV
. (A.6)

White noise has a uniform spectrum (i.e. flat PSD), while the PSD of another signal may

be distributed heterogeneously over the range of wavenumbers (Fig. A.2). We then consider

the normalized cumulative power spectral density, cPSD∗(k), where k can take on any value
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up to k1:

cPSD∗(k) =

∫ k

k0

PSD∗(u)du. (A.7)

White noise has a linear cPSD∗, while the shoreline cPSD∗ is skewed towards relatively

coarser scales for k0 = 1
1000

m−1 and k1 = 1
300

m−1 (Fig. A.2). For these skewed distribu-

tions, a natural measure of the deviation from a uniform distribution is the Gini Coefficient,

g, which measures the area between the cPSD∗(k) of white noise, cPSD∗
WN(k), and the

cPSD∗(k) of the shoreline, normalized by the area under the curve of cPSD∗
WN(k). As

these distribution functions represent spectra this is a spectral Gini Coefficient.

g =

∫ k1
k0

(cPSD∗
WN(k)− cPSD∗(k))dk∫ k1

k0
cPSD∗

WN(k)dk
. (A.8)

The coefficient g increases towards a maximum value of 1 as the PSD is more heterogeneous

and approaches zero as the PSD approximates white noise. This coefficient is used as a

multiplier to the FSV, computed from k0 = 1
1000

m−1 to k1 = 1
300

m−1, of the shoreline

spectra, accounting for the heterogeneous distribution of variance among scales indicative of

distinct scale-dependent features (Fig. A.2).
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(A) (B)

Figure A.2: Cumulative Power Spectral Density (cPSD∗) of the shoreline signals.
(A) The cPSD∗ curves of the 54 analyzed delta shorelines, each normalized to have a value of
one over the fine scales. The straight black line is cPSD∗

WN and overlaps for each delta due
to the normalization to have unit power. (B) Example of the deviation between an arbitrarily
selected real shoreline and white noise with equivalent energy. The Gini Coefficient (g) is
the area between the two curves normalized by the area under the white noise.
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A.3 Unsuitability of curvature mapping for shoreline

characterization

A common technique to quantitatively analyze meandering rivers is to map the 2D curve

corresponding to the channel centerline to a 1D spatial-series represented by its curvature,

e.g. (Schwenk et al., 2015), which could also be applied to delta shorelines to perform

wavelet analysis. However, for the problem of shoreline characterization we found that the

high-pass filter properties of the curvature operator make it unsuitable for extraction of large

scale patterns such as channel mouths using spectral analysis. A synthetic example using

sinusoids is given to demonstrate these high-pass filter properties. Consider two sinusoids

of differing wavenumber with random additive error, z1(s) = 5 sin (s) +N (0, .5) and z2(s) =

20 sin ( s
2π
) +N (0, 2), along with their sum z3(s) = z2(s) + z1(s) (Fig. A.3). The sinusoids

represent spatial-series with s being some distance along the shoreline, and are sampled with

spatial step ∆s = 1. To analyze the oscillations, the Fourier transform ẑ(k) with wavenumber

k is taken, with the power spectral density of each signal given in the right panel of (Fig.

A.3). The additive signal z3 has clearly defined peaks at k = (2π)−1 and k = (2π)−2.

In the case where the functional relationship between z and s is not known, we may

want to map the set of coordinates of each {(s, z)i} to a univariate series to employ spectral

analysis to characterize the curve. One such common mapping is defining the local curvature

κ. For an ordered set of coordinates {(x, y)i} constituting a 2D planar curve, a stable and

smooth estimator of the local curvature κ = 1/R is given in Schwenk et al. (2015):

R =
1

2

√
(a2

x + a2
y)(b

2
x + b2

y)(c
2
x + c2y)

(aybx − axby)
, (A.9)

where ax = xi − xi−1, bx = xi+1 − xi−1,cx = xi+1 − xi. This definition and related curvature

operators given in Schwenk et al. (2015) clearly depend on the sampling resolution of the
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2-D planar curve.

The curvature is computed for each curve given by the {(s, z)} coordinate pairs to define

a univariate series κ(l), where l is the distance along the curve (Fig. A.4). The noise

present in the original signals is amplified by taking local differences and results in the large

variation seen in κ2 and κ3. The corresponding power spectral density shows that for the

high wavenumber series, κ1, the curvature mapping still captures the wavenumber observed

in z1, but κ2 and κ3 have no power near the real wavenumber of (2π)−2. This is because

taking finite differences to compute the curvature filters out the low wavenumber signal.

The sensitivity or ability to capture the low wavenumber signal likely depends on the

ratio of the sampling wavenumber ks = ∆s−1 to the wavenumber of interest ku, ks/ku. By

the Nyquist theorem, this ratio must be at least 2 to resolve ku. When the ratio approaches 2

from a larger value, noise may not be amplified by the curvature transformation, but when it

is much larger than 2 noise is amplified. Some value sufficiently optimal to capture ku using

the curvature transformation may exist. However, mouth widths are not constant on deltas

and can vary at least by a factor of 2, therefore ku can vary significantly, so a ks optimal

for the narrowest mouth will amplify noise in the remaining, larger mouths. Moreover, a

sufficiently high ks to capture mouths would filter out information at low wavenumbers, e.g.

large scale features such as deltaic lobes. For these reasons the mapping of curvature is not

suitable for the problem of shoreline characterization.

