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Hardware resource disaggregation is a solution that decomposes general-purpose mono-

lithic servers into segregated, network-attached resource pools, each of which can be built,

managed, and scaled independently. Despite its management, cost, and fault-tolerance bene�ts,

hardware resource disaggregation is a drastic departure from the traditional computing paradigm

and it calls for a top-down redesign on system software, hardware, and data center networks.

This dissertation shows that it is possible to overcome the challenges of building and

deploying hardware resource disaggregation solutions in real data centers, delivering its promises

on better manageability, scalability, and cost.
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We �rst explored logical resource disaggregation for emerging persistent memory tech-

nologies. Logical resource disaggregationlogically breaks the server boundary by building an

indirection layer on top of monolithic servers to collectively expose a logical resource pool

abstraction. However, we fail to overcome the inherent problems of monolithic servers. We then

explored hardware resource disaggregation to overcome these limitations by physically separating

hardware resources into network-attached pools. We emulated disaggregated devices using mono-

lithic servers and built the �rst operating system designed for managing disaggregated resources.

It provides backward compatible interfaces while delivering good performance. However, emula-

tion incurs non-trivial overhead and has limited parallelism in serving highly-concurrent requests.

To avoid such overhead, we then built the �rst publicly known hardware-based disaggregated

memory device, which co-designs networking transport, virtual memory, and hardware. We soon

realized that while an increasing amount of effort goes into disaggregating compute, memory, and

storage, the network has been completely left out. The �nal piece of this dissertation proposes the

concept of network disaggregation, which decouples network functionalities from endpoints and

then consolidates them into a centralized network resource pool. We built a new hardware-based

networking device along with a distributed runtime system to realize such a network resource pool.

Together, these four pieces outline a practical path to enable hardware resource disaggregation

solutions in real data centers, especially how one can navigate the complex trade-offs among

performance, cost, and manageability.

xviii



Chapter 1

Introduction

Today, data centers that host or rent huge computing resources run large-scale applications

that in�ltrate billions of people's daily life. Data centers see an unprecedentedly rapid growth

in workload diversity spanning social media, �nance, smart health, IoT, and cloud computing.

Applications that run in data centers keep changing, with ever increasing velocity, volume, and

variety. At the same time, computing hardware used in data centers is also changing quickly.

With the slowdown of Moore's Law and the diminishing of Dennard scaling, specialized domain-

speci�c computing devices and accelerators such as Google TPU and VPU [149, 263], AWS

Nitro [27], FPGA [258], GPU, and programmable switches [190] have made their ways into

modern data centers. These domain-speci�c accelerators offer higher computing ef�ciency while

operating at a lower cost than traditional general-purpose processors. As a result, the data center

hardware infrastructure and resource management systems are under constant changes, not only

because the demand from applications change frequently, but also due to the changes required to

host new hardware accelerators.

Unfortunately, innovations in the data center are hindered by the traditional monolithic

server deployment model. For many years, the unit of deployment, operation, and failure in data

centers has been a monolithic server, one that contains all the hardware resources required to
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run user programs. This long-standing server-centric architecture has several key limitations.

First, with a server being the physical boundary of resource allocation, it is dif�cult to fully

utilize all resources in a datacenter [282]. Second, it has poor hardware elasticity since it is

dif�cult to add, move, remove, or recon�gure hardware devices after a server is deployed. Third,

it has a coarse failure domain. If one of the devices is faulty, usually the whole server becomes

unavailable. Fourth, it has poor support for heterogeneity. The root cause of these problems is that

the monolithic server model tightly couples hardware devices with each other. As a result, making

new hardware devices work with existing servers is a painful and lengthy process [257]. In all,

the monolithic server model makes data center resource management inef�cient and dif�cult.

The server-centric architecture is a bad �t for the fast-changing data center software and

hardware needs. Traditional distributed systems enable applications to utilize resources beyond

what a single server can offer. Distributed data processing systems [337], distributed shared

memory [224, 189], distributed storage systems [58, 84, 116] have been widely deployed in the

real world. Those solutionslogically break the server boundary by collectively expose a logical

resource pool abstraction using physically distributed resources. We call this modellogical

resource disaggregation. However, they cannot overcome all the issues of using monolithic

servers, since fundamentally the hardware unit of operation, a server, still bundles different types

of resources together. To fully support the growing heterogeneity in hardware and fast-changing

demand in software and to provide elasticity and �exibility at the hardware level, a better way is

to physicallybreak the monolithic servers.

Hardware resource disaggregationis a solution that breaks full-blown, general-purpose

monolithic servers into segregated, network-attached hardware resource pools, each of which can

be built, managed, and scaled independently. The disaggregated approach largely increases the

management �exibility of a data center. Applications can freely use resources from any hardware

component, which makes resource management ef�cient and easy, thereby improving data center

utilization. Different types of hardware resources can scale and fail independently. It is also easy
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to move, remove, or recon�gure hardware devices. In addition, adding new hardware is as simple

as directly attaching it to the network. Finally, hardware resource disaggregation shrinks the

failure-sharing domain thereby enables a �ner-grained failure isolation scheme.

Despite its management, cost, and failure-handling bene�ts, hardware resource disag-

gregation is a completely different computing paradigm from the traditional monolithic server

model. With such a drastic departure, it introduces many new challenges and calls for a top-down

redesign on system software, hardware devices, and data center networks.

A hardware resource disaggregation of processor, memory, and storage means that when

managing one of them, there will be no or limited local accesses to the other two. Resources

that used to be accessible via intra-server interconnect are now disaggregated across data center

network. However, commodity operating system (OS) assumes local accesses to all resources.

Therefore, it is not clear how an OS can run on top of a disaggregated architecture. To make it

worse, the communication latency increases by several orders of magnitude when going from

intra-server interconnect to even the fastest data center network such as RDMA (i.e., increasing

from one or two hundreds of nanoseconds to several microseconds). It is not clear whether we can

deliver reasonable performance when deploying OSs and applications over a much slower network

interconnect. Finally, breaking monolithic servers into multiple independent network-attached

hardware devices demands high network bandwidth and larger connectivity, as the network needs

a lot more ports to connect to the increased number of devices, while preserving or even increasing

network speed. In all, there are many open questions on when and how disaggregation should be

deployed, as well as questions on what the trade-offs among performance, cost, and manageability

are when building systems for disaggregation.

This dissertation seeks to address the challenges of building and deploying hardware

resource disaggregation in real data centers. We demonstrated the feasibility of resource disaggre-

gation, presented several critical techniques for improving performance, increasing scalability,

and lowering costs. We also con�rmed its advantages in better resource packing, failure isolation,
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cost, and resource elasticity.

We �rst explored logical resource disaggregation using monolithic servers. We are among

the �rst to build a distributed system for the emerging persistent memory (PM), enabling a wider

adoption for it in data centers [286]. However, the inherent limitations of monolithic servers

still exist. We then explored hardware resource disaggregation to overcome these limitations, by

physically separating hardware resources into network-attached resource pools. We built LegoOS,

the �rst operating system designed for managing disaggregated hardware resources. It provides a

binary-compatible interface to existing software while delivering good performance [283]. Our

solution in LegoOS is achieved by emulating disaggregated devices using servers, which has non-

trivial overhead. To address this, we built real disaggregated devices using Field Programmable

Gate Arrays (FPGAs). We tackled a type of resource that is probably the hardest to disaggregate,

memory and built the �rst publicly known hardware-based disaggregated memory device called

Clio [131]. Clio co-designs the networking stack and virtual memory subsystems, both tailored

for resource disaggregation. We soon found that it is dif�cult to customize the network task for

various heterogeneous hardware devices. More importantly, we realized that network, the fourth

major computing resource in data centers, can also be disaggregated. We then propose the concept

of network disaggregation, which decouples network tasks from endpoints and consolidates

them into a centralized network resource pool [284]. Our network resource pool consists of a

distributed control plane with ef�cient, fair, and safe resource sharing. It also has SuperNIC,

a new hardware-based programmable network device that ef�ciently consolidates multi-tenant

network functionalities from various endpoints.

While all projects included in this dissertation can work individually, when combined,

they collectively outline a principled path to managing resources in disaggregated data centers.

Speci�cally, LegoOS serves as the overall management (i.e., an OS) of a disaggregated data center

that is connected by a set of SuperNICs; each endpoint in the data center could be a compute

node as described as the “pComponent” in the LegoOS work, a memory node built with the Clio
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hardware board, or a storage node as described as the “sComponent” in the LegoOS work.

This dissertation advances the state-of-art in hardware resource disaggregation, transform-

ing it from a vague research idea into one that is tangible, practical, deployable, and quantitatively

shown to be bene�cial. We propose principled guidelines for building both disaggregated hard-

ware devices, software systems and navigate the complex design trade-offs among manageability,

performance and cost.

Below, we give a brief overview of the four projects in this dissertation.

Chapter 2: Distributed Shared Persistent Memory. Persistent memory (PM) provides

byte-addressability, persistence, high density, and DRAM-like performance. Even though it has

the potential to greatly bene�t large-scale applications, it was unclear how to best utilize it in

data centers. The �rst part of the dissertation focuses on enabling PM in a distributed, large-scale

data center environment. We propose Distributed Shared Persistent Memory, a framework that

exposes a logical, virtual disaggregated PM resource pool abstraction using a set of physically

distributed PM attached to monolithic servers. This framework uni�es distributed shared memory

and distributed storage system into one layer. This system not only outlines a path for wider PM

adoption in data centers but also showcases the performance improvements over similar systems.

Chapter 3: LegoOS, A Disseminated, Distributed OS for Hardware Resource Dis-

aggregation. While exploring the logical, virtual resource disaggregation (as the �rst part of

this dissertation), we realized that the inherent limitations of monolithic servers still persist. In

the second part of this dissertation, we take a radical departure to enabling physical hardware

resource disaggregation in data center. The key question we seek to answer ishow to manage these

physically disaggregated resources and run existing applications on top of them, while improving

performance per dollar.We propose a new OS model calledsplitkernelto manage disaggregated

resources. Splitkernel disseminates traditional OS functionalities into loosely-coupled monitors,

each of which runs on and manages a hardware device. LegoOS has performance comparable to

monolithic Linux servers, while largely improving resource packing and reducing failure rate
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over monolithic servers. LegoOS is only 1.3× to 1.7× slower with 25% of application working set

available as DRAM cache at processor components.

Chapter 4: Clio, A Hardware-Software Co-Designed Disaggregated Memory Sys-

tem. The third piece of this dissertation tackles a type of resource that is probably the hardest

to disaggregate, memory. All existing memory disaggregation solutions have taken one of two

approaches: building/emulating memory nodes using regular servers or building them using raw

memory devices with no processing power. Both fail to balance cost, scalability, and management

problems. We seek a sweet spot in the middle by proposing a hardware-based memory disaggre-

gation solution that co-design OS functionalities, hardware architecture, and the network system.

Our system scales much better and has orders of magnitude lower tail latency than RDMA.

Chapter 5: Disaggregating and Consolidating Network Functionalities with Su-

perNIC. While increasing amounts of effort go into disaggregating compute, memory, and

storage, the fourth major resource, network, has been completely left out. The �nal piece of this

dissertation, for the �rst time, proposes the concept of network disaggregation and builds a real

disaggregated network system. The core of our proposal is the concept of a rack-scale disaggre-

gated network resource pool, which consists of a set of hardware devices that can execute network

tasks and collectively provide Network-as-a-Service. In this work, we built SuperNIC which is

a new hardware-based programmable network device that ef�ciently consolidates multi-tenant

network functionalities from various endpoints. Our system guarantees an ef�cient, safe, and fair

consolidation, with little performance penalty.
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Chapter 2

Distributed Shared Persistent Memory

2.1 Introduction

Next-generation non-volatile memories (NVMs), such as 3DXpoint [141], phase change

memory (PCM), spin-transfer torque magnetic memories (STTMs), and the memristor will

provide byte addressability, persistence, high density, and DRAM-like performance [302]. These

developments are poised to radically alter the landscape of memory and storage technologies

and have already inspired a host of research projects [39, 72, 73, 93, 217, 320, 331, 346, 200].

However, most previous research on NVMs has focused on using them in a single machine

environment. Even though NVMs have the potential to greatly improve the performance and

reliability of large-scale applications, it is still unclear how to best utilize them in distributed,

datacenter environments.

This paper takes a signi�cant step towards the goal of using NVMs in distributed datacenter

environments. We proposeDistributed Shared Persistent Memory (DSPM), a framework that

provides a global, shared, and persistent memory space using a pool of machines with NVMs

attached at the main memory bus. Applications can perform native memory load and store

instructions to access both local and remote data in this global memory space and can at the same
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time make their data persistent and reliable. DSPM can bene�t both single-node persistent-data

applications that want to scale out ef�ciently and shared-memory applications that want to add

durability to their data.

Unlike traditional systems with separate memory and storage layers [104, 105, 287, 288],

we propose to use just one layer that incorporates both distributed memory and distributed storage

in DSPM. DSPM's one-layer approach eliminates the performance overhead of data marshaling

and unmarshaling, and the space overhead of storing data twice. With this one-layer approach,

DSPM can potentially provide the low-latency performance, vast persistent memory space, data

reliability, and high availability that many modern datacenter applications demand.

Building a DSPM system presents its unique challenges. Adding “Persistence” to Dis-

tributed Shared Memory (DSM) is not as simple as just making in-memory data durable. Apart

from data durability, DSPM needs to provide two key features that DSM does not have: persistent

naming and data reliability. In addition to accessing data in PM via native memory loads and

stores, applications should be able to easily name, close, and re-open their in-memory data

structures. User data should also be reliably stored in NVM and sustain various types of failures;

they need to be consistent both within a node and across distributed nodes after crashes. To

make it more challenging, DSPM has to deliver these guarantees without sacri�cing application

performance in order to preserve the low-latency performance of NVMs.

We builtHotpot, a DSPM system in the Linux kernel. Hotpot offers low-latency, direct

memory access, data persistence, reliability, and high availability to datacenter applications. It

exposes a global virtual memory address space to each user application and provides a new

persistent naming mechanism that is both easy-to-use and ef�cient. Internally, Hotpot organizes

and manages data in a �exible way and uses a set of adaptive resource management techniques to

improve performance and scalability.

Hotpot builds on two main ideas to ef�ciently provide data reliability with distributed

shared memory access. Our �rst idea is to integrate distributed memory caching and data
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replication by imposingmorphablestates on persistent memory (PM) pages.

In DSM systems, when an application on a node accesses shared data in remote memory

on demand, DSM caches these data copies in its local memory for fast accesses and later evicts

them when reclaiming local memory space. Like DSM, Hotpot caches application-accessed data

in local PM and ensures the coherence of multiple cached copies on different nodes. But Hotpot

also uses these cached data aspersistent data replicasand ensures their reliability and crash

consistency.

On the other hand, unlike distributed storage systems, whichcreatesextra data replicas to

meet user-speci�ed reliability requirements, Hotpot makes use of data copies thatalready existin

the system when they were fetched to a local node due to application memory accesses.

In essence, every local copy of data serves two simultaneous purposes. First, applications

can access it locally without any network delay. Second, by placing the fetched copy in PM, it

can be treated as a persistent replica for data reliability.

This seemingly-straightforward integration is not simple. Maintaining wrong or outdated

versions of data can result in inconsistent data. To make it worse, these inconsistent data will be

persistent in PM. We carefully designed a set of protocols to deliver data reliability and crash

consistency guarantees while integrating memory caching and data replication.

Our second idea is to exploit application behaviors and intentions in the DSPM setting.

Unlike traditional memory-based applications, persistent-data-based applications, DSPM's tar-

geted type of application, have well-de�ned datacommit pointswhere they specify what data

they want to make persistent. When a process in such an application makes data persistent,

it usually implies that the data can bevisible outside the process (e.g., to other processes or

other nodes). Hotpot utilizes these data commit points to also push updates to cached copies on

distributed nodes to avoid maintaining coherence on every PM write. Doing so greatly improves

the performance of Hotpot, while still ensuring correct memory sharing and data reliability.

To demonstrate the bene�ts of Hotpot, we ported the MongoDB [218] NoSQL database
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to Hotpot and built a distributed graph engine based on PowerGraph [119] on Hotpot. Our

MongoDB evaluation results show that Hotpot outperforms a PM-based replication system [346]

by up to 3.1� , a recent PM-based distributed �le systems [200] by up to 3.0� , and a DRAM-

based �le system by up to 53� . Hotpot outperforms PowerGraph by 2.3� to 5� , a recent DSM

system [224] by 1.3� to 3.2� . Moreover, Hotpot delivers stronger data reliability and availability

guarantees than these alternative systems.

Overall, this paper makes the following key contributions:

� We are the �rst to introduce the Distributed Shared Persistent Memory (DSPM) model and

among the �rst to build distributed PM-based systems. The DSPM model provides direct

and shared memory accesses to a distributed set of PMs and is an easy and ef�cient way for

datacenter applications to use PM.

� We propose a one-layer approach to build DSPM by integrating memory coherence and

data replication. The one-layer approach avoids the performance cost of two or more

indirection layers.

� We designed two distributed data commit protocols with different consistency levels and

corresponding recovery protocols to ensure data durability, reliability, and availability.

� We built the �rst DSPM system, Hotpot, in the Linux kernel, and two traditional kernel-

level DSM systems (as comparison to Hotpot). Hotpot and the two DSM systems are both

open sourced.

� We demonstrated Hotpot's performance bene�ts and ease of use with two real datacenter

applications and extensive microbenchmark evaluation. We compared Hotpot with �ve

existing �le systems and distributed memory systems, and two in-house DSM systems.

The rest of the paper is organized as follows. Section 2 presents and analyzes several recent

datacenter trends that motivated our design of DSPM. We discuss the bene�ts and challenges
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of DSPM in Section 3. Section 4 presents the architecture and abstraction of Hotpot. We then

discuss Hotpot's data management in Section 5. We present our protocols and mechanisms to

ensure data durability, consistency, reliability, and availability in Section 6. Section 7 brie�y

discusses the network layer we built underlying Hotpot, and Section 8 presents detailed evaluation

of Hotpot. We cover related work in Section 9 and conclude in Section 10.

Hotpot is available athttps://github.com/WukLab/Hotpot .

2.2 Motivation

DSPM is motivated by three datacenter trends: emerging hardware PM technologies,

modern data-intensive applications' data sharing, persistence, and reliability needs, and the

availability of fast datacenter network.

2.2.1 Persistent Memory and PM Apps

Next-generation non-volatile memories (NVMs), such as 3DXpoint [141], phase change

memory (PCM), spin-transfer torque magnetic memories (STTMs), and the memristor will

provide byte addressability, persistence, and latency that is within an order of magnitude of

DRAM [136, 179, 180, 183, 260, 302, 334, 200]. These developments are poised to radically

alter the landscape of memory and storage technologies.

NVMs can attach directly to the main memory bus to form Persistent Memory, or PM. If

applications want to exploit all the low latency and byte-addressability bene�ts of PM, they should

directly access it via memory load and store instructions without any software overheads [72, 320,

346, 248, 211, 167] (we call this modeldurable in-memory computation), rather than accessing it

via a �le system [73, 91, 93, 331, 240, 200].

Unfortunately, most previous durable in-memory systems were designed for the single-

node environment. With modern datacenter applications' computation scale, we have to be able
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Figure 2.1: PowerGraph Sharing Analysis. Results of running PageRank [178] on a Twitter
graph [175]. Black lines represent total amount of sharing. Green lines represent sharing within
�ve seconds.

to scale out these single-node PM systems.

2.2.2 Shared Memory Applications

Modern data-intensive applications increasingly need to access and share vast amounts

of data fast. We use PIN [202] to collect memory access traces of two popular data-intensive

applications, TensorFlow [12] and PowerGraph [119]. Figures 2.1 and 2.2 show the total number

of reads and writes performed to the same memory location byN threads and the amount of these

shared locations. There are a signi�cant amount of shared read accesses in these applications,

especially across a small set of threads. We further divided the memory traces into smaller time

windows and found that there is still a signi�cant amount of sharing, indicating that many shared

accesses occur at similar times.

Distributed Shared Memory (DSM) takes the shared memory concept a step further
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Figure 2.2: TensorFlow Sharing Analysis. Results of running a hand-writing recognition
workloads provided by TensorFlow. Black lines represent total amount of sharing. Green lines
represent sharing within �ve seconds.

by organizing a pool of machines into a globally shared memory space. Researchers and

system builders have developed a host of software and hardware DSM systems in the past few

decades [48, 52, 53, 86, 108, 118, 169, 197, 162, 160, 262, 348, 299, 300, 349, 277]. Recently,

there is a new interest in DSM [224] to support modern data-intensive applications.

However, although DSM scales out shared-memory applications, there has been no

persistent-memory support for DSM. DSM systems all had to checkpoint to disks [298, 267, 227].

Memory persistence can allow these applications to checkpoint fast and recover fast [223].

2.2.3 Fast Network and RDMA

Datacenter network performance has improved signi�cantly over the past decades. In-

�niBand (IB) NICs and switches support high bandwidth ranging from 40 to 100 Gbps. Remote

Direct Memory Access (RDMA) technologies that provide low-latency remote memory accesses
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have become more mature for datacenter uses in recent years [153, 91, 152, 129]. These network

technology advances make remote-memory-based systems [224, 126, 253, 64, 51, 338] more

attractive than decades ago.

2.2.4 Lack of Distributed PM Support

Many large-scale datacenter applications require fast access to vast amounts of persistent

data and could bene�t from PM's performance, durability, and capacity bene�ts. For PMs to

be successful in datacenter environments, they have to support these applications. However,

neither traditional distributed storage systems or DSM systems are designed for PM. Traditional

distributed storage systems [14, 58, 84, 116, 173, 254] target slower, block-based storage devices.

Using them on PMs will result in excessive software and network overheads that outstrip PM's

low latency performance [346]. DSM systems were designed for fast, byte-addressable memory,

but lack the support for data durability and reliability.

Octopus [200] is a recent RDMA-enabled distributed �le system built for PM. Octopus

and our previous work Mojim [346] are the only distributed PM-based systems that we are aware

of. Octopus was developed in parallel with Hotpot and has a similar goal as Hotpot: to manage

and expose distributed PM to datacenter applications. However, Octopus uses a �le system

abstraction and is built in the user level. These designs add signi�cant performance overhead to

native PM accesses (Section 2.8.2). Moreover, Octopus does not provide any data reliability or

high availability, both of which are key requirements in datacenter environments.

2.3 Distributed Shared Persistent Memory

The datacenter application and hardware trends described in Section 2.2 clearly point

to one promising direction of using PM in datacenter environments — as distributed, shared,

persistent memory (DSPM). A DSPM system manages a distributed set of PM-equipped machines
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and provides the abstraction of a global virtual address space and a data persistence interface to

applications. This section gives a brief discussion on the DSPM model.

2.3.1 DSPM Bene�ts and Usage Scenarios

DSPM offers low-latency, shared access to vast amount of durable data in distributed PM,

and the reliability and high availability of these data. Application developers can build in-memory

data structures with the global virtual address space and decide how to name their data and when

to make data persistent.

Applications that �t DSPM well have two properties: accessing data with memory

instructions and making data durable explicitly. We call the time when an application makes its

data persistent acommit point. There are several types of datacenter applications that meet the

above two descriptions and can bene�t from running on DSPM.

First, applications that are built for single-node PM can be easily ported to DSPM and

scale out to distributed environments. These applications store persistent data as in-memory data

structures and already express their commit points explicitly. Similarly, storage applications that

use memory-mapped �les also �t DSPM well, since they operate on in-memory data and explicitly

make them persistent at well-de�ned commit points (i.e., msync). Finally, DSPM �ts shared-

memory or DSM-based applications that desire to incorporate durability. These applications do

not yet have durable data commit points, but we expect that when developers want to make their

applications durable, they should have the knowledge of when and what data they want make

durable.

2.3.2 DSPM Challenges

Building a DSPM system presents several new challenges.

