
Lawrence Berkeley National Laboratory
Recent Work

Title
STATISTICAL TREATMENT OP PRIME NUMBER DISTRIBUTIONS

Permalink
https://escholarship.org/uc/item/35t5f1bh

Author
McMillan, Edwin M.

Publication Date
1966-05-23

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35t5f1bh
https://escholarship.org
http://www.cdlib.org/


TWO-WEEK LOAN COpy

This is a library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call

Tech. Info. Diuision, Ext. 5545

Ernest O.
Radiation'

STATISTICAL TREATMENT OF RPIME NUMBER DISTRIBUTI



Submitted to Mathematics of
Computations

UNIVERSITY OF CALIFORNIA

Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W -7405-eng-48

UCRL-16902
Preprint

STATISTICAL TREATMENT OF PRIME NUMBER DISTRIBUTIONS

Edwin M. McMillan

May 23, 1966



-1- UCRL-16902

STATISTICAL TREATMENT OF PRIME NUMBER DISTRIBUTIONS

Edwin M. McMillan

Lawrence Radiation Laboratory
University of California

Berkeley, California

May 23, 1966

1. Introduction

The distribution of prime numbers presents an apparent paradox:

A completely determinate process, the sieve of Eratosthenes, leads to a

sequence of primes which seems to be highly random. However, it is

not hard to understand why this should be so. Suppose that we construct

a "partial sieve" in which the primes p =2 through p =Q are eliniinated,

including the first occurrence of each prime. The resulting sequence
Q

of "potential primes" repeats with the period n p, each period having a
2

center of symmetry. The length of the period increases very rapidly

with Q; for example. with Q =31 it is about 2X1011 . On the other hand.

the fraction of numbers remaining as potential primes is equal to
Q
n p-1 , which decreases rather slowly with Q, approximately like 1/2lnQ;
2 p

this fraction has the value 0.153 for Q =31. The partial sieve is empty

from 1 (which must be included as a potential prinle to represent the

repeating sequence properly) to the next prime Q
1

above Q. From Q to

°1
2

, (in our example. from 31 to 1369) the potential primes are real

primes, but frorn there on most of the potential primes are composite,

with factors above Q. Thus the partial sieve has regularity on a scale

which rapidly outruns the region in which it determines the actual sequence

of primes, and it seems reasonable to assume a random distribution of
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primes in the remaining possible places. This is somewhat analogous

to a computer routine for generating random numbers, in which a

determinate process leads to a situation so involved that the determi-

nateness becomes obscured. In other words, lack of manifest order

is interpreted as randomness.

The partial sieve has absolute negative consequences. For

example, when constructed through 2, it forbids the occurrence of

consecutive primes, except for the pair 2,3. Constructed through 3,

it forbids sequences like p, p+2, p+4 or p, p+4, p+8 (except for ones

including 3) but allows an endles s sequence of primes diffe ring by 6

or any multiple of 6. The elimination of 5 breaks this sequence, but

allows an endless sequence differing by 30. Continuing the process,

we get a general rule: the maximum number of primes that can be in

a geometrical progression with a given interval is p -1 , where p is

the smallest prime that is not a factor of the interval, unless the se-

quence starts with p, when one more is allowed. Rules of this kind are,

however, only permissive; the occurrence of primes in allowed con-

figurations can be found only by trial, or their frequency can be esti-

mated by statistical considerations.

2. Frequency Distribution of Numbers of Primes in Intervals

Conside r now the problem: In a region where the density of

prime s is D, what is the frequency dis tribution v (N, D) of the number
n

n of primes occurring in an interval of fixed length N placed randomly

in the region? Imagine that a partial sieve is constructed, with the

fraction of numbers remaining as potential primes being equal to F.
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An interval N then contains an average of FN potential primes and

an average of ND real primes, so that the probability that any potential

prime remains real is n/F. As the interval is moved along the

sieve the number of potential primes within the interval will vary; let

f. be the fraction of intervals that contain i potential primes. For
1

a group of intervals with fixed i, the frequency distribution of primes

is the binomial distribution given by the expansion of

Adding the distributions for all values of i, we get:

( 1)

where (~) is a binomial coefficient. Equation (1) can be rearranged

to collect powers of n/F, with the result:

v = '\'
n L

m~ n

(2)

I
i~m

i
( ) f..m 1

(3)

Thus f. = 1,
1

i f.
1

;;0 mean value of i =FN,

i (i -1)/2 f.. etc.
1



Also
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n = I n V n = g1 (D/F) = DN,
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n (n-l) = 2
n(n-1) v

n
= 2 g2(D/F) .