115



0 50 150 250
−6
−2

2
6

z1

s

z 1

0.0 0.1 0.2 0.3 0.4 0.5
0.0
0.5
1.0
1.5

z1

k
P

S
D

(k
) 1

03

0 50 150 250
−20

0

20

z2

s

z 2

0.0 0.1 0.2 0.3 0.4 0.5
0

10
20

z2

k

P
S

D
(k

) 1
03

0 50 150 250
−20

0

20

z3 = x1 + x2

s

z 3

0.0 0.1 0.2 0.3 0.4 0.5
0

10
20

z3

k

P
S

D
(k

) 1
03

Figure A.3: Synthetic sinusoids and their corresponding power spectral density.
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Figure A.4: Result of the curvature operator on sinusoids. The sinusoids from Fig.
A.3 transformed to curvature spatial-series using Equation (A.9). Note that κ2 and κ3 fail
to capture the low frequency signal present in z2 and z3.
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APPENDIX B

Supplementary Material for Chapter 3

This appendix contains supplementary material for Chapter 3. This includes sample

hydrographs of both deltas studied, discussion on channel network extraction and computa-

tion of shrinkage, distance to the nearest channel distribution, definition of the lake internal

perimeter, lake area distribution conditional on distance to the nearest channel, and esti-

mated near surface permafrost as a function of distance to the nearest channel.

B.1 Water Mask Description and Channel Network

Extraction

Global Surface Water (GSW) masks are images whose pixels may take one of three values:

water, land, and no data. No data pixels can arise from lack of imagery, snow and ice cover,

cloud cover, and Landsat 7 striping (Pekel et al., 2016). From September to May, no water or

land pixels were identified over the Colville (i.e. 100% no data) due to cloud, snow, and ice

cover for any year over the period of record. In the Yukon, September to April are unresolved

(no data) for all years over the period of record, while some May masks are partially resolved

from 2000 to 2018. However, manual inspection of the Landsat scenes used to derive the

masks indicate snow and ice cover being resolved as water in parts of the delta, indicating

misclassification. Inspection of the summer June and July masks in both deltas indicated

that the remaining snow and ice cover were classified as no data or land. We analyzed
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(a) (b)

2014 2014

Yukon Colville

Figure B.1: Hydrographs on the Yukon and Colville rivers. (a) Streamflow at Pilot
Station (USGS 15565447). The streamgage is downstream of any major confluences and is
75 km away from the apex of the Yukon Delta. (b) Streamflow at Umiat (USGS 15875000).
The streamgage is upstream of confluences with the Chandler and Anaktuvuk rivers, and is
100 km away from the apex of the Colville Delta. The bankfull flow, defined as the two-year
flow, was estimated on the Yukon from 35 years of data to be 655, 000 ft3/s and on the
Colville from 16 years of data to be 176, 000 ft3/s.
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summers where at least 60% of the delta, excluding the channel network, was resolved as

water or land, which included 2002, 2004, 2005, 2007 − 2009, 2013, 2014, 2016, and 2017

on the Yukon and 2001, 2002, and 2005 − 2018 on the Colville (see Figs. B.2b and B.2d).

Manual inspection of the 2018 June and July masks on the Yukon showed misclassification

of large portions of the scene, and this year was not considered in the analysis.

To extract the channel network, we used the Python package RivGraph (Schwenk et al.,

2020). RivGraph takes as inputs: (1) a binary mask of the channel network, (2) locations

of inlets, and (3) a shoreline, and fully resolves the channel network topology as a set of

georeferenced links and nodes. The inlet node was marked at the first major bifurcation

of the deltas, and we defined the shorelines excluding the tidal zone, demarcated by lack

of vegetation, as seen in Figures 3.1b and 3.1c (Dupre & Thompson, 1979; Jorgenson et

al., 1997). We used a single water mask, extracted from a composite water mask, where a

pixel is defined as water if it shows an 80% June water occurrence over the recorded period.

Comparison of the composite DCN skeleton with channel skeletons extracted from individual

years did not show significant difference on either delta. To account for the interannual

variability in channel extent, for every year analyzed we extracted all waterbodies over the

delta using connected component analysis (Haralick & Shapiro, 1992) for each of the two

monthly water masks in the summer (June and July) and excluded from our analysis, for the

year, any pixels corresponding to connected components (i.e. waterbodies) that overlapped

with the DCN. Additionally, for each season, any pixel that was classified as no data in

any given month was treated as no data for the entire summer, i.e. a pixel was valid only

if it was classified as water or land for June and July in a given year. The remaining

objects that were at least one pixel in size that were disconnected from the channel network

were considered as individual waterbodies (i.e. lakes) for each season. Without waterbody

bathymetry information, we were unable to systematically remove shallow wetlands during

lake extraction, however the water surface temperature analysis shows that it is not more

likely for waterbodies closer to the DCN to be shallow wetlands versus waterbodies farther
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away from channels.