First,what type of abstraction should DSPM offer to support both direct memory accesses
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and data persistence (Section 2.4)? To perform native memory accesses, application processes

should use virtual memory addresses. But virtual memory addresses are not a good way toname

persistent data. DSPM needs a naming mechanism that applications can easily use to retrieve

their in-memory data after reboot or crashes (Section 2.4.2). Allowing direct memory accesses to

DSPM also brings another new problem: pointers need to be both persistent in PM and consistent

across machines (Section 2.4.3).

Second,how to ef�ciently organize data in DSPM to deliver good application performance

(Section 2.5)?To make DSPM's interface easy to use and transparent, DSPM should manage the

physical PM space for applications and handle PM allocation. DSPM needs a �exible and ef�cient

data management mechanism to deliver good performance to different types of applications.

Finally, DSPM needs to ensure both distributed cache coherence and data reliability at

the same time(Section 2.6). The former requirement ensures the coherence of multiple cached

copies at different machines under concurrent accesses and is usually enforced in a distributed

memory layer. The latter provides data reliability and availability when crashes happen and is

implemented in distributed storage systems or distributed databases. DSPM needs to incorporate

both these two different requirements in one layer in a correct and ef�cient way.

2.4 Hotpot Architecture and Abstraction

We built Hotpot, a kernel-level DSPM system that provides applications with direct

memory load/store access to both local and remote PM and a mechanism to make in-PM data

durable, consistent, and reliable. Hotpot is easy to use, delivers low-latency performance, and

provides �exible choices of data consistency, reliability, and availability levels. This section

presents the overall architecture of Hotpot and its abstraction to applications.

We built most of Hotpot as a loadable kernel module in Linux 3.11.0 with only a few

small changes to the original kernel. Hotpot has around 19K lines of code, out of which 6.4K
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Figure 2.3: Hotpot Architecture.

lines are for a customized network stack (Section 2.7).

Hotpot sits in the kernel space and manages PMs in a set of distributed nodes, orHot-

pot nodes. Hotpot provides applications with an easy-to-use, memory-based abstraction that

encapsulates both memory and persistent data access in a transparent way. Figure 2.3 presents

Hotpot's architecture. Hotpot uses aCentral Dispatcher (CD)to manage node membership and

initialization tasks (e.g., create a dataset). All data and metadata communication after a dataset

has been created takes place between Hotpot nodes and does not involve the CD.
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2.4.1 Application Execution and Data Access Abstraction

Most data-intensive applications are multithreaded and distribute their data processing

work across threads [218, 119]. Thus, Hotpot adopts a thread-based model to run applications

on a set of Hotpot nodes. Hotpot uses application threads as the unit of deployment and lets

applications decide what operations and what data accesses they want to include in each thread.

Applications specify what threads to run on each Hotpot node and Hotpot runs an application by

starting all its threads together on all Hotpot nodes. We give users full �exibility in choosing their

initial thread and workload distributions. However, such user-chosen distributions may not be

optimal, especially as workloads change over time. To remedy this situation, Hotpot provides a

mechanism to adaptively move data closer to computation based on workload behavior, as will be

discussed in Section 2.5.5.

Hotpot provides a global virtual memory address space to each application. Application

threads running on a node can perform native memory load and store instructions using global

virtual memory addresses to access both local and remote PM. The applications do not know

where their data physically is or whether a memory access is local or remote. Internally, a virtual

memory address can map to a local physical page if the page exists locally or generate a page fault

which will be ful�lled by Hotpot by fetching a remote page (more in Section 2.5.3). Figure 2.4

presents an example of Hotpot's global virtual address space. Unlike an I/O-based interface,

Hotpot's native memory interface can best exploit PMs' low-latency, DRAM-like performance,

and byte addressability.

On top of the memory load/store interfaces, Hotpot provides a mechanism for applications

to name their data, APIs to make their data persistent, and helper functions for distributed thread

synchronization. Table 2.1 lists Hotpot APIs. We also illustrate Hotpot's programming model with

a simple program in Figure 2.5. We will explain Hotpot's data commit semantics in Section 2.6.
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Table 2.1: Apart from these APIs, Hotpot also supports direct memory loads and stores.

API Explanation Backward
open (close) open or create (close) a DSPM datasetsame as current
mmap(munmap) map (unmap) a DSPM region in a

dataset to application address space
same as current

commit commit a set of data and makeN per-
sistent replicas

similar to msync

acquire acquire single writer permission
thread-barrier helper function to synchronize threads

on different nodes
similar to pthread barrier

2.4.2 Persistent Naming

To be able to store persistent data and to allow applications to re-open them after closing

or failures, Hotpot needs to provide a naming mechanism that can sustain power recycles and

crashes.

Many modern data-intensive applications such as in-memory databases [218] and

graphs [120, 119] work with only one or a few big datasets that include all of an applica-

tion's data and then manage their own �ne-grained data structures within these datasets. Thus,

instead of traditional hierarchical �le naming, we adopt a �at naming mechanism in Hotpot to

reduce metadata management overhead.

Speci�cally, Hotpot applications assign names bydatasetsand can use these names to

open the datasets. A dataset is similar to the traditional �le concept, but Hotpot places all datasets

directly under a mounted Hotpot partition without any directories or hierarchies. Since under

Hotpot's targeted application usage, there will only be a few big datasets, dataset lookup and

metadata management with Hotpot's �at namespace are easy and ef�cient. We use a simple

(persistent) hash table internally to lookup datasets.

TheopenandmmapAPIs in Table 2.1 let applications create or open a dataset with a

name and map it into the application's virtual memory address space. Afterwards, all data access

is through native memory instructions.
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Figure 2.4: Hotpot Addressing. Hotpot maps “Dataset1” to Node 1 and Node 2's virtual address
space using the same base virtual addresses. The physical address mapping on each node is
different. The grey blocks in the middle are pointers that point to the blocks on the left.

2.4.3 Consistent and Persistent Pointers

Hotpot applications can use DSPM as memory and store arbitrary data structures in

it. One resulting challenge is the management of pointers in DSPM. To make it easy to build

persistent applications with memory semantics, Hotpot ensures that pointers in DSPM have the

same value (i.e., virtual addresses of the data that they point to) both across nodes and across

crashes. Application threads on different Hotpot nodes can use pointers directly without pointer

marshaling or unmarshaling, even after power failure. We call such pointersglobally-consistent

and persistent pointers. Similar to NV-Heaps [72], we restrict DSPM pointers to only point to

data within the same dataset. Our targeted type of applications which build their internal data

structures within big datasets already meet this requirement.

To support globally-consistent and persistent pointers, Hotpot guarantees that the same

virtual memory address is used as the starting address of a dataset across nodes and across

re-opens of the dataset. With the same base virtual address of a dataset and virtual addresses

within a dataset being consecutive, all pointers across Hotpot nodes will have the same value.

20



1 /* Open a dataset in Hotpot DSPM space */
2 int fd = open("/mnt /hotpot /dataset " , O_CREAT|O_RDWR);
3

4 /* Obtain virtual address of dataset with tradit ional mmap() */
5 void *base= mmap (0 ,40960 , PROT_WRITE ,MAP_PRIVATE ,fd ,0) ;
6

7 /* Size of the application log */
8 int * log_size = base;
9 /* The application log */

10 int * log = base + sizeof ( int );
11

12 /* Append an entry to the end of the log */
13 int new_data = 24;
14 log [* log_size ] = new_data ;
15 * log_size += 1;
16

17 /* Prepare memory region metadata for commit */
18 struct commit_area_struct {void *address ; int length ;};
19 struct commit_area_struct areas [2];
20 areas [0]. address = log_size ;
21 areas [0]. length = sizeof ( int );
22 areas [1]. address = &log [* log_size ];
23 areas [1]. length = sizeof ( int );
24

25 /* Commit the two data areas , each with two replicas */
26 commit (areas , 2) ;

Figure 2.5: Sample code using Hotpot. Code snippet that implements a simple log append
operation with Hotpot.

We developed a new mechanism to guarantee that the same base virtual address is used

across nodes and crashes. When an application opens a dataset for the �rst time, Hotpot uses

a consensus protocol to discover the current available virtual address ranges on all nodes and

select one for the dataset. Nodes that have not opened the dataset will reserve this virtual address

range for possible future opening of the dataset. Since the total amount of virtual addresses for

DSPM is bound to the total size of DSPM datasets, Hotpot can always �nd available virtual

address ranges on 64-bit platforms. Hotpot records the virtual address range persistently and

forces applications to use the same virtual address the next time it starts. To ensure that recorded
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Figure 2.6: Data State Change Example. White, black, and striped blocks represent committed,
redundant, and dirty states. Before commit, Node 2 and Node 3 both have cached copies of data
pageB. Node 2 has written toB and created a dirty page,B1. During commit, Node 2 pushes
the contentB1 to its ON, Node 1. Node 1 updates its committed copy toB1 and also sends this
update to Node 3. Figure (c) shows the state after migrating the ON of chunk 1 from Node 1 to
Node 3. After migration, Node 3 has all the pages of the chunk and all of them are in committed
states.

persistent virtual address ranges are always available when opening datasets, we change the kernel

loader and virtual memory address allocator (i.e., brk implementation) to exclude all recorded

address ranges.

2.5 Data Management and Access

This section presents how Hotpot manages user data in DSPM. We postpone the discussion

of data durability and reliability to Section 2.6.

2.5.1 PM Page Morphable States

One of Hotpot's design philosophies is to use one layer for both memory and storage and

to integrate distributed memory caching and data replication. To achieve this goal, we propose to

imposemorphablestates on PM pages, where the same PM page in Hotpot can be used both as a

local memory cached copy to improve performance and as a redundant data page to improve data
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reliability and availability.

We differentiate three states of a PM page: active and dirty, active and clean, and inactive

and clean, and we call these three statesdirty, committed, andredundantrespectively. A page

being clean means that it has not been updated since the last commit point; committing a dirty

page moves it to the clean state. A page being active means that it is currently being accessed by

an application, while an redundant page is a page which the application process has not mapped

or accessed. Several Hotpot tasks can change page states, including page read, page write, data

commit, data replication, page migration, and page eviction. We will discuss how page states

change throughout the rest of this section. Figure 2.6 illustrates two operations that cause Hotpot

data state changes.

2.5.2 Data Organization

Hotpot aims to support large-scale, data-intensive applications on a fairly large number

of nodes. Thus, it is important to minimize Hotpot's performance and scalability bottlenecks.

In order to enable �exible load balancing and resource management, Hotpot splits the virtual

address range of each dataset intochunksof a con�gurable size (e.g., 4 MB). PM pages in a chunk

do not need to be physically consecutive and not all pages in a chunk need to exist on a node.

Each chunk in Hotpot is owned by anowner node (ON), similar to the “home” node in

home-based DSM systems [349]. An ON maintains all the data and metadata of the chunk it

owns. Other nodes, calleddata nodeor DN, always fetch data from the ON when they initially

access the data. A single Hotpot node can simultaneously be the ON for some data chunks and

the DN for other chunks. When the application creates a dataset, Hotpot CD performs an initial

assignment of ONs to chunks of the dataset.

Two properties separate Hotpot ONs from traditional home nodes. First, Hotpot ON is

responsible for the reliability and crash consistency of the pages it owns, besides serving read data

and ensure the coherence of cached copies. Second, Hotpot does not �x which node owns a chunk
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and the location of ON adapts to application workload behavior dynamically. Such �exibility is

important for load balancing and application performance (see Section 2.5.5).

2.5.3 Data Reads and Writes

Hotpot minimizes software overhead to improve application performance. It is invoked

only when a page fault occurs or when applications execute data persistence operations (see

Section 2.6 for details of data persistence operations).

When a page fault happens because of read, it means that there is no valid local page.

Hotpot �rst checks if there is any local redundant page. If so, it will move this page to the

committed state and establish a page table entry (PTE) for it. Otherwise, there is no available

local data and Hotpot will fetch it from the remote ON. Hotpot writes the received data to a

newly-allocated local physical PM page. Afterwards, applications will use memory instructions

to access this local page directly.

Writing to a committed page also causes a page fault in Hotpot. This is because a

committed page can contribute towards user-speci�ed degree of replication as one data replica,

and Hotpot needs to protect this committed version from being modi�ed. Thus, Hotpot write

protects all committed pages. When these pages are written to (and generating a write page fault),

Hotpot creates a local Copy-On-Write (COW) page and marks the new page as dirty while leaving

the original page in committed state. Hotpot does not write protect this COW page, since it is

already in the dirty state.

Following Hotpot's design philosophy to exploit hints from our targeted data-intensive

applications, we avoid propagating updates to cached copies at other nodes on each write and

only do so at each application commit point. Thus, all writes in Hotpot is local and only writing

to a committed page will generate a page fault.

Not updating remote cached copies on each write also has the bene�t of reducing write

ampli�cation in PM. In general, other software mechanisms and policies such as wear-aware PM
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allocation and reclamation and hardware techniques like Start-Gap [261] can further reduce PM

wear. We do not focus on PM wear in this paper and leave such optimizations for future work.

2.5.4 PM Page Allocation and Eviction

Each Hotpot node manages its own physical PM space and performs PM page allocation

and eviction. Since physical pages do not need to be consecutive, we use a simple and ef�cient

allocation mechanism by maintaining a free page list and allocating one page at a time.

Hotpot uses an approximate-LRU replacement algorithm that is similar to Linux's page

replacement mechanism. Different from Linux, Hotpot distinguishes pages of different states.

Hotpot never evicts a dirty page and always tries to evict redundant pages before evicting

committed pages. We choose to �rst evict redundant pages, because these are the pages that have

not been accessed by applications and less likely to be accessed in the future than committed

pages.

Since both redundant and committed pages can serve as a redundant copy for data

reliability, Hotpot cannot simply throw them away during eviction. The evicting node of a page

will contact its ON, which will check the current degree of replication of the candidate pages and

prioritize the eviction of pages that already have enough replicas. For pages that will drop below

the user-de�ned replication degree after the eviction, the ON will make a new redundant page at

another node.

2.5.5 Chunk ON Migration

An ON serves both page read and data commit requests that belong to the chunks it owns.

Thus, the location of ON is important to Hotpot's performance. Ideally, the node that performs

the most reads and commits of data in a chunk should be its ON to avoid network communication.

By default, Hotpot initially spreads out a dataset's chunks to all Hotpot nodes in a
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round robin fashion (other static placement policies can easily replace round robin). Static

placement alone cannot achieve optimal run-time performance. Hotpot remedies this limitation

by performing online chunk migration, where one ON and one DN of a chunk can switch their

identities and become the new DN and new ON of the chunk.

Hotpot utilizes application behavior in recent history to decide how to migrate ONs. Each

ON records the number of page read requests and the amount of committing data it receives in

the most recent time window.

ONs make their migration decisions with a simple greedy algorithm based on the combina-

tion of two criteria: maximizing thebene�t while not exceeding a con�gurablecostof migration.

The bene�t is the potential reduction in network traf�c during remote data reads and commits.

The node that performs most data communication to the ON in recent history is likely to bene�t

the most from being the new ON, since after migration these operations will become local. We

model the cost of migration by the amount of data needed to copy to a node so that it has all the

chunk data to become ON.

Once Hotpot has made a decision, it performs the actual chunk migration using a similar

method as process and VM migration [239, 87, 70] by temporary stopping commits to the chunk

under migration and resume them at the new ON after migration.

2.6 Data Durability, Consistency, and Reliability

Being distributed shared memory and distributed storage at the same time, DSPM should

ensure both correct shared memory accesses to PM and the persistence and reliability of in-PM

data. Hotpot provides three guarantees: coherence among cached copies of in-PM data, recovery

from various types of failures into a consistent state, and user data reliability and availability

under concurrent failures. Although each of these three properties have been explored before, as

far as we know, Hotpot is the �rst system that integrates all of them in one layer. Hotpot also has
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the unique requirement of low software overhead to retain the performance bene�t of PM.

� Cache coherence.In Hotpot, application processes on different nodes cache remote data

in their local PM for fast accesses. Hotpot provides two consistency levels across cached

copies:R1.a, multiple readers and single writer (MRSW) andR1.b, multiple readers and

multiple writers (MRMW). MRMW allows multiple nodes to concurrently write and commit

their local cached copies. With MRMW, there can be multiple versions of dirty data in the

system (but still one committed version), while MRSW guarantees only one dirty version

at any time. An application can use different modes for different datasets, but only one

mode with the same dataset. This design allows �exibility at the dataset granularity while

guaranteeing correctness.

� Crash consistency.Data storage applications usually have well-de�nedconsistentstates and

need to move from one consistent state to another atomically. When a crash happens, user

data should be recovered to a consistent state (i.e., crash consistency). Hotpot guarantees

crash consistency both within a single node (R2.a) and across distributed nodes (R2.b).

Note that crash consistency is different and orthogonal to cache coherence inR1.a and

R1.b.

� Reliability and availability.To ensure that user persistent data can sustainN � 1 concurrent

node failures, whereN is a user de�ned value, Hotpot guarantees thatR3, once data has

been committed, there are alwaysN copies of clean, committed data.

This section �rst discusses how Hotpot ensures crash consistency within a single node,

then presents the MRMW and MRSW modes and their atomic commit protocols, and ends with

the discussion of Hotpot's recovery mechanisms under different crash scenarios.
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2.6.1 Single-Node Persistence and Consistency

Before ensuring user data's global reliability and consistency in DSPM, Hotpot �rst needs

to make sure that data on a single node can properly sustain power crashes (R2.a) [248]. Hotpot

makes data persistent with the standard Intel persistent memory instructions [168], i.e., clflush ,

mfence(note that we do not include the deprecatedpcommitinstruction [145]).

After a node crashes, if its PM is still accessible, Hotpot will use the PM content to

recover; otherwise, Hotpot will use other nodes to reconstruct data on a new node (Section 2.6.4).

For the former case, Hotpot needs to guarantee that user data in DSPM is in a consistent state

after crash. Hotpot also needs to ensure that its own metadata is persistent and is consistent with

user data.

Hotpot maintains metadata on a local node to �nd user data and record their morphable

states (i.e., committed, dirty, or redundant). Since these metadata are only used within a single

node, Hotpot does not need to replicate them on other nodes. Hotpot makes these metadata

persistent at known locations in PM — a pre-allocated beginning area of PM. Hotpot also uses

metadata to record online state of the system (e.g., ON maintains a list of active DNs that have a

cached copy of data). These metadata can be reconstructed by re-examining system states after

recovery. Thus, Hotpot does not make these metadata persistent.

Similar to traditional �le systems and databases, it is important to enforceorderingof

metadata and data persistence in order to recover to a consistent state. For single-node non-commit

operations (we defer the discussion of commit operations to Sections 2.6.2 and 2.6.3), Hotpot

uses a simple shadow-paging mechanism to ensure that the consistency of metadata and data.

Speci�cally, we associate each physical memory page with a metadata slot and use a single 8-byte

index value to locate both the physical page and its metadata. When an application performs a

memory store to a committed page, Hotpot allocates a new physical page, writes the new data to

it, and writes the new metadata (e.g., the state of the new page) to the metadata slot associated

with this physical page. After making all the above data and metadata persistent, Hotpot changes

28



Figure 2.7: MRMW Commit Example. Solid arrows represent data communication. Dashed
arrows represent metadata communication. Node 1 (CN) commit data to ONs at Node 2 and 3
with replication degree four. Black shapes represent old committed states before the update and
white shapes represent new states.

the index from pointing to the old committed page to pointing to the new dirty page. Since most

architectures support atomic 8-byte writes, this operation atomically moves the system to a new

consistent state with both the new data and the new metadata.

2.6.2 MRMW Mode

Hotpot supports two levels of concurrent shared-PM accesses and uses different protocols

to commit data. The MRMW mode allows multiple concurrent versions of dirty, uncommitted

data to support great parallelism. MRMW meetsR1.b, R2.b, andR3.

MRMW uses a distributed atomic commit protocol at each commit point to make local

updates globally visible, persistent, and replicated. Since MRMW supports concurrent commit

operations and each commit operation can involve multiple remote ONs, Hotpot needs to ensure

that all the ONs reach consensus on the commit operation they serve. We designed a three-phase

commit protocol for the MRMW mode based on traditional two-phase commit protocols [275,

124, 177] but differs in that Hotpot needs to ensure cache coherence, crash consistency, and data

replication all in one protocol. Figure 2.7 illustrates an example of MRMW.
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Commit phase 1.When a node receives acommitcall (we call this nodeCN), it checks

if data speci�ed in thecommitcall is dirty and commits only the dirty pages. CN persistently

records the addresses of these dirty pages for recovery reasons (Section 2.6.4). CN also assigns a

unique ID (CID) for this commitrequest and persistently records the CID and its state of starting

phase 1.

Afterwards, CN sends the committing data to its ONs to prepare these ONs for the commit.

Each ON accepts the commit request if it has not accepted other commit request to the same

pages, and it stores the committing data in apersistent redo login PM. The ON also persistently

records the CID and its state (i.e., completed phase 1) persistently. The ON will block future

commit requests to these data until the whole commit process �nishes. The CN can proceed to

phase 2 only when all ONs return successfully.

Commit phase 2. In commit phase 2, Hotpot makes the committing data persistent,

coherent, and replicated. This is the phase that Hotpot differs most from traditional distributed

commit protocols.

CN sends a command to all the involving ONs to indicate the beginning of phase 2. Each

ON then performs two tasks in one multicast operation (Section 2.7): updating DNs' cached

copies of the committing data and making extra replicas. ON looks up its metadata to �nd what

DNs have a cached copy. If these DNs alone cannot meet the replication degree, ON will choose

new DNs that do not have a copy of the data and send the data to them.

When a DN receives the committing data from an ON, it checks the state of its local

data pages. If a local page is in the committed state or the redundant state, the DN will directly

overwrite the local page with the received data. In doing so, the DN's cached PM data is updated.

If the local page is dirty or if there is no corresponding local page, the DN allocates a new physical

page and writes the new data to this page. The new physical page will be in the redundant state

and will not affect the DN's dirty data. In this way, all DNs that receive updated data from the

ON will have a clean, committed copy, either in the committed or the redundant state.
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After all DNs have replied to the ON indicating that there are nowN copies of the

committing data, the ON commits data locally by checkpointing (copying) data from the redo log

to their home locations. Unlike traditional databases and �le systems that lazily checkpoint logged

data, Hotpot checkpoints all committing data in this phase so that it can make the updated version

of the data visible to applications immediately, a requirement of shared-memory cache coherence.

During checkpointing, the ON will block both local and remote reads to the committing data to

prevent applications from reading intermediate, inconsistent data.

After the CN receives successful replies from all the ONs, it deletes its old local data and

moves to the new, committed version. At this point, the whole system has a coherent view of the

new data and has at leastN copies of it.

Commit phase 3.In the last phase, the CN informs all ONs that thecommitoperation

has succeeded. The ONs then delete their redo logs.

Committing to a single ON and to local ON.When only one remote ON is involved in a

commitoperation, there is no need to coordinate multiple ONs and Hotpot performs the above

commit protocol in a single phase.

The CN can also be the ON of committing data. In this case, the CN performs thecommit

operation locally. Since all local dirty pages are the COW of old committed pages, CN already

has an undo and a redo copy of the committing data and does not need to create any other redo

log as in remote ON's phase 1.

2.6.3 MRSW Mode

The MRSW mode allows only one writer to a PM page at a time to trade parallelism for

stronger consistency. MRSW meetsR1.a, R2.b, andR3.

Traditional MRSW protocols in DSM systems are usually invoked at every memory

store (e.g., to update cached read copies, to revoke current writer's write permission). Unlike

DSM systems, DSPM applications store and manage persistent data; they do not need to ensure
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Figure 2.8: MRSW Example. Node 1 (CN) �rst acquires write permission from Node 2 (MN)
before writing data. It then commits the new data to ONs at Node 2 and 3 with replication
degree four and �nally releases the write permission to MN.

coherence on every memory store, since they have well-de�ned points of when they want to start

updating data and when they want to commit. To avoid the cost of invoking coherence events

on each memory store while ensuring only one writer at a time, Hotpot uses anacquireAPI for

applications to indicate the data areas they want to update. Afterwards, applications can update

any date that they have acquired and use thecommitcall to both commit updates and release

corresponding data areas. Figure 2.8 shows an example of MRSW.

