
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Multimedia Signal Processing based on Advanced Graph Approaches

Permalink
https://escholarship.org/uc/item/35t9b081

Author
Deng, Qinwen

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35t9b081
https://escholarship.org
http://www.cdlib.org/

Multimedia Signal Processing based on Advanced Graph Approaches

By

QINWEN DENG

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Zhi Ding, Chair

Lifeng Lai

Khaled Abdel-Ghaffar

Committee in Charge

2024

i

Abstract

When dealing with data residing on irregular and complex structures, graph signal processing

(GSP) offers the ability to model and process them directly. While most existing GSP methods

use graphs and edges to model pairwise relationships of such data, practical data may reside on

more complex structures with multilateral interactions, which motivates processing methods with

high-dimensional graphs like hypergraphs and multilayer graphs (MLG).

Although both hypergraph signal processing (HGSP) and MLG have enjoyed additional

notable successes in segmentation, clustering, and classification, it is not clear whether they

can provide an advantage in specific applications such as point cloud resampling and motion

segmentation. Also, it is shown that high-dimensional graph processing algorithms with

high-dimensional graphs constructed for the whole data are computationally costly, especially

when the number of nodes is large.

Efficient processing and feature extraction of large-scale datasets are important in related

computer vision and cyber-physical systems. In this dissertation, we investigate two applications

for advanced graph approaches. The first application is point cloud resampling based on

hypergraph signal processing to better explore the underlying relationship among different points

in the point cloud and to extract contour-enhanced features. Specifically, we design hypergraph

spectral filters to capture multi-lateral interactions among the signal nodes of point clouds and to

better preserve their surface outlines. Without the need and the computation to first construct the

underlying hypergraph, our low complexity approach directly estimates the hypergraph spectrum

of point clouds by leveraging hypergraph stationary processes from the observed 3D coordinates.

The second application is multilayer graph signal processing (M-GSP) based approaches to human

motion segmentation. Specifically, our approach involves modeling spatial-temporal relationships

of the human motion capture data via MLG and incorporating M-GSP spectrum analysis for feature

extraction.

Furthermore, this dissertation optimizes the computational complexity of key algorithms in

ii

graph based spectral analysis and processing methodologies. We propose an incremental EVD

algorithm for low rank symmetric matrices (IEVD-LR) to update the top k eigen-pairs of the

graph representation matrix. This algorithm has a novel error correction branch whenever the

approximation error exceeds the defined tolerance.

Equipped with the techniques presented in this dissertation, we extend the current research

on advanced graph based processing to a variety of new directions. Based on our success in

applying advanced graph-based processing algorithms to static point clouds and time-varying

motion capture data, our exploration can extend to further applications of high-dimensional graph

processing techniques on diverse multimedia datasets with varying structures, such as dynamic

point clouds. We will also extend the low-complexity eigen-updating algorithm to general dynamic

systems, where the number of data points may decrease over time. Another direction is to consider

the singular space updating problem for the representation tensor of high-dimensional graphs,

initialized by orthogonal CP decomposition or higher-order singular value decomposition result.

iii

Acknowledgement

I would like to extend my deepest gratitude to my advisor, Prof. Zhi Ding, for his unwavering

guidance, invaluable insights, and continual support throughout the entirety of my Ph.D. journey.

I could not finish my research projects without all his help in selecting research topics, discussing

technical solutions, revising manuscripts, and providing financial support. His mentorship and

dedication have been instrumental in shaping the direction of my research and fostering my

academic growth.

Besides my advisor, I am thankful to the rest members of my dissertation committee, Prof.

Lifeng Lai and Prof. Khaled Abdel-Ghaffar, for their constructive feedback and expert evaluation

of my work. Their collective expertise has enriched the quality of my research.

A special acknowledgment goes to Prof. Songyang Zhang, whose profound guidance and

mentorship have been a beacon of inspiration. Prof. Songyang Zhang has generously shared his

wisdom, experience, and insights, playing a pivotal role in steering the course of our research

team. His mentorship has been a source of motivation for me and has significantly contributed to

the success of this dissertation.

I am indebted to all my friends and colleagues at University of California, Davis, Xiaochuan

Ma, Carlos Feres, Achintha Wijesinghe, Suchinthaka Wanninayaka, Zhelun Zhang, Lahiru D.

Chamain, Shusen Jing, Weiwei Wang, Chih-ho Hsu, Mason Del Rosario, Yibo Ma, Vincent

Cong Vinh Huynh, Yu-Chien Lin, Siyu Qi and Taha Bouchoucha for their camaraderie, insightful

discussions, and mutual support. The collaborative spirit and shared dedication to excellence within

the department have enhanced the overall research experience on my academic journey. I would

like to express my gratitude to all my colleagues and fellow researchers, Yao Ge at Nanyang

Technological University, Prof. Yangwen Zhang and Prof. Mo Li at the University of Louisiana

at Lafayette for their continuous suggestions and help in my research. Each one of you has played

a role in making this journey memorable.

I am deeply thankful to my family for their unwavering encouragement, understanding, and

iv

love. Thank my parents, Hong Liu and Zhihua Deng, for their endless love and steadfast support.

Their encouragement has been my pillar of strength throughout this academic endeavor.

This dissertation is a testament to the collective efforts, encouragement, and support from

everyone who has been a part of this transformative experience.

v

Contents

Abstract . ii

Acknowledgement . iv

List of Symbols xv

1 Introduction 1

1.1 Background . 1

1.2 Overview of Advanced Graph Approaches . 3

1.3 Motivation and Challenges . 4

1.4 Objective of the Dissertation . 5

1.5 Significance and Contributions . 6

1.6 Structure of the Dissertation . 7

2 Introduction to advanced graph signal processing 9

2.1 Graph Signal Processing . 9

2.2 Hypergraph Signal Processing . 13

2.3 Multilayer Graph Signal Processing . 15

2.4 Conclusion . 18

3 An Efficient Hypergraph Approach to Robust Point Cloud Resampling 19

3.1 Introduction . 20

3.2 HGSP Point Cloud Resampling . 23

vi

3.2.1 Hypergraph Kernel Convolution (HKC) based Method 24

3.2.2 Hypergraph Kernel Filtering (HKF) Resampling 29

3.2.3 Local Hypergraph Filtering (LHF) Algorithm 30

3.2.4 Discussion . 34

3.3 Experimental results . 35

3.3.1 Edge Preservation of Simple Synthetic Point Clouds 35

3.3.2 Edge Preservation Results on Real-Life Point Clouds 38

3.3.3 Point Cloud Recovery from Resampling 39

3.3.4 Runtime of all methods . 47

3.3.5 Parameter selection . 49

3.4 Conclusion . 50

4 Body Motion Segmentation via Multilayer Graph Processing 51

4.1 Introduction . 51

4.2 Related Works . 54

4.2.1 Unsupervised motion clustering . 55

4.2.2 Supervised Motion Recognition . 56

4.3 Problem Description and Modeling . 58

4.3.1 Problem Description . 58

4.3.2 Multilayer Graph Construction . 59

4.4 M-GSP Body Motion Segmentation . 61

4.4.1 Spectrum-based MLG Motion Segmentation 62

4.4.2 Vertex-based MLG Segmentation . 65

4.5 Experiments . 67

4.5.1 Dataset . 67

4.5.2 Unsupervised Motion Segmentation . 69

4.5.3 Supervised Motion Recognition . 72

4.5.4 Ablation study on window size . 73

vii

4.5.5 Robustness . 75

4.6 Conclusions . 77

5 Efficient Eigenvalue Decomposition for Low-Rank Symmetric Matrices in Graph Sig-

nal Processing 78

5.1 Introduction . 78

5.2 Related Works . 81

5.2.1 Fast Matrix Decomposition . 82

5.3 Method and Analysis . 83

5.3.1 Basic Incremental eigenvalue decomposition 83

5.3.2 Fast Incremental eigenvalue decomposition 88

5.4 Experiments . 93

5.4.1 Synthetic dataset . 94

5.4.2 Real Multimedia Datasets . 97

5.5 Conclusion . 108

6 Summary and Future Direction 109

6.1 Summary of Key Findings . 109

6.2 Future Directions . 110

viii

List of Figures

1.1 Example of multilayer graph built on the motion capture data. 1

1.2 Example of graph and hypergraph for 3D point cloud representation: (a) original

point cloud with nodes at the joint of body, (b) graph built on the nodes, (c)