To account for small channels below the Landsat resolution, we used all DigitalGlobe

images available via Google Earth for the two deltas to manually identify the presence or

absence of surface connections between lakes and the channel network. On the Yukon, the

scenes available corresponded to July 16, 2003, June 1, 2005, August 19, 2006, July 9, 2007,

September 10, 2008, June 30, 2009, June 5, 2010, July 30, 2010, September 26, 2010, May

25, 2011, August 17, 2011, June 13, 2012, August 9, 2012, September 11, 2012, and October

9, 2012. On the Colville, the scenes available corresponded to July 5, 2005, June 17, 2006,

June 29, 2007, August 5, 2011, July 3, 2012, August 11, 2012, August 6, 2013, August 26,

2014, and July 13, 2016. The temporal mismatch between the June and July GSW masks

used for extraction of waterbodies and the dates of these high resolution scenes may lead to

some misclassification of connected lakes as disconnected, and introduce some uncertainty

of our results.
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B.2 Pixel-based Shrinkage Calculations

We estimated the monthly shrinkage rate S, as the pixel-based monthly water area loss

fraction Sp using the following methodology. For all land and water pixels we computed

the distance to the nearest channel, i.e. dnc, and formed the probability density function

(PDF) of dnc, f(dnc). We then partitioned the spatial extent of the delta in terms of dnc

into K regions where the limits of each region were selected according to equally spaced

quantiles of dnc, to ensure that the shrinkage rate was computed from samples of equal size

and maintained similar regions from year to year. For every dnc region k, we calculated the

fraction of water area lost (i.e. water area that became land area) from time t to time t+ τ :

Sp,k =
Awk,t→lk,t+τ

Awk,t
∗ τ

(B.1)

where Awk,t
is the water area in region k at time t and Awk,t→lk,t+τ

is the water area that

became land area in region k at time t+ τ ; here t corresponds to June and τ is one month.

We consider Sp,k as an estimate of the shrinkage rate S from June to July for lakes within

region k, i.e. lakes located at distances from the DCN between the qk and qk+1 quantiles of

the dnc. As discussed in section 3.2, no major avulsions were observed for the studied deltas

during the observational record. This allowed us for each delta to define a constant DCN

and the same K regions through time. As the shrinkage pattern appeared robust from year

to year and is modulated only in magnitude (Figs. 3.2a and 3.2c), we computed a weighted

mean water area loss fraction, S̄p for both deltas from June to July over the period of record

(Equation 2; dotted black line in Figs. 3.2a and 3.2c), where weights λk,y were calculated

using Equation 3, where ny,k is the number of valid pixels (water or land) in region k for

years y from 1 to Y :

¯Sp,k =
Y∑

y=1

Sp,kλy,k (B.2)
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Figure B.2: Distance to nearest channel distribution and percent of resolved pixels
each year. (a, c) The probability distribution function of nearest distance to the channel
network, f(dnc) for the Yukon (a) and Colville (c) deltas, with a fitted exponential distribu-
tion shown in red. (b, d) The fraction of the delta top resolved in the Global Surface Water
dataset for both June and July in each year shown in Figures 3.2a and 3.2c, for the Yukon
(b) and Colville (d) deltas, with shrinkage rates only calculated for years with at least 60%
of the delta resolved.

λk,y =
ny,k∑Y
y=1 ny,k

(B.3)

This method treats every water pixel independently of other water pixels, i.e. does not

take into account the shape of the lake that the pixel is part of, and therefore has the

advantage of not requiring lakes to be completely resolved during the season. Shrinkage

rates may thus be estimated even in years with moderate data quality.
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Figure B.3: Lake Internal Perimeter Definition. (a) Schematic of Internal Perimeter
(IP) extraction using morphological erosion, where classified water pixels are in light blue.
Each set of pixels removed by an erosion operation represents a subsequent lake shoreline,
or IP. After a single erosion we obtain IP1 (b). After three erosions we obtain IP1 (c).

B.3 Lake Internal Perimeter Definition

To identify lake shorelines, we used iterative morphological erosion with a diamond-shaped

structuring element, which removes a one-pixel thick shoreline, i.e. the ith Internal Perimeter

(IPi), from every object. The eroded water mask is then used as input for the next iteration.

The obtained IPs represent the subsequent shorelines of every lake on the delta top. To

calculate monthly lake shoreline shrinkage rate at IPi, SIPi
, equation B.1 was used, but only

water pixels in IPi were used in the calculation. For example, in Figure 3.3c the fraction of

black pixels that shrank would give the monthly lake shoreline shrinkage rate.
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Figure B.4: Lake Area Distributions within each distance to the nearest channel
region. (a, b) Conditional histograms of object-based lake area within each bin of distance
to the nearest channel for the Yukon (a) and the Colville (b) from the Global Surface Water
June 2014 water mask, with red-orange colors indicating higher relative frequency. The mean
lake area at each distance is indicated by the black line.
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(a) (b)

Yukon Colville

Figure B.5: Delta channel network control on near surface permafrost. (a, b) Bin-
average probability of observing near surface permafrost, that is, depth to permafrost less
than 1 meter extracted from the empirical model of Pastick et al. (2015), versus distance
to the nearest channel for the Yukon (a) and the Colville (b). The Yukon shows steadily
increasing probability, indicating active layer thickness decreases to less than 1 meter farther
from the DCN, while the Colville shows a nearly constant probability, which is supported
by observations of thaw depths being on average 30 to 75 cm on the delta (Jorgenson et al.,
1998). It is expected that a process-based model of permafrost coverage on an arctic delta
should produce similar curves.
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APPENDIX C

Supplementary Material for Chapter 4

This appendix contains supplementary material for Chapter 4. This includes information

on quality control of the Global Surface Water dataset (Pekel et al., 2016), hydrology of

the deltas and choice of the year for waterbody mask extraction, a description of the pro-

portionate growth model, the Fitted distribution parameters and climate trends for lakes,

wetlands, and waterbodies, discussion on model identification for small samples of power-law

distributed data, and relationships between the first three conditional moments.
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C.1 Quality control of the Global Surface Water dataset

Thorough quality control of the water masks is necessary to reduce uncertainty in the es-

timated pixel water occurrence wi and therefore the waterbody classification scheme. In

particular, misclassified or poorly classified masks, e.g. where land pixels are classified as

water or vice-versa, particularly in the presence of abundant unresolved pixels (i.e. pixels

unable to be classified as land or water due to cloud cover, Landsat 7 striping, or other

issues), introduce errors into the estimate of wi, which lead to waterbody misclassification.