2
FroIn the last two relations we can obtain (j , the Inean square

deviation of n froIn its mean value n:

r (2 - -
(j =nl1-n 1-

L
(4)

The next step is to evaluate the g's. The meaning of (3) can be

expressed in the following way: f. is the fraction of the intervals con­
1

taining exactly i potential primes; g is the fraction containing all
In

cases in which the presence of at least m potential primes is assured.
,

regardless of how many others there are. To compute g2' for example,

we consider each combination of two places in the interval, allow the

interval to assume all possible relations to the partial sieve, compute

the fractions of these that leave potential primes in both places, and

add these fractions for all combinations. It is easier to think of the

interval remaining fixed, while the elements of the sieve are independ-

ently rrlOved to all locations. In evaluating gz, we start with the sieve

constructed through 2, giving two locations with respect to the interval,

which are to be handled separately and the results added. After this,

each prime has p positions, of which p-2 avoid the chosen pair; the
Q

desired fraction for the chosen pair is then .!. n p-2 unless the In­
.23 p

te rval between the pair is a multiple of any p in the product. In that

case, the corresponding factor should be p-1; this is taken care of
p

p-1
by using the same product and multiplying by p -2 • For P3 and p 4'

we start with the sieve
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The factors for com-

for these cases.p-s
p-6

1 Qp-3 1 Qp-4
constructed through 3, and the products are b IT -- and J1 --

S P 6 5 P
for Ps and P6' we start with the sieve constructed through 5, and

1 Q p-5 1 Q p-6
the products are ~ IT -- and -30 IT --

7 P 7 P

mensurable intervals are p-2 p-3 p-4
p-3 p-4 p-5

(If more than one interval in a given combination is commensurable

with p, other factors will be needed; their derivation is obvious.)

Each g thus contains a dive rgent continued product. How-
m Q

ever, in (2) it is multiplied by (1/F)m, with F given by IT p-1 , which
2 p

diverges in a compensating way; the product g / F m is convergent.
m

It is therefore possible to allow Q to become large, arriving at a

unique result. The requirement that F < D implies approXimately.

that Q < .fk, where k represents the position in the numHer scale

where one is working. This limit is not important in the cases to be

considered, and the continued products will be carried to infinity.

This treatment contains a tacit as sumption that the partial sieve

is "well mixed." The region over which the potential primes represent

a complete set of all noncoinciding locations of the elements of the sieve

is a repeat length, and the treatment is therefore strictly valid only

for a repeat length. When it is applied to smaller regions, it is assumed

that the arrangements of the elements are randomly selected from the

complete set; this is related to the assumption of randomness for the

filling of the remaining space s.

Letting P1 be the first prime above m, and PO the first priIne

below p l' we can now write



-6-

g (~lm = a A nm
m\ F/ m. m
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(5)

A
m

Po m-1
= IT P IT

2 (p_1)m p

m-1p (p -m)
m(p -1)

(6 )

The coefficient a is the count of combinations of m potential primes
m

PO
found in a set of intervals containing all of the IT p possible locations

Z

of the partial sieve constructed through PO' each entry into the count

being multiplied by the appropriate conlmensurability factor where re-

quired.

The factors of Am approach [1 - (~) Ip2] as 'p gets large;

therefore the products converge. A 2 has been evaluated by Shanks [1].

Ratios of powers of the A's can be made that converge rapidly, with

the typical factor (1 - const/p3); this fact,

other A's in terms of A Z' Some values are

Ai = 1

A Z = 1.3203236---

A
3 = 2.859----

A4 = 4.14---

AS = 10.1---

A6 = 17.3---

can be used to evaluate

Values of the a's to N = 20 and of a
2

to N =30 are given in Table 1. The

value for an odd N is the mean of the values for the adjacent even N ' s.

