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ABSTRACT

Being able to effectively identify clouds and monitor their evolution is

one important step toward more accurate quantitative precipitation estima-

tion and forecast. In this study, a new gradient-based cloud-image segmen-

tation technique is developed using tools from image processing techniques.

This method integrates morphological image gradient magnitudes to sepa-

rable cloud systems and patches boundaries. A varying scale-kernel is im-

plemented to reduce the sensitivity of image segmentation to noise and cap-

ture objects with various finenesses of the edges in remote-sensing images.

The proposed method is flexible and extendable from single- to multi-spectral

imagery. Case studies were carried out to validate the algorithm by apply-

ing the proposed segmentation algorithm to synthetic radiances for channels

of the Geostationary Operational Environmental Satellites (GOES-R) simu-

lated by a high-resolution weather prediction model. The proposed method

compares favorably with the existing cloud-patch-based segmentation tech-

nique implemented in the PERSIANN-CCS (Precipitation Estimation from

Remotely Sensed Information using Artificial Neural Network - Cloud Clas-

sification System) rainfall retrieval algorithm. Evaluation of event-based im-

ages indicates that the proposed algorithm has potential to improve rain detec-

tion and estimation skills with an average of more than 45% gain comparing

to the segmentation technique used in PERSIANN-CCS and identifying cloud

regions as objects with accuracy rates up to 98%.
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1. Introduction

A more accurate representation of the clouds is crucial for a wide variety of applications. For

instance, cloud coverage and type identification have been used for nowcasting to deliver accurate

weather forecasts (Papin et al. 2002), rainfall and satellite precipitation estimates (Sorooshian et al.

2000; Hong et al. 2004), better assessment of climate models (e.g., Randall et al. 2003; Waliser

et al. 2009; Liu et al. 2013; Li et al. 2016) and various other weather analysis and applications

(Christodoulou et al. 2003; Zhang et al. 2009).

Among all applications, reliable estimation of precipitation is critical to manage and predict wa-

ter resources and climate studies (AghaKouchak and Nakhjiri 2012). Satellite observations are a

main source of global precipitation estimates due to their high spatio-temporal resolutions and cov-

erage. One way to estimate precipitation is through using multiple wavelengths of geostationary

(GEO) satellite including commonly used infrared (IR) and visible (VIS) wavelengths (Hsu et al.

1999; Nasrollahi et al. 2013). Despite the diurnal visible data, Infrared (IR) images collected by

geostationary satellites can indicate the presence of clouds in the atmosphere during both daytime

and nighttime with high spatiotemporal resolution and consecutive coverage (Kuligowski 2002).

Precipitation rate is then measured based on an indirect relationship between clouds albedo and

cloud top temperature. Another popular source of satellite-based information is passive microwave

(PMW) images from sensors onboard low-Earth-orbiting (LEO) satellites which is more directly

related to the ground precipitation rate (Joyce et al. 2004; Kidd et al. 2003).

An example for the concept of using LEO-PMW satellite data along with the GEO-IR-based

data to provide global precipitation estimation at near real-time is the GPM (Global Precipita-

tion Measurement) satellite. The NASA GPM program provides a key dataset called Integrated

Multi-satellite Retrievals for GPM (IMERG). IMERG has been developed to provide half-hourly
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global precipitation monitoring at 0.1x0.1 (Huffman et al. 2015). The satellite-based estimation of

IMERG consists of three groups of algorithms including the Climate Prediction Center (CPC) mor-

phing technique (CMORPH) from NOAA Climate Prediction Center (CPC) (Joyce et al. 2004);

The Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis from

NASA Goddard Flight Center (TMPA) (Huffman et al. 2007), and microwave-calibrated Precipi-

tation Estimation from Remotely Sensed Information using Artificial Neural Network-Cloud Clas-

sification System (PERSIANN-CCS) (Hong et al. 2004).

The purpose of this study is to improve the current in use version of PERSIANN-CCS in

IMERG. PERSIANN-CCS consists of three general steps including, 1- segmentation of satel-

lite cloud images into cloud patches, 2- feature extraction, and classification of cloud patches,

3- Rainfall mapping and estimation. This algorithm utilized IR-only data to indirectly estimate

precipitation from the cloud top temperature and is associated with inherent uncertainties arising

from different parts of the algorithm.

