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Abstract

A Morse oscillator in an intense laser field is studied classically.
A new approach to obtaining the solu;ioq, based on construction of a
map from initiél conditions to the solution after one period of‘oscillation
of the laser, is given. The solution over many periods is then examined
by repeatedly applying the map. The solution, as a function of time, is
seen to exhibit some very interesting behavior, including Spirals or
"whorls' in phasé space. The pendulum mddel‘of noﬁlineaf resonance is’
shown to describe this behavior reasonably well and, in fact, can be used
to crudely interpret dynamical trends, such as the average energy absorption

as a function of initial vibrational state.



I. Introduction

With the development of high-powered lasers, physical chemists
have been exploring the nature of multiphoton and overtone absorption
in moleculesl. There is a growingjneed for simple.theoretical models
to interpret and predict the results of such experiments. However,.
the correct theoretical treatment, a detailed solution of Schrodinger's
equation, is still out of reach for most systems of chemical interest.
Many theoreticians have thus turned to a classical description of the
process, which is at least more tractable. The justification for
using classical mechanics, aside from the tractability, is based on
several numerical comparisons of exact quantum and classical solutions
for some relatively simple systemsz. These results suggest that
certain averaged quantities, such as the pulse time averaged energy
absorption, are described réasonably well with classical mecﬁanics.
However, it is important to realize that many specific details of
the absorption, such as rotational fine structure, cannot be well
described within a classical frameworkzc.

Given that a classical description of molecular energy absorption
is to some extent correct, there is still a need to understand more
clearly the nature of this description. Most classical trajectory
studies are essentially numerical experiments, involving the solution
of many coupled nonlinear differential equations. There is a need to
understand how and why a solution comes out as it does and, moreover,

to build more . general models of the process that don't require any



detailed numerical calculations.

In this paper, the simplest model of a laser induced process, the
excitation of a Morse oscillator - in én intense laser, is
examined classically in detail. First, a new approach to the solution,
based on generating a map that takes initial conditions to the
corresponding solution after one period of oscillation of the laser,
is presented;. Repeated applications of this period advance map3 then
allow the solution over many periods to be obtained with relative ease.
The behavior of the solution, as a function of time, or the number of
oscillations of the lasgr, is found to be quite interesting, with spirals
or "whorls'" developing in phase space. Suchbehavior has been
discuésed by Berry and co—workers4 for simpler maps, and can be related
to some elementary properties of the map. We then go on to show that a
very Siﬁple model, due primarily to Chirikovs, and based on the orbits
of a_pendulum, iskCapable of describing‘thisbehavioi reasonably well.
The pendulum model is found to be a useful tool for understanding other
featureg of the dynamics, such as certain trends in the average energy
abéorption as a function of initial vibrational state.

In sec. II, the period édvance map and its geheration are
.discussed. Sec. III applies the method to a nonrotatihg HF molecule
in an intenge laser field. Sec. IV uses the pendulum model to interpret
the results of sec. III, and sec. V diécusses enefgy absorption trends
qualitatively with the pendulum model. Finally, sec. VI consists of

some brief concluding remarks.



'II. The Period Advance Map

Consider' a one-dimensional nonlinear oscillator; driven by a

periodic force f(x,t) = f(x,t + 7). The Hamiltonian is written
, 2 ;
H(p,x,t) = p /2p + V(x) + f(x,t) , (2.1)
where p and x are the canonically conjugate momentum and positian,
¥ is the mass, and V(x) is the unperturbed potential function.

Hamilton's equations are periodic in time and read

- 3H/3x = p(t + T)

p(t)

x(t) oH/3p x(t + 71). (2.2)

In many applications, such as chpse in ReffZ, cBe periodicity
of eqs;(2;2)» iﬁ not .used as a practical simplification. Rather,

a direccbnumeiical integration, for each trajectory in a given
ensemble, is performed over many periods T of the driving force.

If eqs.(2.2>‘ were linear, however, Floquet analysisl’ does

allow one to make effective use of the periodicity. Moreover, in-
the quantum analogue of the problem, because the differential
'equations-for the coefficients of the wavefunction are always

even when the corresponding classical equations are

2a,7
the periodicity again simplifies the calculations

linear,

nonlinear,

It was the apparent lack of a pracctical scheme, making use of

the periodicity of the nonlinear classical equations, that was the



original motivation for this work.
’ ' . ' ' ' 3.
The approach taken here is based on the period advance map ~; which

)

maps "initial conditions (po,xo) to the corresponding solution at t = T,

(pT,xT)

= 2.3). .
(ppox) = T(p »%x)) - (2.3) -
An elementary property of the periodicity of eqs. (2.2) is that once the
solution over the first period is known, then it is known for all

subsequent period advances by repeatedly applying the map

=1t = . 2.4
Pk ) = T (phx), T =1,2,3,... (2.4)
In addition to the useful and practical prdpefty(2.4)a it is a

straightforward consequence of Liouville's theorem that T is an

area preserving'map3 .