Acquire write permission. Hotpot uses a master node (MN) to maintain the active writer

of each page. An MN can be one of the Hotpot node, the CD, or a dedicated node. When a node

receives theacquirecall, it sends the virtual addresses of the data speci�ed in the call to the MN.

If the MN �nds that at least one of these addresses are currently being written to, it will reject the

acquirerequest and let the requesting node retry later.

Commit and release data.MRSW's commit protocol is simpler and more ef�cient than

MRMW's, since there is no concurrent commit operations to the same data in MRSW (concurrent

commit to different data pages is still allowed). MRSW combines phase 1 and phase 2 of the

MRMW commit protocol into a single phase where the CN sends committing data to all ONs and
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Table 2.2: Crash and Recovery Scenarios. Columns represent crashing node, if PM is accessible
after crash, time of crash, and actions taken at recovery. NC represents non-commit time.

Node PM Time Action

any Y any resume normal operation after reboot
CD N any reconstruct using mirrored copy
ON N NC promote an existing DN to ON
DN N NC reconstruct data to meet replication degree

M
R

M
W

C
om

m
it CN/ON N p1 undo commit, ONs delete redo logs

CN N p2 redo commit, ONs send new data to DNs
ON N p2 redo commit, CN sends new data to new ON
DN N p2 continue commit, ON sends data to new DN
CN N p3 complete commit, ONs delete redo logs
ON/DN N p3 complete commit, new chunk reconstructed using committed data

M
R

S
W

CN N commit undo commit, ONs send old data to DNs
ON N commit CN redo commit from scratch
CN N release complete commit, release data
ON/DN N release complete commit, new chunk reconstructed using committed data

all ONs commit data on their own. Each ON individually handles commit in the same way as in

the MRMW mode, except that it does not need to coordinate with any other ONs or the CN. ON

directly proceeds to propagating data to DNs after it has written its own redo log.

At the end of the commit process, the CN informs the ONs to delete their redo logs (same

as MRMW commit phase 3) and the MN to release the data pages.

2.6.4 Crash Recovery

Hotpot can safely recover from different crash scenarios without losing applications'

data. Hotpot detects node failures by request timeout and by periodically sending heartbeat

messages from the CD to all Hotpot nodes. We now explain Hotpot's crash recovery mechanism

in the following four crash scenarios. Table 2.2 summarizes various crash scenarios and Hotpot's

recovery mechanisms.

Recovering CD and MN.CD maintains node membership and dataset name mappings.

Hotpot currently uses one CD but can be easily extended to include a hot stand-by CD (e.g., using

33



Mojim [346]).

MN tracks which node has acquired write access to a page under the MRSW mode.

Hotpot does not make this information persistent and simply reconstructs it by contacting all

other nodes during recovery.

Non-commit time crashes.Recovering from node crashes during non-commit time is

fairly straightforward. If the PM in the crashed node is accessible after the crash (we call it

with-PM failure), Hotpot directly restarts the node and lets applications access data in PM. As

described in Section 2.6.1, Hotpot ensures crash consistency of a single node. Thus, Hotpot

can always recover to a consistent state when PM survives a crash. Hotpot can sustain arbitrary

number of with-PM failures concurrently.

When a crash results in corrupted or inaccessible PM (we call itno-PM failure), Hotpot

will reconstruct the lost data using redundant copies. Hotpot can sustainN � 1 concurrent no-PM

failures, whereN is the user-de�ned degree of replication.

If a DN chunk is lost, the ON of this chunk will check what data pages in the chunk have

dropped below user-de�ned replication degree and replicating them on the new node that replaces

the failed node. There is no need to reconstruct the rest of the DN data; Hotpot simply lets the

new node access them on demand.

When an ON chunk is lost, it is critical to reconstruct it quickly, since an ON serves

both remote data read and commit operations. Instead of reconstructing a failed ON chunk from

scratch, Hotpot promotes an existing DN chunk to an ON chunk and creates a new DN chunk.

The new ON will fetch locally-missing committed data from other nodes and reconstruct ON

metadata for the chunk. Our evaluation results show that it takes at most 2.3 seconds to promote

a 1GB DN chunks to ON.

Crash during commit. If a with-PM failure happens during acommitcall, Hotpot will

just continue its commit process after restart. When a no-PM failure happens during commit,

Hotpot takes different actions to recover depending on when the failure happens.
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For MRMW commit, if no-PM failure happens before all the ONs have created the

persistent redo logs (i.e., before starting phase 2), Hotpot will undo the commit and revert to the

old committed state by deleting the redo logs at ONs. If a no-PM failure happens after all ONs

have written the committing data to their persistent redo logs (i.e., after commit phase 1), Hotpot

will redo the commit by replaying redo logs.

For MRSW, since we combine MRMW's phase 1 and phase 2 into one commit phase, we

will not be able to tell whether or not an ON has pushed the committing data to DNs when this

ON experience a no-PM failure. In this case, Hotpot will let CN redo the commit from scratch.

Even if the crashed ON has pushed updates to some DNs, the system is still correct after CN redo

the commit; it will just have more redundant copies. When the CN fails during MRSW commit,

Hotpot will undo the commit by letting all ONs delete their redo logs and send old data to DNs to

overwrite DNs' updated data.

During commit, Hotpot only supports either CN no-PM failure or ON no-PM failure. We

choose not to support concurrent CN and ON no-PM failures during commit, because doing so

largely simpli�es Hotpot's commit protocol and improves its performance. Hotpot's commit

process is fast (under 250µswith up to 16 nodes, see Section 2.8.4). Thus, the chance of CN and

ON both fail and lose their PM during commit is very small. Hotpot always supports DN no-PM

failures during commit regardless of whether there are concurrent CN or ON failure.

2.7 Network Layer

The networking delay in DSPM systems is crucial to their overall performance. We

implement Hotpot's network communication using RDMA. RDMA provides low-latency, high-

bandwidth direct remote memory accesses with low CPU utilization. Hotpot's network layer is

based on LITE [315], an ef�cient RDMA software stack we built in the Linux kernel on top of

the RDMA native APIs,Verbs[209].
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Most of Hotpot's network communication is in the form of RPC. We implemented a

customized RPC-like interface in our RDMA layer based on the two-sided RDMA send and

receive semantics. We further built a multicast RPC interface where one node can send a request

to multiple nodes in parallel and let them each perform their processing functions and reply with

the return values to the sending node. Similar to the �ndings from recent works [153], two-sided

RDMA works better and is more �exible for these RPC-like interfaces than one-sided RDMA.

To increase network bandwidth, our RDMA layer enables multiple connections between

each pair of nodes. It uses only one busy polling thread per node to poll a shared ring buffer for

all connections, which delivers low-latency performance while keeping CPU utilization low. Our

customized RDMA layer achieves an average latency of 7.9µs to perform a Hotpot remote page

read. In comparison, IPoIB, a standard IP layer on top of Verbs, requires 77µs for a round trip

with the same size.

2.8 Applications and Evaluation

This section presents the performance evaluation of two applications and a set of mi-

crobenchmarks. We ran all experiments on a cluster of 17 machines, each with two Intel Xeon

CPU E5-2620 2.40GHz processors, 128 GB DRAM, and one 40 Gbps Mellanox ConnectX-3

In�niBand network adapter; a Mellanox 40 Gbps In�niBand switch connects all of the machines.

All machines run the CentOS 7.1 distribution and the 3.11.1 Linux kernel.

The focus of our evaluation is to understand the performance of DSPM's distributed

memory model, its commit protocols, and its data persistence cost. As there is no real PM in

production yet, we use DRAM as stand-in for PM. A previous study [336] shows that even though

PM and DRAM can have some performance difference, the difference is small and has much

lower impact on application performance than the cost of �ushing data from CPU caches to PM,

which we have included in Hotpot and can measure accurately.
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2.8.1 Systems in Comparison

We compare Hotpot with one in-memory �le system, two PM-based �le systems, one

replicated PM-based system, and three distributed shared memory systems. Below we brie�y

describe these systems in comparison.

Single-Node File Systems.Tmpfs is a Linux �le system that stores all data in main

memory and does not perform any I/Os to storage devices. PMFS [93] is a �le system designed for

PM. The key difference between PMFS and a conventional �le system is that its implementation

of mmapmaps the physical PM pages directly into the applications' address spaces rather than

moving them back and forth between the �le store and the buffer cache. PMFS ensures data

persistence usingsfence andclflush instructions.

Distributed PM-Based SystemsOctopus [200] is a user-level RDMA-based distributed

�le system designed for PM. Octopus provides a set of customized �le APIs including read and

write, but does not support memory-mapped I/Os or provide data reliability and availability.

Mojim [346] is our previous work that uses a primary-backup model to replicate PM data

over a customized IB layer. Similar to Hotpot, PMFS, and Octopus, Mojim maps PM pages

directly into application virtual memory address spaces. Mojim supports application reads and

writes on the primary node but only reads on backup nodes.

Distributed Shared Memory Systems.We implemented two kernel-level DSM systems,

DSM-XactandDSM-NoXact, on top of the same network stack as Hotpot's. Both of them support

multiple readers and single writer (MRSW) and use a home node for each memory page to serve

remote read and to store which nodes are the current readers and writer of the page, similar to

HLRC [189, 349]. We open source both these DSM systems together with Hotpot.

DSM-Xact guarantees release consistency using a transaction interface that is similar to

Hotpot's MRSW mode. Applications �rst call a transaction begin API to specify the data that

they want to write. Transaction begin only succeeds if no other writer is writing to any of the

transaction data. After beginning a transaction, applications can read and write to any transaction
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Table 2.3: YCSB Workload Properties. The percentage of operations in each YCSB workload.
R&U stands for Read and Update.

Workload Read Update Scan Insert R&U
A 50% 50% - - -
B 95% 5% - - -
C 100% - - - -
D 95% - - 5% -
E - - 95% 5% -
F 50% - - - 50%

data and use a transaction commit call to end a transaction. When committing a transaction,

DSM-Xact writes all updated transaction data to the home node, invalidates the read caches on all

other nodes, and releases the write permission.

DSM-NoXact supports write (memory stores) without transactions and does not require

applications to declare which data they want to write in advance. On each write (memory store),

DSM-NoXact revokes the write permission from the current writer, writes the current dirty data

to the home node, and grants the write permission to the new writer. Compared to DSM-Xact,

DSM-NoXact supports stronger consistency, requires less programmer efforts, but incurs higher

performance overhead because of its more frequent writer invalidation.

Apart from the two DSM systems that we built, we also compare Hotpot with

Grappa [224], a recent DSM system that supports modern data-parallel applications. Differ-

ent from traditional DSM systems and our DSM systems, Grappa moves computation to data

instead of fetching data to where computation is.

2.8.2 In-Memory NoSQL Database

MongoDB [218] is a popular distributed NoSQL database that supports several different

storage engines including its own storage engine that is based on memory-mapped �les (called

MMAPv1). Applications like MongoDB can largely bene�t from having a fast means to store

and access persistent data. We ported MongoDB v2.7.0 to Hotpot by modifying its storage engine
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Figure 2.9: YCSB Workloads Throughput.

to keep track of all writes to the memory-mapped data �le. We then group the written memory

regions belonging to the same client request into a Hotpotcommitcall. In total, porting MongoDB

to Hotpot requires modifying 120 lines of code.

To use the ported MongoDB, administrators can simply con�gure several machines to

share a DSPM space under Hotpot and run ported MongoDB on each machine. Applications on

top of the ported MongoDB can issue requests to any machine, since all machines access the

same DSPM space. In our experiments, we ran the ported MongoDB on three Hotpot nodes and

set data replication degree to three.

We compare this ported MongoDB with the default MongoDB running on tmpfs, PMFS,

and Octopus, and a ported MongoDB to Mojim on three nodes connected with IB. Because

Octopus does not memory-mapped operations and MongoDB's storage engine is based on

memory-mapped �les, MongoDB cannot directly run on Octopus. We run MongoDB on top of

FUSE [2], a full-�edged user-level �le system, which in turn runs on Octopus.

For tmpfs and PMFS, we use two consistency models (called MongoDB write concerns):

the JOURNALED write concern and the FSYNCSAFE write concern. With the JOURNALED

write concern, MongoDB logs data in a journal �le and checkpoints the data in a lazy fash-

ion. MongoDB blocks a client call until the updated data is written to the journal �le. With

FSYNC SAFE, MongoDB does not perform journaling. Instead, it �ushes all the dirty pages to
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the data �le after each write operation and blocks the client call until this operation completes.

We run Octopus and Mojim with the FSYNCSAFE write concern. Octopus, tmpfs, and PMFS

provide no replication, while Mojim and Hotpot use their own replication mechanisms to make

three replicas of all data (Mojim uses one node as the primary node and the other two nodes as

backup nodes).

YCSB [74] is a key-value store benchmark that imitates web applications' data access

models. Figure 2.3 summarizes the number of different operations in the YCSB workloads.

Each workload performs 10,000 operations on a database with 100,000 1 KB records. Figure 2.9

presents the throughput of MongoDB on tmpfs, PMFS, Octopus, Mojim, and Hotpot using YCSB

workloads.

For all workloads, Hotpot outperforms tmpfs, PMFS, Octopus, and Mojim for both

the JOURNALED and the FSYNCSAFE write concerns. The performance improvement is

especially high for write-heavy workloads. PMFS performs worst mainly because of its inef�cient

process of making data persistent with default MongoDB. The default MongoDBfsync s the

whole data �le after each write under FSYNCSAFE, and PMFS �ushes all cache lines of the

�le to PM by performing oneclflush at a time. Hotpot and Mojim only commit dirty data,

largely improving MongoDB performance over PMFS. Compared to tmpfs and PMFS under

JOURNALED, Hotpot and Mojim use their own mechanisms to ensure data reliability and avoid

the performance cost of journaling. Moreover, Hotpot and Mojim make three persistent replica for

all data, while PMFS makes only one. Tmpfs is slower than Hotpot even though tmpfs does not

make any data persistent, because MongoDB's slower replication mechanism on IPoIB. Hotpot's

network layer is signi�cantly better than IPoIB [315].

Octopus performs worse than Hotpot and Mojim because it incurs signi�cant overhead

of additionalindirection layers: each memory operation within the memory-mapped �le goes

through the FUSE �le system and then through Octopus. Hotpot and Mojim both support native

memory instructions and incurs no indirection overhead. Finally, even though Mojim's replication
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Figure 2.10: Pagerank Total Run Time. N stands for total number of nodes, T stands for number
of threads running on a node.

Figure 2.11: Pagerank Total Network Traf�c.

protocol is simpler and faster than Hotpot's, Hotpot outperforms Mojim because Mojim only

supports write on one node while Hotpot supports write on all nodes.

2.8.3 Distributed (Persistent) Graph

Graph processing is an increasingly important type of applications in modern datacen-

ters [119, 120, 176, 198, 199, 203]. Most graph systems require large memory to run big graphs.

Running graph algorithms on PM not only enables them to exploit the big memory space the

high-density PM provides, but can also enable graph algorithms to stop and resume in the middle
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Figure 2.12: Pagerank Network Traf�c Over Time.

of a long run.

We implemented a distributed graph processing engine on top of Hotpot based on the

PowerGraph design [119]. It stores graphs with vertex-centric representation in DSPM with

random order of vertices and distributes graph processing load to multiple threads across all

Hotpot nodes. Each thread performs graph algorithms on a set of vertices in three steps: gather,

apply, and scatter, with the optimization of delta caching [119]. After each step, we perform a

global synchronization withthread-barrierand only start the next step when all threads have

�nished the last step. At the scatter step, the graph engine uses Hotpot's MRSWcommitto make

local changes of the scatter values visible to all nodes in the system. We implemented the Hotpot

graph engine with only around 700 lines of code. Similarly, we implemented two distributed

graph engines on top of DSM-Xact and DSM-NoXact; these engines differ from Hotpot's graph

engine only in the way they perform data write and commit.

We compare Hotpot's graph engine with DSM-Xact, DSM-NoXact, PowerGraph, and

Grappa [224] with two real datasets, Twitter (41 M vertices, 1 B directed edges) [175] and

LiveJournal (4 M vertices, 34.7 M undirected edges) [186]. For space reason, we only present the

results of the Twitter graph, but the results of LiveJournal are similar. Figure 2.10 shows the total

run time of the PageRank [178] algorithm with Hotpot, DSM-Xact, DSM-NoXact, PowerGraph,
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Figure 2.13: Hotpot Scalability. Commit throughput with 2 to 16 nodes.

and Grappa under three system settings: four nodes each running four graph threads, seven nodes

each running four threads, and seven nodes each running eight threads.

Hotpot outperforms PowerGraph by 2.3� to 5� and Grappa by 1.3� to 3.2� . In addition,

Hotpot makes all intermediate results of graph persistent for fast restart. A major reason why

Hotpot outperforms PowerGraph and Grappa even when Hotpot requires data persistence and

replication is Hotpot's network stack. Compare to the IPoIB used in PowerGraph and Grappa's

own network stack, Hotpot's RDMA stack is more ef�cient.

Our implementation of DSM-Xact and DSM-NoXact use the same network stack as

Hotpot, but Hotpot still outperforms DSM-NoXact�DSM-NoXact ensures cache coherence on

every write and thus incurs much higher performance overhead than Hotpot and DSM-Xact.

To further understand the performance differences, we traced the network traf�c of these

three systems. Figure 2.11 plots the total amount of traf�c and Figure 2.12 plots a detailed trace

of network activity of the 7Nx4T setting. Hotpot sends less total traf�c and achieves higher

bandwidth than PowerGraph and Grappa.
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Figure 2.14: Chunk Size. For 16 MB and 32 MB cases, 1 represents ON being remote and 2
represents CN being ON.

2.8.4 Micro-Benchmark Results

We now present our microbenchmark results that evaluate the effect of different system

settings and parameters. Since Hotpot reads have a constant latency (around 7.9µs) and Hotpot

writes do not go through network, Hotpot's performance is largely affected by its data commit

process. Because of space reasons, we focus our microbenchmark experiments on commit.

Scalability. Figure 2.13 shows the total commit throughput of Hotpot on 2 to 16 nodes

with a workload that lets all nodes concurrently commit 32 random 4 KB areas with replication

degree 1. Overall, both MRMW and MRSW commit scale. As expected, MRMWcommitis

more costly than MRSW.

Replication degree and committing size.We next evaluate the effect of replication

degree and the total amount of data in acommitcall. As expected, with higher replication degree

and with more committing data,committakes longer for both MRMW and MRSW. Because of

space reasons, we do not include �gures for these experiments.

Chunk size.We use a controlled microbenchmark to showcase the effect of chunk size

(Figure 2.14). Each run has one node in a cluster of four nodes committing 32 1 KB areas that

span a 32 MB region evenly with replication degree 1. Since Hotpot distributes chunks in Round
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Figure 2.15: ON Migration. The improvement of average commit latency with ON migration
over no migration.

Robin, when chunk size is below 8 MB, the 32 MB region will be distributed equally to all four

nodes. Thecommitperformance stays similar with 1, 4, and 8 MB chunk size, sincecommitwill

always use all four nodes as ONs. When chunk size is 16 MB (or 32 MB), only two (or one) nodes

are ON. We observe two different behaviors: when the CN happens to also be the ON of the

chunk that contains the committing data, thecommitperformance is better than when chunk size

is below 8 MB, since half (or all) commit happens locally at the CN. But when the CN is not ON,

all commit traf�c goes to only two (or one) remote nodes, resulting in worse performance than

when chunk size is small. This result suggest that smaller chunk size has better load balancing.

ON migration. From the previous experiments, we �nd that thecommitperformance

depends heavily on the location of ON and the initial Hotpot ON assignment may not be opti-

mal. We now evaluate how effective Hotpot's ON migration technique is in improvingcommit

performance (Figure 2.15). We ran a workload with Zipf distribution to model temporal locality

in datacenter applications [37, 55] on four nodes with replication degree 1 to 4. Each node

issues 100,000commitcalls to commit two locations generated by Zipf. With ON migration, the

commitperformance improves by 13% to 29% under MRSW and 38% to 64% under MRMW.

ON migration improves performance because the node that performs mostcommiton a chunk
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Figure 2.16: Commit Con�ict. Average commit latency with and without con�ict.

becomes its ON after migration. The improvement is most signi�cant with replication degree one,

because when CN is ON and replication degree is one, there is no need to perform any network

communication. MRMW's improvement is higher than MRSW, because MRMW can bene�t

more from committing data locally — the MRMW commit process that involves remote ONs is

more costly than that of MRSW.

Effect of con�ict commits. Figure 2.16 compares thecommitperformance of when 1 to

4 nodes in a four node cluster concurrently commit data in two scenarios: all CNs commit the

same set of data (32 sequential 1 KB areas) at the same time which results in commit con�ict, and

CNs use different set of data without any con�ict. Commit con�ict causes degraded performance,

and the degradation is worse with more con�icting nodes. However, con�ict is rare in reality,

sincecommitis fast. Con�ict only happens when different nodes commit the same data page at

exactly the same time. In fact, we had to manually synchronize all nodes at everycommitcall

usingthread-barrierto create con�ict.
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2.9 Related Work

There have been a host of distributed shared memory systems and distributed storage

systems [14, 58, 84, 116, 173, 254, 309, 67, 118, 172, 341, 348, 299, 300, 349, 277] over

the past few decades. While some of Hotpot's coherence protocols may resemble existing

DSM systems, none of them manages persistent data. There are also many single-node PM

systems [249, 167, 168, 73, 91, 93, 331, 240, 211, 72, 320], but they do not support distributed

environments.

Octopus [200] is a user-level RDMA-based distributed PM �le system developed in

parallel with Hotpot. Octopus manages �le system metadata and data ef�ciently in a pool of

PM-equipped machines. Octopus provides a set of customized �le APIs including read and

write but not any memory-mapped interfaces. Octopus does not provide data reliability and high

availability either. Hotpot's abstraction is memory based rather than �le based, and it offers data

reliability, availability, and different consistency levels.

Grappa [224] is a DSM system that supports modern data-parallel applications. Instead of

fetching remote memory to a local cached copy, Grappa executes functions at the remote side.

Hotpot is a DSPM system and lets applications store persistent data. It fetches remote data for

both fast local access and data replication.

FaRM [152, 91] is an RDMA-based distributed system on battery-backed DRAM. RAM-

Cloud is a low-latency distributed key-value store system that keeps a single copy of all data

in DRAM [236] and replicates data on massive slower storages for fast recovery. The major

difference between Hotpot and FaRM or RAMCloud is that FaRM and RAMCloud both adds a

software indirection layer for key-value stores which can cause signi�cant latency overhead over

native load/store operations and obscures much of the performance of the underlying PM. Hotpot

uses a memory-like abstraction and directly stores persistent data in PM. Hotpot also performs

data persistence and replication differently and uses a different network layer based on two-sided
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RDMA.

Crail [139] is an RDMA-based high-performance multi-tiered distributed storage system

that integrates with the Apache Spark ecosystem [337]. Crail mainly consists of a �le system

that manages tiered storage resources (e.g., DRAM, �ash, disk) with �exible allocation policies

across tiers. Hotpot is a pure PM-based system that exposes a memory-like interface.

PerDis [288] and Larchant [104, 287] use a distributed �le system below a DSM layer.

Unlike these systems, Hotpot is a single-layer system that provides shared memory access, data

persistence, and reliability.

Our own previous work, Mojim [346], provides an ef�cient mechanism to replicate PM

over IB using a primary-backup protocol. Hotpot is a DSPM system that provides a shared-

memory abstraction and integrates cache coherence and data replication.