hypergraph built on the nodes. 2

1.3 Diagram of the relationship between main chapters in this dissertation. 5

2.1 Example of a graph constructed on point cloud. 10

2.2 Example of a hypergraph constructed on point cloud. 14

2.3 Example of hypergraph constructed on motion sequence. 16

3.1 Example of Contour-Enhanced Resampling: (a) original point cloud with 272705

points, and (b) resampled building based on the proposed local hypergraph filtering

with 20% samples. 22

3.2 Example of Convolution Kernels. 24

3.3 An example of local signal sL,i: Points in the middle layer are marked by blue

circles and points in the back layer are marked by red squares. The voxels of

slicing block are delineated by the dashed black lines. There is at most one point

in each voxel in this example, such that sL,i(n) = 1 or 0, respectively, depending

on whether the n-th voxel contains a point. 25

3.4 Resampled Results of Dragon Using Local Hypergraph Filtering based Method. . . 31

3.5 Synthetic Point Clouds with Labeled Edge. 37

ix

3.6 Examples of Edge Detection for Realistic Practical Point Clouds. 38

3.7 Examples of Edge Detection for Boxer Point Cloud in 8iVSLF Dataset 39

3.8 Resampled results using ScanLAB Projects: Bi-plane point cloud data set 39

3.9 Example of original point cloud, resampled point cloud and the recovered point

cloud for HKC method. 40

3.10 Example of resampled results of EA with different α. 43

3.11 Example of resampled results of PCA-AC with different α. 43

3.12 Plots of recovered accuracy against resampling ratio α of all methods in ShapeNet

Dataset . 46

3.12 Continue of the Plots of recovered accuracy against resampling ratio α of all

methods in ShapeNet Dataset . 47

3.13 Resampling result of PCA-AC method using resampled Boxer Point cloud. 47

3.14 Runtime of all methods . 48

4.1 Illustration of Human Motion: (a) Example of Motion Segmentation; (b)

Spatial-Temporal Relationships Modeled By Multilayer Graph. 52

4.2 Example of Skeleton-based Human Motion Dataset in CMU graphics lab motion

capture database. 57

4.3 Example of MLG model for one motion sequence. 58

4.4 Example of window cuts in motion sequence and the multilayer network

construction. 61

4.5 Block Diagram of Spectrum-based MLG Motion Segmentation. The diagram is

broken into two parts for clearer view, where the overlapping elements in two parts

are labeled in green. 62

4.6 Block Diagram of Vertex-based MLG Motion Segmentation. The diagram is

broken into two parts for clearer view, where the overlapping elements in two parts

are labeled in green. 67

4.7 Example of the location of inertial measurement units in HuGaDB. 68

x

4.8 Segmentation result on CMU trial 86. 70

4.9 Example of the similarity matrix for different window sizes on HuGaDB dataset

with GYRO data. 73

4.10 Segmentation result on HuGaDB trial 01 data 00. 74

4.11 Average accuracy for different window sizes. 75

4.12 Average accuracy on CMU trial 86 with different noisy frame ratio. (a) σ = 0.1;

(b) σ = 0.2. 76

5.1 Example of the dynamic graph at time t and time t+1. The additional vertices and

edges at time t+ 1 are labeled in red and red dash lines, respectively. 79

5.2 Example of iterative update of our IEVD-LR algorithm. D is the original low

rank symmetric matrix whose EVD matrices are known. In each iteration of the

IEVD-LR algorithm, one new pair of αi and di are used as the inputs of the

algorithm to update the EVD result. 84

5.3 Estimation errors of the EVD algorithm on synthetic dataset. (a) Average

estimation errors of eigenvector matrix Q, measured by Frobenius norm. (b)

Average estimation errors of eigenvector matrix Σ, measured by L2 norm. 95

5.4 Average runtime of the EVD algorithm on synthetic dataset. 96

5.5 Example of dynamic point cloud with additional nodes in successive frames. (a)

Example of dynamic point cloud, the points on the right foot does not captured by

the sensors in the first frame. (b) Example of the graphs built on the dynamic point

cloud, the additional points in the second frame resulting in the addition of nodes

and edges in the new graph, corresponding to the additional rows and columns in

the new adjacency matrix. 99

xi

5.6 Example of spectral clustering result in our experiments. (a) Clustering result of

the original point cloud using the ground truth EVD result, updated points are

labeled in red. (b) Clustering result of the updated point cloud using ground truth.

(c) Clustering result of the updated point cloud using estimated EVD results from

IEVD-LR-FAST algorithm, clustering errors are marked in pink. 101

5.7 Boxer point cloud in 8i Voxelized Surface Light Field (8iVSLF) Dataset. 102

5.8 Peak memory usage of the EVD algorithms on Boxer point cloud. 103

5.9 Example of motion capture data. 104

5.10 Example of the hyperspectral image with RGB colors. 106

xii

List of Tables

3.1 Numerical results of methods using point clouds of all shapes. 35

3.2 Example of original and resampled point clouds with resampling ratio α = 0.2. . . 41

3.3 Example of original and recovered point clouds with resampling ratio α = 0.2. . . 42

3.4 Mean distance between the best recovered point cloud and the original point cloud

for resampling ratio α = 0.2 using ShapeNet dataset. 44

3.5 Average number of points within dθ between the best recovered point cloud and

the original point cloud for resampling ratio α = 0.2 using ShapeNet dataset. . . . 44

3.6 Mean distance between the best recovered point cloud and the original point cloud

for different resampling ratios using downsampled Boxer point cloud in 8iVSLF

dataset. 44

3.7 Average of distance and dual distance between the best recovered point cloud and

the original point cloud for different resampling ratios using downsampled Boxer

point cloud in 8iVSLF dataset. 45

3.8 Comparison of average running time (in seconds) for point clouds in different

datasets. 48

3.9 Mean Distance of Different Methods. 49

3.10 Robustness over Different Parameters: Edge Detection for Synthetic Dataset and

Recovery for Realistic Dataset. 49

4.1 Accuracy of motion segmentation on CMU 86 dataset 69

4.2 Average accuracy of motion segmentation on HuGaDB dataset 72

xiii

4.3 Average accuracy on HuGaDB dataset with both accelerometer and gyroscope data. 72

5.1 Average clustering errors and low-pass filter errors on dynamic point clouds 100

5.2 Average clustering errors and low-pass filter errors on motion capture data 106

5.3 Average clustering errors and low-pass filter errors on hyperspectral images 108

xiv

List of Symbols

G graph

V set of vertices of the graph

vi i-th vertex of the graph

E set of edges of the graph

FG representation matrix for graph

AG adjacency matrix for graph

LG Laplacian matrix for graph

LG,norm normalized Laplacian matrix for graph

sG graph signal

ŝG spectral domain graph signal

s̃G filtered spatial domain graph signal

sG,i i-th element of graph signal sG

ε distance threshold to determine the neighborhood for ε-neighborhood graph

dr intrinsic resolution of dataset

AG,ij element at the i-th row and j-th column of matrix AG

ai vector of data attributes for the i-th vertex

Q orthonormal matrix whose columns are the eigenvectors

Q−1 inverse matrix of Q

Q> transpose of Q

QH Hermitian transpose of Q

xv

Σ diagonal matrix whose diagonal elements are the eigenvalues

λG,i i-th eigenvalue of representation matrix of graph

I identity matrix

h(AG) shift-invariant graph filter

AH representation tensor for hypergraph

AH,i1i2···iM entry located at the indices i1, i2, · · · , iM in the M -th order tensor AH

λH,i i-th spectrum coefficient corresponding to the i-th basis for hypergraphH

fH,i i-th orthonormal basis for hypergraph representation tensor

VH hypergraph spectrum basis matrix

sH hypergraph signal

sH,i i-th element of hypergraph signal sH

FH hypergraph Fourier transform

F−1H inverse hypergraph Fourier transform

◦ tensor outer product

AM representation tensor for multilayer graph

ui i-th entity in multilayer graph

`α α-th layer in multilayer graph

fM,α α-th orthonormal basis for multilayer graph representation tensor characterizing the

properties of layers

eM,i i-th orthonormal basis for multilayer graph representation tensor characterizing the

properties of entities

λM,αi spectrum coefficient corresponding to the basis of α-th layer and the i-th entity