A functional representation of eq. (2.3) is

]
o

ip(pO’xo)

it
=

Tx(po,xo) T o (2.5)

vhere Tp and Tx are two-dimensional functions spanning the relevant
phase space. To obtain approximations to Tp and Tx,one may simply

define a grid of initial conditions (ps,xi) and for each grid point (i,j)



numerically integrate over one period of the motion to obtain T;J and

T;J. Any appropriate twb—di@ensional fitting funggion may be used to
define the approximations to Tp and Txf (033 ;ourse to obtain accurate
approximations, a dense grid of initial points, such as a 100 x 100
grid, must be used. However, the numerical integration of even a

very densevgria over only one period of the driving force is usually

a very quick and easy task. Furthermore, once T.has been satisfactorily
determined, the solution over many periods of oscillation"is known

from eq. (2.4).

- In the calculations reported below, usé was made of two-dimensional
cubic spline functions to define Tp and-Tx. The advéntage of using
splines is that they pass uniquely through all the data.points, and
can be shown to have desirable miniﬁum curvature propertiessa'} A cubic
spline isba pieceﬁise_ continuous iﬁterpolating polyanomial with
continuous first and second derivatives. A possible disadvantage of
using splines is then that higher order derivatives may not be
continuous. However, no problems were encountered in the present
application. The'explicit.algorithﬁ used here is that of Ref.8b,

with the one-dimensional splines reQuired by this algorithm chosen to

be the -natural -cubic splines of Ref.8a, -



TII. Application to'a Diatomic. in an Intense Lasér
A. Actioch-Angle Variables
Frequent use will be made of the Morse oscillator action-angle
variables, so it “is convenient to define them here. The Hamiltonian

for a Morse oscillator, in the absence of any driving force, is
' 2, -Qx 2
H (p,x) = p"/2u + D(e "7-1)" : (3.1)

where D is the dissociation energy, and ¢« is a positive constant
related to the -curvature of the potential. For cdnvenience, x has been
taken to be the displacement from equilibrium. It is possible to

change variables from (p;x) to action-angle variables (m,q) sﬁch that

H. = Ho(n)m i.e. the new Hamiltonian is a function of the action n only.

o
Rankin and Mille19  have dbhe this for the Morse oscillator, with tHe

result
' 2 2 )
H (n) = (o + h/2)w - (0 +h/2) w /4D, (3.2)
/_—“‘2 _ ,
where w, = 2Da” /p- . The unperturbed motion is then given by n = O,

and § = w(n), where the oscillator frequency is

’ 2
w(n) = aHo/an =W, - (n + h/Z)wo/ZD (3.,3)

The old Variables'(p,x)'are related to the new variables (n,q) by



x(n,q) =o't In[ (D + ¥ DHo(n} cosq) /(D - Ho(n))] '
| (3.4
p(n,q) = pw(n)3dx/3q T 3.4
' 1 2 v DH sing
=—ya [ w - (n+ A/2)w"/2D.] __o:__
° o (D + vV DHO cosq)

The phase convention in egs. (3.4) has been.chosen so that q = 0 is an
outer turning point énd q = T is an inner turning point.

It shouldfbe.noted:that ﬁ.corresponds closely with the vibrational
quantum number-v. Thus ifione replaces n with vh, v = 0,1,..., eq;(3.2)
gives the correct energy eigenvalue formula for the Morsé;oscillator, |
We use atomic ﬁnité h =1) ;hroughout, so that classically n can take

on any value > -1/2 and 0% q < 27.

B°, Generating the Period Advance Map

To mimic a nonrotating HF molecule in & strong laser, a Morse
potential was used with a driving force linear in x (i.e. the linear

dipole approximation),

H(p,x,t) = p2/2U +D( e -1 )2 ~ €x cos{lt, ’ - -(3.5)

with € = vV 81l/c d;s where I is the laser intensity, c the speed of light,

and d, the slope of the dipole. For HF, . one haszé D = 0.25509 ,

1
1.1741 and p = 1744.8 a.u. With’Pd. = 0.3099 a.u., € = 0.00165 a.u.

