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Abstract 

A Morse oscillator in an intense laser field is studied classically. 

A new approach to obtaining the solution, based on construction of a 

map from initial conditions to the solution after one period of oscillation 

of the laser, is given. The solution over many periods is then examined 

by repeatedly applying the map. The solution, as a function of time, is 

seen to exhibit some very interesting behavior, including spirals or 

"whorls" in phase space. The pendulum model of nonlinear resonance is 

shown to describe this behavior reasonably well and, "in fact, can be used 

to crudely interpret dynamical trends, such as the average energy absorption 

as a ·function of initial vibrational state. 
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I. Introduction 

With the development of high-powered lasers, physical chemists 

have been exploring the nature of multiphoton and overtone absorption 

I in molecules. There is a growing need for simple theoretical models 

to interp"ret and predict the results of such experiments. However, 

the correct theoretical treatment, a detailed solution of Schrodinger's 

equation, is stili out of reach for most systems of chemical interest. 

Many theoreticians have thus turned to a classical description of the 

process, which is at least more tractable. The justification for 

using classical mechanics, aside from the tractability, is based on 

several numerical comparisons of exact quantum and classical solutions 

for some relatively simple systems
2

• These results suggest that 

certain averaged quantities, such as the pulse time averaged energy 

absorption, are described reasonably well with classical mechanics. 

However, it is important to realize that many specific details of 

the absorption, such as rotational fine structure, cannot be well 

described within a classical framework
2c

. 

Given that a classical description of molecular energy absorption 

is to some extent correct, there is still a need to understand more 

clearly the nature of this description. Most classical trajectory 

studies are essentially num~rical experiments, involving the solution 

of many coupled nonlinear differential equations. There is a need to 

understand how and why a solution comes out as it does and, moreover, 

to build more general models of the process that don't require any 
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detailed numerical calculations. 

In this paper, the simplest model of a laser induced process, the 

excitation of a Morse oscillator in an intense laser, is 

e.xamined classically in detail. First, a new approach to the solution, 

based on generating a map that takes initial conditions to the 

corresponding solution after one period of oscillation of the laser, 

3 is presented. Repeated applications of this period advance map then 

allow the solution <?ver many periods to be obtained with relative ease. 

The behavior of the solution, as a function of time, or the number of 

oscillations of the laser, is found to be quite interesting, with spirals 

or "whorls" developing in phase space. Such behavior has been 

4 . 
discussed by Berry and co-workers for simpler maps, and can be related 

to some elementary properties of the map. We then go on to show that a 

very simple model, due primarily to Chirikov5 , and based on the orbits 

of a pendulum, is capable of describing this behavior reasonably well. 

The pendulum model is found to be a useful tool for understanding other 

features of the dynamics, such as certain trends in the average energy 

absorption as a function of initial vibrational state. 

In sec. II, the period advance map and its generation are 

discussed. Sec. III applies the method to a nonrotating HF molecule 

in an intense laser field. Sec. IV uses the pendulum model to interpret 

the results of sec. III, and sec. V di~cusses energy absorption trends 

qualitatively with the pendulum model. Finally, sec. VI consists of 

some brief concluding remarks. 
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It. The Period Advance Map 

Consider' a one-dimensional nonlinear oscillator; driven by a 

periodic force f(x,t) = f(x,t + T). the Hamiltonian is written 

H(p,x,t) 
2 = p /2~ + Vex) + f(x,t) (2.1) 

where p and x are the canonically conjugace momentum and position, 

}j is the mass, and Vex) is the unperturbed potential funcd.on. 

Hamilton's equations are periodic in time and read 

p (t) em/ax pet + T) 

x(t) = x(t + T). (2.2) 

In many applications, such as those in Ref. 2., . the periodicity 

of eqs. (2:2). i~ not .used as a practical simplification. Rather, 

a direct numerical integration, for each trajectory in a given 

ensemble, is performed over many periods T of the driving force. 

If eqs. (2.2), were linear, however, Floquet analysis~6, 7 does 

allow one to make effective use of the periodicity. Moreover, in 

the quantum analogue of the problem, because the differential 

equation& for the coeffic{ents of the wavefunction are always 

linear, even when the corresponding classical equations are 
2a,7 

nonlinear, the periodicity again simplifies the calculations 

It was the apparent lack of a practical scheme, making use of 

the periodicity of the nonlinear classical equations, that was the 
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original mot'ivation for this wO.rk. 

