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Abstract

Rationale—Desorption electrospray ionization-mass spectrometry (DESI-MS) has demonstrated 

utility in differentiating tumor from adjacent normal tissue in both urologic and neurosurgical 

specimens. We sought to evaluate if this technique had similar accuracy in differentiating oral 

tongue squamous cell carcinoma (SCC) from adjacent normal epithelium due to current issues 

with late diagnosis of SCC in advanced stages.

Methods—Fresh frozen samples of SCC and adjacent normal tissue were obtained by surgical 

resection. Resections were analyzed using DESI-MS sometimes by a blinded technologist. 

Normative spectra were obtained for separate regions containing SCC or adjacent normal 

epithelium. Principal Component Analysis and Linear Discriminant Analysis (PCA-LDA) of 

spectra were used to predict SCC versus normal tongue epithelium. Predictions were compared 

with pathology to assess accuracy in differentiating oral SCC from adjacent normal tissue.

Results—Initial PCA score and loading plots showed clear separation of SCC and normal 

epithelial tissue using DESI-MS. PCA-LDA resulted in accuracy rates of 95% for SCC versus 

normal and 93% for SCC, adjacent normal and normal. Additional samples were blindly analyzed 

with PCA-LDA pixel by pixel predicted classifications as SCC or normal tongue epithelial tissue 

and compared against histopathology. The m/z 700–900 prediction model showed a 91% accuracy 

rate.
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Conclusion—DESI-MS accurately differentiated oral SCC from adjacent normal epithelium. 

Classification of all typical tissue types and pixel predictions with additional classifications should 

increase confidence in the validation model.

Keywords

ambient ionization; mass spectrometry; desorption electrospray ionization; oral tongue cancer; 
squamous cell carcinoma

Introduction

Oral Cavity Cancer

Cancers of the oral cavity and oropharynx are the most common head and neck tumors in the 

United States.1 Worldwide, around 600,000 people are afflicted by head and neck cancer 

every year.2 Oral cancer has an age normalized incidence rate of 3.9 per 100,000 persons 

worldwide.3 Common risk factors for developing oral cancer are alcohol consumption and 

tobacco use with a rising incidence of oropharyngeal cancer (more specifically, tonsil and 

base of tongue cancer) related to human papilloma virus (HPV) infection.3

Oral cancer patients typically are diagnosed at an advanced stage of invasive squamous cell 

carcinoma (SCC) at the time of diagnosis.4 Owing to delayed disease presentation in 

patients and lack of appropriate screening techniques to identify early oral cancer, roughly 

half of patients survive five years from initial disease diagnosis.2 The five year oral cancer 

mortality rate has not changed greatly in over 50 years4 despite surgical advances, and 

improvements in radiotherapy and chemotherapy. Oral cancer not only has a very high 

recurrence rate, but those who survive a first occurrence also have up to a 20 fold increased 

risk of developing a second primary cancer3 (i.e., another oral SCC) which is the highest 

second-malignancy rate for all cancers.4 The most common cause of treatment failure and 

death in oral cancer patients is local recurrence of their primary tumor.5

The high frequency of patients presenting with advanced disease is puzzling. Oral cancer is 

located in the oral cavity where the oral surface epithelium is readily accessible to visual and 

tactile examination. Health care providers, specifically dentists, typically examine their 

patient’s oral cavity on a semi-annual basis providing a consistent and reliable opportunity 

for a visible and palpable examination of areas at risk.

Current Oral Cavity Screening methods

Current methods in oral cavity cancer screening (e.g. visible and palpable examination of 

oral cavity by a dentist, brush tests, toluidine blue staining, and light-based detection 

systems) do not seem to definitively determine the presence of cancer or precancerous 

lesions.6 Conventional oral examination (COE) is currently a controversial mainstay of oral 

cancer screening.4,7 Brush tests act more as a case-finding modality by interrogating clinical 

lesions that would not typically undergo tissue biopsy and pathological evaluation. However, 

since not all subjects interrogated by brush test undergo tissue biopsy and pathological 

evaluation, their accuracy is still unclear.4
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One study evaluated the use of toluidine blue to detect lesions that had not been detected by 