2.10 Conclusion

We presented Hotpot, a kernel-level DSPM system that provides applications with a

shared persistent memory abstraction. Our evaluation results show that it is easy to port existing

applications to Hotpot and the resulting systems signi�cantly outperform existing solutions.
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Chapter 3

LegoOS: A Disseminated, Distributed OS

for Hardware Resource Disaggregation

3.1 Introduction

For many years, the unit of deployment, operation, and failure in datacenters has been

a monolithic server, one that contains all the hardware resources that are needed to run a user

program (typically a processor, some main memory, and a disk or an SSD). This monolithic

architecture is meeting its limitations in the face of several issues and recent trends in datacenters.

First, datacenters face a dif�cult bin-packing problem of �tting applications to physical

machines. Since a process can only use processor and memory in the same machine, it is hard

to achieve full memory and CPU resource utilization [44, 85, 205]. Second, after packaging

hardware devices in a server, it is dif�cult to add, remove, or change hardware components

in datacenters [98]. Moreover, when a hardware component like a memory controller fails,

the entire server is unusable. Finally, modern datacenters host increasingly heterogeneous

hardware [291, 257, 149, 15]. However, designing new hardware that can �t into monolithic

servers and deploying them in datacenters is a painful and cost-ineffective process that often
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limits the speed of new hardware adoption.

We believe that datacenters should break monolithic servers and organize hardware devices

like CPU, DRAM, and disks asindependent, failure-isolated, network-attached components,

each having its own controller to manage its hardware. Thishardware resource disaggregation

architecture is enabled by recent advances in network technologies [274, 115, 206, 237, 144, 56]

and the trend towards increasing processing power in hardware controller [281, 20, 54]. Hardware

resource disaggregation greatly improves resource utilization, elasticity, heterogeneity, and failure

isolation, since each hardware component can operate or fail on its own and its resource allocation

is independent from other components. With these bene�ts, this new architecture has already

attracted early attention from academia and industry [6, 133, 36, 191, 230, 156].

Hardware resource disaggregation completely shifts the paradigm of computing and

presents a key challenge to system builders:How to manage and virtualize the distributed,

disaggregated hardware components?

Unfortunately, existing kernel designs cannot address the new challenges hardware re-

source disaggregation brings, such as network communication overhead across disaggregated

hardware components, fault tolerance of hardware components, and the resource management

of distributed components. Monolithic kernels, microkernels [95], and exokernels [96] run

one OS on a monolithic machine, and the OS assumes local accesses to shared main memory,

storage devices, network interfaces, and other hardware resources in the machine. After dis-

aggregating hardware resources, it may be viable to run the OS at a processor and remotely

manage all other hardware components. However, remote management requires signi�cant

amount of network traf�c, and when processors fail, other components are unusable. Multi-kernel

OSes [47, 229, 329, 62] run a kernel at each processor (or core) in a monolithic computer and

these per-processor kernels communicate with each other through message passing. Multi-kernels

still assume local accesses to hardware resources in a monolithic machine and their message

passing is over local buses instead of a general network. While existing OSes could be retro�tted
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to support hardware resource disaggregation, such retro�tting will be invasive to the central

subsystems of an OS, such as memory and I/O management.

We proposesplitkernel, a new OS architecture for hardware resource disaggregation

(Figure 3.2c). The basic idea is simple:When hardware is disaggregated, the OS should be

also. A splitkernel breaks traditional operating system functionalities into loosely-coupled

monitors, each running at and managing a hardware component. Monitors in a splitkernel can

be heterogeneous and can be added, removed, and restarted dynamically without affecting the

rest of the system. Each splitkernel monitor operates locally for its own functionality and only

communicates with other monitors when there is a need to access resources there. There are

only two global tasks in a splitkernel: orchestrating resource allocation across components and

handling component failure.

We choose not to support coherence across different components in a splitkernel. A

splitkernel can use any general network to connect its hardware components. All monitors in a

splitkernel communicate with each other vianetwork messagingonly. With our targeted scale,

explicit message passing is much more ef�cient in network bandwidth consumption than the

alternative of implicitly maintaining cross-component coherence.

Following the splitkernel model, we built LegoOS, the�rst OS designed for hardware

resource disaggregation. LegoOS is a distributed OS that appears to applications as a set of

virtual servers (calledvNodes). A vNode can run on multiple processor, memory, and storage

components and one component can host resources for multiple vNodes. LegoOS cleanly

separates OS functionalities into three types ofmonitors, process monitor, memory monitor, and

storage monitor. LegoOS monitors share no or minimal states and use a customized RDMA-based

network stack to communicate with each other.

The biggest challenge and our focus in building LegoOS is the separation of processor and

memory and their management. Modern processors and OSes assume all hardware memory units

including main memory, page tables, and TLB are local. Simply moving all memory hardware
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and memory management software to across the network will not work.

Based on application properties and hardware trends, we propose a hardware plus software

solution that cleanly separates processor and memory functionalities, while meeting application

performance requirements. LegoOS moves all memory hardware units to the disaggregated

memory components and organizes all levels of processor caches as virtual caches that are

accessed using virtual memory addresses. To improve performance, LegoOS uses a small amount

(e.g., 4 GB) of DRAM organized as a virtual cache below current last-level cache.

LegoOS process monitor manages application processes and the extended DRAM-cache.

Memory monitor manages all virtual and physical memory space allocation and address mappings.

LegoOS uses a novel two-level distributed virtual memory space management mechanism, which

ensures ef�cient foreground memory accesses and balances load and space utilization at allocation

time. Finally, LegoOS uses a space- and performance-ef�cient memory replication scheme to

handle memory failure.

We implemented LegoOS on the x86-64 architecture. LegoOS is fully backward com-

patible with Linux ABIs by supporting common Linux system call APIs. To evaluate LegoOS,

we emulate disaggregated hardware components using commodity servers. We evaluated Le-

goOS with microbenchmarks, the PARSEC benchmarks [49], and two unmodi�ed datacenter

applications, Phoenix [264] and TensorFlow [12]. Our evaluation results show that compared to

monolithic Linux servers that can hold all the working sets of these applications, LegoOS is only

1.3� to 1.7� slower with 25% of application working set available as DRAM cache at processor

components. Compared to monolithic Linux servers whose main memory size is the same as

LegoOS' DRAM cache size and which use local SSD/DRAM swapping or network swapping,

LegoOS' performance is 0.8� to 3.2� . At the same time, LegoOS largely improves resource

packing and reduces system mean time to failure.

Overall, this work makes the following contributions:

� We propose the concept of splitkernel, a new OS architecture that �ts the hardware resource
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disaggregation architecture.

� We built LegoOS, the �rst OS that runs on and manages a disaggregated hardware cluster.

� We propose a new hardware architecture to cleanly separate processor and memory hard-

ware functionalities, while preserving most of the performance of monolithic server archi-

tecture.

LegoOS is publicly available atLegoOS.io .

3.2 Disaggregate Hardware Resource

This section motivates the hardware resource disaggregation architecture and discusses

the challenges in managing disaggregated hardware.

3.2.1 Limitations of Monolithic Servers

A monolithic server has been the unit of deployment and operation in datacenters for

decades. This long-standingserver-centricarchitecture has several key limitations.

Inef�cient resourceutilization. With a server being the physical boundary of resource

allocation, it is dif�cult to fully utilize all resources in a datacenter [44, 85, 205]. We analyzed two

production cluster traces: a 29-day Google one [122] and a 12-hour Alibaba one [21]. Figure 3.1

plots the aggregated CPU and memory utilization in the two clusters. For both clusters, only

around half of the CPU and memory are utilized. Interestingly, a signi�cant amount of jobs

are being evicted at the same time in these traces (e.g., evicting low-priority jobs to make room

for high-priority ones [317]). One of the main reasons for resource under-utilization in these

production clusters is the constraint that CPU and memory for a job have to be allocated from the

same physical machine.
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(a) Google Cluster. (b) Alibaba Cluster.

Figure 3.1: Data center resource utilization.

Poor hardwareelasticity. It is dif�cult to add, move, remove, or recon�gure hardware

components after they have been installed in a monolithic server [98]. Because of this rigidity,

datacenter owners have to plan out server con�gurations in advance. However, with today's

speed of change in application requirements, such plans have to be adjusted frequently, and when

changes happen, it often comes with waste in existing server hardware.

Coarsefailure domain.The failure unit of monolithic servers is coarse. When a hardware

component within a server fails, the whole server is often unusable and applications running on

it can all crash. Previous analysis [278] found that motherboard, memory, CPU, power supply

failures account for 50% to 82% of hardware failures in a server. Unfortunately, monolithic

servers cannot continue to operate when any of these devices fail.

Badsupportfor heterogeneity.Driven by application needs, new hardware technologies

are �nding their ways into modern datacenters [291]. Datacenters no longer host only commodity

servers with CPU, DRAM, and hard disks. They include non-traditional and specialized hardware

like GPGPU [123, 24], TPU [149], DPU [15], FPGA [257, 25], non-volatile memory [141], and

NVMe-based SSDs [307]. The monolithic server model tightly couples hardware devices with

each other and with a motherboard. As a result, making new hardware devices work with existing

servers is a painful and lengthy process [257]. Mover, datacenters often need to purchase new

servers to host certain hardware. Other parts of the new servers can go underutilized and old
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servers need to retire to make room for new ones.

3.2.2 Hardware Resource Disaggregation

The server-centric architecture is a bad �t for the fast-changing datacenter hardware,

software, and cost needs. There is an emerging interest in utilizing resources beyond a local

machine [111], such as distributed memory [90, 224, 17, 233] and network swapping [126].

These solutions improve resource utilization over traditional systems. However, they cannot solve

all the issues of monolithic servers (e.g., the last three issues in§3.2.1), since their hardware

model is still a monolithic one. To fully support the growing heterogeneity in hardware and to

provide elasticity and �exibility at the hardware level, we shouldbreak the monolithic server

model.

We envision ahardware resource disaggregationarchitecture where hardware resources in

traditional servers are disseminated into network-attachedhardware components. Each component

has a controller and a network interface, can operate on its own, and is anindependent, failure-

isolatedentity.

The disaggregated approach largely increases the �exibility of a datacenter. Applications

can freely use resources from any hardware component, which makes resource allocation easy

and ef�cient. Different types of hardware resources canscale independently. It is easy to add,

remove, or recon�gure components. New types of hardware components can easily be deployed

in a datacenter — by simply enabling the hardware to talk to the network and adding a new

network link to connect it. Finally, hardware resource disaggregation enables �ne-grain failure

isolation, since one component failure will not affect the rest of a cluster.

Three hardware trends are making resource disaggregation feasible in datacenters. First,

network speed has grown by more than an order of magnitude and has become more scalable

in the past decade with new technologies like Remote Direct Memory Access (RDMA) [209]

and new topologies and switches [36, 77, 76], enabling fast accesses of hardware components
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that are disaggregated across the network. In�niBand will soon reach 200Gbps and sub-600

nanosecond speed [206], being only 2� to 4� slower than main memory bus in bandwidth. With

main memory bus facing a bandwidth wall [269], future network bandwidth (at line rate) is even

projected to exceed local DRAM bandwidth [310].

Second, network interfaces are moving closer to hardware components, with technologies

like Intel OmniPath [142], RDMA [209], and NVMe over Fabrics [214, 69]. As a result, hardware

devices will be able to access network directly without the need to attach any processors.

Finally, hardware devices are incorporating more processing power [20, 54, 207, 208,

225, 19], allowing application and OS logics to be of�oaded to hardware [281, 158]. On-device

processing power will enable system software to manage disaggregated hardware components

locally.

With these hardware trends and the limitations of monolithic servers, we believe that

future datacenters will be able to largely bene�t from hardware resource disaggregation. In

fact, there have already been several initial hardware proposals in resource disaggregation [6],

including disaggregated memory [191, 232, 230], disaggregated �ash [164, 166], Intel Rack-

Scale System [143], HP “The Machine” [133, 100], IBM Composable System [68], and Berkeley

Firebox [36].

3.2.3 OSes for Resource Disaggregation

Despite various bene�ts hardware resource disaggregation promises, it is still unclear

how to manage or utilize disaggregated hardware in a datacenter. Unfortunately, existing OSes

and distributed systems cannot work well with this new architecture. Single-node OSes like

Linux view a server as the unit of management and assume all hardware components are local

(Figure 3.2a). A potential approach is to run these OSes on processors and access memory, storage,

and other hardware resources remotely. Recent disaggregated systems like soNUMA [232] take

this approach. However, this approach incurs high network latency and bandwidth consumption
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(a) OSes Designed for
Monolithic Servers.

(b) Multi-kernel Architecture.
P-NIC: programmable NIC. (c) Splitkernel Architecture.

Figure 3.2: Operating System Architecture.

with remote device management, misses the opportunity of exploiting device-local computation

power, and makes processors the single point of failure.

Multi-kernel solutions [47, 339, 229, 329, 62] (Figure 3.2b) view different cores, proces-

sors, or programmable devices within a server separately by running a kernel on each core/device

and using message passing to communicate across kernels. These kernels still run in a single

server and all access some common hardware resources in the server like memory and the

network interface. Moreover, they do not manage distributed resources or handle failures in a

disaggregated cluster.

There have been various distributed OS proposals, most of which date decades back [304,

243, 41]. Most of these distributed OSes manage a set of monolithic servers instead of hardware

components.

Hardware resource disaggregation is fundamentally different from the traditional mono-

lithic server model. A complete disaggregation of processor, memory, and storage means that

when managing one of them, there will be no local accesses to the other two. For example,

processors will have no local memory or storage to store user or kernel data. An OS also needs to

manage distributed hardware resource and handle hardware component failure. We summarize

the following key challenges in building an OS for resource disaggregation, some of which have

previously been identi�ed [100].

� How to deliver good performance when application execution involves the access of
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network-partitioned disaggregated hardware and current network is still slower than local

buses?

� How to locally manage individual hardware components with limited hardware resources?

� How to manage distributed hardware resources?

� How to handle a component failure without affecting other components or running applica-

tions?

� What abstraction should be exposed to users and how to support existing datacenter

applications?

Instead of retro�tting existing OSes to confront these challenges, we take the approach of

designing a new OS architecture from the ground up for hardware resource disaggregation.

3.3 The Splitkernel OS Architecture

We proposesplitkernel, a new OS architecture for resource disaggregation. Figure 3.2c

illustrates splitkernel's overall architecture. The splitkernel disseminates an OS into pieces of

different functionalities, each running at and managing a hardware component. All components

communicate by message passing over a common network, and splitkernel globally manages

resources and component failures. Splitkernel is a general OS architecture we propose for

hardware resource disaggregation. There can be many types of implementation of splitkernel.

Further, we make no assumption on the speci�c hardware or network type in a disaggregated

cluster a splitkernel runs on. Below, we describe four key concepts of the splitkernel architecture.

Split OSfunctionalities.Splitkernel breaks traditional OS functionalities intomonitors.

Each monitor manages a hardware component, virtualizes and protects its physical resources.

Monitors in a splitkernel are loosely-coupled and they communicate with other monitors to access
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remote resources. For each monitor to operate on its own with minimal dependence on other

monitors, we use a stateless design by sharing no or minimalstates, or metadata, across monitors.

Runmonitorsat hardwarecomponents.We expect each non-processor hardware compo-

nent in a disaggregated cluster to have a controller that can run a monitor. A hardware controller

can be a low-power general-purpose core, an ASIC, or an FPGA. Each monitor in a splitkernel

can use its own implementation to manage the hardware component it runs on. This design makes

it easy to integrate heterogeneous hardware in datacenters — to deploy a new hardware device, its

developers only need to build the device, implement a monitor to manage it, and attach the device

to the network. Similarly, it is easy to recon�gure, restart, and remove hardware components.

Messagepassingacrossnon-coherentcomponents.Unlike other proposals of disaggre-

gated systems [133] that rely on coherent interconnects [115, 56, 237], a splitkernel runs on

general-purpose network layer like Ethernet and neither underlying hardware nor the splitkernel

provides cache coherence across components. We made this design choice mainly because

maintaining coherence for our targeted cluster scale would cause high network bandwidth con-

sumption. Instead, all communication across components in a splitkernel is throughnetwork

messaging. A splitkernel still retains the coherence guarantee that hardware already provides

within a component (e.g., cache coherence across cores in a CPU), and applications running on

top of a splitkernel can use message passing to implement their desired level of coherence for

their data across components.

Global resourcemanagementandfailure handling.One hardware component can host

resources for multiple applications and its failure can affect all these applications. In addition

to managing individual components, the splitkernel also needs to globally manage resources

and failure. To minimize performance and scalability bottleneck, the splitkernel only involves

global resource management occasionally for coarse-grained decisions, while individual monitors

make their own �ne-grained decisions. The splitkernel handles component failure by adding

redundancy for recovery.
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3.4 LegoOS Design

Based on the splitkernel architecture, we builtLegoOS, the �rst OS designed for hardware

resource disaggregation. LegoOS is a research prototype that demonstrates the feasibility of the

splitkernel design, but it is not the only way to build a splitkernel. LegoOS' design targets three

types of hardware components: processor, memory, and storage, and we call thempComponent,

mComponent, andsComponent.

This section �rst introduces the abstraction LegoOS exposes to users and then describes

the hardware architecture of components LegoOS runs on. Next, we explain the design of

LegoOS' process, memory, and storage monitors. Finally, we discuss LegoOS' global resource

management and failure handling mechanisms.

Overall, LegoOS achieves the following design goals:

� Clean separation of process, memory, and storage functionalities.

� Monitors run at hardware components and �t device constraints.

� Comparable performance to monolithic Linux servers.

� Ef�cient resource management and memory failure handling, both in space and in perfor-

mance.

� Easy-to-use, backward compatible user interface.

� Supports common Linux system call interfaces.

3.4.1 Abstraction and Usage Model

LegoOS exposes a distributed set ofvirtual nodes, or vNode, to users. From users' point

of view, a vNode is like a virtual machine. Multiple users can run in a vNode and each user can

run multiple processes. Each vNode has a unique ID, a unique virtual IP address, and its own
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storage mount point. LegoOS protects and isolates the resources given to each vNode from others.

Internally, one vNode can run on multiple pComponents, multiple mComponents, and multiple

sComponents. At the same time, each hardware component can host resources for more than one

vNode. The internal execution status is transparent to LegoOS users; they do not know which

physical components their applications run on.

With splitkernel's design principle of components not being coherent, LegoOS does not

support writable shared memory across processors. LegoOS assumes that threads within the same

process access shared memory and threads belonging to different processes do not share writable

memory, and LegoOS makes scheduling decision based on this assumption (§3.4.3). Applications

that use shared writable memory across processes (e.g., with MAP SHARED) will need to be

adapted to use message passing across processes. We made this decision because writable shared

memory across processes is rare (we have not seen a single instance in the datacenter applications

we studied), and supporting it makes both hardware and software more complex (in fact, we have

implemented this support but later decided not to include it because of its complexity).

One of the initial decisions we made when building LegoOS is to support the Linux

system call interface and unmodi�ed Linux ABI, because doing so can greatly ease the adoption

of LegoOS. Distributed applications that run on Linux can seamlessly run on a LegoOS cluster

by running on a set of vNodes.

3.4.2 Hardware Architecture

LegoOS pComponent, mComponent, and sComponent are independent devices, each

having their own hardware controller and network interface (for pComponent, the hardware

controller is the processor itself). Our current hardware model uses CPU in pComponent, DRAM

in mComponent, and SSD or HDD in sComponent. We leave exploring other hardware devices

for future work.

To demonstrate the feasibility of hardware resource disaggregation, we propose a pCom-
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Figure 3.3: LegoOS pComponent and mComponent Architecture.

ponent and an mComponent architecture designed within today's network, processor, and memory

performance and hardware constraints (Figure 3.3).

Separatingprocessand memoryfunctionalities.LegoOS moves all hardware memory

functionalities to mComponents (e.g., page tables, TLBs) and leavesonlycaches at the pCom-

ponent side. With a clean separation of process and memory hardware units, the allocation and

management of memory can be completely transparent to pComponents. Each mComponent can

choose its own memory allocation technique and virtual to physical memory address mappings

(e.g., segmentation).

Processorvirtual caches.After moving all memory functionalities to mComponents,

pComponents will only see virtual addresses and have to use virtual memory addresses to access

its caches. Because of this, LegoOS organizes all levels of pComponent caches asvirtual

caches[121, 327],i.e., virtually-indexed and virtually-tagged caches.

A virtual cache has two potential problems, commonly known as synonyms and

homonyms [296]. Synonyms happens when a physical address maps to multiple virtual ad-

dresses (and thus multiple virtual cache lines) as a result of memory sharing across processes,

and the update of one virtual cache line will not re�ect to other lines that share the data. Since
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LegoOS does not allow writable inter-process memory sharing, it will not have the synonym

problem. The homonym problem happens when two address spaces use the same virtual address

for their own different data. Similar to previous solutions [46], we solve homonyms by storing

an address space ID (ASID) with each cache line, and differentiate a virtual address in different

address spaces using ASIDs.

Separatingmemoryfor performanceandfor capacity.Previous studies [111, 126] and

our own show that today's network speed cannot meet application performance requirements if

all memory accesses are across the network. Fortunately, many modern datacenter applications

exhibit strong memory access temporal locality. For example, we found 90% of memory accesses

in PowerGraph [119] go to just 0.06% of total memory and 95% go to 3.1% of memory (22%

and 36% for TensorFlow [12] respectively, 5.1% and 6.6% for Phoenix [264]).

With good memory-access locality, we propose to leave a small amount of memory

(e.g., 4 GB) at each pComponent and move most memory across the network (e.g., few TBs per

mComponent). pComponents' local memory can be regular DRAM or the on-die HBM [147, 220],

and mComponents use DRAM or NVM.

Different from previous proposals [191], we propose to organize pComponents'

DRAM/HBM as cache rather than main memory for a clean separation of process and memory

functionalities. We place this cache under the current processor Last-Level Cache (LLC) and

call it an extended cache, orExCache. ExCache serves as another layer in the memory hierarchy

between LLC and memory across the network. With this design, ExCache can serve hot memory

accesses fast, while mComponents can provide the capacity applications desire.

ExCache is a virtual, inclusive cache, and we use a combination of hardware and software

to manage ExCache. Each ExCache line has a (virtual-address) tag and two access permission

bits (one for read/write and one for valid). These bits are set by software when a line is inserted

to ExCache and checked by hardware at access time. For best hit performance, the hit path of

ExCache is handled purely by hardware — the hardware cache controller maps a virtual address
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to an ExCache set, fetches and compares tags in the set, and on a hit, fetches the hit ExCache line.

Handling misses of ExCache is more complex than with traditional CPU caches, and thus we use

LegoOS to handle the miss path of ExCache (see §3.4.3).

Finally, we use a small amount of DRAM/HBM at pComponent for LegoOS' own kernel

data usages, accessed directly with physical memory addresses and managed by LegoOS. LegoOS

ensures that all its own data �ts in this space to avoid going to mComponents.

With our design, pComponents do not need any address mappings: LegoOS accesses all

pComponent-side DRAM/HBM using physical memory addresses and does simple calculations

to locate the ExCache set for a memory access. Another bene�t of not handling address mapping

at pComponents and moving TLBs to mComponents is that pComponents do not need to access

TLB or suffer from TLB misses, potentially making pComponent cache accesses faster [159].

3.4.3 Process Management

The LegoOSprocess monitorruns in the kernel space of a pComponent and manages the

pComponent's CPU cores and ExCache. pComponents run user programs in the user space.