3. 
The approach taken here is based on the period advancE! map , which 

maps 'initial conditions (po,xo) to the corresponding solution at t = T, 

(p ,x ) : 
T T 

T(p ,x ) 
o 0 

(2.3) 

An elementary property of the periodicity of eqs. (2.2:) is that once the 

solution over t.he first period is known, then it is known for all 

subsequent period advances by repeatedly applying the map : 

r 
T (p ,x ), r o 0 

1,2,3, ... (2.4) 

In addition to the useful and practical property(2.4), it is a 

straightforward consequence of Liouville's theorem that T is an 

area preserv,ing map 3 . 

A functional representation of eq. (2.3) is 

T (p ,x ) = p 
p 0 0 T 

T (p ,x ) = x 
x 0 0 T (2.5) 

where T and T are two-dimensional functions spanning the relevant 
p x 

phase space. To obtain approximations to T and T ,one may simply 
p x 

define a grid of initial conditions (pi,xj) and for each grid point (i,j) 
o 0 
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numerically integrate over one period of the motion to obtain Tij and 
p 

T
ij

. Any appropriate two-dimensional fitting function maybe used to x 

define the approximations to T and T. Of course to obtain accurate 
p x 

approximations, a dense grid of initial pOints, such as a 100 x 100 

grid, must be used. However, the numerical integration of even a 

very dense grid over only one period of the driving force·is usually 

a very quick and easy· task. Furtbermore, .once T has been satisfactorily 

determined, the solution over many periods of oscillation is known 

from eq. (2.4).· 

In the calculations reported below, use was made of two-dimensional 

cubic spline functions to define T and T. The advantage of using 
p x 

splines is that they pass uniquely through all the data points, and 

can be shown to have desirable minimum curvature properties8a • A cubic 

spline is a piecewise, continuous interpolating polyanomial with 

continuQus first and second derivatives. A possible disadvantage of 

using splines is then that higher order derivatives may not be 

continuous. However, no problems were encountered in the present 

application. The explicit algorithm used here is that of Ref.8b, 

with the one-dimensional splines required by this algorithm chosen to 

be the natural 'cubic splines of Ref.8a. 
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III. 'Application to' a Di,atomic in an Intense Laser 

A.Action;"'Arigle Variables 

Frequent use will be made of the Morse oscillator action-angle 

variables, so it is convenient ,to define them here. The Hamiltonian 

for a Morse oscillator, in the absence of any driving force, is 

(3.1) 

where D is the dissociation energy, and a is a positive constant 

related to the curvature of the potential. For convenience, x has been 

taken to be the displacement from equilibrium. It is possible to 

change variables, from (p~x) to action-angle variables (n,q) such that 

H = H (n), i.e. the new Hamiltonian is a function of the action n only. o 0 ' 

Rankin and Millez9 have done this for the Morse oscillator, with the 

result 

where w 
o 

H (n) = (n + h/2)w - (n + h/2)2w
2

/4D 
o 0 0 

(3.2) 

I 2 \ 
= 2Da IlJ • The unpeiturbed motion is then given by n 

and q = wen), where the oscillator frequency is 

wen) aH Ian 
o 

w 
o 

(3.3) 

The old variables (p,x) are related to the new variables (n,q) by 

0, 



x(n,q) = (l-:-l In[ (D + I DR (n)" 
. 0 

~osq)/(D - R (n))] 
o 

p(n,q) = ~w(n)a~/aq 
rDH" sinq 

_ ( n + fl / 2 ) w 2 / 2D .] -:------"0--'-__ 

o ( D + I DR' cosq) 
.0 

8 

(3.4) 

The phase convention in eqs. (3.4) has been chosen so that q = 0 is an 

outer turning point and q = ~ is an inner turning .point. 

It shouldbe.notedth.t n corresponds closely with the vibrational 

quantum number·v. Thus if one replaces n with vfi, v = 0,1, ... , eq. (3.2) 

gives the correct energy eigenvalue formula for the Morse oscillator. 

W'e use atomic units (h = 1) throughout, so that classically n can take 

on any value ~ -1/2 and O~ q £. 2ir. 