COE8 concluding that the staining test was sensitive (92%) but not specific (42%) since 

there is no consensus on what shade of blue is a positive result.4

The lack of comparison of light-based detection system test results to pathological 

evaluation makes sensitivity, specificity and similar calculations impossible.4 A case-finding 

study of 44 patients with a history of oral dysplasia or head and neck SCC (HNSCC) 

evaluated by tissue fluorescence resulted in a 98% sensitivity and 100% specificity in 

discriminating cancer or dysplasia from normal oral mucosa.9

Currently the only definitive method of detection is by biopsy and pathological evaluation of 

removed tissue.10,11 However, even in this circumstance, while evaluation by the pathologist 

is directed by numerous criterion for diagnosis, it still is inherently subjective.

Desorption Electrospray Mass Spectrometry as a diagnostic method

Subjective histopathological analysis would likely be improved by objectively relating 

pathological states to chemical information obtained by desorption electrospray ionization – 

mass spectrometry (DESI-MS).12,3,13,1

As established in several other organ systems, DESI-MS imaging of lipid profiles in tissue 

can be correlated with histopathological characterization.14 DESI-MS benefits from minimal 

sample handling beyond what is needed for frozen section pathological evaluation making 

DESI-MS well suited for case finding. Previous work in brain surgery15 has differentiated 

types of gliomas and meningiomas, including tumors of different histological grades and 

tumor cell concentrations, and was validated during intraoperative use16.

There is an urgent need for earlier objective detection of oral cancer for diagnosis and 

prognosis. A goal of this project is to develop a new diagnostic aid that could help a health 

care professional, such as a general dentist or dental specialist, more readily identify and 

assess oral tissue of uncertain biological significance, defined as case-finding.4

Methods and Materials

Tissue Specimens

IUSOM and UC Davis (UCD) research tissue specimens were collected during tumor 

removal surgeries conducted by Dr. Michael G. Moore, MD, FACS (otolaryngologist, 

previously at IUSOM and currently at UC Davis Medical Center) and other surgeons in the 

Department of Otolaryngology-Head and Neck Surgery at Indiana University and at UC 

Davis Medical Center. Each institution collected fresh frozen normal and SCC tissue 

specimens from the oral cavity of consented patients undergoing treatment following an IU 

IRB approved procurement protocol. This study was carried out in strict accordance with the 

UCD, IU and Purdue IRB protocols.

Most specimens were matched, meaning that both normal and SCC specimens were 

procured from the same patient. Thirty-two normal and SCC specimens were acquired from 
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an IUSOM tissue bank. Sixty-two normal and SCC specimens were acquired from UC 

Davis.

All specimens were shipped on dry ice to Indiana University Health Pathology Lab (IUHPL) 

where the specimens were cryosectioned to 15 μm thickness and thaw mounted to glass 

microscope slides. Tissue-Tek O.C.T. (Sakura Finetek) was used as the embedding agent. 

Regarding thaw mounting, typically two tissue sections were thaw mounted per slide and 

multiple slides were prepared per specimen. Sections were stored at −80°C prior to ambient 

ionization MS analysis. −80° C sections were vacuum dried for 15 minutes prior to DESI-

MS imaging analysis.

DESI-MS imaging

A laboratory-built DESI ion source was coupled to a linear ion trap mass spectrometer 

(LTQ) controlled by Xcalibur 2.0 software (ThermoFisher Scientific, Waltham, MA). The 

LTQ MS and Xcalibur software were used in all experiments. The embedding agent used for 

tissue cryosectioning produces significant background signals in the positive ion mode but 

not in the negative ionization mode. For this reason, we chose to use negative ionization for 

all experiments. For DESI experiments, the automatic gain control (AGC) was inactivated. 

Each tissue section selected for analysis was DESI-MS imaging analyzed using 

morphologically friendly spray solvent,17 dimethylformamide-acetonitrile (1:1) solution. 