1

a

for a 1 TW/cmz.laser intensity. The laser frequency was taken to be
the fundamental transiton frequency, i.e. Q = Ho(l) - HO(O) = 0.01807 a.u.

The period is then T =.27/Q =.347.7 a.u. (or 0.00841 ps).



The.petio& éévance'map'was then .obtained by the meghod described
in sec.II.. A suitable géid for the present purposés was a 100 x 100
grid with.xo and Py evenly‘spaced between -0.3573¢ xof 0.6274 and
-16.616;p°£ 14.61. These limiting values -allow forvgxcitations up to
n = 3. As a check on the éccurac} of the map sb obtained, comparsion
was made Qith trajecto;ies that ;ere’directly integrated over r
periéds of the driving force. In Table.I . is shown the'root mean

square deviations of tﬁé predicted prT’er values from ‘the map and

the directly integrated trajectories for an ensemble of 50 trajectories
withn =0 iniuiallyiand q evenly spaced between 0 and 2w. The map

is seen to be accurate over the first few hundred periods. However,
the  numerical inte;polation error builds.gp, particﬁlarly in -

as r increases,; and ‘the map cannot be expected to be very accurate

beyond r ~400.° Tﬁis error could be improved, of course, if a finer

-grid, particularly in P> were qsed, but the present form is sufficient

for our purposes.

It should be noted that although it was necessary to integrate
anumerically 10,000 trajectofies over one period of the driving force,

the resulting m;p contains information that would be much more difficult

to obtain by direct integfations over many periods of oscillation.

For example, the behavior of the entire phase plane will be examined

below with the map.
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C. Repeatéd Iterations of..the Map

If one takes some initial set of (p,x) points and repeatedly
maps them, plotting each mapped point, one qbtains the surface of
section plot.shown in Fig.la . Points on each curve. labeled A
through E will, upon successive mdppirgs (or periods of oscillation),
yield pointS‘on the.s;me'curve. Thus, for example, if one starts with
some point on curve C, it will, upon repeated mappings, travel
. counterclockwise around C in uneveh but discréce jumps. The period 1
fixed points, i.e. those points satisfying (é,x) = T(p,x), lie, by the
symmetry of the underlfing Hamiltonian, on the x axis. These points
are classified as being stable elliptic (o in Figgl)i‘ or unstable
hyperbolic(e) fixed points depending on whether mapped points, in a
small region about each fixed point, fall én closed ellipses or open:
hyperbolas. The elliptic or h&perﬁolic nature of each fixed point
was also verified by a linearization of the map about each fixed point}'
‘With T defined in terms of the cubic splines, the required derivatives
could be obtained analytically.

As a check on the accuracy of the map, the fixed points were also
found by direét integrations of trajectories and agreed, to six
significant figures, with the map predictions. Incidentally, there
is one more fixed point, that lies at x = «, so that the total number
of fixed points is even, as would be expectedlo. Tﬂere are also higher
order fixed points, (p,x) = Ts(p,x), s » 1, which will be mentioned

later on.
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Also, thg approximate positions of the period.i.fixed.points
can'befprédictea remarkably well with some simple arguments given’
in the Appendix.

It may appear, from Fig. 1a, that the motion.is quite complicated.
However, if one plots the curves in action-angle space, with n and q
as defined previbusly, one obtains Fig.1b, .. The cur?es in (n,q) space

5,‘-‘11 ’:.

~ bear a close resemblance to orbits of a simple pendulum In fact,

this analogy will be made more clear in sec.1V. By symmetry, the.
three relevant fixed points now lie at éithervq = 0 or q =7m. The two
most important of these points are (n,q) = (0.61726, w), which is stabie,
and (0.36030, 0), which is unstable. Noticelthat these points have
action values near'n“='l/2, which is the action where the molecular
frequency is in resonance with the laser frequency (w(1/2) = Q). The
other fixed point, which lies at (-0.48206, 0), and is stable,
corresponds to the molecule having practically no energy. Some orbits,
very near this poinﬁ, mustvclose around it. However, this occurs only
in a very small region and -most orbits , even for n values as small as
-0.4, appear as '"rotations" (e.g. curve E ip Fig.1b). We will not
concern ourselves with thé region very cloée to this point.