B', Generating the Period- Advance Map 

To mimic a nonrotatingHF molecule .in a strong laser, a Morse 

potential was used with a driving force linear in xCi. e. the linear 

dipole approximation), 

H(p,x,t) 

with E: I 8~I/c'dl' where I is the laser intensity, c the speed of light, 

and dl the slope of the dipole. For HF, . one h 
2a as D = 0~25509 , 

a = 1.1741 and ~ = 1]44.8 a.u. With 7b d
l 

= 0.3099 a.u., E = 0.00165 a.u. 

for a 1 TW/cm2 1aser intensity. The laser frequency was taken to be 

the fundamental transiton frequency, i.e. n = H (1) - H (0) = 0.01807 a.u. 
o 0 

The period is then T = 2~/n =347.7 a.u. (or 0.00841 ps). 
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'1:lt_e pe.riod advance -map -was then obtained by the method described 

in sec.!!... A suitable grid for the present purposes was a 100 x 100 

grid with x and p evenly spaced between -0.3573 ~ x ~ 0.6274 and 
0" 0 0 

-l4.6l~ P ~ l4.6l. These limiting values-allow for excitations up to 
o 

n = 3. As a check on the accuracy of the map so obtained, comparsion , 
was made with trajectories that were directly integrated over r 

periods of the driving ford~. In- Table ~I _ is shown the root mean 

square deviations of the predicted p ,x values from-the map and rr rr 

the directly integrated trajectories for an ensemble of 50 trajectories 

with n = 0 initially and q evenly spaced between a and 21T. The map 

is seen to be- accurate over the first few hundred periods. However, 

the numerical interpolation error builds up, particularly in p , 
r'! 

as r increases; and "the !nap cannot be expected to be very accurate 

beyond r'" 400; This error could be improved, of course, if a -finer 

grid, particularly in p , were used, but the present form is sufficient 
o 

for our purposes. 

It should be noted tha~ although it was necessary to integrate 

numerically 10,000 trajectories over one period of the driving force, 

the resulting map contains information that would be much more difficult 

to obtairi by direct integrations over many periods of oscillation. 

For example. the behavior of the entire phase plane will be examined 

beloW' with the map. 
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C. Repeated Iterations of,.~he Map 

If one takes some initial set of (p,x) points and repeatedly 

maps them" plotting each mapped point, one obtains t):le surface of 

section plot.shown in Fig.la.! . Points on each curve. labeled A 

through E will, upon successiveudppirigs (or periods of oscillation), 

yield points on the same curve. Thus, for example, if one starts with 

some point on curve C, it will, upon repeated mappings, travel 

counterclockwise around C in uneven but discrete jumps. The period 1 

fixed points, Le. those points satisfying (p,x) = T(p~x), lie, by the 

symmetry of the underlying Hamiltonian, on the x axis. These points 

are classified as being stable elliptic (0 in Fig. 1):" or unstable 

hyperbolic (e) fixed' points depending on whether mapped points, in a 

small region about each fixed point, fallon closed ellipses or open 

hyperbolas. The elliptic or hyperbolic nature of each fixed point 

10 
was also verified by a linearization of ehe map about each fixed point 

With T defined in terms of the cubic splines, the required derivatives 

could be obtained analytically. 

As a check on the accuracy of the map, the fixed points were also 

found by direct integrations of trajectories and agreed, to six 

significant figures, with the map predictions. Incidentally, there 

is one more fixed point, that lies at x = co, so that the total number 

of fixed ~oints is even, as would be expecte~O. There are also higher 

5 order fixed points, (p,·x) = T (p,x), s-,l, which will be mentioned 

later on. 



11 

Also, the approximate positions of the period 1 fixed points 

can be predicted remarkably well with some simple argument~ given' 

ip. the Appendix. 

It may appear,. from Fig. la., that the motion is, quite complicated. 

!:lowever, if one plots the curves in action-angle space, with nand q 

as defined previously, one obtains Fig.lb. " The curves in (n,q) space 

bear a close resemblance to orbits of a simple pendulumS ,eli '.In fact, 

this analogy will be made more clear in sec. IV. By symmetry, the 

three relevant fixed points now, lie at either q = 0 or q = TI. The two 

most important of these points are (n,q) = (0.61726, TI), which is stable, 

and (0.36030, 0), which is unstable. Notice that these points have 

action values nearn = 1/2, which is the action where the molecular 

frequency is in resonance with the laser frequency (w(I/2) = n). The 

other fixed point, which lies at (-0.48206, 0), and is stable, 

corresponds to the molecule having practically no energy. Some orbits, 

very near this point, must close around it. However, this occurs only 

in a very small region and most orbits , even for n values as small as 

-0.4, appear as "rotations" (e.g. curve E in Fig.lb). We will not 

concern ourselves with the region very close to this point. 