To address this, we performed the following quality control procedure consisting of a combi-

nation of quantitative rules and visual inspection on the GSW monthly water masks for all

12 deltas. First, for every delta we discarded from the analysis any mask over the period of

record that had less than 10% of the study region resolved, as we observed misclassification

errors for such poor-quality data. Second, we performed a visual inspection for significant

misclassification errors, e.g. stripes of pixels classified as land or water or large swaths of

the region appearing to be land only for a single year, and found only July 2016 on the Lena

delta had to be discarded. Third, we identified and estimated mis-collocation errors in the

GSW dataset of at least 1 pixel (30 meters) over the Yana delta from 2016 to 2018 and Lena

delta from 2017 to 2018 relative to the masks from 1999 to 2015. These years were discarded

from the computation of the July water pixel occurrence, wi, but were used to estimate the

average water cover since mis-collocation does not imply features were misclassified, only

that their locations were shifted. No miscollocation on the order of one pixel (30-m) was

observed on the other 10 deltas from 1999 to 2018. Note that the Pechora delta has not

been considered in this work because of a large collocation error even in GSW v1.0 (i.e.

years prior to 2016). An example of the collocation errors is shown for the Yana delta, where

waterbodies extracted from July 2018 are shifted to the north-west compared to waterbodies

extracted from July 2011 (Figure C.1). Due to interannual variability in surface water ex-

tent and a lack of ground control points, we were not able to compute the exact collocation
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(a) (b)

Figure C.1: Collocation errors in the GSW dataset on the Yana delta. (a) Water-
bodies from 2011 (red) and 2018 (purple) overlaid over the July 2011 water mask, with a
clear offset between the two. The corresponding waterbody centroids are shown in brown
and blue, respectively. (b) The distribution of centroid differences is shown with the median
difference in each direction given by the red dashed line.

error over the region and to correct the masks. Therefore, to estimate the magnitude of the

miscollocation, we looked at the distribution of differences in waterbody centroids between

different years, (∆Cy,∆Cy). We found that the median of (Cx,2011−Cx,2018, Cy,2011−Cy,2018)

was (29.24,−11.06) m, i.e. the median centroid difference between the two masks was ap-

proximately one pixel in the horizontal direction and a third of a pixel in the vertical. By

examining the whole distribution of differences in waterbody centroids, we quantified that

over 88% percent of waterbodies in 2018 were shifted to the southwest relative to the position

of the same waterbodies in 2011 (i.e. over 88% of the centroids lay within the lower right

quadrant of Figure C.1b).
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C.2 Hydrology of the deltas and choice of the year for

waterbody mask extraction

To choose the reference year y∗ in which to extract waterbody extents as objects and clas-

sify perennial lakes and ephemeral wetlands based on their year-to-year variability, we first

computed for each delta and year the water cover, i.e. the fraction of valid (i.e. resolved as

water or land) pixels that are classified as water over the subaerial delta, defining time series

of July water cover from 1999 to 2018 (Figures C.2 and C.3). Then, we computed for each

delta the average water cover over the period of record using the total number of valid pixels

in each year as weights. Finally, y∗ was chosen as the year with water cover closest to the

average and at least 99% valid pixels. To test the robustness of the results, an alternative

reference year, y∗alt was also selected for each delta with a similar water cover to y∗ and high

data quality and the analysis repeated (Table S4 and Figures C.4 and C.5. To account for

the heterogeneity in data quality across the range of analyzed systems, exceptions to these

criteria had to be made for the Yukon, Lena, and Indigirka deltas. On the Yukon delta, the

only two years satisfying the 99% valid pixel criterion were the 2008 and 2014, but these two

are the wettest years on record, not years with typical hydrology. Therefore, 2017 and 2016

which had 98.7% and 98.9% valid pixels (slightly less than the 99% criterion), but close to

average water cover were chosen as y∗ and y∗alt, respectively (Figure C.2). On the Lena and

Indigirka deltas only 2013 and 2016, respectively, had at least 99% valid pixels for the period

of record. To perform the replication analysis, we relaxed the 99% valid pixels criterion to

identify an alternative reference year y∗alt. We found that 2007 had 98.5% valid pixels over

the Lena delta and 98.7% valid pixels over the Indigirka delta, and therefore chose 2007 as

y∗alt for both deltas.
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Figure C.2: Surface water hydrology of arctic deltas. Time series of July water cover
for every delta from 1999 to 2018. Years with at least 99% valid pixels are marked in black
and years with less than 99% valid pixels in red, while years chosen for waterbody extraction
are in blue triangles. Miscollocated years are shown with squares. The time series of percent
valid pixels for each delta is shown in Figure C.3.