Both solvents were purchased from Mallinckrodt Baker Inc. (Phillipsburg, NJ) and delivered 

at a flow rate of 2.0 μL min−1 using the instrument syringe pump. The DESI source 

parameters were set as follows: capillary temperature 275 °C, voltage applied to the stainless 

steel needle syringe 5 kV, capillary voltage −25 V, tube lens voltage −115 V, capillary 

incident angle 52°, spray to surface distance ~3 mm, sample to inlet distance ~5 mm, and 

nitrogen gas at 180 psi. The LTQ was set to an injection time of 250 μs and two microscans. 

Tissue sections were analyzed using a moving stage with a lateral (“x” axis) scan rate of 

307.69 μm s−1 in horizontal rows separated by a 200 μm vertical step (“y” axis).18 

Instrument scan time was coordinated with scan speed providing ~200 × 200 μm pixels. Full 

scan mass spectra were acquired in negative ion mode in the mass range m/z 200–1000 for 

each tissue section.

Pathology

The same slide analyzed by DESI-MS imaging was hematoxylin & eosin (H&E) stained, 

photographed, cover slip mounted, and histopathologically evaluated by an expert 

pathologist, (DJS). The sections were evaluated to identify regions of normal epithelium and 

SCC. Other tissue types such as abnormal, premalignant, or precancerous epithelium, 

skeletal and smooth muscle, fat, connective tissue, blood vessels, and the like were observed 

and noted during histological evaluation. As illustrated by a tissue section in Figure 1A and 

B, normal epithelial and squamous cell carcinoma regions of interest were delineated by line 

annotations.

Twelve normal and SCC IUSOM specimens were excluded from further analysis because 

the evaluated sections did not include either regions of normal epithelium or SCC. Sixteen of 

the sixty-two specimens acquired from UCD were excluded from further analysis because 
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the evaluated sections did not include either regions of normal epithelium or SCC. All 

histological evaluations were provided only after DESI-MS imaging and pixel prediction 

model analysis. The researchers conducting DESI-MS imaging and pixel prediction model 

analysis were blinded to initial diagnosis information.

BioMap for DESI-MS Imaging selection of Pixels of Interest

BioMap (Novartis Institutes for BioMedical Research, Basel Switzerland)18 was used to 

correlate histologically evaluated annotations to identify DESI-MS image pixels of interest. 

An in-house data conversion software, ImgConverter v3.0, was used to compile and convert 

Xcalibur MS data files (*.raw) into BioMap compatible ANALYZE format files (*.img).19 

BioMap allows visualization of the mass spectrum associated with each individual, “x”, “y” 

position as well as mass spectra processing (e.g., mean and background subtraction) and 

selection of a region of interest by selection of x,y positions. Each x is a mass spectrum 

acquired along y horizontal row. Each x,y position is defined as a pixel.

All BioMap pixels assignments are based on histological evaluations provided by Dr. 

Summerlin independent of DESI analysis and imaging. Pixels of interest were highlighted 

conservatively, typically excluding tissue adjacent to line annotations, even to the exclusion 

of normal epithelial tissue from the pixels of interest.

One matched case of samples was excluded from DESI-MS imaging because normal 

epithelial could not be distinguished from connective for IUSOM Sample 30 and SCC tissue 

could not be distinguished from surface epithelial tissue for Sample 31. Specifically, 

BioMap m/z values could not visualize the tissue section in order to correlate BioMap pixels 

with histopathological evaluation.

Histology based regions of interest are translated into histologically guided selection of 

pixels of interest. Average mass spectra were obtained by averaging regions of interest. 

Figures 1C and 1D display average mass spectra for squamous cell carcinoma and normal 

epithelial regions of interest, respectively, in Sample 35.

DESI-MS Image Data Processing

A data conversion software, ProteoWizard specifically MSConvertGUI, was used to convert 

Xcalibur MS data files (*.raw) into mzXML files (*.mzxml).19

Multivariate Statistical Analysis

Twenty-one DESI-MS averaged mass spectra from twenty separate IUSOM samples were 

used to create normal and SCC mass spectral test set databases. For DESI averaged mass 

spectra, regions annotated by pathology as normal epithelium or SCC with no other 

characterization were selected as groups of pixels of interest composed of the mass spectra 

at each pixel. Again, average mass spectra were obtained by averaging regions of interest.