As a final point on the 'surface of section plots, no "chaotic" 

regions were noticable with the present perturbation strength E. 

Of h . d . 5 . 1 1 h . course t ese reg loons 0 eXlost, partlocu ar y near t e separatrlox 

curves Band D, which are the sets of points which eminate from and 

approach the unstable fixed point, but are small in area and difficult 

to see on the scale of the plots. 
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It is of interest ~o see how a line in action-angle space,which 

corresponds to ·an -initial classical vibrational state, behave.s under 
.,. 

the mapping. In Fig. 2 is shown the result of mapping points that 

lie initially on a line in (n,q) space with n = 1/2· and q between 
o 0 

o and 21T. It is seen that the line distorts into quite a remarkable 
.. , , 

structure. Spirals or whorls develop near the stable fixed point (0). 

Although not shown here, even more applications of the map results in 

the whorls wind~ng more and more about the stable fixed point •. :The 

behavior near the unstable .fixed point (e) is also interesting. 

Initially no point lies on the unstable fixed point, but very 

quickly under the mapping points begin to approach it closely. 

Fig. 3 shows the results of mapping points that lie initially on 

lines with n = 0 and· 1. The behavior of these initial states is 
o 

similar to n = 1/2, with, for example, whorls again evolving about 
o 

the stable fixed point. 

Berry and co-workersA have considered the fate of curves under 

mappings. They expect to see whorls near stable fixed points, which 

indeed are observed here. In the next section, this behavior will 

5 
be seen to also arise out of the pendulum analogy' . Berry and co-

4 . 
workers also-predict "tendrils", or chaotic and snake-like 

convolutions, to develop near the unstable fixed point. Tendrils are 

not observed here. The reason that the tendrils are hard to see is 

that they are associated with the chaotic motidn near the separatrix. 

As we have already noted, this region is quite small here, so that 

tendrils are not evident on the scale of Figs. 2 '. and 3.~ However, 



if one expanded the scale, and looked very ·carefully, tendrils may 

be evident. 

Another interesting manifestation of the whorls is evident in a 

coarse-grained glance at the entire phase plane evolving under the 

. 7 
map. Consider dividing the initial phase space into, say, a 120· x 120 

grid of points with -1/2 £ n ~ 5/2, and 0 ~ q ~ 21T. Each poitit of this 
o 

grid is then mapped and the resulting new action at time rT, nrT(no,qo)' 

is plotted ina c~arse-grained fashion. If n is between -1/2 and 1/2, rT 
.. 

corresponding to a.crude n = 0 state, white coloring is used. If n 
rT 

is between 1/2 and 3/2, corresponding to an n = 1 state, grey coloring 

is used. If niT is between 3/2 and 5/2, an n = 2 state, diagonal lines 

are used. Finally, ~f nrT is between 5/2 and 7/2, an n = 3 state, dots 

are used. At time zero (1. e. r = 0), one has simply rectangular blocks 

with white on bottom, grey on top of the white, and diagonal lines on 

top of the grey. After 20 periods of oscillation of the laser, one 

. obtains Fig. 4a, which shows a developing whorl in the n = 1/2 

resonance region. Notice that. the axes in Fig. 4 are always the 

initial action and angle variables, and the coloring represents the 

coarse-grained .action at time rTthat evolved from those initial 
.. 

conditions. After 40 and 60 oscillation~ one obtains Figs.4b· and ·4c, 

with the whorl winding more tightl)' in the resonance region. Although 

not shown here, this has been followed for up to 400 periods 

of the driving force, with the whorls winding tighter and 

tighter, representing very graphically how molecules absorb and emit 
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energy in the vicinity· of a resonance. 

IV. The Pendulum· Model 

The remarkable similarity of the surface of se~tion plot Fig. = .. lb:-

d h d 1 h 1 b ' 5,11 an t e pen u urn p ase pane or ~ts can be made .m·ore concrete. 

fact, Chirikov 5 has 'developed a theory of classical resonance based 

on this analogy. Here, similar ideas are applied to the forced Morse 

oscillator prob1"em of sec. III. 

A. Derivation .of "the Pendulum Hamiltonian 

In action-angle variablei, the full Hamiltonian is 

H (n, q, t) = H (n) - Ex(n,q) cosOt 
o 

(4 1) 

In our problem, x(n,q), defined by eq. (3.4},; is an even function of 

q so that the perturbation may be expanded in a cosine Fourier series 

with the resuit 

co 
x(n,q) cosOt = Lk=oVk(n) ( cos(kq - Ot) + cos(kq + nt) J , 

where-. 