The first occurrence of a 7 is at N = 21.

[1] D. Shanks, Solved and Unsolved Problems In Number Theory,

vol. 1, p. 30 (Washington 1962).
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Table I

3. Comparison with Empirical Data

UCRL-16902

Stein and Ulam [2] [3] have made a compilation of v for
m

intervals which increase with k in such a way that Ii'::::: 1, and present

the cumulative values for several values of k. From their results one

can pick ranges in which the interval N is constant, and find the values

of v for those ranges. Two of their ranges are given in Table n, in
n

the columns marked "S & U."
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Table II
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Range ofk 5aa,aaa to 1, aa0, 000 80, 000, 000 to 100,000, 000

N 14 19

S&U calc. 1 Icalc. 2 S&U calc. 1 calc. 2
i

Vo .2922 .2935 I .294 .3068 .3063 .307

vi .4358 .4293 .430 .4166 .4164 .415

v
2 .2198 .2288 .228 .2158 .2178 I .215

v
3

.0475 .0444 .048 .0541 .0530 .054

v
4 .0041 .0038 - -- .0064 .0063 .006

v
5 .0000 .00009 - -- .0003 .00029 ---

v
6

.0000 a ..... _- .0000 .000004 ---
- 1. 0349 1.0359 1.0376 1.0375

,
11.

2
.7381 .7337 .8000 .7956a-

x 3.553 4.451

Calculations made as described above, assuming that D={1/ln k},

and including small corrections for the variation of D over the inter-

vals. are given in the columns marked "calc. 1". The agreement is

very good, especially in the higher range, where one would expect a

statistical theory to be better.

[2] S. M. Ulam. private communication.

[3] M. Stein a.nd S. M. Ulam, An Observation on the Distribution of

Primes, Am. Math. Monthly (in press).

..
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4. A Simple Approximation
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Since the most important parameters of a distribution are nand

2
(J" , and the distributions computed in Calc. 1 represent superpositions

of binomial distributions, one may wonder how well the distributions

will be represented by single binomial distributions with parameters

- 2chosen to give the same values of n and a . In the binomial distl'i-

bution given by the expansion of

Setting this
2

(J" equal to the value given by (4) )

(7)

( 8)

Since x is not in general an integer. the binomial expansion does not

terminate. but the tern'1S with n < x seem to give a good representation

of the major part of the distribution. as shown in the columns marked

Calc. 2. com.puted in this way. The values of x are given in the table.

The quantity x. which is a function of N only. can be considered the

"capacity" of the interval, that is. the number of spaces in which the

n primes must be distributed randomly in order to represent the major

features of the distribution.

5. Distribution of Intervals Between Primes

The simplest problem is to find the density of intervals d between

primes. regardless of the presence of intervening primes. The pro-

cedure for this is the same as that described above for evaluating
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2
g2 (D/F) , except that only pairs differing by d are considered, N is

allowed to become large, and the count of intervals is divided by N.

The result is

_ 2 p-1
Density of intervals of length d - A 2D n {p/d) p -2' (9)

where the product is taken over all odd primes p that are factors of d.

This formula covers two previous results: that of Shanks [1], who

computed the density of twin primes (d =2), and that of P6lya [4], who

gave the ratio of the interval density for any d to that for d =2. Shanks

compared his cornputation with the number of twin primes in the range

1 to 37,000,000, with agreement to one part in a thousand. P6lya gave

a compilation of interval ratios to d =70 in the range 1 to 30,,000,000;

these fit the formula very well, including d =62, with the prime factor 31.