Despite all the recent efforts to improve precipitation estimation and rain no rain detection (Kar-

balaee et al. 2017; Tao et al. 2016; Nasrollahi et al. 2013; Mahrooghy et al. 2012; Behrangi

et al. 2009) not much attention is paid to improve cloud extraction and identification part of

PERSIANN-CCS algorithm. Considerable uncertainties result from the first and one of the most

important steps of precipitation estimation from remotely sensed information which is cloud seg-

mentation and identification. Almost all cloud segmentation algorithms employed by the IR-based

rainfall estimation algorithms are based on the assumption that colder cloud top specify higher

precipitation probabilities (Kidd et al. 2003; Huffman et al. 2007; Levizzani et al. 2001). Never-

theless, cold cloud tops do not necessarily imply precipitation. Intense precipitation is correlated

with colder clouds. However, the contrary relationship may not be true (Nasrollahi et al. 2013).

In addition to this issue, orographically induced precipitation or precipitating warm clouds (e.g.,
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stratiform) may cause precipitation, which is not easily identified with current algorithms (Joyce

et al. 2004).

Several algorithms have been developed to detect and segment clouds from satellite imageries,

such as constant or changing threshold methods (Rossow and Garder 1993; Stowe et al. 1999;

Kriebel et al. 2003; Bendix et al. 2004; REP 2007; Sun et al. 2016), multidimensional histogram

approaches (Kärner 2000), neural networks (Yhann and Simpson 1995; Tian et al. 1999; Jang et al.

2006), Haze Optimized Transformation (HOT) algorithm (Zhang et al. 2002; Zhang and Guindon

2003), statistical and pattern recognition methods (Molnar and Coakley Jr 1985; Kärner 2000;

Murino et al. 2014), Markov Random Field formalism (Le Hégarat-Mascle and André 2009), vari-

ational gradient-based fusion method (Li et al. 2012), pixel-based seed identification and object-

based region growing - the watershed segmentation (Sedano et al. 2011; Beucher 1993; Vincent

and Soille 1991), major axis of a scatterplot and the invariant pixels detection (Lin et al. 2015).

Among the cloud detection techniques, the threshold-based segmentation methods are the most

broadly applied due to their simplicity, fast function and agreeable accuracy of cloud detection

(Hagolle et al. 2010; Jedlovec et al. 2008; Zhu et al. 2015). Threshold-base approaches had been

used in many cloud detection algorithms including ISCCP (International Satellite Cloud Climatol-

ogy Project) (Schiffer and Rossow 1983), APOLLO (AVHRR Processing scheme Over cLouds,

Land and Ocean) (Gesell 1989), and CLAVR (CLouds from the Advanced Very High-Resolution

Radiometer (AVHRR), NOAA) (Kriebel et al. 2003). The algorithm from ISCCP (Rossow et al.

1985) considers only two conditions of cloudy and clear sky observed visible and infrared ra-

diances. However, the missing clouds that is similar to clear conditions can be the source of

uncertainty (Zhu et al. 2015; Sun et al. 2016). The algorithm used in NOAA CLAVR (Stowe et al.

1991) adopts a window of 2 by 2 pixels as the identification unit for the cloud detection. Based

on the number of pixels that pass the test, the pixel matrix is categorized in different classes of
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cloud, mixed, or clear sky. In this algorithm, the bright background can cause uncertainty (Green-

hough et al. 2005; Kriebel et al. 2003; Lin et al. 2015; Sun et al. 2016). The APOLLO algorithm

(Saunders and Kriebel 1988; Gesell 1989) identifies cloudy pixels using the five full-resolution

AVHRR channels based on a temperature threshold in each channel. Based on the data, a pixel is

recognized as a cloud pixel when the reflectance is higher than a definite threshold or has a lower

value than the threshold set by temperature (Sun et al. 2016).

In threshold-based techniques, clouds are in general differentiated by a higher reflectance and

lower temperature than the background or earth surface. A major source of error comes from the

complex land surface composition and high variability of reflectivity in different cloud types; a

threshold that is appropriate to a certain cloud type or a certain geographical region may not be

applicable for another (Sun et al. 2016). Moreover, pixels defined by the threshold allow us to

only consider the radiometric and textural features of an individual pixel rather than contextual

information provided by the image regions as objects (Blaschke et al. 2014). Hence, the potential

benefit of an automated object-based approach designed to segment the images into meaningful

objects which can be described as a set of features and is independent of predetermined threshold

is indispensable.