IT 

(2lT)-1 f dq x(n,q) coskq 
-IT 

(4 .3a) 

In 
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The integral of eq. (4.38:). may be ev~luated analyticall/
2 

for x(n,q) 

given by eq. (3.4). .,to yield explicit expressions for the Fourier-

coefficients, 

Vk(n) = - d-k/ak , k ~ 0 

V (n) = a-I In ( - I H /D'd/2) o . 0 

where d = - ID7H (1 + I 1 - H /D' ) 
o 0 

Now the important terms in the expansion of eq.(~.2) are those 

with slowly varying arguments. If one is looking at a region of 

phase space with the action n near n
l

, the primary resonance defined 

by 

o (4.4-)' 

where wen) is the oscillator frequency given by eq. (3.3), then the 

term q - nt is slowly varying, since q - n -::::w(n
l

) - n = O. Thus one 

may keep only the relevant (k=l is eq. (4.2» term in the Fourier 

expansion, which results in the approximate Hamiltonian, valid near 

n = n
1

, of 

H(n,q,t) -::::Ho(n) - e:Vl (n) cos(q - nt) (4.5) 
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where the cos(q + nt)term has also been assumed very oscillatory and 

neglected. Next, one transforms to·anew angle variable q = q -~t, 

which correspon"as" to the difference between molecular and laser phases. 

. . 5,11 . ( ") ( . ) ('" This may be accomplished wl.th a generator F3. n,q,t = - n-'-nl q-H1t) , 

which implicitly defines the new variables p and q through n = -aF3!aq 

and q = -aF
3

1an. This' results in p = n-nl , q =q - nt, and the new 

Hamiltonian 

K = H(&,~,t) + aF3/at 

= Ho(p + nl ) - EVI (p + nl ) cosq - pn (4.6) 

,.. 
The final step is to expand H about p 

o 
o (i.e. n = nl ) to quadratic 

order and VI to zero order. Since H is already quadratic in n (see eq. 
o 

(3.2», the expansion of H is exact here. The result is 
o 

(4.7) 

-1 
where Ml = (aw/an) 

n
l 

Eq. (4.7) is the Hamiltonian for a pendulum of 

mass M
l

, which for the Morse oscillator, from eq. (3",-3)., is 

2 
- 2D/w <. 0 • o 

To make the connection with the more familiar positive mass pendulum 

orbits, one may note that the equations of motion consistent with eq.(4.7), 
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· ". aK/aq e:V
l 

(n
l

) " p = - = - sinq 

;.. 
dK/ap P/Ml 

q = = 

are the same as 

· " ,.. 
p = e:V

l 
(n

l
) sina 

· ,.. 
p/m1 

a = (4.8) 

" with a 
.", 

- q and mT = - Ml ) o. But eqs. (4.8) are consistent with the 

H"amiltonian 

'" where (p,a) are the conjugate variables. Thus the well knoWn pendulum 

orbits ~ " . p(t),a(t) will determine the approximate motion of.a-forced 

- A 
Morse oscillator when the action is close to n

l 
through n(t)= pet) + n l , 

'" and q(t) = nt - a(t). 

The separatrixassociated with eq.(4:9) will have maximum and 
.... 

m.inimum values of action for a = IT and K' = e:V
I

, if VI) O. If VI < 0, 

" then they occur for a = O. In either case, the maximum and minimum 

separatrix actions may be obtained, in terms of the original Morse 

action variable, from 

(4.10) 
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A similar analysis may be made about o·ther resonances. For 

example, the next resonance corresponds to an "overtone" resonance, 

O. In this region of action space,2q - Qt i~ slowly 

varying so that the k=2 Fourier term in eq. (4.2) may be singled out. 