×n n-mode product

S core tensor of higher-order singular value decomposition

U(n) n-th unitary matrix containing bases out of higher-order singular value decomposition

Wf orthonormal matrix containing all basis for multilayer graph representation tensor

characterizing the properties of layers

xvi

We orthonormal matrix containing all basis for multilayer graph representation tensor

characterizing the properties of entities

sM multilayer graph signal

sM,αi element corresponds to α-th layer and i-th entity in multilayer graph signal

šM,L layer-wise multilayer graph singular transformed (M-GST) signal

šM,N entity-wise multilayer graph singular transformed (M-GST) signal

šM joint multilayer graph singular transformed (M-GST) signal

P location matrix containing 3D coordinates of points in a point cloud

pi i-th point’s coordinates in point cloud

Xi i-th coordinates of all data points in point cloud

Nk number of voxels in the slicing block

sL,i local signal around i-th point in the point cloud

G convolution kernel

dc distance between the centers of two nearby voxels in the kernel

Pc coordinates of voxel centers in the kernel

βi smoothness for the i-th point for hypergraph kernel convolution (HKC) algorithm

σi smoothness for the i-th point for hypergraph kernel filtering (HKF) algorithm

γi sharpness for the i-th point for local kernel filtering (LHF) algorithm

W weight in calculating γi for local kernel filtering (LHF) algorithm

α resampling ratio

σ standard eviation in Gaussian kernel

VHaar Haar-like highpass filter in multilayer graph

M sparse self similarity matrix (SSSM)

z(m) feature vector for the i-th segment

xvii

Chapter 1

Introduction

1.1 Background

Conventional graph approaches, including graph signal processing (GSP) [1] and graph neural

networks (GNN) [2, 3], have played a pivotal role in advancing computational methods.

These approaches, rooted in graph theory, have demonstrated significant success across diverse

applications in multimedia, such as the Internet, social networks, financial data, sensor networks,

traffic patterns, and biological systems [1, 4, 5]. All the network-structured data in these domains

can be naturally modeled by graphs. For example, as shown in Fig. 1.1, the motion data captured

Figure 1.1: Example of multilayer graph built on the motion capture data.

1

by a group of sensors on the human body over sequential times is aptly modeled by a multilayer

graph. Each layer of this multilayer graph aligns with a distinct data frame. This versatile property

highlights the significance of employing graph-based methods for signal analysis and processing.

Graph frequency analysis was applied to many applications in physical networks. The ideal

low-pass and high-pass graph Fourier filters were used in [6] in the anomaly detection algorithms

for wireless sensor networks. The authors in [7] used graph frequency analysis to identify

anatomy-aligned function signals in the brain and uncover an integrated structure-function relation

of human behavior. More potentials of graph frequency analysis and graph Fourier filtering in the

structure-informed study of functional brain dynamics were revealed in [8]. A local graph-based

filter was used for image denoising in [9]. Another example is the spectral clustering methods

based on low-frequency eigenvectors of the Laplacian matrix [10], which was widely used as a

benchmark clustering method.

(a) Nodes (b) Graph (c) Hypergraph

Figure 1.2: Example of graph and hypergraph for 3D point cloud representation: (a) original point
cloud with nodes at the joint of body, (b) graph built on the nodes, (c) hypergraph built on the
nodes.

Despite conventional graph-based methods having clearly achieved success in many

fields, some limitations remain. Conventional graph-based methods tend to focus on pairwise

relationships between different points since each graph edge only connects two signal nodes.

However, it is clear that multilateral interactions of data points could model the more informative

2

characteristics of 3D point clouds. As shown in Fig. 1.2(b), bilateral graph node connections are

insufficient to directly describe multilateral relationships among points sharing the same property

[11]. Conversely, the hyperedges in hypergraph can connect more than two nodes, and it can

capture the multilateral relationships among points, such as whether they belong to the same arm

or leg, as shown in Fig. 1.2(c). Furthermore, in graph-based methods, the efficient construction of

a suitable graph to represent an arbitrary point cloud poses another challenge.

1.2 Overview of Advanced Graph Approaches

More recently, high-dimensional graphs, such as hypergraphs and multilayer graphs (MLG),

have been successfully applied in representing and characterizing the underlying multilateral

interactions among multimedia data points [12]. A hypergraph extends the basic graph concept into

higher dimensions, in which each hyperedge can connect more than two nodes [13]. Therefore,

a hypergraph provides a more general representation to characterize multilateral relationships

for points on object surfaces such that one hyperedge can cover multiple nodes on the same

surface. Furthermore, by generalizing graph signal processing [1], hypergraph signal processing

(HGSP) [14][15] provides a theoretical foundation for spectral analysis in hypergraph-based

point cloud processing. Specifically, stationarity-based hypergraph estimation, in conjunction with

hypergraph-based filters, has demonstrated notable successes in processing point clouds for various

tasks including segmentation, sampling, and denoising [11, 16].

On the other hand, MLG structure is able to capture the underlying geometric structures on

multiple dimensions, which is useful for modeling multi-dimensional multimedia data, such as

dynamic point clouds. Within the context of GSP, a multilayer graph signal processing (M-GSP)

framework has been introduced for MLG based on tensor representation [17]. M-GSP allows

different spatial layers to represent heterogeneous geometric structures and defines a joint MLG

spectral space for data analysis. M-GSP has shown great potential in spectrum analysis, image

compression, clustering, hyperspectral image segmentation, and classification [17–19].

3

1.3 Motivation and Challenges

While high-dimensional graphs have great potential for analyzing and processing multimedia data,

the practical utility of these methods faces a significant challenge — the escalating demand for

additional memory space to store and process the representation tensors. For example, to represent

a hypergraph constructed from a dataset with M data points, where each hyperedge contains a

maximum of N data points, a M -th-order N -dimensional representation tensor AH ∈ RNM is

required. The size of this representation tensor grows exponentially with the maximum length of

hyperedge. Furthermore, when working on multimedia datasets like point clouds, which can have

over a million data points, the memory storage challenge emerges as a significant bottleneck for

algorithms based on high-dimensional graphs, obstructing the full exploitation of high-dimensional

graph processing capabilities. In response to this dilemma, researchers have explored two distinct

approaches to mitigate the impact of storage constraints and enhance the feasibility of these

algorithms.

The first approach adopts a ‘divide and conquer’ strategy, partitioning the high-dimensional

graph and processing smaller subsets of data iteratively. This modular processing not only aids

in circumventing storage limitations but also facilitates parallelization, enhancing the overall

efficiency of the algorithm. By breaking down the problem into manageable components, the

divide-and-conquer approach enables the algorithm to scale efficiently, and allows researchers

to navigate the intricate relationship of high-dimensional data without succumbing to resource

constraints.

Complementary to the partitioning strategy, the second approach delves into algorithmic

optimizations aimed at reducing computational complexity. By optimizing the underlying

algorithms, researchers aim to minimize the computational resources required for high-dimensional

graph processing. This optimization not only addresses storage challenges but also contributes

to the development of more efficient and scalable algorithms. Investigating these algorithmic

enhancements is a crucial aspect of our dissertation, as we seek to unravel the potential applications

of high-dimensional graph processing algorithms on various multimedia data types.

4

1.4 Objective of the Dissertation

Figure 1.3: Diagram of the relationship between main chapters in this dissertation.

In this dissertation, our primary aim is to explore the diverse applications of high-dimensional

graph processing algorithms on multimedia data. As shown in Fig. 1.3, the three main advances

in this dissertation are all related to the exploration of high-dimensional graph processing

algorithms on multimedia data. This exploration is driven by the recognition of the burgeoning

challenges posed by storage limitations and computational complexity in the analysis of intricate,

high-dimensional datasets. Our goals can be summarized as follows:

• To Investigate ’Divide and Conquer’ Strategies: One major objective is to delve into the

practical implementation and efficacy of ’divide and conquer’ strategies for processing

high-dimensional graphs on various multimedia data types. By partitioning and processing

smaller subsets of data, we aim to not only overcome storage challenges but also enhance

the scalability and efficiency of our algorithms.