The other challenge with segmentation methods of precipitation retrieval algorithms, despite ex-

tensive developments in this area, is that they are defined for intensity-based single spectral images,

and are rarely used for multispectral imageries (Soille and Pesaresi 2002). Infrared (IR) images

collected by geostationary satellites are able to indicate the presence of clouds in the atmosphere

during both daytime and nighttime and are useful for the continuous monitoring of cloud prop-

erties (Xu et al. 2005). However, nearly all IR-based rainfall estimation algorithms suffer from a

major source of error that comes from the sometimes false assumption that the colder the cloud top

temperature, higher the probability of rain production. Additional measurements from different
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sensors could be taken into account to provide information about the structure and vertical profile

of clouds that lead to rain (Xu et al. 2005).

Furthermore, a technique for cloud identification based on utilization of multi-channel bright-

ness temperature is expected to outperform single-channel information (Mecikalski and Bedka

2006; Li et al. 2010). For instance, Behrangi et al. (2009b) used the multispectral information to

improve Rain/No Rain detection capabilities using a neural network-based framework. They found

that using the combination of any two IR channels seems superior to the use of any single IR chan-

nel. Also, Gonzalez et al. (2012) segmented multispectral images from MSGSEVIRI (Meteosat

Second GenerationSpinning Enhanced Visible and Infrared Imager) using an order-invariant wa-

tershed algorithm applied to the gradient images. Once image objects have been segmented, they

are classified using a multi-threshold method. A drawback for this method is that a fixed threshold

on each reflectance images and brightness temperatures is needed for the classification of clouds

(González et al. 2012). In summary, the limitations of previous studies emphasize the need for a

hybrid data-driven algorithm for cloud detection based on the multi-channel information. Focus-

ing on the aforementioned issues that make cloud detection in satellite observations a challenge,

this paper introduces an automated data-driven cloud detection algorithm framework based on the

image gradient of the hyperspectral and high-spatial-resolution remote sensing data.

This work is motivated by the recognition of the potential ability of object-based segmentation

methods to identify warm clouds with higher cloud-top brightness temperatures, which sometimes

are difficult to handle by existing rainfall estimation algorithms (e.g., PERSIAN-CCS). In the

experiments, the algorithm is applied to the model simulated GOES-16 ABI imagery, along with

the simulated radiance for different channels of the GOES-16 ABI as the reference.

The proposed algorithm is a mathematical morphology-based method. This algorithm is com-

prised of several approaches that have been optimized to extract the information from geostation-
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ary satellite imagery. It is capable of being extended to other types of data as well. By inte-

grating the complementary information from multi-channel measurements into the segmentation

algorithm, it is possible to detect clouds more efficiently and accurately. The proposed algorithm

makes it possible to segment additional information about more varied cloud types that can then be

fed into a precipitation estimation algorithm. Not all clouds will rain, but having information about

specific cloud regions allows one to apply different assumptions or take environmental factors into

account about the probability of rain for those regions.

2. Methodology

The Gradient-based Multi-Spectral Segmentation (GMS) algorithm mainly carries out the fol-

lowing functions: multi-scale gradient computation, markers generation, and segmentation.

GMS Cloud detection algorithm

The presented cloud detection approach is built on a hierarchical structure, consisting of different

steps which the flow diagram of the proposed segmentation algorithm is shown in Fig. 1.

MULTISCALE GRADIENT MAGNITUDE COMPUTATION

Gradient computation here means achieving the maximum variation of each pixel’s intensity in

the neighborhood. The gradient highlights the sharp changes in intensity or the edges in an image.

In a grayscale morphology, the gradient can be attained by subtracting the eroded image from the

dilated image using a structuring element (Soille and Pesaresi 2002). A gray-scale image pixels’

value can be represented by the x and y coordinates as a three-dimensional set (Parvati et al. 2008).

With this concept, gray-scale dilation can be defined as follows:
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Let f(s, t) represent an image and B(x, y) be the structuring element. Structuring element or

kernel is a group of pixels of different sizes and shapes that in this study a flat kernel which means

a squared window of pixels with equal values are considered for simplicity. Gray-scale dilation of

f by B is defined as below:

( f ⊕B)(s,t) = Max
{

f (s− x, t− y)+B(x,y) | (s− x),(t− y) ∈ D f ;(x,y) ∈ DB

}
(1)

Gray-scale erosion of f by B is defined as below:

( f 	B)(s,t) = Min
{

f (s+ x, t + y)−B(x,y) | (s+ x),(t + y) ∈ D f ;(x,y) ∈ DB

}
(2)

where D f and DB are the domains of f and b, respectively. The conditions that (s+x) and (t+y)

have to be in the domain of f, and (x, y) have to be in the domain of B, is equivalent to the condition

in the binary description of dilation and erosion. In dilation, two sets have to at least share one

pixel in common and in erosion, structuring element has to be completely contained by the set

being eroded (Pahsa 2006). For further details on the erosion and dilation operation please refer

to the ’Digital Image Processing’ book (Gonzalez and Woods 1992).