The same analysis as above, but with a classical· gene'rator of the 

Kl 
2 

/'0 

where now p = (n~n2)12,. e Qt - 2q, and m-2
l 

= 4law/anl 
n 2 

The fixed 

points associated with the n2 resonance are actually period 2 fixed 

points of the period .advance map. The maximum and minimum separatrix 

action values, in the original Morse action, are 

(4.11) 

In order for the pendulum model to be valid, the neglected terms 

in the Fourier expansion must indeed be rapidly oscillating compared to 

the terms kept. Chirikov5 has shown that a condition for this to be 

so is the condition of moderate nonlinearity, 

e: I.£. a 
r 

law/ani w/h ~{1/e: (4.12) 

It is also necessary that the separatrices associated with, say, the 

primary resonance. n1. and the next· resonance n2 , do not overlap much -
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i.e. are well separated from each other. Chirikov· 5 defines the 

coupling constant of the resonances, s, such that if 

(4.13) 

then the relevant resonances are sufficiently separated from one 

another. In eq. (4~13), &J could be the frequency full width of the 

separatrix of the primary resonance, ~w = law/ani (n~ - n~) = 4/£lvll/ml, 

and ~',the difference between the primary resonance frequency w(n
l

) and 

the next resonance frequency w(n2). If s ~ 1, then the overlap of 

resonances is associated with chaotic behavior in the vicinity of 

h . 5 t e separatr1ces . 

B .. Pendulum Approximation to Nonrota~ing HFin a Strong Laser 

Fo.r the problem of sec.:III, it is readily found that nl = 1/2, 

. -4 
ml = 1266, and £Vl(nl)~ 2.04 x 10 , using the formulae given above. 

The moderate nonlinearity condition, eq.C4.12), is also found to be 

satisfied, since then £- 0.002, and near nl = 1/2,cxr - 0.02. The 

resonance coupling constant s also satisfies eq. (4.-13), since the 

-1 
next resonance is n2 ::: 12, and is thus well separated from nl ( s ~ 10 ) • 

From thec1b"ove considerations, one expects that the pendulum 

model will be reasonably adequate. Indeed, if one uses eq. (4.10) to 

estimate the maximum and minimum separatrix action values, one finds 

+ nl = 1.5 and n~ = -0.5, in reasonable agreement with the actual values, 

which from Fig. Ib are closer to 1.6 and -0.35. 
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The fixed.points of the pendulum described by eq.(~.9), when 

converted back to the original action-angle variables, occ~~ at 

(n,q) = (1/2, ~) and (1/2,0), and are stable and unstable respectively. 

These fixed points agree reasonably well wi,th the two most important 

fixed points of the problem'discussed in sec.IIIC. The pendulum model 

• 7 

does not have the additional fixed point, near n = - 1/2, that occurs 

in the full probi-em. However, the immdeiate region near this point 

is of no concern to us Here, and, furthermore, the pendulum orbits 

do actually describe the motion near (but not very near) this point 

reasonably well, as might be guessed from inspection of Fig.lb. 

The pendulum equations of motion, eqs. (4.8), were solved 

numerically, since although'analytical solutions do exist, in terms of 

5 6 . 
el~iptic integrals " they are somewhat cumbersome to use. Fig. 5 

shows the result of following the behavior of classical states with 

n = 1/2, 0 and I, just as was done in sec. lIlC. By comparison o 

with Figs. 2 and 3 for the full problem, it is seen that the major 

qualitative features of the dynamics, including the whorls, arise 

out of the pendulum equations of motion. It will also be noticed 

from Fig.5 that there is an artifact in the pendulum solution in 

that the action is now no longer bounded from below. Thus some points 

actually map to below n = -1/2, which is nonphysical since n for the 

Morse oscillator is only defined for n ~ -1/2. 

Tendrils are absent entirely, even under very close scrutiny, 

because no chaotic trajectories exist in the pendulum phase space. 

The fact that they are also difficult to see in the full problem is 
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related to the smallness of .the resonance coupling parameter s. 

It is also easy to see why points, initially not on or extremely 

close to the unstable fixed point will eventually approach it 

closely. If one starts with an initial line in (n,q) space, which is 

also a line in the pendulum phase space (p,8), then as long as 

p = n - n
l 

is within the width of the separatrix r the line must 

intersect the separatrix twice. Points on the separatrix will tend 

to move towards an unstable fixed point, or, equivalently, away from 

another unstable fixed point (cf. curves Band D in Fig. lb)'·., but 

never actually reach the unstable fixed point in finite time. Thus, 

since all the values of n studied ar~ within the separatrix width, 
a 

necessarily points intersect the separatrix and then approach the 

unstable fixed point. 