Principal Component Analysis (PCA)

BioMap exported an average mass spectrum from the pixels of interest. Each average mass 

spectrum’s list of m/z values and ion abundances was imported into Excel (Microsoft, 
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Spokane, WA USA). Excel spreadsheets were used to import into Matlab (The MathWorks, 

Inc., Natick, MA USA). In-house scripts were used to transform each average mass 

spectrum by standard normal variate (SNV). All spectra for each DESI dataset were mean-

centered for the same m/z value across all samples. PCA was performed on total ion count 

(TIC) normalized or SNV transformed, mean-centered data for DESI datasets.

Principal Component Analysis - Linear Discriminant Analysis (PCA-LDA)

Models were built using all of the objects based on each analyzed target set. Linear 

Discriminant Analysis (LDA) was applied on the DESI target datasets of SNV transformed, 

column centered mass spectra after compression by PCA, thereby using as variables the 

principal components instead of the original mass spectral data. LDA was performed as a 

supervised discriminant classification technique. Discriminant methods look for a delimiter 

that divides the global domain into a number of regions, each assigned to one of the classes. 

This delimiter identifies an open region for each class and such regions determine the 

assignment of the samples to one of the classes.10 Model validation, specifically evaluation 

of the predictive ability of the model, was performed by means of cross-validation (CV).10 

For this study, five cross-validation deletion groups were selected, meaning that all of the 

samples (DESI dataset n=21) were divided five times systematically in a training set and a 

test set, with all of the samples being in the test set only once. A training set means objects 

were used for building the classification model. A test set means non-training set objects 

were used to evaluate the predictive ability of the model.

Pixel predictions and cross validations were used to estimate the sensitivity, specificity, and 

global prediction rate for all classes, as the CV prediction rate for each class, known as the 

complete validation strategy.10 For CV prediction rate, sensitivity measures the proportion of 

subjects with the disease who test positive, while the specificity determines the proportion 

without the disease who test negative. For pixel prediction, sensitivity measures the 

proportion of tissue sections with squamous cell carcinoma, where the majority of the pixel 

predictions in the same region of tissue section were predicted squamous cell carcinoma, 

while the specificity determines the proportion of tissue sections with normal epithelial 

tissue where the majority of the pixel predictions in the same region of tissue section were 

predicted as normal epithelial tissue.

The predictive values determine the proportion of subjects with positive and negative test 

results that either do or do not have the disease. For pixel prediction, the prediction rate is 

the percentage of correct predictions on the objects in the test set relative to pathology. The 

CV prediction rate is the percentage of correct predictions on the objects in the CV test set. 

The confusion matrix shows how many samples belong to a certain category were correctly/

incorrectly assigned by the classification rule to that category. In each matrix, each element 

gives the number of samples of the row category assigned to the column category. When a 

matrix includes only entries on the diagonal (e.g., there are no entries outside the main 

diagonal) there is perfect prediction of all the samples.

LDA models used for supervised discriminant classification were built using a range of two 

to six PCs. The models were chosen which provided the least number of false results (e.g., 

highest prediction rates) in cross validation.
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Univariate Statistical Analysis

One way analysis of variance (ANOVA) was performed on the TIC normalized intensities 

for a subset of the detected ions using Origin Pro 2017 (OriginLab, Northampton, MA). The 

reported p-values result from the F-test comparing the mean TIC normalized ion intensities 

between the normal oral epithelial tissue samples and the oral SCC samples. P-values much 

less than 0.05 indicate that there is a significant difference between the two experimental 

groups for the specified m/z value. Statistical power analysis, a description of the probability 

of detecting a difference in means between experimental groups, was performed using JMP 

(SAS Institute, Cary, NC). Power ranges from 0 to 1; a power of 1 means that the probability 

of detecting an effect is 100% given that there is an effect to be detected.