Gradient image is calculated using (3) from the original image and corresponds to the sharpness

of intensity change for each pixel (Parvati et al. 2008).

MG( f ) = ( f ⊕B)− ( f 	B) (3)

A multi-scale gradient algorithm capable of utilizing a varying scale-structuring element in math-

ematical morphology is implemented to reduce the sensitivity to noise and to extract various fine-

nesses of the edges of the objects in remote sensing images (Wang 1997).

MG( f ) =
1
n

n

∑
i=1

[(( f ⊕Bi)− ( f 	Bi))	Bi−1] (4)

Where Bi denotes the group of square structuring elements with the size (2i+1)×(2i+1) pixels and

n is the scale which in this study is set to 5. The mathematical morphology can be extended from a
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grayscale image to a multichannel image. By calculating the gradient magnitudes for each band of

the multispectral image separately and combining them, the complementary measurements from

other spectral bands are also considered. A component-wise strategy is utilized in this study to

combine the resulting gradient image values. This approach consists of processing each channel of

the multispectral image separately and summing up the resulting gradient image values to generate

a single band gradient image.

MG( f ) =
n

∑
i=1

MG( fi) (5)

WATERSHED SEGMENTATION ON THE GRADIENT IMAGE

Watershed transformation (Vincent and Soille 1991) is a powerful segmentation algorithm from

mathematical morphology which have been used in many segmentation problems (Hsu et al. 2010;

Zahraei et al. 2013; Lakshmanan et al. 2009). This approach is usually applied on Satellite images

to extract the regions (i.e., objects) that are identified as clouds. The basic idea of the watershed

algorithm is to consider the single channel intensity image as a three-dimensional topography map

where the catchment basins are delimited by watershed lines. Each local minimum then flooded

to neighboring pixels until meeting an adjacent catchment. A ridgeline is then delineated between

any two regions borders (Fig. 2). Further information about the watershed segmentation algorithm

can be found in (Vincent and Soille 1991).

The watershed algorithm is a powerful morphological edge extractor and capable of separating

overlapping clouds (Hong et al. 2006). The morphology-based watershed transformation used in

this study is applied to the gradient magnitude of satellite images. This is as opposed to the tra-

ditional segmentations that apply watershed transformation directly on the imageries values. The

inspiration is to capture warm clouds associated with rainfall in precipitation retrieval algorithms

that are missed by utilization of traditional temperature threshold and watershed transformation
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methods. Fig. 3 is demonstrating how local minima associated with warmer cloud regions will be

disregarded by the threshold applied to the values before implementing the watershed algorithm.

In order to capture the clouds with the higher temperature that are associated with rainfall, the

threshold-based algorithms use incremental series of thresholds to encompass a wider range of

cloud types. However, as shown in schematic Fig. 3, by increasing the temperature threshold

from 253 to 260 for example, local minimas which here are representative of distinct clouds will

merge and cause misleading outcomes. Therefore, optimal results are typically achieved when the

watershed algorithm is applied to the gradient magnitude images that delineate the boundaries of

all types of clouds, regardless of their height or temperature. Applying the watershed segmenta-

tion to gradient images may lead to over-segmentation due to the noise and slight changes in the

local gradient calculations. Hence, a proper marker-generation technique is needed to achieve a

desirable segmentation.

MARKER GENERATION AND LOCAL MINIMA ELIMINATION

As described in the previous section, the high sensitivity of the watershed transformation al-

gorithm to noise and irrelevant local minima yields many catchment basins, leading to over-

segmentation. In order to overcome the over-segmentation issue only selected regional minima

of the input image, called as markers, are being used prior to the application of the watershed

transform. The markers are considered as either single points or larger regions that are placed in-

side an object of interest (Parvati et al. 2008). As a result, the number of regions in the watershed

algorithm is reduced greatly. The generation of pertinent markers is one key step in the success-

ful application of watershed segmentation (Soille and Pesaresi 2002). In this study, we obtained

markers through thresholding gradient magnitudes. Clusters of image pixels are classified as seed

or non-seed pixels using Otsu thresholding method (Otsu 1979) to generate marker image. Otsu
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thresholding method is an optimal threshold which is selected automatically, based on maximizing

the separability of the group-wise pixel values in gray levels. This approach selects an adequate

threshold level for extracting objects from their background based on a gray-level histogram. The

reason to implement this method is based on the histogram plot of the gradient magnitudes. As

shown in figure 4, gradient magnitudes of most pixels distribute in the lower value range while

the sharp edge pixels with large gradient magnitudes are greater and separable than those within

background. For further explanation of this thresholding method and examples, one can refer to

(Otsu 1979; Zhang et al. 2014).