As a final point on the surface of éection plots, no '"chaotic"
regions were noticable with ﬁhe present perturbation strength €.
Of course these regions do-exist? particulérly near the separatrix
curves B and D, which are the sets of points which eminate from and

approach the unstable fixed point, but are small in area and difficult

to see on the scale of the plots.
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It is of interest to see how a line in action-angle épédé,.which
corresponds to an initial cléssical vibrational state,’behaves un@er
the mapping. In Fig. 2 1is shown the result of mapping po{ﬁ;s that
lie initially on a line in (n,q) space with n = 1/2 and g, bétween.
0 and 2. It.is seen that the line distorts into quiﬁe a.reiarkabie
structure. Spirals or whorls devélap near the étable fixed point: (o).
Although not shoanhere, even more applications of the map results in
the wﬁorls winding more and more about the stable fixed'point.EThé
behavior near thé unstable fixed point (e) is also interes;ing.
Initially no point lies oﬁ the unstable fixed point, but ¥ery
quickly under the mapping points-begin to apprdach it closely.

Fig. 3 shows the results of mapping points that lie initially on
~lines with o - 0 and 1. The behavior of these initial states is
similar to n, = 1/2, with, for example, whorls again evolving about
the stable fixed point. | |

Berry and cd-workers%; have considered the fate of curves under
- mappings. They expect.to see whorls near stable fixed points, which
indeed are observed here. In the next section, this behavior will
be seen to also arise out of the pendulum analogyjA. Berry and co-
workersﬁ' also prédict "tendrils"”, or chaotic énd snake-like
convolutions;‘io develop near the unstable.fixed point. Tendrils are
not obsefved heré. The reason that the tendrils are hard to see is
that they are associated with the chaotic motiodn near the separatrix.
As we have already noted, this region is quite small here, so that

tendrils are not evident on the scale of Figs. 2 ~. and 3.t However,



713,

if one expanded the scale, and lookéd very carefully, tendrils may
be evident.

Another inte?esting manifestation' oflthé whorls is evident in a
coagse-grained glance at the en;ire phase plane evolving under the
map. Consiaer'dividing the initial phase space into, say, a 120 x 120
- grid of points with -1/2¢ noﬁ 5/2, and 0¢ q$2n. Each point of this
~grid is then happed and the fesulting new action at time rT, an(no,qd),
is plotted in a cqarse-grained fashion; If n_. is Betwéen -1/2 and 1/2,
corresponding to a:crude n=20 stéte, white coloring is used. If n

rT

‘1 state, grey coloring

is between 1/2 and 3/2, corresponding to an n

is used. 1If n is between 3/2 and 5/2, an n = 2 state, diagonal lines

are used. Finally, if n_ is between 5/2 and 7/2, ann = 3 state; dots
are used. At Eime zero (i.e. r = 0), one has.simply rectangular blocks
with white on bottom, grey oh top of the white, an& diégonél lines on
“top ofwﬁhe grey; After ZO‘periods of oscillation of the laser, one

. obtains Fig. 4a , which shows a developing whorl in the n = 1/2
resonance region. Notice that tﬁe axes in Fig.4i- are always the
initial action and angle variablés, and ché coloring represents the
éoarse—grained_aéﬁibn at time rt that evolvéd frdh those initial
coﬁdiCions. After 40 and 60'osc11;ations one obtains Figs.4b: and ‘éc,
-with thé whorl winding more tightly in the resonance region.  Although
not shown here, this has been followed for up to 400 periods

of the driving force, with the whorls winding tighter and

tighter, répresenting very graphically how molecules absorb and emit
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energy in the vicinity of a resonance.

IV. The Pendulum Model

The remarkable similarity of the surface of section plot Fig.:1b"
and the pendulum phase plane orbitss'll. can be made .more concrete. In
face, Chirikov5 has ‘developed a theory of classical resonance based

on this analogy. Here, similar ideas are applied to the forced Morse

oscillator problem of sec. III.

A. Derivation of the Pendulum Hamiltonian

In action-angle variables, the full Hamiltonian is
H(n,q,t) = Ho(n) - ex(n,q) cosQt . . (4 1)

In our problem, x(n,q), defined by eq. (3.4),, is an even function of

q so that the perturbation may be expanded in a cosine Fourier series

with the result

x(n,q) cosflt = Zk:;Vk(n) [ cos(kq - Qt) + cos(kq + Qt) ], (472)

where .