Process Management and Scheduling

At every pComponent, LegoOS uses a simple local thread scheduling model that targets

datacenter applications (we will discuss global scheduling in§ 3.4.6). LegoOS dedicates a small

amount of cores for kernel background threads (currently two to four) and uses the rest of the

cores for application threads. When a new process starts, LegoOS uses a global policy to choose

a pComponent for it (§ 3.4.6). Afterwards, LegoOS schedules new threads the process spawns

on the same pComponent by choosing the cores that host fewest threads. After assigning a

thread to a core, we let it run to the end with no scheduling or kernel preemption under common

scenarios. For example, we do not use any network interrupts and let threads busy wait on the

completion of outstanding network requests, since a network request in LegoOS is fast (e.g.,
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fetching an ExCache line from an mComponent takes around 6.5µs). LegoOS improves the

overall processor utilization in a disaggregated cluster, since it can freely schedule processes on

any pComponents without considering memory allocation. Thus, we do not push for perfect

core utilization when scheduling individual threads and instead aim to minimize scheduling and

context switch performance overheads. Only when a pComponent has to schedule more threads

than its cores will LegoOS start preempting threads on a core.

ExCache Management

LegoOS process monitor con�gures and manages ExCache. During the pComponent's

boot time, LegoOS con�gures the set associativity of ExCache and its cache replacement policy.

While ExCache hit is handled completely in hardware, LegoOS handles misses in software.

When an ExCache miss happens, the process monitor fetches the corresponding line from an

mComponent and inserts it to ExCache. If the ExCache set is full, the process monitor �rst evicts

a line in the set. It throws away the evicted line if it is clean and writes it back to an mComponent

if it is dirty. LegoOS currently supports two eviction policies: FIFO and LRU. For each ExCache

set, LegoOS maintains a FIFO queue (or an approximate LRU list) and chooses ExCache lines to

evict based on the corresponding policy (see §3.5.3 for details).

Supporting Linux Syscall Interface

One of our early decisions is to support Linux ABIs for backward compatibility and easy

adoption of LegoOS. A challenge in supporting the Linux system call interface is that many

Linux syscalls are associated withstates, information about different Linux subsystems that is

stored with each process and can be accessed by user programs across syscalls. For example,

Linux records the states of a running process' open �les, socket connections, and several other

entities, and it associates these states with �le descriptors (fds) that are exposed to users. In

contrast, LegoOS aims at the clean separation of OS functionalities. With LegoOS' stateless
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design principle, each component only stores information about its own resource and each request

across components contains all the information that the destination component needs to handle

the request. To solve this discrepancy between the Linux syscall interface and LegoOS' design,

we add a layer on top of LegoOS' core process monitor at each pComponent to store Linux states

and translate these states and the Linux syscall interface to LegoOS' internal interface.

3.4.4 Memory Management

We use mComponents for three types of data: anonymous memory (i.e., heaps, stacks),

memory-mapped �les, and storage buffer caches. The LegoOSmemory monitormanages both

the virtual and physical memory address spaces, their allocation, deallocation, and memory

address mappings. It also performs the actual memory read and write. No user processes run on

mComponents and they run completely in the kernel mode (same is true for sComponents).

LegoOS lets a process address space span multiple mComponents to achieve ef�cient

memory space utilization and high parallelism. Each application process uses one or more

mComponents to host its data and ahome mComponent, an mComponent that initially loads the

process, accepts and oversees all system calls related to virtual memory space management (e.g.,

brk , mmap, munmap, andmremap). LegoOS uses a global memory resource manager (GMM) to

assign a home mComponent to each new process at its creation time. A home mComponent can

also host process data.

Memory Space Management

Virtual memoryspacemanagement.We propose a two-level approach to manage dis-

tributed virtual memory spaces, where the home mComponent of a process makes coarse-grained,

high-level virtual memory allocation decisions and other mComponents perform �ne-grained

virtual memory allocation. This approach minimizes network communication during both nor-

mal memory accesses and virtual memory operations, while ensuring good load balancing and
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Figure 3.4: Distributed Memory Management.

memory utilization. Figure 3.4 demonstrates the data structures used.

At the higher level, we split each virtual memory address space into coarse-grained,

�x-sized virtual regions, or vRegions(e.g., of 1 GB). Each vRegion that contains allocated virtual

memory addresses (an active vRegion) isownedby an mComponent. The owner of a vRegion

handles all memory accesses and virtual memory requests within the vRegion.

The lower level stores user process virtual memory area (vma) information, such as virtual

address ranges and permissions, invma trees. The owner of an active vRegion stores a vma tree

for the vRegion, with each node in the tree being one vma. A user-perceived virtual memory

range can split across multiple mComponents, but only one mComponent owns a vRegion.

vRegion owners perform the actual virtual memory allocation and vma tree set up. A

home mComponent can also be the owner of vRegions, but the home mComponent does not

maintain any information about memory that belongs to vRegions owned by other mComponents.

It only keeps the information of which mComponent owns a vRegion (in avRegion array) and

how much free virtual memory space is left in each vRegion. These metadata can be easily
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reconstructed if a home mComponent fails.

When an application process wants to allocate a virtual memory space, the pComponent

forwards the allocation request to its home mComponent (1 in Figure 3.4). The home mCompo-

nent uses its stored information of available virtual memory space in vRegions to �nd one or more

vRegions that best �t the requested amount of virtual memory space. If no active vRegion can

�t the allocation request, the home mComponent makes a new vRegion active and contacts the

GMM ( 2 and 3 ) to �nd a candidate mComponent to own the new vRegion. GMM makes this

decision based on available physical memory space and access load on different mComponents

(§ 3.4.6). If the candidate mComponent is not the home mComponent, the home mComponent

next forwards the request to that mComponent (4 ), which then performs local virtual memory

area allocation and sets up the proper vma tree. Afterwards, the pComponent directly sends

memory access requests to the owner of the vRegion where the memory access falls into (e.g., a

and c in Figure 3.4).

LegoOS' mechanism of distributed virtual memory management is ef�cient and it cleanly

separates memory operations from pComponents. pComponents hand over all memory-related

system call requests to mComponents and only cache a copy of the vRegion array for fast memory

accesses. To �ll a cache miss or to �ush a dirty cache line, a pComponent looks up the cached

vRegion array to �nd its owner mComponent and sends the request to it.

Physicalmemoryspacemanagement.Each mComponent manages the physical memory

allocation for data that falls into the vRegion that it owns. Each mComponent can choose their

own way of physical memory allocation and own mechanism of virtual-to-physical memory

address mapping.

Optimization on Memory Accesses

With our strawman memory management design, all ExCache misses will go to mCompo-

nents. We soon found that a large performance overhead in running real applications is caused by
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�lling empty ExCache,i.e., cold misses. To reduce the performance overhead of cold misses, we

propose a technique to avoid accessing mComponent on �rst memory accesses.

The basic idea is simple: since the initial content of anonymous memory (non-�le-backed

memory) is zero, LegoOS can directly allocate a cache line with empty content in ExCache for

the �rst access to anonymous memory instead of going to mComponent (we call such cache

linesp-local lines). When an application creates a new anonymous memory region, the process

monitor records its address range and permission. The application's �rst access to this region

will be an ExCache miss and it will trap to LegoOS. LegoOS process monitor then allocates an

ExCache line, �lls it with zeros, and sets its R/W bit according to the recorded memory region's

permission. Before this p-local line is evicted, it only lives in the ExCache. No mComponents

are aware of it or will allocate physical memory or a virtual-to-physical memory mapping for

it. When a p-local cache line becomes dirty and needs to be �ushed, the process monitor sends

it to its owner mComponent, which then allocates physical memory space and establishes a

virtual-to-physical memory mapping. Essentially, LegoOSdelays physical memory allocation

until write time. Notice that it is safe to only maintain p-local lines at a pComponent ExCache

without any other pComponents knowing them, since pComponents in LegoOS do not share any

memory and other pComponents will not access this data.

3.4.5 Storage Management

LegoOS supports a hierarchical �le interface that is backward compatible with POSIX

through its vNode abstraction. Users can store their directories and �les under their vNodes'

mount points and perform normal read, write, and other accesses to them.

LegoOS implements core storage functionalities at sComponents. To cleanly separate

storage functionalities, LegoOS uses a stateless storage server design, where each I/O request to

the storage server contains all the information needed to ful�ll this request,e.g., full path name,

absolute �le offset, similar to the server design in NFS v2 [276].
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While LegoOS supports a hierarchical �le use interface, internally, LegoOS storage

monitor treats (full) directory and �le paths just as unique names of a �le and place all �les

of a vNode under one internal directory at the sComponent. To locate a �le, LegoOS storage

monitor maintains a simple hash table with the full paths of �les (and directories) as keys. From

our observation, most datacenter applications only have a few hundred �les or less. Thus, a

simple hash table for a whole vNode is suf�cient to achieve good lookup performance. Using

a non-hierarchical �le system implementation largely reduces the complexity of LegoOS' �le

system, making it possible for a storage monitor to �t in storage devices controllers that have

limited processing power [281].

LegoOS places the storage buffer cache at mComponents rather than at sComponents,

because sComponents can only host a limited amount of internal memory. LegoOS memory

monitor manages the storage buffer cache by simply performing insertion, lookup, and deletion

of buffer cache entries. For simplicity and to avoid coherence traf�c, we currently place the buffer

cache of one �le under one mComponent. When receiving a �le read system call, the LegoOS

process monitor �rst uses its extended Linux state layer to look up the full path name, then passes

it with the requested offset and size to the mComponent that holds the �le's buffer cache. This

mComponent will look up the buffer cache and returns the data to pComponent on a hit. On a

miss, mComponent will forward the request to the sComponent that stores the �le, which will

fetch the data from storage device and return it to the mComponent. The mComponent will then

insert it into the buffer cache and returns it to the pComponent. Write and fsync requests work in

a similar fashion.

3.4.6 Global Resource Management

LegoOS uses a two-level resource management mechanism. At the higher level, LegoOS

uses three global resource managers for process, memory, and storage resources,GPM, GMM,

andGSM. These global managers perform coarse-grained global resource allocation and load
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balancing, and they can run on one normal Linux machine. Global managers only maintain

approximate resource usage and load information. They update their information either when

they make allocation decisions or by periodically asking monitors in the cluster. At the lower

level, each monitor can employ its own policies and mechanisms to manage its local resources.

For example, process monitors allocate new threads locally and only ask GPM when they

need to create a new process. GPM chooses the pComponent that has the least amount of threads

based on its maintained approximate information. Memory monitors allocate virtual and physical

memory space on their own. Only home mComponent asks GMM when it needs to allocate a

new vRegion. GMM maintains approximate physical memory space usages and memory access

load by periodically asking mComponents and chooses the memory with least load among all the

ones that have at least vRegion size of free physical memory.

LegoOS decouples the allocation of different resources and can freely allocate each type

of resource from a pool of components. Doing so largely improves resource packing compared

to a monolithic server cluster that packs all type of resources a job requires within one physical

machine. Also note that LegoOS allocates hardware resources onlyon demand, i.e., when

applications actually create threads or access physical memory. This on-demand allocation

strategy further improves LegoOS' resource packing ef�ciency and allows more aggressive

over-subscription in a cluster.

3.4.7 Reliability and Failure Handling

After disaggregation, pComponents, mComponents, and sComponents can all fail in-

dependently. Our goal is to build a reliable disaggregated cluster that has the same or lower

application failure rate than a monolithic cluster. As a �rst (and important) step towards achieving

this goal, we focus on providing memory reliability by handling mComponent failure in the

current version of LegoOS because of three observations. First, when distributing an application's

memory to multiple mComponents, the probability of memory failure increases and not handling
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mComponent failure will cause applications to fail more often on a disaggregated cluster than

on monolithic servers. Second, since most modern datacenter applications already provide re-

liability to their distributed storage data and the current version of LegoOS does not split a �le

across sComponent, we leave providing storage reliability to applications. Finally, since LegoOS

does not split a process across pComponents, the chance of a running application process being

affected by the failure of a pComponent is similar to one affected by the failure of a processor

in a monolithic server. Thus, we currently do not deal with pComponent failure and leave it for

future work.

A naive approach to handle memory failure is to perform a full replication of memory

content over two or more mComponents. This method would require at least 2� memory

space, making the monetary and energy cost of providing reliability prohibitively high (the same

reason why RAMCloud [236] does not replicate in memory). Instead, we propose a space- and

performance-ef�cient approach to provide in-memory data reliability in a best-effort way. Further,

since losing in-memory data will not affect user persistent data, we propose to provide memory

reliability in a best-effort manner.

We use one primary mComponent, one secondary mComponent, and a backup �le in

sComponent for each vma. A mComponent can serve as the primary for some vma and the

secondary for others. The primary stores all memory data and metadata. LegoOS maintains

a small append-only log at the secondary mComponent and also replicates the vma tree there.

When pComponent �ushes a dirty ExCache line, LegoOS sends the data to both primary and

secondary in parallel (stepa and b in Figure 3.4) and waits for both to reply (c and d ). In the

background, the secondary mComponent �ushes the backup log to a sComponent, which writes it

to an append-only �le.

If the �ushing of a backup log to sComponent is slow and the log is full, we will skip

replicating application memory. If the primary fails during this time, LegoOS simply reports

an error to application. Otherwise when a primary mComponent fails, we can recover memory
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content by replaying the backup logs on sComponent and in the secondary mComponent. When

a secondary mComponent fails, we do not reconstruct anything and start replicating to a new

backup log on another mComponent.

3.5 LegoOS Implementation

We implemented LegoOS in C on the x86-64 architecture. LegoOS can run on commodity,

off-the-shelf machines and support most commonly-used Linux system call APIs. Apart from

being a proof-of-concept of the splitkernel OS architecture, our current LegoOS implementation

can also be used on existing datacenter servers to reduce the energy cost, with the help of

techniques like Zombieland [230]. Currently, LegoOS has 206K SLOC, with 56K SLOC for

drivers. LegoOS supports 113 syscalls, 15 pseudo-�les, and 10 vectored syscall opcodes. Similar

to the �ndings in [312], we found that implementing these Linux interfaces are suf�cient to run

many unmodi�ed datacenter applications.

3.5.1 Hardware Emulation

Since there is no real resource disaggregation hardware, we emulate disaggregated hard-

ware components using commodity servers by limiting their internal hardware usages. For

example, to emulate controllers for mComponents and sComponents, we limit the usable cores

of a server to two. To emulate pComponents, we limit the amount of usable main memory of a

server and con�gure it as LegoOS software-managed ExCache.

3.5.2 Network Stack

We implemented three network stacks in LegoOS. The �rst is a customized RDMA-based

RPC framework we implemented based on LITE [315] on top of the Mellanox mlx4 In�niBand

driver we ported from Linux. Our RDMA RPC implementation registers physical memory
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addresses with RDMA NICs and thus eliminates the need for NICs to cache physical-to-virtual

memory address mappings [315]. The resulting smaller NIC SRAM can largely reduce the

monetary cost of NICs, further saving the total cost of a LegoOS cluster. All LegoOS internal

communications use this RPC framework. For best latency, we use one dedicated polling thread

at RPC server side to keep polling incoming requests. Other thread(s) (which we call worker

threads) execute the actual RPC functions. For each pair of components, we use one physically

consecutive memory region at a component to serve as the receive buffer for RPC requests. The

RPC client component uses RDMA write with immediate value to directly write into the memory

region and the polling thread polls for the immediate value to get the metadata information about

the RPC request (e.g., where the request is written to in the memory region). Immediately after

getting an incoming request, the polling thread passes it along to a work queue and continues to

poll for the next incoming request. Each worker thread checks if the work queue is not empty

and if so, gets an RPC request to process. Once it �nishes the RPC function, it sends the return

value back to the RPC client with an RDMA write to a memory address at the RPC client. The

RPC client allocates this memory address for the return value before sending the RPC request

and piggy-backs the memory address with the RPC request.

The second network stack is our own implementation of the socket interface directly on

RDMA. The �nal stack is a traditional socket TCP/IP stack we adapted from lwip [94] on our

ported e1000 Ethernet driver. Applications can choose between these two socket implementations

and use virtual IPs for their socket communication.

3.5.3 Processor Monitor

We reserve a contiguous physical memory region during kernel boot time and use �xed

ranges of memory in this region as ExCache, tags and metadata for these caches, and kernel

physical memory. We organize ExCache into virtually indexed sets with a con�gurable set

associativity. Since x86 (and most other architectures) uses hardware-managed TLB and walks

74



page table directly after TLB misses, we have to use paging and the only chance we can trap to

OS is at page fault time. We thus use paged memory to emulate ExCache, with each ExCache

line being a 4 KB page. A smaller ExCache line size would improve the performance of fetching

lines from mComponents but increase the size of ExCache tag array and the overhead of tag

comparison.

An ExCache miss causes a page fault and traps to LegoOS. To minimize the overhead of

context switches, we use the application thread that faults on a ExCache miss to perform ExCache

replacement. Speci�cally, this thread will identify the set to insert the missing page using its

virtual memory address, evict a page in this set if it is full, and if needed, �ush a dirty page to

mComponent (via a LegoOS RPC call to the owner mComponent of the vRegion this page is

in). To minimize the network round trip needed to complete a ExCache miss, we piggy-back the

request of dirty page �ush and new page fetching in one RPC call when the mComponent to be

�ushed to and the mComponent to fetch the missing page are the same.

LegoOS maintains an approximate LRU list for each ExCache set and uses a background

thread to sweep all entries in ExCache and adjust LRU lists. LegoOS supports two ExCache

replacement policies: FIFO and LRU. For FIFO replacement, we simply maintain a FIFO queue

for each ExCache set and insert a corresponding entry to the tail of the FIFO queue when an

ExCache page is inserted into the set. Eviction victim is chosen as the head of the FIFO queue.

For LRU, we use one background thread to sweep all sets of ExCache to adjust their LRU lists.

For both policies, we use a per-set lock and lock the FIFO queue (or the LRU list) when making

changes to them.

3.5.4 Memory Monitor

We use regular machines to emulate mComponents by limiting usable cores to a small

number (2 to 5 depending on con�guration). We dedicate one core to busy poll network requests

and the rest for performing memory functionalities. The LegoOS memory monitor performs
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all its functionalities as handlers of RPC requests from pComponents. The memory monitor

handles most of these functionalities locally and sends another RPC request to a sComponent

for storage-related functionalities (e.g., when a buffer cache miss happens). LegoOS stores

application data, application memory address mappings, vma trees, and vRegion arrays all in the

main memory of the emulating machine.

The memory monitor loads an application executable from sComponents to the mCompo-

nent, handles application virtual memory address allocation requests, allocates physical memory

at the mComponent, and reads/writes data to the mComponent. Our current implementation of

memory monitor is purely in software, and we use hash tables to implement the virtual-to-physical

address mappings. While we envision future mComponents to implement memory monitors in

hardware and to have specialized hardware parts to store address mappings, our current software

implementation can still be useful for users that want to build software-managed mComponents.

3.5.5 Storage Monitor

Since storage is not the focus of the current version of LegoOS, we chose a simple

implementation of building storage monitor on top of the Linuxvfs layer as a loadable Linux

kernel module. LegoOS creates a normal �le over vfs as the mount partition for each vNode

and issues vfs �le operations to perform LegoOS storage I/Os. Doing so is suf�cient to evaluate

LegoOS, while largely saving our implementation efforts on storage device drivers and layered

storage protocols. We leave exploring other options of building LegoOS storage monitor to future

work.

3.5.6 Experience and Discussion

We started our implementation of LegoOS from scratch to have a clean design and

implementation that can �t the splitkernel model and to evaluate the efforts needed in building
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different monitors. However, with the vast amount and the complexity of drivers, we decided to

port Linux drivers instead of writing our own. We then spent our engineering efforts on an “as

needed” base and took shortcuts by porting some of the Linux code. For example, we re-used

common algorithms and data structures in Linux to easily port Linux drivers. We believe that

being able to support largely unmodi�ed Linux drivers will assist the adoption of LegoOS.

When we started building LegoOS, we had a clear goal of sticking to the principle of

“clean separation of functionalities”. However, we later found several places where performance

could be improved if this principle is relaxed. For example, for the optimization in§3.4.4 to work

correctly, pComponent needs to store the address range and permission for anonymous virtual

memory regions — memory-related information that otherwise only mComponents need to know.

Another example is the implementation ofmremap. With LegoOS' principle of mComponents

handling all memory address allocations, memory monitors will allocate new virtual memory

address ranges formremaprequests. However, when data in themremapregion is in ExCache,

LegoOS needs to move it to another set if the new virtual address does not fall into the current set.

If mComponents are ExCache-aware, they can choose the new virtual memory address to fall

into the same set as the current one. Our strategy is to relax the clean-separation principle only by

giving “hints”, and only for frequently-accessed, performance-critical operations.

3.6 Evaluation

This section presents the performance evaluation of LegoOS using micro- and macro-

benchmarks and two unmodi�ed real applications. We also quantitatively analyze the failure

rate of LegoOS. We ran all experiments on a cluster of 10 machines, each with two Intel Xeon

CPU E5-2620 2.40GHz processors, 128 GB DRAM, and one 40 Gbps Mellanox ConnectX-3

In�niBand network adapter; a Mellanox 40 Gbps In�niBand switch connects all of the machines.

The Linux version we used for comparison is v4.9.47.
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Figure 3.5: Network Latency.

Figure 3.6: Memory Throughput.

3.6.1 Micro- and Macro-benchmark Results

Networkperformance.Network communication is at the core of LegoOS' performance.

Thus, we evaluate LegoOS' network performance �rst before evaluating LegoOS as a whole.

Figure 3.5 plots the average latency of sending messages with socket-over-In�niBand (Linux-

IPoIB) in Linux, LegoOS' implementation of socket on top of In�niBand (LegoOS-Sock-o-IB),

and LegoOS' implementation of RPC over In�niBand (LegoOS-RPC-IB). LegoOS uses LegoOS-

RPC-IB for all its internal network communication across components and uses LegoOS-Sock-

o-IB for all application-initiated socket network requests. Both LegoOS' networking stacks

signi�cantly outperform Linux's.
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Figure 3.7: Storage Throughput.

Figure 3.8: PARSEC Results. SC: StreamClsuter. BS: BlackScholes.

Memoryperformance.Next, we measure the performance of mComponent using a multi-

threaded user-level micro-benchmark. In this micro-benchmark, each thread performs one million

sequential 4 KB memory loads in a heap. We use a huge, empty ExCache (32 GB) to run this test,

so that each memory access can generate an ExCache (cold) miss and go to the mComponent.

Figure 3.6 compares LegoOS' mComponent performance with Linux's single-node mem-

ory performance using this workload. We vary the number of per-mComponent worker threads

from 1 to 8 with one and two mComponents (only showing representative con�gurations in

Figure 3.6). In general, using more worker threads per mComponent and using more mCompo-

nents both improve throughput when an application has high parallelism, but the improvement
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largely diminishes after the total number of worker threads reaches four. We also evaluated the

optimization technique in§ 3.4.4 (p-local in Figure 3.6). As expected, bypassing mComponent

accesses with p-local lines signi�cantly improves memory access performance. The difference

between p-local and Linux demonstrates the overhead of trapping to LegoOS kernel and setting

up ExCache.

Storageperformance.To measure the performance of LegoOS' storage system, we ran a

single-thread micro-benchmark that performs sequential and random 4 KB read/write to a 25 GB

�le on a Samsung PM1725s NVMe SSD (the total amount of data accessed is 1 GB). For write

workloads, we issue anfsyncafter eachwrite to test the performance of writing all the way to the

SSD.

Figure 3.7 presents the throughput of this workload on LegoOS and on single-node

Linux. For LegoOS, we use one mComponent to store the buffer cache of this �le and initialize

the buffer cache to empty so that �le I/Os can go to the sComponent (Linux also uses an

empty buffer cache). Our results show that Linux's performance is determined by the SSD's

read/write bandwidth. LegoOS' random read performance is close to Linux, since network cost

is relatively low compared to the SSD's random read performance. With better SSD sequential

read performance, network cost has a higher impact. LegoOS' write-and-fsync performance is

worse than Linux because LegoOS requires one RTT between pComponent and mComponent to

perform write and two RTTs (pComponent to mComponent, mComponent to sComponent) for

fsync.