The origin of the whorls can be seen in terms of the nonlinearity 

of the pendulum equations of motion. Because each orbit about the 

bl f · d . h d . ff f . b· 4,10 sta e 1xe p01nt as a 1 erent requency, or rotat10n num er , 

a line th~t intersects these orbits will then wind about the fixed 

point, with d~fferent points winding faster than other points, thus 

forming a whorl. 

v. Energy Absorption Trends 

In this section, the pendulum model of sec.IV is used to predict 

13· 
qualitative trends in the average energy absorption of Morse 

oscillators initially in different vibrational states. Suppose, for 
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example, one has an initial classical state with no fixed and qo evenly 

distributed between 0- and 27T. This corresponds to a horrizontalline 

across Fig. lb. Now each point on the line will evolve, following the 

pendulum-like surface of section lines in the figure. Rather than 

follow this motion expli<;tly, either by the period-advance -map, or by 

direct integration of trajectories, one can use the pendulum model 

to predict in advance whether there will be a net gain or loss of 

energy. Suppose no lies between the minimum separatrix action n
l 

and the primary resonance actionnl . Then a substantial number of 

points on the initial line will follow elliptic closed orbits about 

But these points then spend most of their time above n , since 
. 0 

no<' n
l

, which results in a net gain of energy (recall n is a measure of 

the energy - eq. (3.2). + Conversely, if no lies between n1 and n
l

, 

the maximum in the primary separatrix action, then again the points 

will orbit about n
l

, but spend most of their time below no' resulting 

in a net energy loss. If n is outside the separatrices, then the 
o 

points will simply rotate up and down (as in curve A of Fig.lb). " and, 

other things being equal, will not gain or lose much energy. However, 

if n is increased to within the separatrix corresponding to the next 
o 

resonance, i.e. the overtone resonance n2 , there will again be a net 

energy gain if -no is between n; and n2 , and a net energy loss if no 

is between n2 and n;. 

13 Recently, Christoffel and Bowman have looked at the net energy 

absorption of nonrotating HF molecules as a function of initial 
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vibrational action using classical trajectories. They used a larger 

perturbation strength than that of secs. III·anqi.'IV, E:~ 0.011, an.~ a 

slightly different laser frequency, n = 0.oi7s7 a.u. The primary 

resonance is found fromeq. (4.4), to be n1 = 0.752. From e.q.(4~10)., 

the minimum and maximum separatrix actions are n~ + - -2.0 and n1 = 3.5. 

An action of -2 is nonphysical, but is irrelevant for the arguments that 

follow. Similarly, the overtone resonance is found from 2w(n
2

) - n :;:0, 

and is n2 = 12.06. From eq.(4d1) the associated action extrema are 

- + n2 = 9.1 and n2 - 15.0. Rounding off crudely, one would expect 

initial actions n between 0 and 1 to have a net energy gain, 1 and 4 
o 

to have a net energy loss, 4 and 9 to neither 'gain nor lose much 

energy, and once again increased absorptiqnfor n between 9 and 12. 
o 

These expectations are in surprisingly good accord with the observations 

of Christoffel and Bowman ,13 . 'In particular, one could note the 

increased absorption for n ~9. The fact that a great deal of energy, 
o 

much more than for the lower n values, appears to be absorbed for 
o 

no ~ 9 is indicative of the higher order resonances (n2 ,n3 , ... ) being 

more closely spaced and overlapping to ,a large extent, allowing the 

molecule to essentially travel up a "chaotic .ladder" of separatrix 

layers. 

This sort of analysis is en~irely qualitative, but does have 

the advantage that an essentially "back of the enye10pe" calculation 

yields qualitatively correct predictions of energy absorption trends. 

Recently, Davis and Wyatt14 have developed a Poincare surface of section 
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approach, based on the numerical integration of only a few classical 

trajectories, that is complementary to the, approach here. 

,VI~. Concluding Remarks 

3 
A method of generating period advance maps for one-dimensional 

forced oscillator problems has been given. An application to a 

forced Morse oscillator demonstrated that a good deal 6f dynamical 

information could be obtained from the approach. The applicability 

is limited, however, to a relatively modest numper (~400) of map 

iterations (oscillations of the field), but this can be improved 

somewhat by increasing the initial grid size. Also, if one is only 

interested in particular dynamical features, such as the fate of a 

specific initial classical state, it is of course easier to use 

direct classical trajectories. 