TT .
v, () = @07 S dq x(n,q) coskq . (4 3a)
-
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The integral of eq. (4.3a) may be evaluated analytically for x(m,q)
given by eq. (3;4);,to yield explicit expressions for the Fourier-

coefficients,

V) = -d ek L, k#0
V. =o " 1n (- VE/DA/D)  (4.3b)

where d = -~ /~57ﬁ; (1 + /7ff:7{;ﬁT)

Now the important terms in the expansion of eq.(éqz) are thoseu
" with slowly varyiﬁg'érgUments. If one is looking at a region of
phase space with thevaction ﬁ'near nl, the primary resonance defined
by

rw(n1) — Q=0 , | o (4;4)T

where w(n)»ié the oscillatorvfrequency given by eq. (3.3), then the
term q - Qt is lewiy varyiné, since q -0 :w(nl) -0 = Of Thus one
may keep only the relevant (k=1 is eq;(442)) term in the Fourier
expansion, thch results in the approximate Hamiltqnian, valid near

n = n,, of

H(n,q,t) zHo(n) - €Vl(n) coé(q - Q) (4.5)
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where the cos(q + Qt) ferm has also been assumed very oscillatory and
neglected. Next, one transfdrms to a new angle yariaBle a;? q - ft,
which corresponds to the difference between molecular and lase: phases.
This may be accomplished with a generato'rs"ll Fé(n,&,t)= —(ﬂ*nl)(§+ﬂt),
which implicitly defines the new variables p and q through n = ;3F3/8€
and q.='—8F3/8n. This results in S = n-n,, f =.q - Qt, and the new

Hamiltonian

~
I

H(P,q,t) + '3F3/8t

A A A ~ N
Ho(p + nl) - €V1(p + nl) cosq - p2 . (4.6)

The final step is to expand Ho about p = 0 (i.e. n = nl) to quadratic
order and V1 to zero order. Since Ho is already quadratic in n (see eq.

(3.2)), the expansion of Ho is exact here. The result is
K -H (n,) = 52/2M - €V, (n,) cosq (4.7)
o1 1 1'1 :

where'MIl = (aw/Bn)n . Eq. (4.7) is the Hamiltonian for a pendulum of
l .
mass-Ml, which for the Morse oscillator, from eq. (3.3)., is

2
M1 = - 2D/wo < 0.

To make the connection with the more familiar positive mass pendulum

orbits, one may note that the equations of motion consistent with eq.(4-7),



-
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P = - aK/aq = - eVl(nl) 31ng
4= /3P = p/y :
are the samé as
A V. (n.) si A
P = €V,(n;) sin
§ = B/m; , (4.8)
with 8 = —-ﬁ and m,. = - Ml> 0. But Eqs.(4;8) are consistent with the
Hamiltonian
K! = 32/2m + eV, (n,) cosb (4_9)
, 1. 11 ? AR

where (ﬁ,@j are the conjugate variables., Thus the well known pendulum
orbits: ﬁ(t),@(f) will determine the approximate motion ofzanqrcéd
Morse oscillator when the action is‘close to nl through n(t)= ﬁ(t) +n
and q(t) = Qt - 6(t).

The sepératrix associated with eq.(4.9) will have maximum and
minimum values of action for 6 = 7 and K' = €Vl,‘if Vl> 0. If.Vl< 0,
then they occur for 6 = 0. In either case, the maximum and minimum
separatrix_acﬁibns may'be obtained, in terms of the’original Morse
action variable, from

i. —————————
n, = ny + 2v/ elVllml . | (4.l0) .

l,
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A similar analysis may be made about other resonances. For
example, the next resonance corresponds to‘an "overtone' resonance, -
Zw(nz) - Q= 0. 1In this region of action space, 2q - it is slowl&
varying so that the k=2 Fourier tgrm'in eq. (4,2) may be singled out.
The same analysis as above, but with a classical-genefator'of the
form F3(n;ﬁgt) = - (n—nz)(a % Qt)/2 , yields.

t
K

A2 Q2
P /2m2 + €V2(n2) cosb
a A -1
where now p = (n#nz)/Z, 8 = Qt - 2q, and m,” = 4|3w/8n|n . The fixed
_ 2 '
points associated with the n, resonance are actually period 2 fixed
points of the period ddvance map. The maximum and minimum separatrix

‘action values, in the original Morse action, are
= + : -
n n, * 4y ¢ Vylm, - (4.11)

In order for the pendulum model to be valid, the neglected terms
in the Fourier expansion must indeed be rapidly oscillating compared to
the terms kept. Chirikovj has shown that a condition for this to be

so is the condition of moderate nonlinearity, .
R [3w/3n| w/n & 1/e . (4:12)