PARSECresults. We evaluated LegoOS with a set of workloads from the PARSEC

benchmark suite [49], including BlackScholes, Freqmine, and StreamCluster. These workloads

are a good representative of compute-intensive datacenter applications, ranging from machine-

learning algorithms to streaming processing ones. Figure 3.8 presents the slowdown of LegoOS

over single-node Linux with enough memory for the entire application working sets. LegoOS

uses one pComponent with 128 MB ExCache, one mComponent with one worker thread, and
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Figure 3.9: TensorFlow Performance.

one sComponent for all the PARSEC tests. For each workload, we tested one and four workload

threads. StreamCluster, a streaming workload, performs the best because of its batching memory

access pattern (each batch is around 110 MB). BlackScholes and Freqmine perform worse because

of their larger working sets (630 MB to 785 MB). LegoOS performs worse with higher workload

threads, because the single worker thread at the mComponent becomes the bottleneck to achieving

higher throughput.

Phoenix Performance.

Figure 3.10: Phoenix Performance.
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ExCache Management.

Figure 3.11: ExCache Management.

Figure 3.12: Memory Con�g.

3.6.2 Application Performance

We evaluated LegoOS' performance with two real, unmodi�ed applications, Tensor-

Flow [12] and Phoenix [264], a single-node multi-threaded implementation of MapReduce [83].

TensorFlow's experiments use the Cifar-10 dataset [7] and Phoenix's use a Wikipedia dataset [9].

Unless otherwise stated, the base con�guration used for all TensorFlow experiments is 256 MB

64-way ExCache, one pComponent, one mComponent, and one sComponent. The base con-

�guration for Phoenix is the same as TensorFlow's with the exception that the base ExCache

size is 512 MB. The total amount of virtual memory addresses touched in TensorFlow is 4.4 GB

(1.75 GB for Phoenix). The total working sets of the TensorFlow and Phoenix execution are
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0.9 GB and 1.7 GB. Our default ExCache sizes are set as roughly 25% of total working sets. We

ran both applications with four threads.

Impactof ExCachesizeon applicationperformance.Figures 3.9 and 3.10 plot the Ten-

sorFlow and Phoenix run time comparison across LegoOS, a remote swapping system (In�n-

iSwap [126]), a Linux server with a swap �le in a local high-end NVMe SSD, and a Linux

server with a swap �le in local ramdisk. All values are calculated as a slowdown to running

the applications on a Linux server that have enough local resources (main memory, CPU cores,

and SSD). For systems other than LegoOS, we change the main memory size to the same size

of ExCache in LegoOS, with rest of the memory on swap �le. With around 25% working set,

LegoOS only has a slowdown of 1.68� and 1.34� for TensorFlow and Phoenix compared to a

monolithic Linux server that can �t all working sets in its main memory.

LegoOS' performance is signi�cantly better than swapping to SSD and to remote memory

largely because of our ef�ciently-implemented network stack, simpli�ed code path compared

with Linux paging subsystem, and the optimization technique proposed in§3.4.4. Surprisingly, it

is similar or even better than swapping to local memory, even when LegoOS' memory accesses

are across network. This is mainly because ramdisk goes through buffer cache and incurs memory

copies between the buffer cache and the in-memory swap �le.

LegoOS' performance results are not easy to achieve and we went through rounds of

design and implementation re�nement. Our network stack and RPC optimizations yield a total

improvement of up to 50%. For example, we made all RPC server (mComponent's) replies

unsignaledto save mComponent' processing time and to increase its request handling throughput.

Another optimization we did is to piggy-back dirty cache line �ush and cache miss �ll into

one RPC. The optimization of the �rst anonymous memory access (§3.4.4) improves LegoOS'

performance further by up to 5%.

ExCachemanagement.Apart from its size, how an ExCache is managed can also largely

affect application performance. We �rst evaluated factors that could affect ExCache hit rate and
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found that higher associativity improves hit rate but the effect diminishes when going beyond

512-way. We then focused on evaluating the miss cost of ExCache, since the miss path is handled

by LegoOS in our design. We compare the two eviction policies LegoOS supports (FIFO and

LRU), two implementations of �nding an empty line in an ExCache set (linearly scan a free

bitmap and fetching the head of a free list), and one network optimization (piggyback �ushing a

dirty line with fetching the missing line).

Figure 3.11 presents these comparisons with one and four mComponent worker threads.

All tests run the Cifar-10 workload on TensorFlow with 256 MB 64-way ExCache, one mCompo-

nent, and one sComponent. Using bitmaps for this ExCache con�guration is always worse than

using free lists because of the cost to linearly scan a whole bitmap, and bitmaps perform even

worse with higher associativity. Surprisingly, FIFO performs better than LRU in our tests, even

when LRU utilizes access locality pattern. We attributed LRU's worse performance to the lock

contention it incurs; the kernel background thread sweeping the ExCache locks an LRU list when

adjusting the position of an entry in it, while ExCache miss handler thread also needs to lock the

LRU list to grab its head. Finally, the piggyback optimization works well and the combination of

FIFO, free list, and piggyback yields the best performance.

Numberof mComponentsandreplication.Finally, we study the effect of the number of

mComponents and memory replication. Figure 3.12 plots the performance slowdown as the

number of mComponents increases from one to four. Surprisingly, using more mComponents

lowers application performance by up to 6%. This performance drop is due to the effect of

ExCache piggyback optimization. When there is only one mComponent, �ushes and misses

are all between the pComponent and this mComponent, thus enabling piggyback on every �ush.

However, when there are multiple mComponents, LegoOS can only perform piggyback when

�ushes and misses are to the same mComponent.

We also evaluated LegoOS' memory replication performance in Figure 3.12. Replication

has a performance overhead of 2% to 23% (there is a constant 1 MB space overhead to store the
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Figure 3.13: Multiple Applications.

backup log). LegoOS uses the same application thread to send the replica data to the backup

mComponent and then to the primary mComponent, resulting in the performance lost.

Runningmultipleapplicationstogether.All our experiments so far run only one applica-

tion at a time. Now we evaluate how multiple applications perform when running them together

on a LegoOS cluster. We use a simple scenario of running one TensorFlow instance and one

Phoenix instance together in two settings: 1) two pComponents each running one instance, both

accessing one mComponent(2P1M), and 2) one pComponent running two instances and accessing

two mComponents (1P2M). Both settings use one sComponent. Figure 3.13 presents the runtime

slowdown results. We also vary the number of mComponent worker threads for the 2P1M setting

(4 and 8 workers) and the amount of ExCache for the 1P2M setting (1 GB and 0.5 GB). With

2P1M, both applications suffer from a performance drop because their memory access requests

saturate the single mComponent. Using more worker threads at the mComponent improves the

performance slightly. For 1P2M, application performance largely depends on ExCache size,

similar to our �ndings with single-application experiments.

Table 3.1: Mean Time To Failure Analysis. MTTF numbers of devices (columns 2 to 7) are
obtained from [278] and MTTF values of monolithic server and LegoOS are calculated using
the per-device MTTF numbers.

Processor Disk Memory NIC Power Other Monolithic LegoOS
MTTF (year) 204.3 33.1 289.9 538.8 100.5 27.4 5.8 6.8 - 8.7

85



3.6.3 Failure Analysis

Finally, we provide a qualitative analysis on the failure rate of a LegoOS cluster compared

to a monolithic server cluster. Table 3.1 summarizes our analysis. To measure the failure rate

of a cluster, we use the metric Mean Time To (hardware) Failure (MTTF), the mean time to the

failure of a server in a monolithic cluster or a component in a LegoOS cluster. Since the only

real per-device failure statistics we can �nd are the mean time to hardware replacement in a

cluster [278], the MTTF we refer to in this study indicates the mean time to the type of hardware

failures that require replacement. Unlike traditional MTTF analysis, we are not able to include

transient failures.

To calculate MTTF of a monolithic server, we �rst obtain the replacement frequency

of different hardware devices in a server (CPU, memory, disk, NIC, motherboard, case, power

supply, fan, CPU heat sink, and other cables and connections) from the real world (the COM1 and

COM2 clusters in [278]). For LegoOS, we envision every component to have a NIC and a power

supply, and in addition, a pComponent to have CPU, fan, and heat sink, an mComponent to have

memory, and an sComponent to have a disk. We further assume both a monolithic server and a

LegoOS component to fail when any hardware devices in them fails and the devices in them fail

independently. Thus, the MTTF can be calculated using the harmonic mean (HM) of the MTTF

of each device.

MTTF =
HMn

i= 0(MTTFi)
n

(3.1)

wheren includes all devices in a machine/component.

Further, when calculating MTTF of LegoOS, we estimate the amount of components

needed in LegoOS to run the same applications as a monolithic cluster. Our estimated worst

case for LegoOS is to use the same amount of hardware devices (i.e., assuming same resource

utilization as monolithic cluster). LegoOS' best case is to achieve full resource utilization and

thus requiring only about half of CPU and memory resources (since average CPU and memory
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resource utilization in monolithic server clusters is around 50% [122, 21]).

With better resource utilization and simpli�ed hardware components (e.g., no mother-

board), LegoOS improves MTTF by 17% to 49% compared to an equivalent monolithic server

cluster.

3.7 Related Work

Hardware Resource Disaggregation.There have been a few hardware disaggregation

proposals from academia and industry, including Firebox [36], HP ”The Machine” [133, 100],

dRedBox [156], and IBM Composable System [68]. Among them, dRedBox and IBM Com-

posable System package hardware resources in one big case and connect them with buses like

PCIe. The Machine's scale is a rack and it connects SoCs with NVMs with a specialized co-

herent network. FireBox is an early-stage project and is likely to use high-radix switches to

connect customized devices. The disaggregated cluster we envision to run LegoOS on is one that

hosts hundreds to thousands of non-coherent, heterogeneous hardware devices, connected with a

commodity network.

Memory Disaggregation and Remote memory.Lim et al. �rst proposed the concept

of hardware disaggregated memory with two models of disaggregated memory: using it as

network swap device and transparently accessing it through memory instructions [191, 192].

Their hardware models still use a monolithic server at the local side. LegoOS' hardware model

separates processor and memory completely. Another set of recent projects utilize remote memory

without changing monolithic servers [90, 224, 16, 126, 233, 285]. For example, In�niSwap [126]

transparently swaps local memory to remote memory via RDMA. These remote memory systems

help improve the memory resource packing in a cluster. However, as discussed in§3.2, unlike

LegoOS, these solutions cannot solve other limitations of monolithic servers like the lack of

hardware heterogeneity and elasticity.
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Storage Disaggregation.Cloud vendors usually provision storage at different physical

machines [344, 26, 318]. Remote access to hard disks is a common practice, because their

high latency and low throughput can easily hide network overhead [181, 212, 328, 185]. While

disaggregating high-performance �ash is a more challenging task [164, 97]. Systems such as

ReFlex [166], Decibel [222], and PolarFS [59], tightly integrate network and storage layers to

minimize software overhead in the face of fast hardware. Although storage disaggregation is not

our main focus now, we believe those techniques can be realized in future LegoOS easily.

Multi-Kernel and Multi-Instance OSes. Multi-kernel OSes like Barrel�sh [47, 339],

Helios [229], Hive [62], and fos [329] run a small kernel on each core or programmable device in

a monolithic server, and they use message passing to communicate across their internal kernels.

Similarly, multi-instance OSes like Popcorn [42] and Pisces [244] run multiple Linux kernel

instances on different cores in a machine. Different from these OSes, LegoOS runs on and

manages a distributed set of hardware devices; it manages distributed hardware resources using

a two-level approach and handles device failures (currently only mComponent). In addition,

LegoOS differs from these OSes in how it splits OS functionalities, where it executes the split

kernels, and how it performs message passing across components. Different from multi-kernels'

message passing mechanisms which are performed over buses or using shared memory in a

server, LegoOS' message passing is performed using a customized RDMA-based RPC stack

over In�niBand or RoCE network. Like LegoOS, fos [329] separates OS functionalities and run

them on different processor cores that share main memory. Helios [229] runssatellite kernels

on heterogeneous cores and programmable NICs that are not cache-coherent. We took a step

further by disseminating OS functionalities to run on individual, network-attached hardware

devices. Moreover, LegoOS is the �rst OS that separates memory and process management and

runs virtual memory system completely at network-attached memory devices.

Distributed OSes.There have been several distributed OSes built in late 80s and early

90s [303, 304, 243, 41, 65, 265, 45, 35]. Many of them aim to appear as a single machine to
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users and focus on improving inter-node IPCs. Among them, the most closely related one is

Amoeba [303, 304]. It organizes a cluster into a shared process pool and disaggregated specialized

servers. Unlike Amoeba, LegoOS further separates memory from processors and different

hardware components are loosely coupled and can be heterogeneous instead of as a homogeneous

pool. There are also few emerging proposals to build distributed OSes in datacenters [148, 279],

e.g., to reduce the performance overhead of middleware. LegoOS achieves the same bene�ts of

minimal middleware layers by only having LegoOS as the system management software for a

disaggregated cluster and using the lightweight vNode mechanism.

3.8 Discussion and Conclusion

We presented LegoOS, the �rst OS designed for hardware resource disaggregation. Le-

goOS demonstrated the feasibility of resource disaggregation and its advantages in better resource

packing, failure isolation, and elasticity, all without changing Linux ABIs. LegoOS and resource

disaggregation in general can help the adoption of new hardware and thus encourage more

hardware and system software innovations.

LegoOS is a research prototype and has a lot of room for improvement. For example, we

found that the amount of parallel threads an mComponent can use to process memory requests

largely affect application throughput. Thus, future developers of real mComponents can consider

use large amount of cheap cores or FPGA to implement memory monitors in hardware.

We also performed an initial investigation in load balancing and found that memory allo-

cation policies across mComponents can largely affect application performance. However, since

we do not support memory data migration yet, the bene�t of our load-balancing mechanism is

small. We leave memory migration for future work. In general, large-scale resource management

of a disaggregated cluster is an interesting and important topic, but is outside of the scope of this

paper.
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Chapter 4

Clio: A Hardware-Software Co-Designed

Disaggregated Memory

4.1 Introduction

Modern datacenter applications like graph computing, data analytics, and deep learning

have an increasing demand for access to large amounts of memory [23]. Unfortunately, servers

are facingmemory capacity wallsbecause of pin, space, and power limitations [134, 146, 332].

Going forward, it is imperative for datacenters to seek solutions that can go beyond what a (local)

machine can offer,i.e., using remote memory. At the same time, datacenters are seeing the

needs from management and resource utilization perspectives todisaggregateresources [308,

322, 66]—separating hardware resources into different network-attached pools that can be scaled

and managed independently. These real needs have pushed the idea of memory disaggregation

(MemDisaggfor short): organizing computation and memory resources as two separate network-

attached pools, one with compute nodes (CNs) and one with memory nodes (MNs).

So far, MemDisagg researches have all taken one of two approaches: building/emulating

MNs using regular servers [273, 127, 23, 283, 231] or using raw memory devices with no
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processing power [314, 191, 192, 133]. The fundamental issues of server-based approaches such

as RDMA-based systems are the monetary and energy cost of a host server and the inherent

performance and scalability limitations caused by the way NICs interact with the host server's

virtual memory system. Raw-device-based solutions have low costs. However, they introduce

performance, security, and management problems because when MNs have no processing power,

all the data and control planes have to be handled at CNs [314].

Server-based MNs and MNs with no processing power are two extreme approaches of

building MNs. We seek a sweet spot in the middle by proposing a hardware-based MemDisagg

solution that has the right amount of processing power at MNs. Furthermore, we take a clean-slate

approach by starting from the requirements of MemDisagg and designing a MemDisagg-native

system.

We built Clio1, a hardware-based disaggregated memory system. Clio includes a CN-side

user-space library calledCLib and a new hardware-based MN device calledCBoard. Multiple

application processes running on different CNs can allocate memory from the same CBoard,

with each process having its ownremote virtual memory address space. Furthermore, one

remote virtual memory address space can span multiple CBoards. Applications can perform byte-

granularity remote memory read/write and use Clio's synchronization primitives for synchronizing

concurrent accesses to shared remote memory .

A key research question in designing Clio ishow to use limited hardware resources

to achieve 100 Gbps, microsecond-level average and tail latency for TBs of memory and

thousands of concurrent clients?These goals are important and unique for MemDisagg. A

good MemDisagg solution should reduce the total CapEx and OpEx costs compared to traditional

non-disaggregated systems and thus cannot afford to use large amounts of hardware resources at

MNs. Meanwhile, remote memory accesses should have high throughput and low average and

tail latency, because even after caching data at CN-local memory, there can still be fairly frequent

1Clio is the daughter of Mnemosyne, the Greek goddess of memory.
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accesses to MNs and the overall application performance can be impacted if they are slow [112].

Finally, unlike traditional single-server memory, a disaggregated MN should allow many CNs to

store large amounts of data so that we only need a few of them to reduce costs and connection

points in a cluster. How to achieve each of the above cost, performance, and scalability goals

individually is relatively well understood. However, achieving all these seemingly con�icting

goalssimultaneouslyis hard and previously unexplored.

Our main idea is toeliminate state from the MN hardware. Here, we overload the

term “state elimination” with two meanings: 1) the MN can treat each of its incoming requests

in isolation even if requests that the client issues can sometimes be inter-dependent, and 2)

the MN hardware does not store metadata or deals with it. Without remembering previous

requests or storing metadata, an MN would only need a tiny amount of on-chip memory that

does not grow with more clients, therebysaving monetary and energy costand achievinggreat

scalability. Moreover, without state, the hardware pipeline can be madesmoothandperformance

deterministic. A smooth pipeline means that the pipeline does not stall, which is only possible

if requests do not need to wait for each other. It can then take one incoming data unit from the

network every �xed number of cycles (1 cycle in our implementation), achieving constantlyhigh

throughput. A performance-deterministic pipeline means that the hardware processing does not

need to wait for any slower metadata operations and thus hasbounded tail latency.

Effective as it is, can we really eliminate state from MN hardware? First, as with any

memory systems, users of a disaggregate memory system expect it to deliver certain reliability and

consistency guarantees (e.g., a successful write should have all its data written to remote memory,

a read should not see the intermediate state of a write, etc.). Implementing these guarantees

requires proper ordering among requests and involves state even on a single server. The network

separation of disaggregated memory would only make matters more complicated. Second, quite a

few memory operations involve metadata, and they too need to be supported by disaggregated

memory. Finally, many memory and network functionalities are traditionally associated with
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a client process and involve per-process/client metadata (e.g., one page table per process, one

connection per client, etc.). Overcoming these challenges require the re-design of traditional

memory and network systems.

Our �rst approach is to separate the metadata/control plane and the data plane, with the

former running as software on a low-power ARM-based SoC at MN and the latter in hardware at

MN. Metadata operations like memory allocation usually need more memory but are rarer (thus

not as performance critical) compared to data operations. A low-power SoC's computation speed

and its local DRAM are suf�cient for metadata operations. On the other hand, data operations

(i.e., all memory accesses) should be fast and are best handled purely in hardware. Even though

the separation of data and control plane is a common technique that has been applied in many

areas [125, 170, 252], a separation of memory system control and data planes has not been

explored before and is not easy, as we will show in this paper.

Our second approach is to re-design the memory and networking data plane so that most

state can be managed only at the CN side. Our observation here is that the MN onlyrespondsto

memory requests but neverinitiatesany. This CN-request-MN-respond model allows us to use

a custom, connection-less reliable transport protocol that implements almost all transport-layer

services and state at CNs, allowing MNs to be free from traditional transport-layer processing.

Speci�cally, our transport protocol manages request IDs, transport logic, retransmission buffer,

congestion, and incast control all at CNs. It provides reliability by ordering and retrying an entire

memory request at the CN side. As a result, the MN does not need to worry about per-request

state or inter-request ordering and only needs a tiny amount of hardware resources which do not

grow with the number of clients.

With the above two approaches, the hardware can be largely simpli�ed and thus cheaper,

faster, and more scalable. However, we found thatcomplete state elimination at MNs is neither

feasible nor ideal. To ensure correctness, the MN has to maintain some state (e.g., to deal with

non-idempotent operations). To ensure good data-plane performance, not every operation that
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involves state should be moved to the low-power SoC or to CNs. Thus, our approach is to

eliminate as much state as we can without affecting performance or correctness and to carefully

design the remaining state so that it causes small and bounded space and performance overhead.

For example, we perform paging-based virtual-to-physical memory address mapping and

access permission checking at the MN hardware pipeline, as these operations are needed for every

data access. Page table is a kind of state that could potentially cause performance and scalability

issues but has to be accessed in the data path. We propose a new over�ow-free, hash-based page

table design where 1) all page table lookups have bounded and low latency (at most one DRAM

access time in our implementation), and 2) the total size of all page table entries does not grow

with the number of client processes. As a result, even though we cannot eliminate page table

from the MN hardware, we can still meet our cost, performance, or scalability requirements.

Another data-plane operation that involves metadata is page fault handling, which is a

relatively common operation because we allocate physical memory on demand. Today's page

fault handling process is slow and involves metadata for physical memory allocation. We propose

a new mechanism to handle page faults in hardware and �nish all the handling within bounded

hardware cycles. We make page fault handling performance deterministic by moving physical

memory allocation operations to software running at the SoC. We further move these allocation

operations off the performance-critical path by pre-generating free physical pages to a �x-sized

buffer that the hardware pipeline can pull when handling page faults.

We prototyped CBoard with a small set of Xilinx ZCU106 MPSoC FPGA boards [333]

and built three applications using Clio: a FaaS-style image compression utility, a radix-tree index,

and a key-value store. We compared Clio with native RDMA, two RDMA-based disaggregat-

ed/remote memory systems [314, 154], a software emulation of hardware-based disaggregated

memory [283], and a software-based SmartNIC [210]. Clio scales much better and has orders of

magnitude lower tail latency than RDMA, while achieving similar throughput and median latency

as RDMA (even with the slower FPGA frequency in our prototype). Clio has 1.1� to 3.4� energy
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saving compared to CPU-based and SmartNIC-based disaggregated memory systems and is 2.7�

faster than SmartNIC solutions.

Clio is publicly available athttps://github.com/WukLab/Clio .

4.2 Goals and Related Works

Resource disaggregation separates different types of resources into different pools, each

of which can be independently managed and scaled. Applications can allocate resources from

any node in a resource pool, resulting in tight resource packing. Because of these bene�ts, many

datacenters have adopted the idea of disaggregation, often at the storage layer [99, 66, 322, 29, 28,

22, 306]. With the success of disaggregated storage, researchers in academia and industry have

also sought ways to disaggregate memory (and persistent memory) [191, 36, 143, 192, 283, 285,

242, 314, 273, 23, 127, 324, 230]. Different from storage disaggregation, MemDisagg needs to

achieve at least an order of magnitude higher performance and it should offer a byte-addressable

interface. Thus, MemDisagg poses new challenges and requires new designs. This section

discusses the requirements of MemDisagg and why existing solutions cannot fully meet them.

4.2.1 MemDisagg Design Goals

In general, MemDisagg has the following features, some of which are hard requirements

while others are desired goals.

R1: Hosting large amounts of memory with high utilization. To keep the number of

memory devices and total cost of a cluster low, each MN should host hundreds GBs to a few TBs

of memory that is expected to be close to fully utilized. To most ef�ciently use the disaggregated

memory, we should allow applications to create and accessdisjoint memory regions of arbitrary

sizes at MN.

R2: Supporting a huge number of concurrent clients.To ensure tight and ef�cient
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resource packing, we should allow many (e.g., thousands of) client processes running on tens of

CNs to access and share an MN. This scenario is especially important for new data-center trends

like serverless computing and microservices where applications run as large amounts of small

units.

R3: Low-latency and high-throughput. We envision future systems to have a new

memory hierarchy, where disaggregated memory is larger and slower than local memory but still

faster than storage. Since MemDisagg is network-based, a reasonable performance target of it is

to match the state-of-the-art network speed,i.e., 100 Gbps throughput (for bigger requests) and

sub-2µsmedian end-to-end latency (for smaller requests).