• To Optimize Computational Complexity of key algorithm: Another key focus is the

optimization of algorithmic complexity in high-dimensional graph processing. Through the

refinement of algorithms with the conditions given by practical applications, we aim to

reduce computational demands, making the processing of multimedia datasets, such as point

clouds and motion capture data, more feasible with acceptable compromising accuracy on

the result.

• To Apply Advanced Graph based Algorithms to Multimedia Data: The dissertation aims

5

to extend the theoretical groundwork to practical applications by applying high-dimensional

graph processing algorithms to specific multimedia data types. Examples include point cloud

data and motion capture data, both of which present unique challenges and opportunities for

algorithmic exploration.

By explicitly outlining these objectives, this dissertation endeavors to provide a structured

and comprehensive investigation into the applications of high-dimensional graph processing

algorithms, thereby contributing to the advancement of knowledge in this field.

1.5 Significance and Contributions

This dissertation contributes to the field through the exploration and practical implementation

of innovative strategies for high-dimensional graph processing. This dissertation comprises three

main chapters:

• In Chapter 3, we introduce hypergraph spectral filters designed to capture multilateral

interactions among the signal nodes in point clouds, aiming to better preserve their

surface outlines. Unlike conventional approaches that involve constructing the underlying

hypergraph, our proposed low complexity approach directly estimates the hypergraph

spectrum of point clouds by leveraging hypergraph stationary processes from the observed

3D coordinates. To assess the model-preserving capabilities of our proposed algorithms on

complex point cloud models, we employ a straightforward point cloud recovery method for

the resampled results, and use the difference between the recovered point cloud and the

original ones as the metrics. This point cloud recovery method, based on alpha complex and

Poisson sampling, does not require additional information such as the model structure, and is

applicable to all resampling algorithms. Through the evaluation of our proposed resampling

methods using various metrics, our test results validate the effectiveness of hypergraph

characterization of point clouds and highlight the robustness of hypergraph-based resampling

under noisy observations. This work has been published as [20, 21].

6

• In Chapter 4, we delve into the emerging field of multilayer graph signal processing

(M-GSP) and propose innovative M-GSP based approaches to human motion segmentation.

Specifically, our approach involves modeling spatial-temporal relationships of the human

motion capture data via multilayer graphs (MLG) and incorporating M-GSP spectrum

analysis for feature extraction. Subsequently, we present two distinct unsupervised

segmentation algorithms in M-GSP, operating within the MLG spectrum and vertex domains,

respectively. Our experimental results on various datasets underscore the effectiveness of the

proposed methods and the potential of M-GSP in motion analysis. Additionally, our results

showcase the robustness of the proposed segmentation methods in the presence of noisy

observations. This work is in preparation as [22].

• In Chapter 5, we propose an incremental eigenvalue decomposition (EVD) algorithm for

low rank symmetric matrices (IEVD-LR) to update the top k eigen-pairs of the graph

representation matrix. This EVD algorithm is one of the fundamental algorithms in graph

based spectral analysis and processing methodologies. To accommodate the incremental

growth of the graph size, we design an iterative eigen-updating algorithm, incorporating

a novel error correction branch whenever the approximation error exceeds the defined

tolerance. Then, we conduct an extensive analysis of the computational complexity and

memory usage of our proposed IEVD-LR algorithm to showcase its accuracy and efficiency.

Subsequently, we compare our approach with the existing method on both synthetic and

real-world datasets in the context of spectral clustering and graph filtering. Our experimental

results corroborate the accuracy and efficiency of the proposed IEVD-LR algorithm. This

work is in preparation as [23].

1.6 Structure of the Dissertation

The following of the dissertation is structured as follows: we start by providing an overview of

graph signal processing, followed by the discussion of hypergraph signal processing and multilayer

7

graph signal processing frameworks in Chapter 2. Building upon these foundational concepts,

we continue to explore the specific applications and methodologies in the subsequent chapters.

In Chapter 3, we present our first work on hypergraph spectral filters applied to point clouds,

aiming to better preserve their surface outlines. In Chapter 4, we propose two innovative M-GSP

based approaches to human motion segmentation. In Chapter 5, we propose an incremental EVD

algorithm for low rank symmetric matrices (IEVD-LR) to update the top k eigen-pairs of the graph

representation matrix. Our findings are consolidated and summarized in Chapter 6. Built upon

these conclusions, we outline the future directions of our research within the same chapter.

8

Chapter 2

Introduction to Advanced Graph Signal

Processing

Graph signal processing serves as the cornerstone for understanding and analyzing complex

relational structures inherent in various domains, ranging from social networks to biological

systems. This chapter provides a comprehensive introduction to the fundamentals of graph signal

processing, including the representation of graphs, graph Fourier transform as well as graph filter

designs. Building upon this foundation, we delve into the extensions of traditional graph signal

processing, introducing the intricacies of hypergraph signal processing and multilayer graph signal

processing. By navigating through these advanced frameworks, we aim to unravel the relationships

embedded in data structures, as further explored in Chapter 3 and Chapter 4.

2.1 Graph Signal Processing

Graph signal processing (GSP) has recently emerged as an important tool for structural data

analysis due to its power in capturing underlying data correlations [1]. An example of a graph

constructed on point cloud is shown in Fig. 2.1. Consider an undirected graph G = (V , E) with

N vertices, where V denotes the set of vertices, i.e., V = {v1, · · · , vN}, and E ⊂ V × V

represents the edges. In the undirected graph, for every edge (vi, vj) that exists, there is also an

9

Figure 2.1: Example of a graph constructed on point cloud.

edge (vj, vi). A representation matrix FG ∈ RN×N can be used to describe the geometric structure

of the graph G. Commonly used representation matrices are adjacency matrix AG or Laplacian

matrix LG . Graph signals are the vector of attributes of vertices, which can be written as vector

sG = [sG,1, sG,2, · · · , sG,N]> ∈ RN .

Real-world datasets, such as point clouds, sensor data and images, can be naturally and

efficiently represented by graphs. Given the data points, the construction of the representation

matrices of graphs plays a pivotal role in capturing the underlying topology of the dataset[4].

Among the various methods for graph construction, a notable approach is model-based graph

construction. This technique leverages domain knowledge to construct graphs using models, such

as ε-neighborhood graph, tailored to the dataset at hand. In an ε-neighborhood graph, two vertices

are connected by an edge if their Euclidean distance is smaller than a given threshold. In our

experiment, we build the ε-neighborhood graph based on the intrinsic resolution dr of the dataset

10

and the Gaussian kernel. The edge weight between the i-th and j-th vertex is

AG,ij =

exp

(
−‖ai−aj‖

2

d2r

)
‖ai − aj‖2 ≤ ε

0 otherwise
, (2.1)

where ai is the vector of data attributes for the i-th vertex. The intrinsic resolution dr of the dataset

is defined as the mean of the smallest distance from each vertex to all other vertices in the dataset,

i.e., for a dataset with N vertices, dr = 1
N

∑N
i=1,i 6=j minj ‖ai − aj‖.

The graph spectral space, also referred to as the graph Fourier space, is defined based on the

eigenspace of the representing matrix FG such that FG = QΣQ−1, where Q ∈ RN×N denotes

the orthonormal matrix whose columns are the eigenvectors of FG and Σ ∈ RN×N is a diagonal

matrix with the eigenvalues of FG on the diagonal, i.e., Σ = diag(λG,1, · · · , λG,N). Then the graph

Fourier transform (GFT) is defined as

ŝG = Q−1sG, (2.2)

whereas the inverse GFT is given by sG = QŝG .

From the definitions of GFT, the concept of graph spectral analysis was developed as an

important tool for signal processing and data analysis. Graph frequency analysis and graph Fourier

filter design were introduced in [24,25]. The basic non-trivial filter defined on the graph G is called

the graph shift, which is defined as

s̃G = AGsG. (2.3)

Additionally, the linear, shift-invariant graph filters can be expressed as the polynomials of the

adjacency matrix AG , which can be written as

h(AG) = h0I + h0AG + · · ·+ hLAL
G , (2.4)

11

whose output signal can be expressed as

s̃G = H(sG) = h(AG)sG. (2.5)

By using GFT, the Fourier transform coefficients of the filtered signal s̃G can be written as

Q−1s̃G = Q−1h(AG)QŝG

=

h(λG,1)

. . .

h(λG,N)

 ŝG,
(2.6)

which indicates that we can design the graph filter directly on the graph frequency domain.