Results

Three mass ranges of 200–400, 400–600, and 700–900 were used for data analysis of each 

DESI image. Two mass ranges (m/z 200–1,000 and 700–900) were used for pixel by pixel 

prediction models. Mass range 200–400 limits biochemical information to fatty acids, mass 

range 400–600 to fatty acid dimers, and 700–900 to complex phospholipids. All samples 

were analyzed using DESI-MS imaging over three consecutive days.

DESI-MS Imaging on Oral Tongue Cancer Samples

Regions of interest were correlated with histologically evaluated annotations by using 

specific m/z values. For example, Sample 35 histological evaluation identified a region of 

normal epithelial tissue as illustrated in the top left portion of Figure 1A, above. BioMap 

images of Sample 35 at m/z 465 (cholesterol sulfate)20, 563 (dimer of oleic acid)21 and 885 

(PI 38:4)21,22 each illustrated regions of increased ion intensities corresponding to specific 

histologically evaluated regions of interest (see Figure 1A parts 1–4). Exact mass 

measurements and fragmentation studies were performed on these ions, as well as others, to 

support their tentative identifications (Figures S1, S2, Table S1, supplementary information). 

Sample 36 histological evaluation also identified a region of normal epithelial tissue as 

illustrated in the top right portion of Figure 1B.

To evaluate the accuracy of DESI-MS in differentiating oral tongue SCC from adjacent 

normal epithelium, PC1 vs. PC2 Score plots were then created to observe the separation of 

normal epithelial and SCC average mass spectra within the samples (Figure 2).

Loading plots (Figure 2B and Supplemental Figures 3B, 3D, and 3F) indicate which m/z 
values contribute to separation of samples in score plots (Figure 2A and Supplemental 

Figures 3A, 3C, and 3E). The loading plots seem to suggest that m/z 281, 563, and 885 each 

aid to separate SCC from normal while m/z 465 and 788 each contributes to distinguish 

normal from SCC. Supplemental Figure 1F suggests that m/z 794 (PC 36:1 + Cl−)23 / (PE 

40:4)21 and 885 (PI 38:4)21,22 each contribute to the variation in normal epithelial and SCC 

average mass spectra.

Space charged m/z 281, 465, and 788 peaks are evident in broadened loading values. In 

response, we chose to evaluate the maximum value for each m/z. As illustrated in Figure 3, 

One Way ANOVA of TIC normalized normal epithelial and squamous cell carcinoma values 
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at maximum value m/z 281 has a p value of 1.15*10−3, maximum m/z 563 has a p value of 

4.6*10−3 and maximum value m/z 465 has a p value of 8.55*10−5. Power analysis provided 

values of 0.95, 0.99, and 0.98 for m/z 281, 563, and 465, respectively. The fold-change in 

the mean values, normal epithelial tissue relative to SCC, were 0.53, 0.27, and 9.37 for m/z 
281, 563, and 465, respectively. These univariate results show that m/z 281, 563, and 465 

may be strong discriminators between normal epithelial tissue and oral SCC and they 

warrant future study.

PCA-LDA was performed on the DESI-MS imaging averaged mass spectra to distinguish 

between normal epithelial and SCC. LDA is useful to build a classification model capable of 

predicting the disease state of unknown samples.10 The DESI data comprised normal 

epithelial tissue including eight measurements (n=8) and squamous cell carcinoma including 

thirteen measurements (n=13). The range of two and four PCs were used for classification. 

Several combinations of PCs and deletion groups did not significantly increase the highest 

prediction rates for both classes (normal epithelial and SCC). The range of PCs confirms 

that the results obtained are relatively stable. The average cross-validation (CV) prediction 

rate was 95%. The number of false results per class obtained through cross-validation can be 

seen in Table 1. In Table 1 histopathology is the control testing method and PCA-LDA of 

DESI-MS imaging is the testing method under evaluation. Multivariate Statistical Analysis, 

specifically Principal Component Analysis-Linear Discriminant Analysis (PCA-LDA), is 

used as the method or test applied to DESI-MS imaging data.

Pixel by Pixel Prediction Models of Oral Cancer Samples

PCA-LDA was performed on each selected pixel in each of the sixty-two UC Davis samples. 