131



Yukon

Kobuk

Nadym

Mackenzie

Pur

Ob

Yenisei Yana

Colville

Kolyma

Lena

Indigirka

Figure C.3: Observational data quality. The percent of pixels resolved in every year on
the period of record for the deltas, with symbology the same as in Figure C.2.
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C.3 Proportionate Growth Model

Proportionate growth models, which describe processes where objects grow proportionally to

their size with a stochastic growth rate, have seen widespread applications e.g. in modelling

micro-organism sizes, income distribution, and city sizes (Crow & Shimizu, 1988; Mitzen-

macher, 2004). An interesting property of the proportionate growth models is that they

result in a lognormal distribution of the size of the objects, with the parameters related to

the parameters of the stochastic growth rate. On the basis that the greater thermal inertia

of larger lakes results in lake waters remaining unfrozen for longer and maintaining greater

lake to soil temperature gradients, we assume that lake growth is proportional to the size of

the lake, which has been observed in Alaska (Jones et al., 2011). Then for a lake with radius

rj at the beginning of a time period j of length ∆t, its growth rate
∆rj
∆t

is given by Equation

C.1.

∆rj
∆t

= rjkj. (C.1)

We can assume that the growth rate kj at each timestep is an independent and identi-

cally distributed random variable characterized by mean γ and variance φ2, reflecting the

variability in water and soil temperature, precipitation, and soil ice content and matrix

properties all of which impact lateral heat fluxes. It is easy to show from Equation C.1

that the distribution of the lake radii after some time period t (arising as the sum of the

initial lake radius and its subsequent incremental growths ∆rj over the cumulative period of

time) will approach a lognormal distribution (Crow & Shimizu, 1988), i.e., ln r ∼ N(γt, φ2t)

(see Equation 4.1 with no lower bound). Assuming a circular shape of the lake, it follows

that lnA = ln πr2 ∼ N(2γt + lnπ, 4φ2t) = N(ν, β2), i.e. lake areas are also lognormally

distributed with parameters, ν and β2, and similarly for the volume. A similar model was

proposed by (Victorov et al., 2019) for thermokarst lakes although empirical testing did
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not reveal ubiquity of the lognormal size distribution likely due to the mixing of lakes and

wetlands in the studied domains.

C.4 Fitted distribution parameters and climate trends

for lakes, wetlands, and waterbodies

This section contains tables and plots of the fitted distributions and climate trends for lakes,

wetlands, and all waterbodies in the reference and alternative reference years. The fitted

distribution parameters of lakes and wetlands for a range of waterbody occurrence index

thresholds θused to classify waterbodies extracted in y∗ are in Tables C.1, C.2, C.3, lake and

wetland distribution properties for waterbodies extracted in an alternative reference year y∗alt

in Table C.4, the fitted lognormal distribution parameters for waterbody sizes extracted in

y∗ in Table C.5, the plots of fitted distributions and climate trends of lakes and wetlands

extracted in y∗alt (Figures C.4 and C.5), fitted distributions and climate trends of waterbody

sizes extracted in y∗ (Figure C.6) and boxplots of the waterbody, wetland, and lake size

distributions extracted in y∗ in Figure C.7.
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Table C.1: Properties of lake and wetland size distributions at occurrence index
threshold θ = 0.85. For each delta, the fitted lognormal parameters ν and β, the number
of lakes, NLake, the p-value (plake) from a Lilliefors-corrected Kolmogorov Smirnov test (KS
test), and ∆AIC = AICPL−AICLN for the lakes, as well as the fitted power law exponent α,
fitted minimum lake size x0, observed maximum wetland size Amax, the number of wetlands
Nwetland in the range [x0, Amax], the p-value (pWetland) from a KS test, and the similarly
defined ∆AIC for the wetlands. We report the parameters ν and β in log10 scale rather than
in Napierian logarithmic scale (ln) as they are easier to interpret. The fitted distributions
which cannot be rejected at the 5% significance level (p > 0.05) are bolded.

Delta NLake ν [-] β [-] pLake ∆AIC Nwetland x0 Amax α [-] pwetland ∆AIC
Lakes (above x0) [105 m2] [105 m2] Wetlands

Yukon 1,511 3.87 0.80 0.278 187 401 0.135 2.835 2.55 0.052 5.44
Kobuk 1,272 4.40 0.82 0.688 328 196 0.09 3.924 2.30 0.105 2.88
Nadym 866 4.46 0.70 0.404 283 1,005 0.144 52.092 1.91 0.143 8.57
Ob 1,567 4.32 0.82 0.843 364 940 0.054 31.428 1.77 0.306 -1.69
Pur 2,407 4.24 0.75 0.008 537 556 0.117 21.411 1.81 0.289 0.48

Mackenzie 20,318 4.37 0.75 0.025 5,517 1,404 0.189 30.168 2.39 0.636 -1.70
Yenisei 4,058 4.62 0.60 0.038 2,099 1,028 0.153 10.620 2.47 0.049 6.72
Colville 338 4.57 0.79 0.326 111 105 0.162 7.731 2.30 0.532 -1.85
Kolyma 3,084 4.19 0.82 0.283 595 555 0.135 14.202 2.29 0.576 -2.01
Lena 11,265 4.49 0.74 0.008 ,3674 1,353 0.477 27.783 2.63 0.253 -1.98
Yana 10,297 4.21 0.88 0.403 1,949 1,563 0.144 37.872 2.07 0.511 -0.77

Indigirka 4,875 3.91 1.08 0.162 593 1,830 0.099 42.930 1.91 0.540 0.96

Table C.2: Properties of lake and wetland size distributions at occurrence index
threshold θ = 0.80. Same as Table C.1 but with waterbody classification threshold θ = 0.80.
Bolded p-values refer to distributions which cannot be rejected at the 5% significance level.