It is also necessary that the separatrices associated with, say, the

primary resonance. n.. and the next resonance n,, do not overlap much -

1
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i.e. are well séﬁarated from each other. Chiriko_v‘:5 defiﬁes_fhe

coupling constant of the resonances, s, such that if

s = Mw/A &« 1, ‘ ) (4.13)
then the relevant resonances are sufficiently separatéd from one
another., In-eq.(4;l3), Aw éould be the frequenCy‘fﬁll~width of the
separ;tri# of the primary resonance, Aw = |3dw/n| (ni - nz) = 4/ET§IT7;I,‘-
and A}ﬁhe differénce between the primary resonance frequency w(nl) and
the next resonance frequancy.w(nz). If s al; then the overlap of
resonances is associated with chaotic behavior in the vicinity of.

the separatrices

B..Pendulum.Approximation-to Nonrotating HF in a Strong~La$erv
For the pfoblem of sec..III, it is readily found that n, = 1/2,
m = 1266, and €Vl(nl)= 2.04 x 10_4, using the formulae given ébove.
The moderate nonlinearity condition, eq.(4.12), is also found to be
satisfied, since then €~ 0.002, and near ni = l/2,-ar~ 0.02. The
resonance coupling constant s also satisfies eq. (4.13), since the
next reSénance is n, = lé,.andris thus well separated from nl( sﬁ-lo_l).
From the_above'considerations, one expects thaﬁ‘the pendulum
model will be réasonably adequate. Indeed, if one uses eq. (4i10) to
estimate the maximum and ﬁinimum-separatrix action values, one finds
n. = 1.5 and n, = -0.5, in reasdnable agreement withithe actual values,

1 1
which from Fig.1lb are closer to 1.6 and -0.35.
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The fixed points of the pendulum described by eq.(4.9), when
converted back to the original action-angle variables, occur at
(n,q) = (1/2, m) and (1/2,0), and are stable and unstable respectively.
These fixed points agree reasonably well with the two most important
fixed points of the préblem~discussed in sec.IIIC . The pen&ulum model
does not have the additiénal fixea point, near h = - 1/2, that occurs
in the full problem. However, the immdeiate region near this point
is of no concern to us Here, and, furthermore, the pendulum orbits
do accually.describe the motion near (bﬁc not very.ﬂear) this point
reasonably well,'as might be guessed from ihspectiop of Fig.lb.

The pendulum equations of motion, eqs.(4.8), were solved
numerically, since although analytical solucidns do exist, in terms of
elliptic integralss’6 ', they are somewhat cumbersome to usé. Fig. 5
shows the result of following the behavior of classical states viéh
no = 1/2, 0 and 1, just as.was done in sec.IIIC. By cdmparison
with Figs. 2 and 3.for the full problem, it is seen that the major
- qualitative features of the dynamics, including the wﬁorls, arise
out of the pendulum equations of motion. It will also be noticed
from Fig.5 that Ehere is an artifact in the pendulum solution in

that the action is now no longer bounded from below. Thus some points

actually map to below n = -1/2, which is nonphysical since n for the

Morse oscillator is only defined for n 2 -1/2.
Tendrils are absent entirely, even under very close scrutiny,
because no chaotic trajectories exist in the pendulum phase space.

~The fact that they are also difficult to see in the full problem is
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related to the smallness of the resonance couplihg parameter s.

It is also easy to see why points, initially not oﬁ or extremely
close to the unstable fixed point will eventuélly approach it
closely. If one starts with an initial line in (n,qj space, which is
also a line in the pendulum phase space (ﬁ,é), then as long as

P =n - n, is within the width of the separatrix, the line must

1
intersect the separatrix twice. Points on the separatrix will tend
to move towards ‘an unstable fixed point, or, equivalently, away from
another unstable fixed point (cf. curves B and D in Fig, 1b) ., .but
never actually reach the unstable fixed point in finite time. Thus,
since all the values of n studied are within the separatrix width,
necessarily points intersect the separatrix and then approach the
unstable fixed point.
‘The origin of the whorls can be seen in terms of the nonlinearity

of the pendulum equations of motion. Because each orbit about the

' . : . ‘ i 4,10
stable fixed point has a different frequency, or rotation number N

a line that intersects these orbits will then wind about the fixed

point, with different points winding faster than other points, thus

forming a whorl.