PERSIANN-CCS’ segmentation algorithm

PERSIANN-CCS is an infrared (IR) based algorithm being integrated into the IMERG (Inte-

grated Multi-Satellite Retrievals for the Global Precipitation Mission GPM) to create a precipi-

tation product in 0.1x0.1 degree resolution over the chosen domain 50N to 50S with 30 minutes

time intervals. Although PERSIANN-CCS has a high spatial and temporal resolution, it may

sometimes overestimate or underestimate due to the limitations associated with different parts of

it (Karbalaee et al. 2017). PERSIANN-CCS consists of three general steps including, 1- segmen-

tation of satellite cloud images into cloud patches, 2- feature extraction, and classification of cloud

patches, 3- Rainfall mapping and estimation.

Image segmentation is the first, and most important step in all precipitation retrieval algorithms.

Infrared-based rainfall estimation algorithms are categorized into the three general groups depend-

ing on the method used for extracting information from infrared cloud images: (a) pixel-based, (b)

local texturebased, and (c) patch-based algorithms (Hong et al. 2004). PERSIANN-CCS uses

cloud-patch-based technique and applies artificial neural networks to classify clouds based on the

IR information to estimate precipitation (Hong et al. 2004). This algorithm outline clouds from
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the clear sky using a user-defined temperature threshold and segments cloud patches from geosta-

tionary IR images using a region-growing method (Gonzalez and Woods 2007; Hong et al. 2006).

In the PERSIANN-CCS segmentation procedure, the minimum brightness temperature (Tbmin)

of the clouds is first determined and then used as seed. Next, the temperature threshold is raised

to identify a new set of pixels. Then, Tbmin is increased to include the neighboring areas from

the seeded points. This procedure continues until reaching the borders of other seeded regions

or cloud-free regions. The temperature threshold is iteratively increased to a maximum of 253

K. Afterward, a morphological operation is applied to remove/merge the tiny regions (Gonzalez

and Woods 2007; Hong et al. 2004). Further detailed description of the algorithm along with the

segmentation process can be obtained from (Hong et al. 2006, 2003).

The rainfall estimation process in this algorithm is based on the extracted information from IR

channels at three different temperature threshold levels (220, 235, and 253k) (Hong et al. 2006).

PERSIANN-CCS is exclusively based on infrared data to identify the clouds and indirectly es-

timate rainfall from this single channel which can cause missing detection of the rainfall from

warm clouds and false estimation for no precipitating cold clouds (Karbalaee et al. 2017). In

this study, the segmentation approach used in PERSIANN-CCS algorithm is applied to the simu-

lated synthetic cloud imageries and the accuracy of cloud detection is compared with the proposed

gradient-based segmentation algorithm.

Description of the datasets

GOES-16 ABI

The primary data sets collected and processed in this research include different channels of

newest-generation geostationary weather satellites bands of GOES-R (Geostationary Operational
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Environmental Satellite, R series;). GOES-16 is the next generation of the GOES with the Ad-

vanced Baseline Imager (ABI; (Schmit et al. 2005)) that has 16-channel imager including 2 visible

channels, 4 near-infrared channels, and 10 infrared (IR) channels. Each of the channels is sensitive

to a certain part of the land and the atmosphere and will give a better insight on the structure, type,

and properties of the cloud. GOES-16 ABI provides more accurate, detailed, and timely detection

of high-impact environmental phenomena by more spectral channels, higher spatial (2 km × 2

km at nadir for infrared channels) and temporal (every 5 minutes for CONUS) resolutions over

the previous-generation operational GOES imager. The development of the ABI is being done as

a collaborative effort between the National Aeronautics and Space Administration (NASA) and

NOAA. For readers interested in further details, (Schmit et al. 2005) and (Schmit et al. 2005) are

considered as the references.