Delta NLake ν [-] β [-] pLake ∆AIC Nwetland x0 Amax α [-] pwetland ∆AIC
Lakes (above x0) [105 m2] [105 m2] Wetlands

Yukon 1,829 3.80 0.79 b 205 252 0.126 1.863 2.74 0.117 -0.81
Kobuk 1,417 4.22 0.87 0.663 274 185 0.054 3.924 2.22 0.709 0.91
Nadym 1,311 4.31 0.73 0.645 328 1,452 0.063 42.876 1.89 0.019 10.61
Ob 1,773 4.17 0.88 0.825 318 734 0.054 21.483 1.82 0.298 -1.58
Pur 2,796 4.07 0.81 0.168 462 784 0.054 21.411 1.85 0.001 -1.88

Mackenzie 22,495 4.24 0.79 0.016 4816 1,019 0.153 19.620 2.37 0.824 -2.01
Yenisei 4,889 4.50 0.62 0.023 2001 765 0.126 9.090 2.65 0.773 -1.66
Colville 407 4.38 0.84 0.215 98 109 0.108 7.731 2.22 0.720 -1.99
Kolyma 3,613 3.98 0.87 0.435 508 692 0.072 14.202 2.31 0.995 -2.20
Lena 14,156 4.35 0.76 0.047 3644 637 0.540 19.008 2.63 0.481 -2.00
Yana 11,567 4.08 0.91 0.756 1827 2,015 0.072 12.789 2.10 0.251 -1.98

Indigirka 5,440 3.74 1.12 0.062 547 1,433 0.099 25.299 1.91 0.879 -0.70
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Table C.3: Properties of lake and wetland size distributions at occurrence index
threshold θ = 0.90. Same as Table C.1 but with waterbody classification threshold θ = 0.90.
Bolded p-values refer to distributions which cannot be rejected at the 5% significance level.

Delta NLake ν [-] β [-] pLake ∆AIC Nwetland x0 Amax α [-] pwetland ∆AIC
Lakes (above x0) [105 m2] [105 m2] Wetlands

Yukon 1,118 3.95 0.81 0.279 152 185 0.369 15.993 2.69 0.985 -1.73
Kobuk 1,022 4.62 0.76 0.827 384 100 0.333 4.311 2.76 0.597 -2.00
Nadym 433 4.61 0.71 0.395 172 262 1.008 52.092 2.23 0.610 -0.15
Ob 1,275 4.50 0.75 0.677 410 1,232 0.054 43.704 1.75 0.641 2.14
Pur 1,753 4.47 0.69 0.025 600 1,356 0.081 23.697 1.85 0.816 2.13

Mackenzie 16,395 4.55 0.70 0.091 6,130 2,941 0.198 30.168 2.30 0.000 16.69
Yenisei 2,883 4.76 0.58 0.625 1,905 497 0.486 10.620 2.73 0.281 1.65
Colville 248 4.77 0.78 0.382 107 167 0.162 7.731 2.22 0.255 0.85
Kolyma 2,218 4.42 0.79 0.730 610 352 0.378 14.202 2.37 0.946 -1.91
Lena 7,438 4.67 0.73 0.000 3,151 2,369 0.495 27.783 2.43 0.339 6.64
Yana 8,286 4.34 0.86 0.016 1,884 2,806 0.144 37.872 1.96 0.000 34.68

Indigirka 3,973 4.06 1.08 0.264 564 1,113 0.270 73.431 1.93 0.276 1.19

Table C.4: Properties of lake and wetland size distributions for waterbody extents
identified in an alternative reference year. Same as Table C.1 but for waterbody extent
identified in an alternative reference year, y∗alt, with close to average water cover, and using
an occurrence index threshold θ = 0.85. Bolded p-values refer to distributions which cannot
be rejected at the 5% significance level.

Delta NLake ν [-] β [-] pLake ∆AIC Nwetland x0 Amax α [-] pwetland ∆AIC
Lakes (above x0) [105 m2] [105 m2] Wetlands

Yukon 1,340 3.90 0.81 0.767 171 961 0.081 3.357 2.10 0.003 36.06
Kobuk 1,421 4.28 0.83 0.302 305 196 0.054 2.025 2.25 0.517 2.13
Nadym 867 4.40 0.72 0.396 255 1,358 0.108 50.175 1.81 0.001 28.09
Ob 1,440 4.49 0.78 0.007 439 361 0.288 8.766 2.45 0.238 2.63
Pur 2,132 4.58 0.63 0.002 968 404 0.234 15.867 2.59 0.106 -1.03

Mackenzie 18,256 4.46 0.73 0.080 5,808 2,084 0.189 28.251 2.41 0.001 15.53
Yenisei 4,040 4.62 0.60 0.072 2,094 344 0.324 8.127 2.84 0.385 -0.80
Colville 441 4.25 0.88 0.312 86 140 0.072 2.934 2.20 0.687 -1.46
Kolyma 2,321 4.38 0.80 0.511 596 988 0.153 15.183 2.10 0.029 12.55
Lena 12,467 4.37 0.77 0.059 3,299 1,633 0.324 48.402 2.34 0.360 -1.99
Yana 10,145 4.31 0.84 0.331 2,267 2,011 0.126 16.470 2.21 0.090 7.12