V. Energy‘Absorption Trends

In this section, the pehdulum.model of sec.IV is used to predict
N . ' ’ .13 .
qualitative trends in the average energy absorption of Morse

oscillators initially in different vibrational states. Suppose, for
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example, one has an initial classical state with n fixed and q, evenly
distributed between 0 and 2m. This corresponds to .a horrigontal‘line
across Fig. 1b. Now each.point on the line will evolve, following the
pendulum-like surface of section lines in the figure. Rather than
follow this motion explictly, eitﬁer by the perio&'édvance.map,.or by
direct integration of trajectories, one can use the'pendulum ﬁodei

to predict in advance whether there will be a net gain or loss of
energy. Sﬁppose-no lies between the minimum separatfix.action nI
and the primary resonance actionnpl. Then a substantial number of
points on the initial line will follow elliptic closed drbits about
n,. But these points then spend most of their time above né; since

n ¢ my, which results in a net gain of energy (recall n is a measure of

the energy - eq.(3.2)). Conversely, if n, lies between ny and n;;
the maximum in the primary separatrix action, then again the ?oints
will orbit about nl, but. spend most of their time below né, resulting.
in a net ene?gy loss. If n, is outside theAseparafrices? then the
points will simply rotate up and down (as in curve A of Fig.lb). ,. and,
other tﬁings being equal, will not gain or lose much energy. Howevér,
if n_ is increased‘fo withih.thg separatrix corresponding to‘the next
resonance, i.e. the overtone resonance Ny, there will again be a net
energy gain if-no is between n; and n,, and a net energy loss if n

is between n, and n;.

Recently, Christoffel and Bowman13 have looked at the net energy

absorption of nonrotating HF molecules as a function of initial
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vibrational action using classical trajectories. They uséd a.largér
perturbation sfrength_than that of secs. IiI»an@HIV, egé0.0ll,‘ang é
slightly different léser frequency, Q = 0.01787 a.u. The éiimary
resonance is found from eq.(4.4). to be n, = 0.752. " From eq.(4?10)ﬂ,
the minimum and maximum separatrix actions ére n1-= —2.0 and nI‘= 3.5.
An action of -2 is nonphyéical, but- is irrelevant for the arguments that
follow. Similarly, the‘évertone resonance ié.found from 2w(n2) -Q =0,
and is>n = 12.06. From‘eqr(ﬁiil) the associated action extrema are

2
n, = 9.1 and n+‘= 15.0. Rounding off crudely, one would expect

2 2
.initial actions n between 0 and 1 to have a net energy gain, 1 and 4‘
to have a net energy loss, 4 and 9 to neither gain nor lose much
energy, and once again increased absorption .for n between 9 and 12.
These expectations ére in surprisinglj good accord with the observations
of Christoffel and Bowman313."In particﬁiar, one could note the
increased absorption for n %9..'The fact that a great deal of energy,
much»more than for the lower no_valués,»appears to be absorbed for
nb'>9 is indicative of the higher order ;esonances (né,n3,...) being
more closely spaced .and overlapping to .a large extent, allowing the
molecule to essentially travel up a 'chaotic Jaddef" of separatrix
layers,

Thié sort of analysis is én;irely qualitative, bﬁt does have
the advantage that ah essentially "back of the engélope" calculation

yields qualitatively correct predictions of energy absorption trends.

Recently, Davis and WyattlQ have developed a Poincaré surface of section
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approach, based on the numerical integration of only a few claSsical

trajectories, that is complementary to the approach here.

\VI. Concluding Remarks

A method of generating period advance maps3 for one—dimensional-
forced oscillator problems has been given. An application to a
vforced Morse oscillator demonstrated‘that a godd deal 6f dynamical
information could be obtained from the approach. The appiicability
is limited, however, to a relatively modest number (% 400) of map
iterations (oscillations of the field), but this can be improved
somewhat by increasing the initial grid size. Also, if one is only
interested in particular dynamical features, such as the fate of a
specific.initial classical state, it is of course easier to use
direcﬁ classical tfajectories.

The behavior of the nonrotating HF molecule in a strong laser
was found to be quite interesting, with classical states developing
whorls'4 in ﬁhe vicinity of the stable fixed point of the map. In
fact, the entire phase plane was seen to consist of ﬁhorls of excitation
and de-excitation. The pendulum modelsx of hqnlinear resonance seems
quite applicable to problems of this sort and does reproduce some. of
the major QUalitétive features. Also, certain dynamical trends, such
as the average energy absorption as a function of initial vibrational
state, can be qualitatively discussed with this model. Since the
pendulum model has been usediéils to treat systems with more than 1 or
2 degrees of freedom, there may be some hope in using similar ideas

to interpret the behavior of, say, vibrating and rotating diatomic
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molecules in lasers, or more general polyatomics, or perhaps two or
, 16 . . . A o
more lasers " interacting with a molecule. Indeed, in related work,
. 15 . '
Oxtoby and Rice™ ™ jave treated the autonomous problem of energy
re-distribution in polyatomic mdlecules after excitation using the
pendulum model and Chirikov's resonance overlap ideas for the onset
of chaotic motion.
As a final point, the quantum analogue of the classical whorls
has not been discussed here. Berry and co—workers4 have discussed
this point, and do expect to see certain evidence of whorls in the