There are two kinds of commonly used graph filters: ideal graph filter and Haar-like graph

filter. The expression of hideal(AG) for ideal graph filter is

hideal(AG) = diag(1, · · · , 1, 0, · · · , 0). (2.7)

The number of ones for ideal graph filter can be determined by the threshold of the eigenvalues.

On the other hand, the hHaar(AG) for Haar-like graph filter can be written as

hHaar(AG) = I−ΛG,norm, (2.8)

where I represents the identity matrix of size N by N and ΛG,norm is the normalized eigenvalue

matrix by normalizing the largest eigenvalue of AG to 1.

Graph frequency analysis was applied to many applications on physical networks. The ideal

low-pass and high-pass graph Fourier filters were used in [6] in the anomaly detection algorithms

for wireless sensor networks. The authors in [7] used graph frequency analysis to identify

anatomy-aligned function signals in the brain and uncover an integrated structure-function relation

of human behavior. More potentials of graph frequency analysis and graph Fourier filtering in

12

structure-informed study of functional brain dynamics were revealed in [8]. A local graph-based

filter was used for image denoising in [9]. Another example is the spectral clustering methods

based on low-frequency eigenvectors of the Laplacian matrix [10], which was widely used as a

benchmark clustering method.

Within the scope of updating the spectral clustering results for dynamic graphs, existing works

can be divided into two categories. The first approach is to iteratively update the eigenvalue

decomposition (EVD) result, then update the clustering result based on the approximated

eigenvectors, which will be reviewed in Section 5.2.1. The second approach is to estimate the

clustering result based on the representative sets, such as the method proposed in [26]. This method

instantly assigns cluster labels to newly added nodes based on the representative reliability of every

node in each cluster. After that, the eigenvalues are also updated to estimate the number of clusters.

However, when the estimated number of clusters changes, this method needs to re-initialize the

algorithm by clustering based on the EVD of the new graph, which increases the computational

complexity.

2.2 Hypergraph Signal Processing

Hypergraph signal processing (HGSP) is an analytic framework that uses hypergraph and

tensor representation to model high-order signal interactions [14]. An example of a hypergraph

constructed on point cloud data is shown in Fig. 2.2. Within this framework, a M -th-order

N -dimensional representation tensor AH = (AH,i1i2···iM) ∈ RNM models a hypergraph with N

vertices in each hyperedge, which is capable of connecting maximum of M nodes. We may call

the number of nodes connected by a hyperedge as its length. Weights of hyperedges with lengths

less than M are normalized according to combinations and permutations [27, 28].

Orthogonal CANDECOMP/PARAFAC (CP) decomposition [29]-[31] enables the (approximate)

13

Figure 2.2: Example of a hypergraph constructed on point cloud.

decomposition of a representing tensor into

AH ≈
N∑
r=1

λH,r · fH,r ◦ . . . ◦ fH,r︸ ︷︷ ︸
M times

, (2.9)

where ◦ denotes the tensor outer product, {fH,1, · · · , fH,N} are orthonormal basis to represent

spectrum components, and λH,r is the r-th spectrum coefficient corresponding to the r-th basis.

Spectrum components {fH,1, · · · , fH,N} form the full hypergraph spectral space.

Similar to GSP, hypergraph signals are attributes of nodes. Intuitively, a signal is defined

as sH = [sH,1 sH,2 · · · sH,N]> ∈ RN . Since the adjacency tensor AH describes

high-dimensional interactions of signals, we define a special form of the hypergraph signal to

work with the representing tensor, i.e.,

s
[M−1]
H = sH ◦ · · · ◦ sH︸ ︷︷ ︸

M-1 times

. (2.10)

Given the definitions of hypergraph spectrum and hypergraph signals, hypergraph Fourier

14

transform (HGFT) is given by

ŝH = FH(s) = [(f>1 s)M−1 · · · (f>Ns)M−1]>. (2.11)

From the graph specific HGFT, hypergraph spectral convolution can be generalized [12] as

x � y = F−1H (FH(x)�FH(y)), (2.12)

where FH is the HGFT, F−1H denotes inverse HGFT (iHGFT), and � denotes Hadamard product

[14]. This definition applies the basic relationship between convolution and spectrum product, and

generalizes convolution in the vertex domain into the product in the hypergraph spectrum domain.

To be concise, we refrain from a full review of HGSP here. Instead, we refer readers to [14] and

related works for a more extensive introduction to HGSP concepts, such as filtering, hypergraph

Fourier transform, and sampling theory, among others. Equally important are the concepts and

properties of hypergraph stationary processes which can be found in, e.g., [11].

2.3 Multilayer Graph Signal Processing

M-GSP is a tensor-based framework for MLG analysis [17]. An example of MLG constructed on

motion sequence data is shown in Fig. 2.3. A multilayer graph with M layers and N nodes in each

layer can be viewed as projecting N virtual entities {u1, · · · , uN} into M layers {`1, · · · , `M},

such as spectrum band frames for hyperspectral images and color frames for RGB images. In

skeleton-based human motion dataset, each joint can be viewed as an entity ui and each temporal

frame serves layer `α. Then, a motion sequence as shown in Fig. 2.3 can be modeled as an MLG

with the same number of nodes in each layer. In M-GSP, such an MLG structure can be represented

by a 4-th order adjacency tensor defined as follows:

AM = (AM,αiβj) ∈ RM×N×M×N , (2.13)

15

Figure 2.3: Example of hypergraph constructed on motion sequence.

where 1 ≤ α, β ≤ M, 1 ≤ i, j ≤ N , and M denotes the symbols for MLG. Here, each entry

AM,αiβj of adjacency tensor AM indicates the edge strength between entity j’s projected node in

layer β and entity i’s corresponding node in layer α. Note that tensor representation requires each

layer to have the same number of nodes. We can generate such an MLG by:

• Adding isolated nodes to layers with fewer nodes to reach N nodes and setting the

interpolated signals as zeros; Since the isolated node does not connect to any other nodes,

they would not affect the message passing in MLG. This method is suitable for physical

networks, such as smart grid and cyber-physical systems [32].

• Aggregating similar nodes as supernodes to reduce the node number to N : This can be an

intuitive method for image processing, where several pixels can be grouped into superpixels.

Similar to traditional GSP, we define the MLG Fourier space via tensor decomposition. In

an undirected MLG, the adjacency AM is partially symmetric between orders one and three,

and between orders two and four, respectively. Then, it can be approximated via orthogonal

16

CANDECOMP/PARAFAC (CP) decomposition [17] as

AM ≈
M∑
α=1

N∑
i=1

λM,αi · fM,α ◦ eM,i ◦ fM,α ◦ eM,i, (2.14)

where ◦ is the tensor outer product [17], fM,α ∈ RM and eM,i ∈ RN are orthonormal bases

characterizing the properties of layers and entities, respectively. λM,αi is the spectrum coefficient

corresponding to fM,α and eM,i.

Besides MLG Fourier space, the singular space is defined from higher-order singular value

decomposition (HOSVD) [33] as an alternative subspace of MLG, i.e.,

AM = S×1 U(1) ×2 U(2) ×3 U(3) ×4 U(4). (2.15)

Here, ×n denotes the n-mode product introduced in [17], which can be used to modify the

dimension of the n-th order. U(n) ∈ RIn×In is a unitary matrix with I1 = I3 = M and

I2 = I4 = N [19]. Similar to MLG Fourier space, there are two modes of singular spectra,

i.e., (γα, fα) for mode 1, 3, and (σi, ei) for mode 2, 4. More specifically, U(1) = U(3) = (fα) and

U(2) = U(4) = (ei). Both singular tensor analysis and spectral analysis are efficient tools for image

processing depending on specific tasks. In this work, we explore MLG singular analysis in human

motion.

We now introduce the M-GSP singular transform (M-GST). Suppose that the singular vectors

form Wf = [f1 · · · fM] ∈ RM×M and We = [e1 · · · eN] ∈ RN×N . Given an MLG signal sM =

(sM,αi) ∈ RM×N , the layer-wise M-GST can be defined as

šM,L = W>
f sM ∈ RM×N , (2.16)

and the entity-wise M-GST can be defined as

šM,N = sMWe ∈ RM×N . (2.17)

17

The joint M-GST can be calculated by

šM = W>
f sMWe ∈ RM×N . (2.18)

For brevity, here we only present the basic concepts of M-GSP. Interested readers could refer to

[17] for more details, including M-GSP spectral transform, filter design and spectral analysis.