Indigirka 5,892 3.90 1.05 0.197 714 866 0.117 23.193 2.31 0.052 -2.01
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Figure C.4: Lake and wetland size distributions extracted in an alternative refer-
ence year. Same as Figure 3 but for waterbody extents identified in an alternative reference
year, y∗alt, for all 12 deltas. A truncated lognormal distribution is significant for the lake area
distribution at the 5% significance level (KS test) for 10 deltas. The KS test does not reject
a power law for the upper tails of the wetland size distributions in 8 out of 12 deltas at a
5% significance level.
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Figure C.5: Climate trends for lakes and wetlands extracted in an alternative
reference year. (a-c) are the same as Figures 4.4a, 4.4b, and 4.4e, but for waterbody extents
identified in an alternative reference year, y∗alt, for all 12 deltas. In (a) the trend between
MAAT and mean lake area has bootstrap p = 0.0116 and a Spearman rank correlation of
−0.59 (p = 0.0384). In (c), the presence of two large outliers (Ob and Indigirka) renders
the trend non-significant. Excluding them to evaluate the relationship among the rest of
deltas yields a significant trend (R2 = 0.66, p = 0.005), supporting a possible relationship.
(d) Scatterplot of 2000 to 2016 mean June to July precipitation minus evapotranspiration
(P−ET ) over the deltas versus MAAT (Bromwich et al., 2018), indicating vertical hydrologic
budget is unrelated to differences in MAAT (R2 = 0.013) and therefore does not explain the
relationship in (c) or in Figure 4e.

138



PDF Exceedance Probability(a) (b)

Mean trendLognormal Q-Q Plot(c) (d)

Delta Latitude [oN]
64 66 68 7270

Ice Content

Figure C.6: Waterbody size distributions and goodness of fit. (a) The PDF and (b)
exceedance probability curves of the waterbody (lake and wetlands combined) size distribu-
tions extracted in the reference year y∗, for all 12 deltas. (c) Q-Q plots of the lognormal
distribution fit to the waterbody sizes, for all 12 deltas, with the fitted distributions which
are not statistically significant at the 5% significance level (KS test) in grey. (d) Scatterplot
of mean waterbody area and MAAT, with delta ice content indicated by point symbol, shows
no statistically significant linear relationship between the two.
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Figure C.7: Waterbody, lake, and wetland size distribution boxplots. (a-c) Boxplots
of the size distribution for all waterbodies (a), lakes (b), and wetlands (c), with boxes
representing the interquartile range, whiskers 1.5x the interquartile range, horizontal lines
the sample median, and black dots the sample mean.
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Table C.5: Lognormal waterbody size distribution parameters. Fitted lognormal
parameters ν and β, for the waterbody size distribution in the reference year y∗, the number
of waterbodies, Nwaterbody, KS test p-values (pwaterbody) used to evaluate the goodness of
fit, and the ∆AIC as defined above (see caption of Table C.1). Bolded p-values refer to
distributions which cannot be rejected at the 5% significance level.

Delta Nwaterbody ν [-] β [-] pwaterbody ∆AIC
Waterbodies

Yukon 2,610 2.97 0.97 0.350 103
Kobuk 1,602 3.92 0.97 0.130 201
Nadym 2,945 3.26 1.01 0.417 169
Ob 2,507 3.51 1.08 0.012 196
Pur 3,580 3.63 0.95 0.251 315

Mackenzie 25,995 3.96 0.88 0.000 3,543
Yenisei 6,981 3.97 0.81 0.005 991
Colville 606 3.50 1.09 0.417 45
Kolyma 4,557 3.35 1.04 0.674 296
Lena 25,604 3.20 1.06 0.000 1,421
Yana 14,283 3.53 1.06 0.000 1,151

Indigirka 7,807 2.70 1.36 0.043 319

C.5 Model identification for small samples of power-

law distributed data

Although the hypothesis of a power law distribution for the wetland sizes could not be

rejected in the majority of deltas (Tables C.1 to C.4), it is reasonable to ask whether the

alternative hypothesis of a truncated lognormal (LN) distribution for wetland sizes could

also be statistically acceptable, or even be a better fit in some cases for the wetland sizes. In

principle, comparison of the fitted power law and LN distributions can be performed using

the Akaike Information Criterion (AIC) test (Burnham & Anderson, 2004) or the likelihood

ratio test (Clauset et al., 2009). However, the small sample size available for this testing

(∼ 200 to 2, 000 wetlands in our case) introduces challenges in robustly differentiating the

power law distribution from the LN distribution. To gain quantitative insight into this

problem, we performed a simulation of power law distributed data and used the AIC test
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to determine whether indeed the power law emerges as a better candidate distribution than

the LN distribution. Specifically, we simulated synthetic power-law data using the procedure

outlined in Clauset et al. (2009) with parameters α = 2.07, x0 = 14, 400 m2, and N = 1, 563,

i.e., the fitted parameters and sample length of the Yana wetland sizes extracted in y∗ at a

threshold of θ = 0.85 (Table C.1) and repeated this exercise for a large number of simulations

(M = 1, 000). For each simulated data set i we used the same fitting procedures as for the

observed wetland sizes, i.e., fitted a power-law distribution by estimating xi
0 and αiand then

fitted a truncated lognormal with xmin = xi
0 and estimating νi and βi. We then computed the

AIC difference ∆AICi = AICi
PL−AICi

LN , where a positive ∆AICi indicates the lognormal

is a better fit and a negative value indicates the power law is a better fit, and examined the

PDF of ∆AICi over the 1, 000 simulations (Figure C.8a). We also examined the likelihood

that the model rejected by the AIC test is a better candidate for the data by computing

exp− ∆AICi

2
(Figure C.8b; Burnham & Anderson (2004)).