It is a more difficult problem to find the frequency of empty

intervals, or gaps of length G, between primes. Equation (9), with

d =G, must be multiplied by a factor that gives the probability that no

primes exist within the interval. The computation of this probability

is related to that of v 0' but is modified by the constraints on the loca-

tion of the elements of the sieve imposed by the presence of the two known

primes at the ends of the gap. This computation has been carried out

to G = 10, the largest gap that contains at mo~t two potential primes,

and the results are compared with some gap counts rnade by P. and

M. Stein and sent to me by Ulam [2]. The counts for the range

80,000,000 to 100,000,000 are entered in Table III in the column marked

"S &: U." The computed values are given in the column marked "calc. II

(4) G. P6lya, Heuristic Reasoning in the Theory of Numbers, Am.

Math. Monthly!:..!!.., 375 (1959).

F.
i



-11- UCRL-16902

These are obtained by multiplying 20,000,000 A
2

D
2

by the factors given

in the last column, assuming D= (1/ln k), and making a correction for

the variation of D over the range.

Table III

G S&U calc. factor

2 78,862 78,740 1

4 78.911 78,740 1

6 138,855 138,860 2 [1 - (A3!A2 ) D]

2
8 60,796 60,860 1 - 2 (A3/ A 2 ) D + (A4/ A 2 ) D

10 78,522 78,552 4/3 [1 - 9/4(A3/A2)D+3/2(A4/A2)D2]
I

Cases in which intervening primes are required can also be con-

sidered. Examples are "double twins, II like 5, 7, ii, 13, and "brack-

eted twins," like 7, 11,13, 17. The computed densities for these are

A 4D
4

and 2A4 D
4

respectively. Another variation concerns configura­

tions in which certain intervening primes are required, while others

are dis regarded. The example chosen to illus trate this is a geometrical

progression of six primes with a common difference equal to 30, like

7, 37, 67. 97, 127, 157. The computed den~ity for this case is 8A
6

D
6

.

These formulas predict that in the range 80,000,000 to 100,000,000,

there will be 740 double twins, i480bracketed twins, and 75 geometrical

progressions of 6 primes differing by 30. As far as i know, counts of

these have.not been made.
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The method developed in Section 2 appears to be a valid way of

applying statistical methods to prime number distributions, but the

work becomes very involved for large values of N; the number of cases

of commensurability which enter into the computation of a increases
m

rapidly, and the alternating signs of Eq. (2) place a high requirement

on the accuracy of these coefficients. However, in Section 4, it is

shown that only a 2 is needed to determine the major part of the distri­

bution for large N. This offers a simple method for handling these cases.

The evaluation of a 2 is easily done by a systematic procedure:

1£ N is even, the number of pairs of positions in the interval

contributing to a 2 is ~ (~ - 1). If N is even and divismle by a prime

p. the amount to be added because of the commensurability factor is

N(2:!- _1)_1_
22 P P - 2

the furthe r amount

If N is even and divisible by any product P1 P2---'

N(N \ 1- -1 ) mus t be added.
22P1 P2--- / (P1- 2 ) (P2 -2)---

For a general value of N, the number to be used in each case is a linear

interpolation between those given by the above formulas for particular

values of N.

A remarkable feature of the distribution of prime numbers is the

2
behavior of (J as N is varied in a region of constant D. It is found

that, because x increases less rapidly than N, (J 2 also increases less

rapidly than N. If an interval is Inade up of adjacent smaller intervals,

2 . 2
(J for the whole interval is less than the sun. of the values of (J for

its parts. This behavior is caused by the fact that adjacent intervals are

not independently random in their locations with respect to the partial
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sieve. The value of (J 2 is always les s than n, and may be much les s

in some cases. For N=60(x= 10.8018) and D= 1/12 (k= 160,000), the

value 0.54 is computed for (J 2In. One cannot go to much larger values

of D without getting into a region of k too small to give confidence in

2/-statistical reasoning, but much smaller values of (J n will be found

for very large values of N. Prime distributions are not as random as

one would gues s from conventional statistical arguments, and the agree-

ment between computed frequencies and the empirical values will usually

be found to be better than such conventional arguments would suggest.

It will be interesting to collect further empirical data for various

values of Nand D. In the collection of such data, the intervals should

either be distributed randomly throughout the range of k, or they should
I

be taken at every value of k, as was done in Ref. 3. This avoids any

correlation with the periodicities of the number scale.
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