2.4 Conclusion

In conclusion, this chapter has provided an overview of graph signal processing, delving into

the fundamentals that underpin the analysis and processing of signals on graphs. The extensions

to hypergraph signal processing and multilayer graph signal processing have expanded our

understanding of complex relational structures within diverse datasets. As we navigate through

these advanced frameworks, we gain valuable insights into the relationships embedded in data

structures. In the following chapters, we will build upon these foundations, exploring specific

applications and methodologies in the context of hypergraph signal processing (Chapter 3) and

multilayer graph signal processing (Chapter 4). Through this journey, we aim to contribute to a

deeper comprehension of signal processing on multimedia data in interconnected systems.

18

Chapter 3

An Efficient Hypergraph Approach to

Robust Point Cloud Resampling

A point cloud is a collection of points on the surface of a 3D target object. Each point consists

of its 3D coordinates and may contain further features, such as colors and normals [34]. In this

work, we focus on the coordinates of data points and point cloud resampling. A point cloud can be

represented by the coordinates of N data points written as an N × 3 real-valued location matrix

P = [X1 X2 X3] =

p>1

p>2
. . .

p>N

∈ RN×3, (3.1)

where Xi denotes a vector of the i-th coordinates of all N data points whereas 3 × 1 vector pi

indicates the i-th point’s coordinates. In this chapter, we explore the application of the hypergraph

signal processing method on point cloud resampling. 1

1Part of this chapter is reprinted, with permission, from [Q. Deng, S. Zhang and Z. Ding, “An Efficient Hypergraph
Approach to Robust Point Cloud Resampling,” IEEE Transactions on Image Processing, vol. 31, pp. 1924-1937,
2022.]

19

3.1 Introduction

3D perception plays an important role in the high growth fields of robotics and cyber-physical

systems and continues to drive much progress made in advanced point cloud processing. 3D point

clouds provide efficient exterior representation for complex objects and their surroundings. Point

clouds have seen broad applications in many areas, such as computer vision, autonomous driving

and robotics. Notable examples of point cloud processing include surface reconstruction [35],

rendering [36], feature extraction [37], shape classification [38], and object detection/tracking

[39]. When constructing a point cloud of a target object, however, modern laser scan systems

can generate millions of data points [40]. To achieve better storage efficiency and lower point

cloud processing complexity, point cloud resampling aims to reduce the number of points in a

cloud to achieve data compression while preserving the vital 3D structural and surface features.

Point cloud resampling represents an important tool in various applications such as point cloud

segmentation, object classification and efficient data representation. An example of point cloud

resampling proposed in [41] suggested a graph-based filter to downsample point clouds and capture

the original object surface contour.

The literature already contains a variety of works on different aspects of point cloud

resampling. For instance, a centroidal Voronoi tessellation method in [42] can progressively

generate high-quality resampling results with isotropic or anisotropic distributions from a given

point cloud to form compact representations of the underlying cloud surface. Another 3D filtering

and downsampling technique [43] relies on a growing neural gas network, to deal with noise and

outliers within data provided by Kinect sensors. Of particular interest is a graph-based resampling

approach which has exhibited desirable capability to capture the underlying structures of point

clouds [44]. The graph-based method of [45] applies embedded binary trees to compress the

dynamic point cloud data. Another interesting work [41] proposes several graph-based filters to

capture the distribution of point data to achieve computationally efficient resampling. In addition,

a contour-enhanced resampling method introduced in [46] utilizes graph-based highpass filters.

In addition to the aforementioned class of graph-based methods, a competing class of

20

feature-based approaches via edge detection and feature extraction has also been popular. In [47],

the authors presented a sharp feature detector via Gaussian map clustering on local neighborhoods.

Bazazian et al. [48] extended this principle by leveraging principal component analysis (PCA) to

develop a new agglomerative clustering method. The efficiency and accuracy of this work can

further benefit from spectral analysis of the covariance matrix defined by k−nearest neighbors.

Another typical approach represented by [13] processes a noisy and possibly outlier-ridden point

set in an edge-aware manner.

Both graph-based and feature-based methods have clearly achieved success in point cloud

resampling. However, some limitations remain. Graph-based methods tend to focus on pairwise

relationships between different points, since each graph edge only connects two signal nodes.

However, it is clear that multilateral interactions of data points could model the more informative

characteristics of 3D point clouds. Bilateral graph node connections cannot even describe the

multilateral relationship among points on the same surface (e.g. 3 points of a triangle) directly [11].

Furthermore, in graph-based methods, the efficient construction of a suitable graph to represent an

arbitrary point cloud poses another challenge. Among feature-based methods, performance would

vary with respect to the feature selection and filter designs. The open issues are the adequate and

robust selection of features and filter parameters for practical point cloud processing.

More recently, hypergraphs have been successfully applied in representing and characterizing

the underlying multilateral interactions among multimedia data points [12]. A hypergraph extends

the basic graph concept into higher dimensions, in which each hyperedge can connect more than

two nodes [13]. Therefore for point clouds, hypergraph provides a more general representation to

characterize the multilateral relationship for points on object surfaces such that one hyperedge can

cover multiple nodes on the same surface. Furthermore, by generalizing graph signal processing

[1], hypergraph signal processing (HGSP) [14][15] provides a theoretical foundation for spectral

analysis in hypergraph-based point cloud processing. Specifically, stationarity-based hypergraph

estimation, in conjunction with hypergraph-based filters, has demonstrated notable successes in

processing point clouds for various tasks including segmentation, sampling, and denoising [11,16].

21

(a) Original. (b) Resampled.

Figure 3.1: Example of Contour-Enhanced Resampling: (a) original point cloud with 272705
points, and (b) resampled building based on the proposed local hypergraph filtering with 20%
samples.

In this chapter, we investigate point cloud resampling based on hypergraph spectral analysis.

Instead of the traditional uniform resampling, we investigate contour-enhanced resampling to select

a subset of points in the point cloud and to extract distinct surface features. A heuristic example is

illustrated in Fig. 3.1 showing a point cloud successfully resampled with only 20% samples for the

building. To briefly highlight the novelty of our proposed approaches, we estimate the hypergraph

spectrum basis for point clouds under study by leveraging the hypergraph stationary process. We

propose three novel 3D point cloud resampling methods:

1) Hypergraph kernel convolution method (HKC);

2) Hypergraph kernel filtering method (HKF);

3) Local hypergraph filtering method (LHF).

The kernel convolution method defines a local smoothness among signals based on an operator

and hypergraph convolution. The kernel filtering method defines the local smoothness with respect

to highpass filtering in spectrum domain. The local hypergraph filtering method utilizes a local

sharpness definition with respect to highpass filtering in spectrum domain. In order to test the

22

model preserving property on complex point cloud models, we apply a simple method for point

cloud recovery based on alpha complex and Poisson sampling. We then test the proposed methods

under several metrics to demonstrate the compression efficiency and robustness of our proposed

resampling methods with respect to the general feature preservation of point clouds under study.

We summarize the major contributions of this chapter:

• We propose three novel hypergraph-based resampling methods to preserve distinct and sharp

point cloud features;

• We provide novel definitions of hypergraph-based indicators to evaluate the smoothness or

sharpness over point clouds;

• We apply different metrics to demonstrate the effectiveness of our proposed methods.

We organize the rest of the chapter as follows. We develop the foundation of HGSP based

point cloud resampling and derive three new resampling methods in Section 3.2. We provide the

test results of the proposed resampling methods in Section 3.3, before formalizing our conclusions

in Section 3.4.

3.2 HGSP Point Cloud Resampling

Within the HGSP framework, we now propose three novel edge-preserving methods for point

cloud resampling. First, we develop a hypergraph kernel convolution (HKC) method inspired

by convolution-based edge detection in image processing. Next, we propose a hypergraph kernel

filtering (HKF) algorithm targeting local smoothness to reduce the computational complexity of

HKC. Finally, we design a local hypergraph filter (LHF) to target point clouds with non-uniformly

distributed points over the surface of an object.