Histopathology regions of normal epithelial tissue and squamous cell carcinoma were 

correlated with m/z 200–1,000 and m/z 700–900 pixel predictions. For example, histological 

evaluation of Sample 43 identified a region of normal epithelial tissue and a region of 

squamous cell carcinoma as illustrated in Fig. 4C.

As illustrated in Figure 5, both pixel prediction models (m/z 200–1,000 and m/z 700–900) 

correctly predict normal epithelial for UC Davis Sample 30 with only a few pixels in the m/z 
200–1,000 pixel model predicted as squamous cell carcinoma. Both pixel prediction models 

predicted skeletal muscle as squamous cell carcinoma because the prediction models have 

only one of two classes to choose from either normal epithelial or squamous cell carcinoma. 

We expect that creation of additional classes for dysplastic epithelium, skeletal and smooth 

muscle, fat, connective tissue, and blood vessels will increase prediction rates for 

heterogeneous tissue samples.

Forty-four of the acquired sixty-two UC Davis samples included either normal epithelial 

and/or squamous cell carcinoma. Two samples (UC Davis Samples 24 and 43) included both 

normal epithelial tissue and squamous cell carcinoma providing a total population of 46. All 

histopathology regions of normal epithelial and squamous cell carcinoma were compared to 

both pixel validation models. The m/z 700–900 pixel prediction model had 91% accuracy 

while the m/z 200–1000 pixel prediction model was 76% accurate (data not shown). In Table 

2 histopathology is the control testing method and m/z 700–900 pixel validation method by 

PCA-LDA is the testing method under evaluation.
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Discussion

In the current work, DESI-MS imaging of frozen tissue sections detected differentiating MS 

lipid profiles of SCC and normal samples. We note that this is a first exploration of the 

differential chemical signals between normal and SCC using DESI-MS imaging to oral 

cancer. PCA-LDA provided 95% accuracy. One Way ANOVA of TIC normalized normal 

epithelial and squamous cell carcinoma values at maximum value m/z 281, maximum m/z 
563 and maximum value m/z 465 each had p values less than 0.01. The current work 

benefits by interrogating all tissue biopsies by DESI-MS imaging and histopathological 

evaluation. The inclusion of comparison of DESI-MS imaging results against pathological 

evaluation provides confidence in sensitivity and specificity values. The objective data can 

be collected into databases, sorted by clinical outcome data, and further analyzed to provide 

more accurate profiles of histopathological tissue types and disease states. The collected data 

can then be used to minimize patient variability and provide better classification algorithms 

and improved confidence intervals.

DESI-MS can measure differences in lipid profiles based on lipid based biochemical 

changes such as fatty acid synthase (FAS). Lipid based biochemical changes, such as 

overexpression of FAS, have been reported for oral SCC.24 The DESI-MS imaging data 

supports this previous finding. FAS plays a central role in the endogenous synthesis of long 

chain fatty acids from acetyl-CoA and malonyl-CoA.24 Several human cancers, including 

oral SCC, constitutively express high levels of FAS and consequently have an active 

endogenous fatty acid biosynthesis. FAS is higher in oral SCC than in the adjacent 

morphologically normal epithelium.24

In our experiments, the greater relative intensity of cholesterol sulfate (CS) by DESI-MS 

imaging in normal regions of interest compared to SCC regions of interest (see Figures 1A 

and 1B part 3) supports previous literature findings. A prior independent study25 examined 

abundance of cholesterol sulfate in normal epidermal and squamous cell carcinoma cells in 

the process of squamous differentiation from growth phase to confluence. At confluence, 

normal epidermal cells undergo terminal differentiation and expression of the differentiated 

phenotype except for a variant with defects in terminal differentiation control. Normal 

epidermal cells except for the variant experienced a greater than 30 times accumulation of 

cholesterol sulfate. The variant and squamous cell carcinoma each exhibited less than 3 

times accumulation of cholesterol sulfate. Their hypothesis is that increased cholesterol 

sulfate is a marker for squamous differentiation.