The PDF of ∆AIC is centered at −2, indicating that the power law is a better fit overall,

however this is not a large enough difference to reject the alternative hypothesis of the LN

(Burnham & Anderson, 2004). Moreover, in approximately 9% of the cases ∆AIC is larger

than zero, and therefore, the LN would be considered a better fit. It has also been shown

that other statistical tests to compare competing hypotheses, such as the related likelihood

ratio test, cannot distinguish between power-law and LN distributions for sample sizes below

2, 000 (Figure 6 in Clauset et al. (2009)). Based on these experiments, it is evident that we

cannot solely rely on statistical tests to decide which distribution is better representing

heavy-tailed data with sample sizes below 2, 000. Therefore, physical reasoning along with

the interpretation of the fitted parameters are necessary to establish which distribution might

be more suitable and interpretable for a given data set.

Looking back to the wetland size distributions which have statistically significant power

law fits (Tables C.1 to C.4), ∆AIC = AICPL − AICLN tends to fall within the range of -2
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to 2, which are values typically observed for truly power-law distributed data with the given

sample sizes. Moreover, in other environments, wetlands identified by inundating rough

topography show power-law slopes in a similar range (Le & Kumar, 2014; Bertassello et

al., 2018) to what is reported herein (See Figure 4.3 and Tables C.1 to C.3), suggesting

that ephemeral wetlands on arctic deltas may be governed by similar forming processes as

wetlands elsewhere, giving rise to emergent power law size distributions. We also found

that the parameters of the fitted LN distributions typically corresponded to ν ≪ 0 in the

log10 scale and ended up fitting the data to a negligible (much smaller than 1%) fraction of

the upper tail of an LN distribution. Therefore, we assert that the power law distribution

is a more physically and statistically meaningful descriptor of the wetland size distribution

compared with the LN. For completeness, we also tested the alternative hypothesis of a power

law distribution with x0 = 5, 400 m2 for the lake sizes (Tables C.1 to C.4) and waterbody

sizes (Table C.5) and report the AIC test results with the same notation. We found that in

all cases the LN distribution for lake sizes was a significantly better fit than a power law and

therefore a better descriptor of the lake size distribution.

C.6 Relationships between the first three conditional

moments of waterbody sizes

Muster et al. (2019) analyzed 30 regional size distributions of ponds and lakes from the

circum-Arctic Permafrost Region Pond and Lake (PeRL) database, and found a linear rela-

tionship between the sample mean and the variance, and a hyperbolic relationship between

the sample mean and the skewness coefficient of the empirical distributions when estimating

these moments over a bounded range, e.g. a lower bound a and an upper bound b, also

called the conditional sample moments. They also found that the statistical moments of

waterbody sizes identified by inundating a digital elevation model exhibited similar relation-
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(a) (b)

Figure C.8: AIC test results to distinguish between power law and lognormal
distributions fitted to simulated power law data. (a, b) The probability distribution
of ∆AICi = AICi

PL − AICi
LN for 1, 000 simulated power law distributions with α = 2.07,

x0 = 14, 400 m2, andN = 1, 563 (a) along with the likelihood, i.e. exp− ∆AICi

2
, that the model

rejected by the AIC test is a better candidate for the data (b). Although the underlying
data are truly power law distributed in every single case, both test statistic distributions are
centered at values ∆AIC = −2, p = exp−1 that preclude inferring that the data in all 1, 000
simulations are indeed power law distributed.
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ships, and therefore determined that pond and lake sizes likely reflect landscape inundation

level, rather than reflecting temperature driven growth due to climate. We compared the

conditional sample moments of the 30 PeRL regional size distributions and the conditional

moments of the fitted LN distributions to the lake sizes of the 12 arctic deltas to investigate

if they displayed similar scaling relationships. In Muster et al. (2019) the bounds to compute

the conditional sample moments used were a = 100 m2, the minimum reliable lake size from

PeRL, and b = 106 m2 an upper bound to account for poor sample size for large lakes. We

used for both the PeRL regions and the 12 deltas a = 5.4 ·103 m2, the minimum reliable lake

size estimate in our study and b = 106 m2, the same upper bound used in their study. As

the relationships between the conditional sample moments computed from the fitted LN size

distribution arising from proportionate growth are indistinguishable from the sample mo-

ments of the PeRL database (Figure C.9), we caution that such relationships cannot be used

to differentiate between probability distributions and the different mechanisms underlying

wetland (inundation) and lake (proportionate growth) formation.
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(a) (b)

Figure C.9: Lake size conditional moments of the fitted LN PDFs compared with
PeRL lake and pond size sample conditional moment scaling relationships. The
conditional mean and conditional variance (a) and the conditional mean and the conditional
skewness coefficient (b) of the lakes on our 12 arctic deltas (purple triangles) and lakes and
ponds examined in Muster et al. (2019) (black squares). The outlier at (0.23 km2, 0.05 km4)
was discarded to fit the mean and variance relationship (a) and the outlier at (0.01 km2, 2.2)
were discarded to fit the mean and skewness relationship (b) for the PeRL data.
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