R4: Low tail latency. Maintaining a low tail latency is important in meeting service-level

objectives (SLOs) in data centers. Long tails like RDMA's 16.8msremote memory access can be

detrimental to applications that are short running (e.g., serverless computing workloads) or have

large fan-outs or big DAGs (because they need to wait for the slowest step to �nish) [82].

R5: Protected memory accesses.As an MN can be shared by multi-tenant applications

running at CNs, we should properly isolate memory spaces used by them. Moreover, to prevent

buggy or malicious clients from reading/writing arbitrary memory at MNs, we should not allow

the direct access of MNs' physical memory from the network and MNs should check the access

permission.

R6: Low cost. A major goal and bene�t of resource disaggregation is cost reduction. A

good MemDisagg system should have lowoverallCapEx and OpEx costs. Such a system thus

should not 1) use expensive hardware to build MNs, 2) consume huge energy at MNs, and 3) add

more costs at CNs than the costs saved at MNs.

R7: Flexible. With the fast development of datacenter applications, hardware, and

network, a sustainable MemDisagg solution should be �exible and extendable, for example,

to support high-level APIs like pointer chasing [273, 18], to of�oad some application logic to

memory devices [273, 290], or to incorporate different network transports [219, 132, 33] and
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congestion control algorithms [174, 294, 190].

4.2.2 Server-Based Disaggregated Memory

MemDisagg research so far has mainly taken a server-based approach by using regular

servers as MNs [127, 23, 324, 283, 273, 231, 89], usually on top of RDMA. The common

limitation of these systems is their reliance on a host server and the resulting CPU energy costs,

both of which violateR6.

RDMA is what most server-based MemDisagg solutions are based on, with some using

RDMA for swapping memory between CNs and MNs [127, 23, 324] and some using RDMA

for explicitly accessing MNs [273, 231, 89]. Although RDMA has low average latency and high

throughput, it has a set of scalability and tail-latency problems.

A process (PM) running at an MN needs to allocate memory in its virtual memory address

space andregister the allocated memory (called a memory region, or MR) with the RDMA

NIC (RNIC). The host OS and MMU set up and manage the page table that mapsPM 's virtual

addresses (VAs) to physical memory addresses (PAs). To avoid always accessing host memory for

address mapping, RNICs cache page table entries (PTEs), but when more PTEs are accessed than

what this cache can hold, RDMA performance degrades signi�cantly (Figure 4.5 and [89, 315]).

Similarly, RNICs cache MR metadata and incur degraded performance when the cache is full.

Thus, RDMA has serious performance issues with either large memory (PTEs) or many disjoint

memory regions (MRs), violatingR1. Moreover, RDMA uses a slow way to support on-demand

allocation: the RNIC interrupts the host OS for handling page faults. From our experiments, a

faulting RDMA access is 14100� slower than a no-fault access (violatingR4).

To mitigate the above performance and scalability issues, most RDMA-based systems

today [89, 315] preallocate a big MR with huge pages and pin it in physical memory. This results

in inef�cient memory space utilization and violatesR1. Even with this approach, there can still

be a scalability issue (R2), as RDMA needs to create at least one MR for each protection domain

98



(i.e., each client).

In addition to problems caused by RDMA's memory system design, reliable RDMA, the

mode used by most MemDisagg solutions, suffers from a connection queue pair (QP) scalability

issue, also violatingR2. Finally, today's RNICs violateR7 because of their rigid one-sided

RDMA interface and the close-sourced, hardware-based transport implementation. Solutions like

1RMA [294] and IRN [216] mitigate the above issues by either onloading part of the transport

back to software or proposing a new hardware design.

LegoOS[283], our own previous work, is a distributed operating system designed for

resource disaggregation. Its MN includes a virtual memory system that maps VAs of application

processes running at CNs to MN PAs. Clio's MN performs the same type of address translation.

However, LegoOS emulates MN devices using regular servers and we built its virtual memory

system in software, which has a stark difference from a hardware-based virtual memory system.

For example, LegoOS uses a thread pool that handles incoming memory requests by looking up a

hash table for address translation and permission checking. This software approach is the major

performance bottleneck in LegoOS (§4.7), violatingR3. Moreover, LegoOS uses RDMA for its

network communication hence inheriting its limitations.

4.2.3 Physical Disaggregated Memory

One way to build MemDisagg without a host server is to treat it as raw, physical memory,

a model we callPDM. The PDM model has been adopted by a set of coherent interconnect

proposals [114, 78], HPE's Memory-Driven Computing project [133, 101, 319, 135]. A recent

disaggregated hashing system [352] and our own recent work on disaggregated key-value sys-

tems [314] also adopt the PDM model and emulate remote memory with regular servers. To

prevent applications from accessing raw physical memory, these solutions add an indirection

layer at CNs in hardware [114, 78] or software [314, 352] to map client process VAs or keys to

MN PAs.
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There are several common problems with all the PDM solutions. First, because MNs in

PDM are raw memory, CNs need multiple network round trips to access an MN for complex

operations like pointer chasing and concurrent operations that need synchronization [314], vio-

latingR3 andR7. Second, PDM requires the client side to manage disaggregated memory. For

example, CNs need to coordinate with each other or use a global server [314] to perform tasks

like memory allocation. Non-MN-side processing is much harder, performs worse compared to

memory-side management (violatingR3), and could even result in higher overall costs because

of the high computation added at CNs (violatingR6). Third, exposing physical memory makes it

hard to provide security guarantees (R5), as MNs have to authenticate that every access is to a

legit physical memory address belonging to the application. Finally, all existing PDM solutions

require physical memory pinning at MNs, causing memory wastes and violatingR1.

In addition to the above problems, none of the coherent interconnects or HPE's Memory-

Driven Computing have been fully built. When they do, they will require new hardware at all

endpoints and new switches. Moreover, the interconnects automatically make caches at different

endpoints coherent, which could cause performance overhead that is not always necessary

(violatingR3).

Besides the above PDM works, there are also proposals to include some processing power

in between the disaggregated memory layer and the computation layer. soNUMA [234] is a

hardware-based solution that scales out NUMA nodes by extending each NUMA node with a

hardware unit that services remote memory accesses. Unlike Clio which physically separates

MNs from CNs across generic data-center networks, soNUMA still bundles memory and CPU

cores, and it is a single-server solution. Thus, soNUMA works only on a limited scale (violating

R2) and is not �exible (violatingR7). MIND [ 184], a concurrent work with Clio, proposes to

use a programmable switch for managing coherence directories and memory address mappings

between compute nodes and memory nodes. Unlike Clio which adds processing power to every

MN, MIND's single programmable switch has limited hardware resources and could be the
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Figure 4.1: Clio Architecture.

bottleneck for both performance and scalability.

4.3 Clio Overview

Clio co-designs software with hardware, CNs with MNs, and network stack with virtual

memory system, so that at the MN, the entire data path is handled in hardware with high

throughput, low (tail) latency, and minimal hardware resources. This section gives an overview of

Clio's interface and architecture (Figure 4.1).

4.3.1 Clio Interface

Similar to recent MemDisagg proposals [273, 30], our current implementation adopts a

non-transparent interface where applications (running at CNs) allocate and access disaggregated

memory via explicit API calls. Doing so gives users opportunities to perform application-speci�c

performance optimizations. By design, Clio's APIs can also be called by a runtime like the AIFM

runtime [273] or by the kernel/hardware at CN like LegoOS' pComponent [283] to support a
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transparent interface and allow the use of unmodi�ed user applications. We leave such extension

to future work.

Apart from the regular (local) virtual memory address space, each process has a separate

Remote virtual memoryAddressSpace(RASfor short). Each application process has a unique

global PID across all CNs which is assigned by Clio when the application starts. Overall,

programming in RAS is similar to traditional multi-threaded programming except that memory

read and write are explicit and that processes running on different CNs can share memory in the

same RAS. Figure 4.2 illustrates the usage of Clio with a simple example.

An application process can perform a set of virtual memory operations in its RAS,

includingralloc , rfree , rread , rwrite , and a set of atomic and synchronization primitives

(e.g., rlock , runlock , rfence ). ralloc works likemalloc and returns a VA in RAS.rread and

rwrite can then be issued to any allocated VAs. As with the traditional virtual memory interface,

allocation and access in RAS are in byte granularity. We offersynchronousandasynchronous

options forralloc , rfree , rread , andrwrite .

Intra-thread request ordering. Within a thread, synchronous APIs follow strict ordering.

An application thread that calls a synchronous API blocks until it gets the result. Asynchronous

APIs are non-blocking. A calling thread proceeds after calling an asynchronous API and later calls

rpoll to get the result. Asynchronous APIs follow a release order. Speci�cally, asynchronous

APIs may be executed out of order as long as 1) all asynchronous operations before arrelease

complete before therrelease returns, and 2)rrelease operations are strictly ordered. On

top of this release order, we guarantee that there is no concurrent asynchronous operations with

dependencies (Write-After-Read, Read-After-Write, Write-After-Write) and target the same page.

The resulting memory consistency level is the same as architecture like ARMv8 [34]. In addition,

we also ensure consistency between metadata and data operations, by ensuring that potentially

con�icting operations execute synchronously in the program order. For example, if there is an

ongoingrfree request to a VA, no read or write to it can start until therfree �nishes. Finally,
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1 /* Alloc one remote page. Define a remote lock */
2 #define PAGE_SIZE (1<<22)
3 void * remote_addr = ralloc (PAGE_SIZE);
4 ras_lock lock ;
5

6 /* Acquire lock to enter crit ical section .
7 Do two AYSNC writes then poll completion . */
8 void thread1(void *) {
9 rlock( lock);

10 e[0]= rwrite ( remote_addr , local_wbuf1 , len , ASYNC);
11 e[1]= rwrite ( remote_addr+len , local_wbuf2 , len , ASYNC);
12 runlock( lock);
13 rpoll (e, 2) ;
14 }
15

16 /* Synchronously read from remote */
17 void thread2(void *) {
18 rlock( lock);
19 rread( remote_addr , local_rbuf , len , SYNC);
20 runlock( lock);
21 }

Figure 4.2: Sample code using Clio.

failed or unresponsive requests are transparently retried, and they follow the same ordering

guarantees.

Thread synchronization and data coherence.Threads and processes can share data

even when they are not on the same CN. Similar to traditional concurrent programming, Clio

threads can use synchronization primitives to build critical sections (e.g., with rlock ) and other

semantics (e.g., �ushing all requests withrfence ).

An application can choose to cache data read fromrread at the CN (e.g., by maintaining

local rbuf in the code example). Different processes sharing data in a RAS can have their

own cached copies at different CNs. Similar to [283], Clio does not make these cached copies

coherent automatically and lets applications choose their own coherence protocols. We made

this deliberate decision because automatic cache coherence on every read/write would incur high
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performance overhead with commodity Ethernet infrastructure and application semantics could

reduce this overhead.

4.3.2 Clio Architecture

In Clio (Figure 4.1), CNs are regular servers each equipped with a regular Ethernet NIC

and connected to a top-of-rack (ToR) switch. MNs are our customized devices directly connected

to a ToR switch. Applications run at CNs on top of our user-space library calledCLib. It is in

charge of request ordering, request retry, congestion, and incast control.

By design, an MN in Clio is a CBoard consisting of an ASIC which runs the hardware

logic for all data accesses (we call it thefast pathand prototyped it with FPGA), an ARM

processor which runs software for handling metadata and control operations (i.e., theslow path),

and an FPGA which hosts application computation of�oading (i.e., theextend path). An incoming

request arrives at the ASIC and travels through standard Ethernet physical and MAC layers and a

Match-and-Action-Table (MAT) that decides which of the three paths the request should go to

based on the request type. If the request is a data access (fast path), it stays in the ASIC and goes

through a hardware-based virtual memory system that performs three tasks in the same pipeline:

address translation, permission checking, and page fault handling (if any). Afterward, the actual

memory access is performed through the memory controller, and the response is formed and sent

out through the network stack. Metadata operations such as memory allocation are sent to the

slow path. Finally, customized requests with of�oaded computation are handled in the extend

path.

4.4 Clio Design

This section presents the design challenges of building a hardware-based MemDisagg

system and our solutions.
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4.4.1 Design Challenges and Principles

Building a hardware-based MemDisagg platform is a previously unexplored area and

introduces new challenges mainly because of restrictions of hardware and the unique requirements

of MemDisagg.

Challenge 1: The hardware should avoid maintaining or processing complex data

structures, because unlike software, hardware has limited resources such as on-chip memory

and logic cells. For example, Linux and many other software systems use trees (e.g., the vma

tree) for allocation. Maintaining and searching a big tree data structure in hardware, however,

would require huge on-chip memory and many logic cells to perform the look up operation (or

alternatively use fewer resources but suffer from performance loss).

Challenge 2: Data buffers and metadata that the hardware uses should be minimal

and have bounded sizes, so that they can be statically planned and �t into the on-chip memory.

Unfortunately, traditional software approaches involve various data buffers and metadata that are

large and grow with increasing scale. For example, today's reliable network transports maintain

per-connection sequence numbers and buffer unacknowledged packets for packet ordering and

retransmission, and they grow with the number of connections. Although swapping between

on-chip and off-chip memory is possible, doing so would increase both tail latency and hardware

logic complexity, especially under large scale.

Challenge 3: The hardware pipeline should be deterministic and smooth, i.e., it uses

a bounded, known number of cycles to process a data unit, and for each cycle, the pipeline can

take in one new data unit (from the network). The former would ensure low tail latency, while the

latter would guarantee a throughput that could match network line rate. Another subtle bene�t of

a deterministic pipeline is that we can know the maximum time a data unit stays at MN, which

could help bound the size of certain buffers (e.g., §4.4.5). However, many traditional hardware

solutions are not designed to be deterministic or smooth, and we cannot directly adapt their

approaches. For example, traditional CPU pipelines could have stalls because of data hazards and
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have non-deterministic latency to handle memory instructions.

To confront these challenges, we took a clean-slate approach by designing Clio's virtual

memory system and network system with the following principles that all aim to eliminate state

in hardware or bound their performance and space overhead.

Principle 1: Avoid state whenever possible.Not all state in server-based solutions is

necessary if we could redesign the hardware. For example, we get rid of RDMA's MR indirection

and its metadata altogether by directly mapping application process' RAS VAs to PAs (instead of

to MRs then to PAs).

Principle 2: Moving non-critical operations and state to software and making the

hardware fast path deterministic. If an operation is non-critical and it involves complex

processing logic and/or metadata, our idea is to move it to the software slow path running in

an ARM processor. For example, VA allocation (ralloc ) is expected to be a rare operation

because applications know the disaggregated nature and would typically have only a few large

allocations during the execution. Handlingralloc , however, would involve dealing with complex

allocation trees. We thus handleralloc andrfree in the software slow path. Furthermore, in

order to make the fast path performance deterministic, wedecoupleall slow-path tasks from the

performance-critical path byasynchronouslyperforming them in the background.

Principle 3: Shifting functionalities and state to CNs.While hardware resources are

scarce at MNs, CNs have suf�cient memory and processing power, and it is faster to develop

functionalities in CN software. A viable solution is to shift state and functionalities from MNs to

CNs. The key question here is how much and what to shift. Our strategy is to shift functionalities

to CNs only if doing so 1) could largely reduce hardware resource consumption at MNs, 2) does

not slow down common-case foreground data operations, 3) does not sacri�ce security guarantees,

and 4) adds bounded memory space and CPU cycle overheads to CNs. As a tradeoff, the shift

may result in certain uncommon operations (e.g., handling a failed request) being slower.

Principle 4: Making off-chip data structures ef�cient and scalable. Principles 1 to 3
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allow us to reduce MN hardware to only the most essential functionalities and state. We store

the remaining state in off-chip memory and cache a �xed amount of them in on-chip memory.

Different from most caching solutions, our focus is to make the access to off-chip data structure

fast and scalable,i.e., all cache misses have bounded latency regardless of the number of client

processes accessing an MN or the amount of physical memory the MN hosts.

Principle 5: Making the hardware fast path smooth by treating each data unit

independently at MN. If data units have dependencies (e.g., must be executed in a certain order),

then the fast path cannot always execute a data unit when receiving it. To handle one data unit

per cycle and reach network line rate, we make each data unit independent by including all the

information needed to process a unit in it and by allowing MNs to execute data units in any order

that they arrive. To deliver our consistency guarantees, we opt for enforcing request ordering at

CNs before sending them out.

The rest of this section presents how we follow these principles to design Clio's three main

functionalities: memory address translation and protection, page fault handling, and networking.

We also brie�y discuss our of�oading support.

4.4.2 Scalable, Fast Address Translation

Similar to traditional virtual memory systems, we use �x-size pages as address allocation

and translation unit, while data accesses are in the granularity of byte. Despite the similarity in

the goal of address translation, the radix-tree-style, per-address space page table design used by

all current architectures [295] does not �t MemDisagg for two reasons. First, each request from

the network could be from a different client process. If each process has its own page table, MN

would need to cache and look up many page table roots, causing additional overhead. Second,

a multi-level page table design requires multiple DRAM accesses when there is a translation

lookaside buffer (TLB) miss [335]. TLB misses will be much more common in a MemDisagg

environment, since with more applications sharing an MN, the total working set size is much
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Figure 4.3: CBoard Design. Green, yellow, and red areas are anticipated to be built with ASIC,
FPGA, and low-power cores.

bigger than that in a single-server setting, while the TLB size in an MN will be similar or even

smaller than a single server's TLB (for cost concerns). To make matters worse, each DRAM

access is more costly for systems like RDMA NIC which has to cross the PCIe bus to access the

page table in main memory [313, 226].

Flat, single page table design (Principle 4). We propose a newover�ow-freehash-

based page table design that sets the total page table size according to the physical memory

size and boundsaddress translation to at most one DRAM access. Speci�cally, we storeall

page table entries (PTEs) fromall processes in a single hash table whose size is proportional

to the physical memory size of an MN. The location of this page table is �xed in the off-chip

DRAM and is known by the fast path address translation unit, thus avoiding any lookups. As we

anticipate applications to allocate big chunks of VAs in their RAS, we use huge pages and support

a con�gurable set of page sizes. With the default 4 MB page size, the hash table consumes only

0.4% of the physical memory.
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The hash value of a VA and its PID is used as the index to determine which hash bucket

the corresponding PTE goes to. Each hash bucket has a �xed number of (K) slots. To access the

page table, we always fetch the entire bucket including allK slots in a single DRAM access.

A well-known problem with hash-based page table design is hash collisions that could

over�ow a bucket. Existing hash-based page table designs rely on collision chaining [43] or

open addressing [335] to handle over�ows, both require multiple DRAM accesses or even costly

software intervention. In order to bound address translation to at most one DRAM access, we use

a novel technique to avoid hash over�ows atVA allocation time.

VA allocation (Principle 2). The slow path software handlesralloc requests and

allocates VA. The software allocator maintains a per-process VA allocation tree that records

allocated VA ranges and permissions, similar to the Linux vma tree [161]. To allocate sizek of

VAs, it �rst �nds an available address range of sizek in the tree. It then calculates the hash values

of the virtual pages in this address range and checks if inserting them to the page table would

cause any hash over�ow. If so, it does another search for available VAs. These steps repeat until

it �nds a valid VA range that does not cause hash over�ow.

Our design trades potential retry overhead at allocation time (at the slow path) for better

run-time performance and simpler hardware design (at the fast path). This overhead is manageable

because 1) each retry takes only a few microseconds with our implementation (§4.5), 2) we

employ huge pages, which means fewer pages need to be allocated, 3) we choose a hash function

that has very low collision rate [330], and 4) we set the page table to have extra slots (2� by

default) which absorbs most over�ows. We �nd no con�icts when memory is below half utilized

and has only up to 60 retries when memory is close to full (Figure 4.13).

TLB. Clio implements a TLB in a �x-sized on-chip memory area and looks it up using

content-addressable-memory in the fast path. On a TLB miss, the fast path fetches the PTE from

off-chip memory and inserts it to the TLB by replacing an existing TLB entry with the LRU

policy. When updating a PTE, the fast path also updates the TLB, in a way that ensures the
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consistency of in�ight operations.

Limitation. A downside of our over�ow-free VA allocation design is that it cannot

guarantee that a speci�c VA can be inserted into the page table. This is not a problem for

regular VA allocation but could be problematic for allocations that require a �xed VA (e.g.,

mmap(MAPFIXED)). Currently, Clio �nds a new VA range if the user-speci�ed range cannot be

inserted into the page table. Applications that must map at �xed VAs (e.g., libraries) will need to

use CN-local memory.

4.4.3 Low-Tail-Latency Page Fault Handling

A key reason to disaggregate memory is to consolidate memory usages on less DRAM

so that memory utilization is higher and the total monetary cost is lower (R1). Thus, remote

memory space is desired to run close to full capacity, and we allow memory over-commitment

at an MN, necessitating page fault handling. Meanwhile, applications like JVM-based ones

allocate a large heap memory space at the startup time and then slowly use it to allocate smaller

objects. Similarly, many existing far-memory systems [314, 273, 89] allocate a big chunk of

remote memory and then use different parts of it for smaller objects to avoid frequently triggering

the slow remote allocation operation. In these cases, it is desirable for a MemDisagg system to

delay the allocation of physical memory to when the memory is actually used (i.e., on-demand

allocation) or to “reshape” memory [293] during runtime, necessitating page fault handling.

Page faults are traditionally signaled by the hardware and handled by the OS. This is a

slow process because of the costly interrupt and kernel-trapping �ow. For example, a remote page

fault via RDMA costs 16.8msfrom our experiments using Mellanox ConnectX-4. To avoid page

faults, most RDMA-based systems pre-allocate big chunks of physical memory and pin them

physically. However, doing so results in memory wastes and makes it hard for an MN to pack

more applications, violatingR1 andR2.

We propose tohandle page faults in hardware and with bounded latency—a constant
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three cyclesto be more speci�c with our implementation of CBoard. Handling initial-access faults

in hardware is challenging, as initial accesses require PA allocation, which is a slow operation

that involves manipulating complex data structures. Thus, we handle PA allocation in the slow

path (Challenge 1). However, if the fast-path page fault handler has to wait for the slow path to

generate a PA for each page fault, it will slow down the data plane.

To solve this problem, we propose an asynchronous design to shift PA allocation off the

performance-critical path (Principle 2). Speci�cally, we maintain a set offree physical page

numbersin anasync buffer, which the ARM continuously ful�lls by �nding free physical page

addresses and reserving them without actually using the pages. During a page fault, the page

fault handler simply fetches a pre-allocated physical page address. Note that even though a single

PA allocation operation has a non-trivial delay, the throughput of generating PAs and �lling the

async buffer is higher than network line rate. Thus, the fast path can always �nd free PAs in the

async buffer in time. After getting a PA from the async buffer and establishing a valid PTE, the

page fault handler performs three tasks in parallel: writing the PTE to the off-chip page table,

inserting the PTE to the TLB, and continuing the original faulting request. This parallel design

hides the performance overhead of the �rst two tasks, allowing foreground requests to proceed

immediately.

A recent work [182] also handles page faults in hardware. Its focus is on the complex

interaction with kernel and storage devices, and it is a simulation-only work. Clio uses a different

design for handling page faults in hardware with the goal of low tail latency, and we built it in

FPGA.

Putting the virtual memory system together. We illustrate how CBoard's virtual

memory system works using a simple example of allocating some memory and writing to it. The

�rst step (ralloc ) is handled by the slow path, which allocates a VA range by �nding an available

set of slots in the hash page table. The slow path forwards the new PTEs to the fast path, which

inserts them to the page table. At this point, the PTEs are invalid. This VA range is returned to
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the client. When the client performs the �rst write, the request goes to the fast path. There will be

a TLB miss, followed by a fetch of the PTE. Since the PTE is invalid, the page fault handler will

be triggered, which fetches a free PA from the async buffer and establishes the valid PTE. It will

then execute the write, update the page table, and insert the PTE to TLB.