Oral cancer, like most carcinomas, arises through progressive histopathologic changes. As a 

result, these ambient ionization methods should detect differences in lipid-based 

morphological changes. Current visible and light based detection systems are not as 

objective and provided less molecular information than MS-based methods. As previously 

mentioned, DESI-MS imaging lipid profiles in tissue can be correlated with 

histopathological characterization.14 DESI-MS analysis of oral cancer has now been shown 

to do the same. We also expect DESI-MS to provide diagnostic information before normal 

epithelium transitions completely from normal to SCC. In other words, we anticipate that 
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mucosa with significant precancerous changes (severe dysplasia or carcinoma in situ) would 

have DESI-MS profiles different from adjacent normal epithelium.

We acknowledge that the data analyzed so far has been based on analysis of known 

histopathology results and averaging of selected regions of interest. Furthermore, tissue 

heterogeneity so far limits the approach to not mixed regions of histopathology, and our 

study has a relatively limited number of data points. We hypothesize that, similar to other 

DESI-MS based oncology studies, larger data sets and more detailed pathological evaluation 

will improve classification of SCC and normal samples as well as differentiate adjacent 

normal epithelial samples. The ultimate test being the application of this methodology on 

samples of unknown histopathology and comparison of DESI-MS prediction with that of 

traditional histopathology.

For the pixel prediction models, histopathology regions of normal epithelial and squamous 

cell carcinoma were compared to m/z 200–1,000 and m/z 700–900 pixel validation models. 

As illustrated in Figures 4 – 5, both pixel prediction models (m/z 200–1,000 and m/z 700–

900) typically provided a correct prediction of squamous cell carcinoma and normal 

epithelial tissue. The prediction models, however, are limited to two classifications (SCC or 

normal epithelium) and this limits the successful application of the technique. Creation of 

additional classes (such as skeletal muscle, fat, fibrous tissue, etc.) should increase 

prediction rates for heterogeneous tissue samples.

Overall m/z 700–900 pixel validation model by PCA-LDA provided 91% accuracy. More 

work is needed to confirm this method and classification of all typical tissue types and pixel 

predictions with additional classifications should increase confidence in the validation 

model. Analysis of different m/z ranges, such as m/z 200–400 (which includes oleic acid at 

m/z 281) and 400–600 (which includes cholesterol sulfate at m/z 465 and oleic acid dimer at 

m/z 563) may provide high accuracy rates. Additional m/z ranges may confirm existing 

validation models.

On top of these challenges, some additional issues persist. As illustrated in Figure 6, both 

pixel prediction models (m/z 200–1,000 and m/z 700–900) fail to correctly predict regions 

of normal epithelial tissue adjacent to squamous cell carcinoma (UC Davis Sample 24). 

Similarly, as illustrated in supplemental Figure 5, both pixel prediction models (m/z 200–

1,000 and m/z 700–900) incorrectly predict normal epithelial in one sample (UC Davis 

Sample 9). Analysis of the average mass spectra can be used to explain the normal epithelial 

tissue prediction but not why the prediction was incorrect. The intermittent inability to 

correctly predict normal epithelial tissue adjacent to squamous cell carcinoma in oral 

samples has been a consistent limitation of this methodology. This is likely due to the fact 

that adjacent tissue, while normal in appearance histologically, actually demonstrates 

premalignant changes on a molecular level, thus signaling that it may be at risk for future 

carcinogenesis. Moreover, squamous cell carcinoma can have differing degrees of 

differentiation that may lead to different cellular lipid profiles, possibly making it more or 

less easily discerned from adjacent normal epithelium. Creation of an additional class for 

normal epithelial tissue adjacent to squamous cell carcinoma, as well as different norms for 

the spectrum of premalignant change (severe dysplasia and carcinoma in situ) and tumor 
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differentiation, should increase prediction accuracy through a larger dataset of these different 

categories. This may be an area of future study.