PSU WRF-EnKF dataset

The Weather Research and Forecasting (WRF) model with its Advanced Research WRF (ARW)

dynamical core, version 3.8.1 (Skamarock et al. 2008) is used to generate the simulation for the

synthetic infrared cloud imageries that are used to test and verify the proposed segmentation al-

gorithm. This model is a community NWP model that is widely used in meteorological research

and operational works. The applied model domain consisting 401 × 301 × 61 grid points with

a horizontal resolution of 1 km; among the 61 vertical layers, there are 19 layers in the lowest 1

km above ground level, and the uppermost layer is located at 50 hPa. In order to deal with sub-

grid physical processes that model grids are unable to resolve several physical parameterization

schemes including the (Thompson et al. 2008), unified Noah land surface model (Ek et al. 2003),

Monin-Obukhov Janjic Eta scheme (Chen et al. 1997) for surface layer parameterization, Mellor-

Yamada-Janjic TKE scheme (Janjić 1994) for PBL processes, and the Rapid Radiative Transfer
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Model for General Circulation Models (RRTMG) schemes (Iacono et al. 2008) for longwave and

shortwave radiation are applied based on the sensitivity tests.

The initial conditions for the simulation are generated using the WRF-based ensemble Kalman

filter (WRF-EnKF) data assimilation system developed at the Pennsylvania State University (PSU)

(Zhang et al. 2009, 2011). This model-assimilated channel-10 brightness temperature observations

from GOES-16 ABI for 1 hour from 1900 UTC to 2000 UTC every 5 minutes (Zhang et al. 2018),

which is a real-time 3-km atmospheric model covering CONUS and operated by the Earth System

Research Laboratory (ESRL) of NOAA. The simulation is carried out for 4 hours and ends at

0000 UTC of the 13th of June 2017 with output file generated every 5 minutes. Simulated ABI

brightness temperature fields are then generated from model output files using the Community

Radiative Transfer Model (CRTM; (Han 2006)). For further information on the PSU WRF-EnKF

model simulation, and the synthetic cloud imageries along with the companion simulated radiance

for different channels of the GOES-16 ABI please refer to (Zhang et al. 2018).

Results and Discussion

Experiments are carried out to validate the GMS algorithm by applying it to the model simulation

of the GOES-16 ABI imageries, and the accompanying model-simulated horizontal distribution of

all clouds hydrometeors in the model as the known ground truth. The first case study is a one-

day period starting from 00:00 UTC of the 26th to 00:00 UTC of the 27th of August 2017 right

after Hurricane Harvey made landfall in South Texas which brought record-breaking catastrophic

rainfall in this region. Harvey is the second costliest hurricane (after Katrina in 2005) in insured

losses; it is the first storm that was fully captured by the newest-generation geostationary satellites.

The GOES-16 ABI radiances were recently successfully assimilated into the PSU WRF-EnKF data

assimilation system with 3-km horizontal grid spacing while led to much improved subsequent
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WRF forecast of Harveys track and intensity (Minamide and Zhang 2018). This 3-km WRF

forecast output is used here to generate synthetic GOES-16 ABI radiances to provide case of

validation of the proposed segmentation technique. The other case selected is a realistic simulation

of the severe weather event across Wyoming and Nebraska on the 12th of June 2017 by a high-

resolution state-of-the-science numerical weather prediction (NWP) model. It represents deep

convective clouds over southeast Wyoming and the western Nebraska Panhandle, starting from

20:05 UTC of the 12th of June 2017 to 00:00 UTC of the 13th for every 5 minutes time interval.

This is the first known tornadic thunderstorm outbreak that was well captured by the GOES-16

ABI observations and have been successfully assimilated into the PSU WRF-EnKF system as a

convection-allowing model (Zhang et al. 2018).

Visual comparison and statistical evaluation are performed for both cases to obtain the accuracy

of the proposed segmentation algorithm in comparison to the Single-channel, Threshold-based

segmentation approach that is currently in use for precipitation retrieval algorithm, PERSIANN-

CCS. Although the proposed gradient-based segmentation algorithm is capable of integrating

information from different spectral bands, the results shown in this section are obtained from

single-band IR cloud top brightness temperature to keep the consistency with the PERSIANN-

CCS single-band segmentation algorithm.

Visual comparison

The final gradient-based segmentation results from simulated IR input along with the gradient

magnitude imageries of both the Hurricane Harvey, and Wyoming thunderstorm event are shown

in Fig 5, and 7 respectively. For these figures, the gradient magnitude is calculated from the IR

image and the watershed segmentation is then applied to the gradient magnitude based on the

generated markers to achieve the final cloud patches segmentation.
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Considering the reference images, in both cases the newly developed algorithm is capturing

more of the clouds especially the warmer ones in comparison to the PERSIANN-CCS segmen-

tation approach (Fig. 6, and 8). This indicates that the gradient-based segmentation algorithm

is capable of overcoming the drawback associated with threshold-based segmentation approaches

implemented in patch-based precipitation retrieval algorithms by capturing warmer clouds as well

as the cold convective ones.