23

3.2.1 Hypergraph Kernel Convolution (HKC) based Method

In traditional image processing, kernel convolution methods such as Sobel and Prewitt [49] have

achieved notable successes in edge detection. Inspired by these 2D kernel convolution methods in

2D image processing, e.g. Fig. 3.2(a), we define a square k × k × k 3D cube as the slicing block

to define a local signal sL,i ∈ RNk and a convolution kernel G ∈ RNk with Nk = k3 aimed at

extracting sharp outliers of the point cloud under study. An example of 33 cubic 3D convolution

kernel is shown in Fig. 3.2(b). Note that the hypergraph convolution kernel can assume different

shapes and sizes depending on the datasets.

(a) 2D Sobel Kernel. (b) 3D Hypergraph Kernel.

Figure 3.2: Example of Convolution Kernels.

For the i-th point in an original point cloud, its corresponding local signal sL,i ∈ RNk is defined

according to the number of points in the voxel of kernel centered at i-th point. An example of the

local signal is shown in Fig. 3.3. Although the idea behind the use of, e.g., 3D Sobel operator is

straightforward, technical obstacles arise mainly due to two reasons: (1) nodes in 3D point cloud

are not always on the grid; (2) two signals in graph/hypergraph based convolution must have the

same length. Thus, we let Nk be equal to the number of voxels in the kernel. Let dc be the distance

between the centers of two nearby voxels in the kernel. A proper selection of dc should allow sL,i

to capture the local geometric information. If dc is too small, only a few neighbors of i-th point are

24

included in the sL,i and it is sensitive to measurement noise. If dc is too large, a large number of

neighbors are included in each voxel, which may lead to the blurring of detailed local geometric

information. Since intrinsic resolution describes the point cloud density and can be estimated by

averaging all distances between each point and its nearest neighbor, we set dc as the intrinsic

resolution of a point cloud.

Figure 3.3: An example of local signal sL,i: Points in the middle layer are marked by blue circles
and points in the back layer are marked by red squares. The voxels of slicing block are delineated
by the dashed black lines. There is at most one point in each voxel in this example, such that
sL,i(n) = 1 or 0, respectively, depending on whether the n-th voxel contains a point.

Given the definition of signals, we now propose a new hypergraph convolution based method.

There are two main steps in our kernel convolution based method: 1) estimation of hypergraph

spectrum; and 2) implementation of kernel convolution.

We first estimate the hypergraph spectrum based on hypergraph stationary process. Introduced

in [11], a stochastic signal sH is weak-sense hypergraph stationary if and only if it has zero-mean

and its covariance matrix has the same eigenvectors as the hypergraph spectrum basis, i.e.,

E[sH] = 0, (3.2)

25

and

E[sHsHH] = VHΣsHVH
H , (3.3)

where VH is the hypergraph spectrum basis and ΣsH denotes the diagonal matrix whose diagonal

elements are the eigenvalues. Since the 3D coordinates can be viewed as three observations of the

point cloud from different projection directions, we can estimate the hypergraph spectrum from the

covariance matrix of three coordinates based on the assumption of signal stationarity. Note that,

since GSP is a special case of HGSP when the number of edges is reduced to two, HGSP-based

stationary process is also compatible with GSP-based stationarity. Here, we use the same spectrum

estimation strategy as [11], and consider the adjacency tensor as a third-order tensor, which is the

minimum number of nodes to form a surface. Interested readers can refer to [11, 16] for more

detailed discussions on the spectrum estimation based on HGSP-based stationary process.

HKC Algorithm

Let Pc = [X1 X2 X3] ∈ RNk×3 be the coordinates of the total Nk voxel centers in the kernel.

For our 3× 3× 3 kernel example, Nk = 27. The distance dc is set to equal the intrinsic resolution

of the point cloud, which can be estimated by the average distances between each point and its

nearest neighbor in the point cloud. We then normalize the coordinates Pc to obtain a zero mean

signal P′c. By calculating the eigenvectors {f1, · · · , fNk} for RP′c = P′cP
′
c
>, we can estimate the

hypergraph spectrum basis VH = [f1, · · · , fNk].

Next, we implement convolution between the local signal sL,i and the kernel G. Since we

consider the third-order tensor and are only interested in signal energies in the spectrum domain,

we can utilize the hypergraph spectrum to calculate a simplified-form of HGFT ŝL,i and a

corresponding inverse HGFT (iHGFT) of the original signals sL,i, instead of the HGFT and iHGFT

of the hypergraph signal s
[M−1]
L,i in (2.11).

26

Algorithm 3.1 Hypergraph Kernel Convolution (HKC)

Input: A point cloud of N nodes with coordinates P = [p>1 · · ·p>N]>, resampling ratio α.
1. Calculate the intrinsic resolution of point cloud;
2. Use intrinsic resolution dc to find coordinates Pc ∈ RNk×3 of voxel centers in the kernel;
3. Use the coordinates Pc of voxel centers in the kernel to estimate the hypergraph spectrum
basis VH = [f1, · · · , fNk] and corresponding eigenvalues λH;
for i = 1, 2, · · · , N do

4. Use hypergraph spectrum basis VH to calculate the Fourier transform ŝL,i in (3.4);
5. Calculate the Hadamard product ŝoi = ŝL,i � Ĝ;
6. Calculate inverse Fourier transform soi using (3.5);
7. Calculate local smoothness βi in (3.7) ;

end for
8. Sort the local smoothness βi in descending order and select the bottom Nr = αN nodes as
the resampled point cloud.

Recall from [14] that simplified HGFT and iHGFT of original signal are, respectively,

F(sL,i) = ŝL,i = VH
HsL,i, (3.4)

F−1(ŝL,i) = sL,i = VHŝL,i. (3.5)

Note that the hypergraph signal is a (M − 1)-fold tensor outer product of the original signal in

vertex domain, corresponding to (M − 1)-fold Hadamard product in spectrum domain, where they

share the same bandwidth.

Directly designing convolution kernel G in vertex domain is challenging for two main reasons.

First, since hypergraph spectrum basis VH would vary for different kernels, finding a general G

in vertex domain that performs equally well for various different bases would be difficult. Second,

since the convolution result soi between the signal sL,i and the kernel G can be expressed as

soi = VH(Ĝ� ŝL,i)

= VH
(
diag(Ĝ)ŝL,i

)
= VHdiag(Ĝ)VH

HsL,i, (3.6)

it is convenient to design spectrum domain Ĝ directly.

27

In order to preserve edges in the resampled point cloud, we use a highpass filter defined in

spectrum domain. Since sharp features of point clouds correspond to high frequency elements in

the hypergraph spectral space [11], a highpass filter is designed to preserve edges in resampled

point clouds. More specifically, in our experiments, we use a simple and well-known Haar-like

highpass design [41], i.e., Ĝ = 1 − λH, where λH = [λ1 λ2 · · ·λNk]> are eigenvalues

corresponding to eigenvectors {f1, · · · , fNk}. Since larger λ corresponds to lower frequency,

Haar-like design could highlight high frequency components in the signal [1]. Note that, here we

provide the Haar-like highpass filter as an example of convolution kernels. Other elegant highpass

filters can also be used as the convolution kernel for the edge preserving purpose. We use the ratio

between the norm of the convolution output soi and the norm of sL,i − soi to measure smoothness

βi for the i-th point, i.e.,

βi =
‖soi‖

‖sL,i − soi‖
. (3.7)

In resampling, we would like to extract distinct and sharp features by selecting points that exhibit

lower βi value from the resampling output. Our algorithm is summarized as Algorithm 3.1, also

known as the HKC resampling algorithm.

HKC Algorithm Complexity

In an unorganized point cloud, the computational complexity of HKC amounts to O(N2 +

N logN + Nk(Nk + 1)N + N3
k), while in an organized point cloud, the complexity order is

O(N logN + (N2
k +Nk + 1)N +N3

k). Here are the details. First, for generating sL,i of all points in

an unorganized point cloud, the computation order isO(N2) because of the need to search the point

cloud to find actual neighbors for each data point. In an organized point cloud, such computation

can be reduced to O(N). Next, to estimate the hypergraph spectrum basis VH and VH
H , we need

to find eigenvectors of RP′c , requiring computation order of O(N3
k). Because the same kernel is

used for every point in the point cloud, we only need to estimate hypergraph spectrum basis once.