Conclusion

This work suggests that DESI-MS may be useful in the diagnosis of oral tongue squamous 

cell carcinoma. The time for DESI-MS imaging (approx. 20 min. per sample) is not 

compatible with point-of-care use. Transitioning to sparse DESI-MS analysis of tissue 

smears, as shown in previous work with brain cancer16 and independent studies with breast 

cancer,26 would increase sample throughput and allow intraoperative use. Also, the direct 

MS analysis of oral brush biopsies,27 a routine method in oral cancer screening, using touch 

spray mass spectrometry28 would be an alternative to DESI that would provide similar 

diagnostic information29 on a short timescale. The time to collect a single mass spectrum is 

on the order of milliseconds and statistical classification could be reduced to about a minute 

per sample. Further work is needed to validate this method prospectively, and to develop 

techniques for evaluating the technology for use in intraoperative margin assessment as well 

as in oral cavity cancer screening.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Histopathological evaluation (performed by DJS) and DESI-MS data for select samples. 

A&B) 1 corresponds to H&E stained image with pathological evaluation, 2–4 are ion 

images of m/z 563, 465, 885, on a grayscale with corresponding scale bar. A. Sample 35. B. 
Sample 36. Scanned image of H&E stained Sample 36 with histopathology determined 

annotations delineating regions of interest. B. Scanned image of H&E stained Sample 35 

with histopathology determined annotations delineating regions of interest. C. Average mass 

spectrum, normalized to the TIC and scaled by 100, of selected pixels of interest for Sample 

35 normal epithelial tissue. D. TIC normalized and scaled by 100 average mass spectrum of 

selected pixels of interest for Sample 35 (squamous cell carcinoma with collagen).
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Figure 2. 
A. PCA score plot (PC1 vs. PC2) displays normal epithelial from SCC average mass spectra 

using DESI-MS imaging negative mode m/z range 400 – 600. SCC average mass spectra are 

red triangles and normal epithelial average mass spectra are green circles. B. PCA loading 

plot (PC1 vs. PC2) showing differentiation based on m/z 465 (cholesterol sulfate)19 (positive 

PC1 coefficients and positive and negative PC2 coefficients) and to a lesser extent m/z 563 

(dimer of oleic acid)20 (negative PC1 and PC2 coefficients).
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Figure 3. 
Comparison of TIC Normalized (without scaling) maximum values of m/z 281, 465 and 563 

between normal epithelial (green) and SCC (red) from the DESI-MS imaging data.
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Figure 4. 
A. Pixel prediction for m/z 200–1,000 for Sample 43. Red predicting squamous cell 

carcinoma and green predicting non-SCC. B. Pixel prediction for m/z 700–900 for Sample 

43. C. Histopathology determination for Sample 43.
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Figure 5. 
A. Pixel prediction for m/z 200–1,000 for UC Davis Sample 30. Red predicting squamous 

cell carcinoma and green predicting normal epithelial tissue. B. Pixel prediction for m/z 
700–900 for UC Davis Sample 30. C. Histopathology determination of normal epithelium 

and skeletal muscle for UC Davis Sample 30.
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Figure 6. 
A. Pixel prediction for m/z 200–1,000 for UC Davis Sample 24. Red predicting squamous 

cell carcinoma and green predicting non-SCC. B. Pixel prediction for m/z 700–900 for UC 

Davis Sample 24. C. Histopathology determination of squamous cell carcinoma for UC 

Davis Sample 24. D. Average mass spectrum of selected pixels for UC Davis Sample 24.
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Table 1

Cross Validation Confusion Matrix for DESI-MS imaging Prediction Rates:

Pathology

Total Population
(21 samples) SCC Normal SCC Prevalence

(62%, 13/21)

DESI-MS imaging PCA-LDA
SCC 13 1 Positive Predictive Value 92.8%

Normal 0 7 Negative Predictive Value 100%

Accuracy (95%) True Positive Rate 
100%

True Negative Rate 
87.5%
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Table 2

Confusion Matrix for m/z 700–900 DESI-MS imaging Prediction Rates:

Pathology

Total Population
(46 samples) SCC Normal SCC Prevalence

(63%, 29/46)

m/z 700–900 Pixel by Pixel PCA-
LDA

SCC 27 2 Positive Predictive Value 93%

Normal 2 15 Negative Predictive Value 88%

Accuracy (91%) True Positive Rate 
93%

True Negative Rate 
88%
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