As it is mentioned in the methodology section, the gradient-based segmentation algorithm is ca-

pable of taking into account the measurements from different channels of multispectral imagery.

In order to visually assess the effect of integrating other complementary channels of information,

lower water vapor channel data is also processed and gradient magnitudes are calculated sepa-

rately for this band (Fig. 9). The gradient image values from each spectral bands are then summed

up to generate a single-valued multispectral gradient magnitude image. Then the watershed seg-

mentation is applied to the combined single-valued gradient magnitude imagery with the same

procedures explained before. The segmentation results from each scenario (IR-only, and IR+ Wa-

ter vapor) are shown in Fig. 9. Figures are implying that the integration of information from

other spectral bands will provide more useful information for delineating the clouds distinctly and

to discard cloud patches that are mistakenly detected due to the background noise in utilization

of only-IR channel data. Adding the water vapor channel provides useful information for better

defining the cloud segments and leads to a more accurate classification as the next step toward

more robust intensity estimation and areal delineation of rainfall.

Statistical Evaluation

In order to perform an accuracy assessment, and to compare the outcome of segmentation al-

gorithms, a reference mask is needed. Since there is no accurate ”truth” observation mask to
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determine whether a grid point is correctly covered by cloud or not, the model simulation of mix-

ing ratios of all hydrometeors, including cloud water, cloud ice, rainwater, snow, and graupel, are

used. These hydrometeor mixing ratios are prognostic model variables simulated by the Thompson

microphysics scheme and evolve in correspondence with the dynamical and thermodynamical pro-

cesses within the WRF model. After summing them all together and taking the vertical maximum

value within each column, a threshold of 10-6 kg/kg is then applied to the horizontal hydrometeor

mixing ratio map, which is a threshold widely used for cloud top and cloud base identification

from model simulations beginning from (Otkin and Greenwald 2008). The grid point is cloudy

if hydrometeor mixing ratio at this location is greater than the threshold and is clear sky if lower

than the threshold. The model-derived horizontal distribution of clouds is used as the truth to ver-

ify and compare the two different cloud identification algorithms. The metrics used to assess the

cloud segmentation algorithms are based on table 1. The verification indices used along with their

application are listed in table 2.

Performance improvement in segmentation skill using the gradient-based technique is evident

(Fig. 10, 11). The improvement is pronounced when comparisons are made for using IR-only

data to keep the consistency between the proposed segmentation algorithm, and the conventional

one implemented in PERSIANN-CCS. The only metric that is not showing the performance en-

hancement is the False Alarm Ratio (FAR with the best score of zero) which the gradient-based

segmentation is showing non-zero but insignificant average value of 0.03.

Summary and Conclusions

A gradient-based segmentation algorithm for cloud detection and segmentation using geostation-

ary satellite infrared imageries is presented. The goal is to provide an automated method to over-

come the shortcomings associated with the traditional patch-based cloud segmentation approaches
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toward more reliable precipitation retrievals. This algorithm is based on mathematical morphology

and is utilized to extract the information from the single band or more than one channel of satellite

imagery. Due to the particular characteristics of each spectral band measurements, accumulation

of additional sources of information from multi-channel satellite Imagery is viable by looking at

their gradient magnitudes instead of directly utilizing each channel’s values. This gradient-based

cloud image segmentation method integrates morphological image gradient magnitudes to separa-

ble cloud systems and patches boundaries using a convolution operation. The proposed algorithm,

as well as the conventional patch-based segmentation approach used in PERSIAN-CCS algorithm,

is applied on the simulated GOES-16 ABI imageries accompanied with their modeled horizontal

distribution of hydrometeors as the reference to point out the performance enhancement. Experi-

ments and the results from the visual and statistical comparison indicate the improved performance

of the gradient-based segmentation technique over the traditional approaches specifically in terms

of extracting information useful to identify warm cloud region. This finding is the first step toward

reducing the uncertainty associated with the patch-based precipitation retrieval algorithms.
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TABLE 1. The four possible diagnosis results of testing.