The behavior of the nonrotatingHF molecule in a strong laser 

was found to be quite interesting, with classical states developing 

4 
whorls in the vicinity of the stable fixed point of the map. In 

fact, the entire phase plane was seen to consist of whorls of excitation 

and de-excitation. 
5 

The pendulum model of nqnlinear resonance seems 

quite applicable to problems of this sort· and does reproduce some of 

the major qualitative features. Also, certain dynamical trends, such 

as the average energy absorption as a function of initial vibrational 

state, can be qualitatively discussed with this model. Since the 

'0 ,15 
pendulum model has been used ' to treat systems with more than 1 or 

2 degrees of freedom, there may be some hope in using similar ideas 

to interpret the behavior of, say, vibrating and rotating diatomic 
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molecules in lasers, or more general polyatomics, or perhaps two or 

more '1 ' 16 . .. h 1 1 asers 1nteract1ng W1t a mo ecu e. Indeed, in related work, 

Oxtoby and Rice lS have treated the autonomous problem of energy 

re-distribution in polyatomic molecules after excitation using the 

pendulum model and Chirikov's resonance overlap ideas for the onset 

of chaotic motion. 

As a final point, the quantum analogue of the classical whorls 

has not been discussed here. 
, 4 

Berry and co-workers have discussed 

this point, and do expect to see certain evidence of whorls in the 

behavior of the time-dependent probability density. 
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Appendix '. Fixed Points of the Period Advance Map 

An approximate, but surprisingly accurate estimate of the 

period 1 fixed points is as follows. Starting fromeq. (4~6)' of 

the text, 

Al 

,. 
where q 

11,17 
q - nt and p = n - n

l
, one then uses the harmonic oscillator' 

x(n,q) to estimate VI' rather than the exact form eq. (4.~,3b}". This 

is valid for small n and simplifies the calculations. Thus 

(2TI) -1 f 
TI 

Vl(n) x(n,q) cosq' dq 
-TI 

, -1 TI 2 
=(2TI) f .I (2n + l)/'Ww' cos q dq 

0 
-TI 

I (2 n + 1) I 'Ww ' 12 
o 

A2 

Eq. AI. becomes 

The equations of motion consistent with the Hamiltonian above are 

. 
p = - (£/2) I [2(p + nl ) + lJ/'Ww~ sinq 

A4 



. .... 
For a fixed point, we require p q = O. Replacingp+ n

l 
by n, 

and setting t = 0 so that q = q, we obtain the two equatio~s 

~ (£/2) 1(2n+1)7~wl sinq 
o 

wen) - (£/2) cosq 

I ~w (2n+1) I 
.' 0 

- n 

o 

= 0 
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A5a 

ASb 

Eq. ASa is satisfied for q = 0 and 7T. Inserting either of these into 

eq. A5h yields a simple one-dimensional root equation for n, which 

can be solved by iteration. With the parameters of sec .;tIIB~ one 

finds the fixed points (n,q) = (0.6218, 7T), (0.3610, 0), and (-0.
0

4828, 0), 

which are in remarkably good agreement with the more exact fixed 

points, which were found to be (0.6173, rr), (0.3603, 0), and (-0.4821, 0). 

An even more accurate estimate of the °fixed points could be obtained 

by using eq~ (4.3b) for VI. 
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Table I. Root mean square deviations between the map predictions 

and direct numerical integration of trajectories. The results 

are for 50 trajectories with n = 0 initially. Typical values 
o 

of p and x are ± 3. and 2 a. u. respectively. 

R.M.S. deviation 

r p x 

100 0.005 0.0001 

200 0.008 0.0003 

300 0.016 0.0010 

400 0.024 _0.0020 

500 0.078 0.0029 
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Figure Captions 

Figure 1. Surface of section plots of the period advance map. 

a) p-x space, b) n-q space. Open circles (0) represent stable 

fixed points and filled circles (~) unstable fixed points. 

Note the arrows do not imply a continuous flow. Rather, points 

take discrete and uneven jumps to other points on the. same·· curve, 

in the direction indicated. 

Figure 2. The evolution of an initial n = 1/2 state under the 
o 

mapping. a) the result after r = 20 periods. Note the dashed 

line represents the initial state. b) after 40 periods, c) after 

60 periods. 

Figure 3. a) the result of mapping an n = 0 state 40 periods, 
o 

b) the result. of mapping an n = 1 state 40 periods. Dashed 
o 

lines indicate the initial states. 

Figure 4. Evolution of the entire n-q phase plane. a) after 

20 periods, b) after 40 periods, c) after 60 periods. The 

contours represent a coarse grained action state. See the 

text for more details. 

Figure 5. The pendulum model predictions for the fate of initial 

states a) nl/2, b) n = 0, and c) n = 1, after 40 periods. 
o 0 0 
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