4.4.4 Asymmetric Network Tailored for MemDisagg

With large amounts of research and development efforts, today's data-center network

systems are highly optimized in their performance. Our goal of Clio's network system is

unique and �ts MemDisagg's requirements—minimizing the network stack's hardware resource

consumption at MNs and achieving great scalability while maintaining similar performance as

today's fast network. Traditional software-based reliable transports like Linux TCP incurs high

performance overhead. Today's hardware-based reliable transports like RDMA are fast, but they

require a fair amount of on-chip memory to maintain state,e.g., per-connection sequence numbers,

congestion state [33], and bitmaps [216, 201], not meeting our low-cost goal.

Our insight is that different from general-purpose network communication where each

endpoint can be both the sender (requester) and the receiver (responder) that exchange general-

purpose messages, MNs only respond to requests sent by CNs (except for memory migration

from one MN to another MN (§4.4.7), in which case we use another simple protocol to achieve

the similar goal). Moreover, these requests are all memory-related operations that have their

speci�c properties. With these insights, we design a new network system with two main ideas.

Our �rst idea is to maintain transport logic, state, and data buffers only at CNs, essentially making

MNs “transportless” (Principle 3). Our second idea is to relax the reliability of the transport and

instead enforce ordering and loss recovery at the memory request level, so that MNs' hardware

pipeline can process data units as soon as they arrive (Principle 5).

With these ideas, we implemented a transport in CLib at CNs. CLib bypasses the kernel

to directly issue raw Ethernet requests to an Ethernet NIC. CNs use regular, commodity Ethernet
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NICs and regular Ethernet switches to connect to MNs. MNs include only standard Ethernet

physical, link, and network layers and a slim layer for handling corner-case requests (§4.4.5). We

now describe our detailed design.

Removing connections with request-response semantics.Connections (i.e., QPs) are a

major scalability issue with RDMA. Similar to recent works [219, 294], we make our network

system connection-less using request-response pairs. Applications running at CNs directly initiate

Clio APIs to an MN without any connections. CLib assigns a unique request ID to each request.

The MN attaches the same request ID when sending the response back. CLib uses responses as

ACKs and matches a response with an outstanding request using the request ID. Neither CNs nor

MNs send ACKs.

Lifting reliability to the memory request level. Instead of triggering a retransmission

protocol for every lost/corrupted packet at the transport layer, CLib retries the entire memory

request if any packet is lost or corrupted in the sending or the receiving direction. On the receiving

path, MN's network stack only checks a packet's integrity at the link layer. If a packet is corrupted,

the MN immediately sends a NACK to the sender CN. CLib retries a memory request if one of

three situations happens: a NACK is received, the response from MN is corrupted, or no response

is received within aTIMEOUTperiod. In addition to lifting retransmission from transport to the

request level, we also lift ordering to the memory request level and allow out-of-order packet

delivery (see details in §4.4.5).

CN-managed congestion and incast control.Our goal of controlling congestion in the

network and handling incast that can happen both at a CN and an MN is to minimize state at MN.

To this end, we build the entire congestion and incast control at the CN in the CLib. To control

congestion, CLib adopts a simple delay-based, reactive policy that uses end-to-end RTT delay as

the congestion signal, similar to recent sender-managed, delay-based mechanisms [215, 174, 294].

Each CN maintains one congestion window,cwnd, per MN that controls the maximum number

of outstanding requests that can be made to the MN from this CN. We adjustcwndbased on
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measured delay using a standard Additive Increase Multiplicative Decrease (AIMD) algorithm.

To handle incast to a CN, we exploit the fact that the CN knows the sizes of expected

responses for the requests that it sends out and that responses are the major incoming traf�c to it.

Each CLib maintains one incast window,iwnd, which controls the maximum bytes of expected

responses. CLib sends a request only when bothcwndandiwnd have room.

Handling incast to an MN is more challenging, as we cannot throttle incoming traf�c at

the MN side or would otherwise maintain state at MNs. To have CNs handle incast to MNs, we

draw inspiration from Swift [174] by allowing cwndto fall below one packet when long delay is

observed at a CN. For example, acwndof 0.1 means that the CN can only send a packet within

10 RTTs. Essentially, this situation happens when the network between a CN and an MN is really

congested, and the only way is to slow the sending speed.

4.4.5 Request Ordering and Data Consistency

As explained in§4.3.1, Clio supports both synchronous and asynchronous remote memory

APIs, with the former following a sequential, one-at-a-time order in a thread and the latter

following a release order in a thread. Furthermore, Clio provides synchronization primitives for

inter-thread consistency. We now discuss how Clio achieves these correctness guarantees by

presenting our mechanisms for handling intra-request intra-thread ordering, inter-request intra-

thread ordering, inter-thread consistency, and retries. At the end, we will provide the rationales

behind our design.

One dif�culty in designing the request ordering and consistency mechanisms is our relaxed

network ordering guarantees, which we adopt to minimize the hardware resource consumption

for the network layer at MNs (§4.4.4). On an asynchronous network, it is generally hard to

guarantee any type of request ordering when there can be multiple outstanding requests (either

multiple threads accessing shared memory or a single thread issuing multiple asynchronous

APIs). It is even harder for Clio because we aim to make MN stateless as much as possible. Our
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general approaches are 1) using CNs to ensure that no two concurrently outstanding requests are

dependent on each other, and 2) using MNs to ensure that every user request is only executed

once even in the event of retries.

Allowing intra-request packet re-ordering (T1). A request or a response in Clio can

contain multiple link-layer packets. Enforcing packet ordering above the link layer normally

requires maintaining state (e.g., packet sequence ID) at both the sender and the receiver. To avoid

maintaining such state at MNs, our approach is to deal with packet reordering only at CNs in

CLib (Principle 3). Speci�cally, CLib splits a request that is bigger than link-layer maximum

transmission unit (MTU) into several link-layer packets and attaches a Clio header to each packet,

which includes sender-receiver addresses, a request ID, and request type. This enables the MN to

treat each packet independently (Principle 5). It executes packets as soon as they arrive, even

if they are not in the sending order. This out-of-order data placement semantic is in line with

RDMA speci�cation [216]. Note that only write requests will be bigger than MTU, and the order

of data writing within a write request does not affect correctness as long as properinter-request

ordering is followed. When a CN receives multiple link-layer packets belonging to the same

request response, CLib reassembles them before delivering them to the application.

Enforcing intra-thread inter-request ordering at CN (T2). Since only one synchronous

request can be outstanding in a thread, there cannot be any inter-request reordering problem.

On the other hand, there can be multiple outstanding asynchronous requests. Our provided

consistency level disallows concurrent asynchronous requests that are dependent on each other

(WAW, RAW, or WAR). In addition, all requests must complete beforerrelease .

We enforce these ordering requirements at CNs in CLib instead of at MNs (Principle 3)

for two reasons. First, enforcing ordering at MNs requires more on-chip memory and complex

logic in hardware. Second, even if we enforce ordering at MNs, network reordering would still

break end-to-end ordering guarantees.

Speci�cally, CLib keeps track of all in�ight requests and matches every new request's
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virtual page number (VPN) to the in�ight ones'. If a WAR, RAW, or WAW dependency is

detected, CLib blocks the new request until the con�icting request �nishes. When CLib sees

a rrelease operation, it waits until all in�ight requests return or time out. We currently track

dependencies at the page granularity mainly to reduce tracking complexity and metadata overhead.

The downside is that false dependencies could happen (e.g., two accesses to the same page but

different addresses). False dependencies could be reduced by dynamically adapting the tracking

granularity if application access patterns are tracked—we leave this improvement for future work.

Inter-thread/process consistency (T3).Multi-threaded or multi-process concurrent

programming on Clio could use the synchronization primitives Clio provides to ensure data

consistency (§4.3.1). We implemented all synchronization primitives likerlock andrfence at

MN, because they need to work across threads and processes that possibly reside on different

CNs. Before a request enters either the fast or the slow paths, MN checks if it is a synchronization

primitive. For primitives likerlock that internally is implemented using atomic operations like

TAS, MN blocks future atomic operations until the current one completes. Forrfence , MN

blocks all future requests until all in�ight ones complete. Synchronization primitives are one of

the only two cases where MN needs to maintain state. As these operations are infrequent and

each of these operations executes in bounded time, the hardware resources for maintaining their

state are minimal and bounded.

Handling retries (T4). CLib retries a request after aTIMEOUTperiod without receiving

any response. Potential consistency problems could happen as CBoard could execute a retried

write after the data is written by another write request thus undoing this other request's write.

Such situations could happen when the original request's response is lost or delayed and/or when

the network reorders packets. We use two techniques to solve this problem.

First, CLib attaches a new request ID to each retry, essentially making it a new request

with its own matching response. Together with CLib's ordering enforcement, it ensures that there

is only one outstanding request (or a retry) at any time. Second, we maintain a small buffer at
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MN to record the request IDs of recently executed writes and atomic APIs and the results of the

atomic APIs. A retry attaches its own request ID and the ID of the failed request. If MN �nds

a match of the latter in the buffer, it will not execute the request. For atomic APIs, it sends the

cached result as the response. We set this buffer's size to be 3� TIMEOUT� bandwidth, which is

30 KB in our setting. It is one of the only two types of state MN maintains and does not affect the

scalability of MN, since its size is statically associated with the link bandwidth and theTIMEOUT

value. With this size, the MN can “remember” an operation long enough for two retries from the

CN. Only when both retries and the original request all fail, the MN will fail to properly handle a

future retry. This case is extremely rare [219], and we report the error to the application, similar

to [154, 294].

Why T1 to T4? We now brie�y discuss the rationale behind why we need all T1 to

T4 to properly deliver our consistency guarantees. First, assume that there is no packet loss or

corruption (i.e., no retry) but the network can reorder packets. In this case, using T1 and T2 alone

is enough to guarantee the proper ordering of Clio memory operations, since they guarantee that

network reordering will only affect either packets within the same request or requests that are not

dependent on each other. T3 guarantees the correctness of synchronization primitives since the

MN is the serialization point and is where these primitives are executed. Now, consider the case

where there are retries. Because of the asynchronous network, a timed-out request could just be

slow and still reach the MN, either before or after the execution of the retried request. If another

request is executed in between the original and the retried requests, inconsistency could happen

(e.g., losing the data of this other request if it is a write). The root cause of this problem is that

one request can be executed twice when it is retried. T4 solves this problem by ensuring that the

MN only executes a request once even if it is retried.

117



4.4.6 Extension and Of�oading Support

To avoid network round trips when working with complex data structures and/or per-

forming data-intensive operations, we extend the core MN to support application computation

of�oading in the extend path. Users can write and deploy application of�oads both in FPGA

and in software (run in the ARM). To ease the development of of�oads, Clio offers the same

virtual memory interface as the one to applications running at CNs. Each of�oad has its own

PID and virtual memory address space, and they use the same virtual memory APIs (§4.3.1) to

access on-board memory. It could also share data with processes running at CNs in the same

way that two CN processes share memory. Finally, an of�oad's data and control paths could be

split to FPGA and ARM and use the same async-buffer mechanism for communication between

them. These unique designs made developing computation of�oads easier and closer to traditional

multi-threaded software programming.

4.4.7 Distributed MNs

Our discussion so far focused on a single MN (CBoard). To more ef�ciently use remote

memory space and to allow one application to use more memory than what one CBoard can

offer, we extend the single-MN design to a distributed one with multiple MNs. Speci�cally, an

application process' RAS can span multiple MNs, and one MN can host multiple RASs. We adopt

LegoOS' two-level distributed virtual memory management approach to manage distributed MNs

in Clio. A global controller manages RASs in coarse granularity (assigning 1 GB virtual memory

regions to different MNs). Each MN then manages the assigned regions at �ne granularity.

The main difference between LegoOS and Clio's distributed memory system is that in

Clio, each MN can be over-committed (i.e., allocating more virtual memory than its physical

memory size), and when an MN is under memory pressure, it migrates data to another MN

that is less pressured (coordinated by the global controller). The traditional way of providing
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memory over-commitment is through memory swapping, which could be potentially implemented

by swapping memory between MNs. However, swapping would cause performance impact on

the data path and add complexity to the hardware implementation. Instead of swapping, we

proactivelymigrate a rarely accessed memory region to another MN when an MN is under

memory pressure (its free physical memory space is below a threshold). During migration, we

pause all client requests to the region being migrated. With our 10 Gbps experimental board,

migrating a 1 GB region takes 1.3 second. Migration happens rarely and, unlike swapping,

happens in the background. Thus, it has little disturbance to foreground application performance.

4.5 Clio Implementation

Apart from challenges discussed in§4.4, our implementation of Clio also needs to

overcome several practical challenges, for example, how can different hardware components most

ef�ciently work together in CBoard, how to minimize software overhead in CLib. This section

describes how we implemented CBoard and CLib, focusing on the new techniques we designed

to overcome these challenges. Currently, Clio consists of 24.6K SLOC (excluding computation

of�oads and third-party IPs). They include 5.6K SLOC in SpinalHDL [297] and 2K in C HLS for

FPGA hardware, and 17K in C for CLib and ARM software. We use vendor-supplied interconnect

and DDR IPs, and an open-source MAC and PHY network stack [109].

CBoard Prototyping. We prototyped CBoard with a low-cost ($2495 retail price) Xilinx

MPSoC board [333] and build the hardware fast path (which is anticipated to be built in ASIC)

with FPGA. All Clio's FPGA modules run at 250 MHz clock frequency and 512-bit data width.

They all achieve anInitiation Interval (II ) of one (II is the number of clock cycles between the

start time of consecutive loop iterations, and it decides the maximum achievable bandwidth).

Achieving II of one is not easy and requires careful pipeline design in all the modules. With II

one, our data path can achieve a maximum of 128 Gbps throughput even with just the slower
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FPGA clock frequency and would be higher with real ASIC implementation.

Our prototyping board consists of a small FPGA with 504K logic cells (LUTs) and

4.75 MB FPGA memory (BRAM), a quad-core ARM Cortex-A53 processor, two 10 Gbps SFP+

ports connected to the FPGA, and 2 GB of off-chip on-board memory. This board has several

differences from our anticipated real CBoard: its network port bandwidth and on-board memory

size are both much lower than our target, and like all FPGA prototypes, its clock frequency is

much lower than real ASIC. Unfortunately, no board on the market offers the combination of

small FPGA/ARM (required for low cost) and large memory and high-speed network ports.

Nonetheless, certain features of this board are likely to exist in a real CBoard, and

these features guide our implementation. Its ARM processor and the FPGA connect through

an interconnect that has high bandwidth (90 GB/s) but high delay (40µs). Although better

interconnects could be built, crossing ARM and FPGA would inevitably incur non-trivial latency.

With this board, the ARM's access to on-board DRAM is much slower than the FPGA's access

because the ARM has to �rst physically cross the FPGA then to the DRAM. A better design

would connect the ARM directly to the DRAM, but it will still be slower for the ARM to access

on-board DRAM than its local on-chip memory.

To mitigate the problem of slow accesses to on-board DRAM from ARM, we maintain

shadow copies of metadata at ARM's local DRAM. For example, we store ashadowversion of

the page table in ARM's local memory, so that the control path can read page table content faster.

When the control path needs to perform a virtual memory space allocation, it reads the shadow

page table to test if an address would cause an over�ow (§4.4.2). We keep the shadow page table

in sync with the real page table by updating both tables when adding, removing, or updating the

page table entries.

In addition to maintaining shadow metadata, we employ an ef�cient polling mechanism

for ARM/FPGA communication. We dedicate one ARM core to busy poll an RX ring buffer

between ARM and FPGA, where the FPGA posts tasks for ARM. This polling thread hands over
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tasks to other worker threads for task handling and post responses to a TX ring buffer.

CBoard's network stack builds on top of standard, vendor-supplied Ethernet physical

and link-layer IPs, with just an additional thin checksum-verify and ack-generation layer on top.

This layer uses much fewer resources compared to a normal RDMA-like stack (§4.7.3). We use

lossless Ethernet with Priority Flow Control (PFC) for less packet loss and retransmission. Since

PFC has issues like head-of-line blocking [350, 190, 113, 216], we rely on our congestion and

incast control to avoid triggering PFC as much as possible.

Finally, to assist Clio users in building their applications, we implemented a simple

software simulator of CBoard which works with CLib for developers to test their code without

the need to run an actual CBoard.

CLib Implementation. Even though we optimize the performance of CBoard, the

end-to-end application performance can still be hugely impacted if the host software component

(CLib) is not as fast. Thus, our CLib implementation aims to provide low-latency performance

by adopting several ideas (e.g., data inlining, doorbell batching) from recent low-latency I/O

solutions [151, 154, 32, 315, 150, 241, 340]. We implemented CLib in the user space. It has

three parts: a user-facing request ordering layer that performs dependency check and ordering of

address-con�icting requests, a transport layer that performs congestion/incast control and request-

level retransmission, and a low-level device driver layer that interacts with the NIC (similar to

DPDK [88] but simpler). CLib bypasses kernel and directly issues raw Ethernet requests to the

NIC with zero memory copy. For synchronous APIs, we let the requesting thread poll the NIC

for receiving the response right after each request. For asynchronous APIs, the application thread

proceeds with other computations after issuing the request and only busy polls when the program

callsrpoll .
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4.6 Building Applications on Clio

We built �ve applications on top of Clio, one that uses the basic Clio APIs, one that

implements and uses a high-level, extended API, and two that of�oad data processing tasks to

MNs, and one that splits computation across CNs and MNs.

Image compression.We build a simple image compression/decompression utility that

runs purely at CN. Each client of the utility (e.g., a Facebook user) has its own collection of photos,

stored in two arrays at MNs, one for compressed and one for original, both allocated withralloc .

Because clients' photos need to be protected from each other, we use one process per client to

run the utility. The utility simply reads a photo from MN usingrread , compresses/decompresses

it, and writes it back to the other array usingrwrite . Note that we use compression and

decompression as an example of image processing. These operations could potentially be

of�oaded to MNs. However, in reality, there can be many other types of image processing that

are more complex and are hard and costly to implement in hardware, necessitating software

processing at CNs. We implemented this utility with 1K C code in 3 developer days.

Radix tree. To demonstrate how to build a data structure on Clio using Clio's extended

API, we built a radix tree with linked lists and pointers. Data-structure-level systems like

AIFM [ 273] could follow this example to make simple changes in their libraries to run on Clio.

We �rst built an extended pointer-chasing functionality in FPGA at the MN which follows pointers

in a linked list and performs a value comparison at each traversed list node. It returns either the

node value when there is a match or null when the next pointer becomes null. We then expose this

functionality to CNs as an extended API. The software running at CN allocates a big contiguous

remote memory space usingralloc and uses this space to store radix tree nodes. Nodes in each

layer are linked to a list. To search a radix tree, the CN software goes through each layer of the

tree and calls the pointer chasing API until a match is found. We implemented the radix tree with

300 C code at CN and 150 SpinalHDL code at CBoard in less than one developer day.
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Key-value store.We builtClio-KV, a key-value store that supports concurrent create/up-

date/read/delete key-value entries with atomic write and read committed consistency. Clio-KV

runs at an MN as a computation of�oading module. Users can access it through a key-value

interface from multiple CNs. The Clio-KV module has its own virtual memory address space

and uses Clio virtual memory APIs to access it. Clio-KV uses a chained hash table in its virtual

memory space for managing the metadata of key-value pairs, and it stores the actual key values

at separate locations in the space. Each hash bucket has a chain of slots. Each slot contains the

virtual addresses of seven key-value pairs. It also stores a �ngerprint for each key-value pair.

To create a new key-value pair, Clio-KV allocates space for the key-value data with an

ralloc call and writes the data with anrwrite . It then calculates the hash and the �ngerprint of

the key. Afterward, it fetches the last hash slot in the corresponding hash bucket using the hash

value. If that slot is full, Clio-KV allocates another slot usingralloc ; otherwise, it just uses the

fetched last slot. It then inserts the virtual address and �ngerprint of the data into the last/new slot.

Finally, it links the current last slot to the new slot if a new one is created.

To perform a read, Clio-KV locates the hash bucket (with the key's hash value) and fetches

one slot in the bucket chain at a time usingrread . It then compares the �ngerprint of the key to

the seven entries in the slot. If there is no match, it fetches the next slot in the bucket. Otherwise,

with a matched entry, it reads the key-value pair using the address stored in that entry with an

rread . It then compares the full key and returns the value if it is a match. Otherwise, it keeps

searching the bucket.

The above describes a single-MN Clio-KV system. Another CN-side load balancer is

used to partition key-value pairs into different MNs. Since all CNs requests of the same partition

go to the same MN and Clio APIs within an MN are properly ordered, it is fairly easy for Clio-KV

to guarantee the atomic-write, read-committed consistency level.

We implemented Clio-KV with 772 SpinalHDL code in 6 developer days. To evaluate

Clio's virtual memory API overhead at CBoard, we also implemented a key-value store with the
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same design as Clio-KV but with raw physical memory interface. This physical-memory-based

implementation takes more time to develop and only yields 4%–12% latency improvement and

1%–5% throughput improvement over Clio-KV.

Multi-version object store. We built a multi-version object store (Clio-MV) which lets

users on CNs create an object, append a new version to an object, read a speci�c version or the

latest version of an object, and delete an object. Similar to Clio-KV, Clio-MV has its own address

space. In the address space, it uses an array to store versions of data for each object, a map to

store the mapping from object IDs to the per-object array addresses, and a list to store free object

IDs. When a new object is created, Clio-MV allocates a new array (withralloc ) and writes

the virtual memory address of the array into the object ID map. Appending a new version to an

object simply increases the latest version number and uses that as an index to the object array for

writing the value. Reading a version simply reads the corresponding element of the array.

Clio-MV allows concurrent accesses from CNs to an object and guarantees sequential

consistency for each object. Each Clio-MV user request involves at least two internal Clio

operations, some of which include both metadata and data operations. This compound request

pattern makes it tricky to deal with synchronization problems, as Clio-MV needs to ensure that

no internal Clio operation of a later Clio-MV request could affect the correctness of an earlier

Clio-MV request. We implemented Clio-MV with 1680 lines of C HLS code in 15 developer

days.

Simple data analytics.Our �nal example is a simple DataFrame-like data processing

application (Clio-DF), which splits its computation between CN and MN. We implementselect

andaggregate at MN as two of�oads, as of�oading them can reduce the amount of data sent

over the network. We keep other operations likeshuffle andhistogram at CN. For the same

user, all these modules share the same address space regardless of whether they are at CN or

MN. Thanks to Clio's support of computation of�oading sharing the same address space as

computations running at host, Clio-DF's implementation is largely simpli�ed and its performance
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is improved by avoiding data serialization/deserialization. We implemented Clio-DF with 202

lines of SpinalHDL code and 170 lines of C interface code in 7 developer days.

Figure 4.4: Process (Connection) Scalability.

Figure 4.5: PTE and MR Scalability. RDMA fails beyond 218 MRs.

4.7 Evaluation

Our evaluation reveals the scalability, throughput, median and tail latency, energy and

resource consumption of Clio. We compare Clio's end-to-end performance with industry-grade

NICs (ASIC) and well-tuned RDMA-based software systems. All Clio's results are FPGA-based,

which would be improved with ASIC implementation.
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Figure 4.6: Comparison of TLB Miss and page fault. Clio-ASIC are projected values of TLB
hit.

Figure 4.7: Latency CDF.

Environment. We evaluated Clio in our local cluster of four CNs and four MNs (Xilinx

ZCU106 boards), all connected to an Nvidia 40 Gbps VPI switch. Each CN is a Dell PowerEdge

R740 server equipped with a Xeon Gold 5128 CPU and a 40 Gbps Nvidia ConnectX-3 NIC, with

two of them also having an Nvidia BlueField SmartNIC [210]. We also include results from

CloudLab [71] with the Nvidia ConnectX-5 NIC.
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