Detected Not detected Probability

Existing

True positive (TP)

The existing defect is detected

(hit)

False negative (FN)

The existing defect is not detected (miss)

TP + FN = 100 %

Non-existing

False positive (FP)

A defect is detected even though it is not existing

(False Alarm)

True negative (TN)

No defect is detected, where no defect exists

(Correct Rejection)

FP + TN = 100 %

Total FP + TP FN + TN Total =TP+ FN+TN+FP

32



TABLE 2. Verification Metrics

Verification Metrics Formulation Range Application

Undetected Error Rate Ur= Misses/Number of observed events
(0 ≤ Ur ≤ 1)

Perfect score: 0

The rate of error in detection of hit events

Probability of Detection POD =Hits/ Number of observed events
(0 ≤ Hr ≤ 1)

Perfect score: 1
The likelihood of correct detection

False Alarm Ratio Fr = False Alarm/Number of Not Observed
Events

(0 ≤ Fr ≤ 1)

Perfect score: 0

The number of false alarms per total number of alarms

Bias Score Bias=(Hits+False alarms)/ Number of ob-
served events

(0 ≤ BI)

Perfect score: 1

How similar were the frequencies of Existing

and Detected events?

Equitable Threat Score
(ETS)

ETS=Hits-Hitsrandom/(Hits+Misses+False

alarms-Hitsrandom)

(-1/3 < ETS < 1)

Perfect score: 1

How well did the Existing events

correspond to the Detected events
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FIG. 1. Flow diagram of the proposed multi-spectral gradient-based segmentation algorithm.
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FIG. 2. Watershed Transformation Process Diagram. Each of the positive signs represents one watershed

domain.
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FIG. 3. Effect of increasing the threshold on the Watershed segmentation technique. The positive (negative)

signs are representing the seeds that are included (excluded) in the segmentation process.
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FIG. 4. Histogram plot of the gradient magnitude image. Horizontal axis is showing the range of gradient

magnitude values, and the vertical axis is the number of pixels with each gradient magnitude value.
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FIG. 5. Visualization of the gradient based segmentation result for simulated Hurricane Harvey event on

August 26th 2017 at 3:00 AM UTC: A. Simulate IR longwave window band from GOES-16 ABI (The scale bar

is temperature in degree Kelvin) B. Normalized gradient magnitudes imagery for the corresponding Simulated

IR Channel (Scale bar is normalized gradient magnitude values). C. Resulting cloud Segments (Each random

color represents a distinct segment).
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FIG. 6. Visual comparison of the two segmentation output (B and C) based on the ’truth’ mask as a reference

for the simulated Hurricane Harvey event at 3:00 AM UTC of August 26th 2017: A. ’Truth’ Cloud Mask used

as a reference. Dark blue region is implying the cloud existence. B. PERSIANN-CCS segmentation result from

single-IR channel. C. Gradient-based Segmentation Algorithm output based on only IR channel. In panels B

and C each random color identifies a distinct cloud patch.
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FIG. 7. Visualization of the gradient based segmentation result for the simulated Wyoming tornado event at

21:20 UTC of the 12th of June 2017: A. Simulate IR longwave window band from GOES-16 ABI (The scale bar

is temperature in degree Kelvin) B. Normalized gradient magnitudes imagery for the corresponding Simulated

IR Channel (Scale bar is normalized gradient magnitude values). C. Resulting cloud Segments (Each random

color represents a distinct segment).

42



FIG. 8. Visual comparison of the two segmentation output (B and C) based on the ’truth’ mask as a reference

for the the simulated Wyoming tornado event at 21:20 UTC of the 12th of June 2017: A. ’Truth’ Cloud Mask

used as a reference. Dark blue region is implying the cloud existence. B. PERSIANN-CCS segmentation result

from single-IR channel. C. Gradient-based Segmentation Algorithm output based on only IR channel. In panels

B and C each random color identifies a distinct cloud patch.
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FIG. 9. Visualizing the effect of integrating complementary information from lower-level water vapor for the

Wyoming tornado case at 21:05 UTC of the 12th of June 2017: Panels in section A are showing final cloud

segments from the gradient magnitudes of lower water vapor band. Panels in section B are showing final cloud

segments from the gradient magnitudes of single IR longwave window band. Panels in section C are showing

final cloud segments from the combined gradient magnitude image of both spectral bands (IR longwave window

and water vapor band).
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FIG. 10. Statistical comparison of two different segmentation algorithms for Hurricane Harvey case: a. POD,

b. False Alarm Ratio, c. Undetected Error Rate, d. Bias Score, e. Equitable Threat Score.
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FIG. 11. Statistical comparison of two different segmentation algorithms for Wyoming Tornado case: a. POD,

b. False Alarm Ratio, c. Undetected Error Rate, d. Bias Score, e. Equitable Threat Score.
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