behavior of the time-dependent probability density



26

Acknowledgements

It is a pleasgre to acknowledge the support and encouragement
of Professor William H. Miller. The comments of Peter S. Dardi
were also important for the successful completion of this work. I
would also like to.acknowledge some. very heipful discussions with
Professor Robert E. Wyatt, Professor M. A. Lieberman and Dr.
Yitzhak Weissman. This wérk was supported by the Director, Office
of Energy Research, Office of Basic Energy Sciences, Chemical
Sciences Division of the U. S. Department of Energy, under Contract
No.DE-AC03-76SF00098, and also in part by tﬁe Nétional Scienée
Foundation under Grant CHE-79-20181., Financial assistance from

the NSERC of Canada is also gratefully acknowledged.



27

Appendix -, Fixed Points of the Period Advance Map

An approximate, but surprisingly accurate estimate of the
period 1 fixed points is as.follows. Starting from eq. (4.6) of
the text,

- - _ ~ A& A .
K = Ho(p + nl) eVl(p + nl) cosq P, Al

- ~ : . 11,17
where q = q - Qt and p n - n;, one then uses the harmonic oscillator

x(n,q) to estimate UK rather than the exact form eq. (4:3b).

This
is valid for small n and simplifies the calculations. Thus
_1 Ui
Vl(n) = (2m) © S x(n,q) cosq dq
. L _
S . 2
=(2m) f v (2n + l)/uwo cos q dq
-7
: =Y/ (20 + 1)/pwo‘ /2 A2

Eq.Ai.becomes

K'='Ho(ﬁ + nl) - (e/2) V[ 2(p + nl) + 1 ]/uwg'cosﬁ - P . A3

The equations of motion consistent with the Hamiltonian above are

D
[

- (e/2) /TZG * ) * L/m, sind

Fab 3
{

= w(§+nl) - (e/2) cosq —.Q

A4

Y Hw (2(p + nl) + 11
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For a fixed point, we require p = 4 = 0. Replacing D + n, by m,

and setting t = 0 so that § = q, we obtain the two equations

- (e/2) /(2n+l)7uwo sinqg = O AS5a
w(n) ~ (e/2) cosq -0 =0 ASb .

(.uwo(2n+l)
Eq. ASa is satisfied for q = 0 and 7. Inserting either of these intq
eq. ASb yields a simple one—dimensional.rootlequation for n, which
can be solved By iteration. With the parameters of secJIILB;one
finds the fixed points (n,q) = (0.6218, m), (0.3610, 0), and (-0.4828, 0),
which arevin remafkably good agreement'with the more exact fixed
points, which were found to be (0.6173, ), (0.3603, 0), and (-0.4821, 0).
An even more accurate estimate of the fixed points could be obtained

by using eq. (4;3b) for vy
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Table I. Root mean square deviations between the map predictions
and direct numerical integration of trajectories. The results
are for 50 trajectories with n_ = 0 initially. Typical values

of p and x are *+ 3 and 2 a.u. respectively.

R.M.S. deviation

r P X
100 0.005 0.0001
200 0.008 ' 0.0003
300 - 0.016 0.0010
400 ' 0.024 .0.0020

500 0.078 0.0029
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Figure Captions

Figure 1. Surface of section plots of the pefiod advance map.

a) p-x space, b) n-q space. Open circles (o) represent stable
fixed points and filled circles (®) unstable fixed points. |
Note the arrows do not imply a continuous flow. Rather, points
take discrete and uneven jumps to other points on the same: curve,

in the direction indicated.

Figure 2. The evolution of an initial n = 1/2 state under the
mapping. a) the result after r = 20 periods. Note the dashed
line represents the initial state. b) after 40 périods, c) after

60 periods.

Figure 3. a) the result of mapping an n = 0 state 40 periods,
b) the result.of mapping an n = 1 state 40 periods. Dashed

lines indicate the initial states.

Figure 4. Evolution of the entire n-q phase plane. a) after
20 periods, b) after 40 periods, c) after 60 periods. The
contours represent a coarse grained action state. See the

’

text for more details.

Figure 5. The pendulum model predictions for the fate of initial

states a) n =:1/2, b) n = 0, and c) n = 1, after 40 periods.
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Figure 2a.
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Figure 4b.
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Figure 4c.
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