28

In subsequent steps, computing all HGFT and iHGFT pairs amounts to O(NN2
k). Finally, it takes

O(NNk) to calculate all βi’s in (3.7), and additional O(N logN) to sort them.

3.2.2 Hypergraph Kernel Filtering (HKF) Resampling

To present method, we still use the 3× 3× 3 cube as the example kernel, and the same local signal

sL,i in the Kernel convolution based method.

HKF Algorithm

Consider convolution via Hadamard product and inverse Fourier transform in the HKC resampling

algorithm, we need to transform the local signal sL,i from vertex domain to spectrum domain. A

simpler alternative is to compute local smoothness directly for signals in spectrum domain. The

computational complexity of the algorithm is reduced by eliminating the inverse transform.

For edge-preserving, we wish to separate the high frequency coefficients from the low

frequency coefficients in spectrum domain. Recall that the spectrum bases corresponding to

smaller λ represent higher frequency components [14]. Because Rs′ is a real symmetric matrix, its

eigenvalues must be real. Thus, we can sort the eigenvalues of Rs′ as 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λNk

with corresponding eigenvectors {f1, · · · , fNk}. We can devise a threshold θ to separate the high

frequency components from the low frequency components according to a sharp rise of successive

eigenvalues.

Given a threshold selection of θ, we could further define a local smoothness σi to select the

resampled points:

σi =

∑
k∈{1,2,··· ,θ} |ŝL,i(k)|∑
k∈{1,2,··· ,Nk} |ŝL,i(k)|

, (3.8)

which is the fraction of high frequency energy within total signal energy. Finally, we resample

the point cloud by selecting the points with smaller σi, which correspond to points containing

larger amount of higher-frequency components in the hypergraph. We summarize our algorithm as

29

Algorithm 3.2 Hypergraph Kernel Filtering (HKF)

Input: A point cloud with N nodes characterized by P = [p>1 · · ·p>N]>, resampling ratio α.
1. Calculate the intrinsic resolution of point cloud;
2. Use the intrinsic resolution as dc to get the coordinates Pc ∈ RNk×3 of voxel centers in the
kernel;
3. Use the coordinates Pc of the voxel centers in the kernel to estimate the hypergraph spectrum
basis VH = [f1, · · · , fNk];
for i = 1, 2, · · · , N do

4. Use hypergraph spectrum basis VH to calculate the Fourier transform ŝL,i in (3.4);
5. Calculate the local smoothness σi in (3.8);

end for
6. Sort the local smoothness σi and select the bottom Nr = αN points as the resampled point
cloud.

Algorithm 3.2, also known as HKF resampling algorithm. The general steps of HKF are similar to

those of HKC, while the major differences lie in the definition of smoothness as shown in (3.8).

Since the resampled point clouds favor high-frequency points, they tend to contain more sharp

features and are less smooth.

HKF Algorithm Complexity

Algorithm 3.2 (HKF) and HKC have a similar order of computational complexity, while the

runtime of HKF would be shorter than HKC by eliminating the iHGFT. Similar to HKC

resampling, in an unorganized point cloud, the complexity for generating sL,i for all points is

O(N2), whereas this complexity is reduced to O(N) for an organized point cloud. The complexity

of estimating the hypergraph spectrum basis VH and VH
H is O(N3

k). The cost of requisite Fourier

transforms amounts to O(NN2
k). The total complexity for computing βi in (3.8) is O(NNk). It

further requires O(N logN) to sort the σi.

3.2.3 Local Hypergraph Filtering (LHF) Algorithm

In the aforementioned HKC and HKF algorithms, we use the same kernel to define all the local

signals for points in the point cloud. If the distribution of the points are highly non-uniform on the

surface of an object, it is difficult to find a value of dc suitable for every local signal. The distance

30

(a) Resampled results of “dragon” using local hypergraph filtering
based method with signal length Ni = 3. Details in the body part
are kept.

(b) Resampled results of “dragon” using local hypergraph filtering
based method with signal length Ni = 6. Details in the body part
are ignored.

Figure 3.4: Resampled Results of Dragon Using Local Hypergraph Filtering based Method.

parameter may either be too small for the low density part or too large for the high density part.

As a result, the performance of HKC and HKF algorithms may be erratic for such highly uneven

point distribution. To mitigate this problem, we further propose another HGSP approach to model

the local signal by incorporating the vector between the i-th point and each of its (Ni − 1) closest

31

neighbors. In particular, we define a local signal for the i-th node of order Ni as

sL,p,i = [0> (pn1 − pi)
> · · · (pnNi−1

− pi)
>]> ∈ RNi×3, (3.9)

where n1, · · · , nNi−1 are the indices of its (Ni − 1) nearest neighbors.

We then build hypergraphs over these points and use hyperedge to connect point i and its

(Ni−1) nearest neighbors. Similar to the HKF algorithm, we also devise a filter defined in spectrum

domain to process the local signal. Although, strictly speaking, we could define a unique Ni for

each of the i-th point, we find it more convenient to consider some fixed selections for all points to

avoid comparing hyperedges of different lengths.

Fig. 3.4 provides an example to show the effect of Ni selection. When Ni is small, sL,p,i

describes the local geometric information in a smaller region. Consequently, the filtered results

tend to vary more and capture sharp features of the point cloud in Fig. 3.4(a). When Ni is large,

sL,p,i characterizes the local geometry of a larger region around the i-th point. As a result, its local

information is blurred with other local information from its neighbors such that the filtered results

tend to be smoother and tend to highlight the contour of the point cloud as seen from Fig. 3.4(b).

Local Hypergraph Filtering (LHF) Algorithm

Because we would like to preserve both the sharp features and the surface contour of the point cloud

to achieve consistently good performance across different point clouds, we propose to apply several

values of Ni for all points. In particular, we consider two different lengths Na, Nb to construct two

different sets of local signals. We would then integrate the filtered results.

Our local hypergraph filtering (LHF) based resampling consists of two main steps: i)

hypergraph spectrum construction, ii) spectrum domain filtering. We first estimate hypergraph

spectrum by applying the same process used in HKC and HKF algorithms. In this new LHF

method, each point has its own (small-scale) hypergraph. We should estimate the hypergraph

spectrum for each point using two different local signals sL,p,i,a ∈ RNa×3 and sL,p,i,b ∈ RNb×3.

32

Once the estimation of the corresponding hypergraph spectrum bases VH,i,a and VH,i,b is

completed, we apply (3.4) to derive the Fourier transform ŝL,p,i,a and ŝL,p,i,b, respectively.

Similar to spectrum filter in the HKF method, we define two thresholds θi,a and θi,b,

respectively, for ŝL,p,i,a and ŝL,p,i,b. Two local sharpness metrics are further defined as

γ(ŝL,p,i,a) =

∑
j∈{1,2,··· ,θi,a}

∑3
k=1 |ŝL,p,i,a(j, k)|∑

j∈{1,2,··· ,Ni}
∑3

k=1 |ŝL,p,i,a(j, k)|
, (3.10a)

γ(ŝL,p,i,b) =

∑
j∈{1,2,··· ,θi,b}

∑3
k=1 |ŝL,p,i,b(j, k)|∑

j∈{1,2,··· ,Ni}
∑3

k=1 |ŝL,p,i,b(j, k)|
, (3.10b)

where θi,a and θi,b correspond to the thresholds for ŝL,p,i,a and ŝL,p,i,b, respectively, with Na and Nb

as the respective corresponding lengths.

Upon completion of sharpness evaluation, for each signal point, we apply a weighted average

of γ(ŝL,p,i,a) and γ(ŝL,p,i,b) to form a combined sharpness result

γi =Wγ(ŝL,p,i,a) + (1−W)γ(ŝL,p,i,b), (3.11)

whereW denotes the weight.

To balance the effect of two local sharpness metrics, we sort both γ(ŝL,p,i,a) and γ(ŝL,p,i,b) and

design the weightW according to the top α fraction of γ(ŝL,p,i,a) and γ(ŝL,p,i,b), denoted by Γa and

Γb, respectively. We can define node-specific weights

W =
Γb

Γa + Γb
. (3.12)

Finally, we sort the γi of (3.11) and select the top Nα = αN points as the resampled point

cloud. The whole algorithm is summarized as Algorithm 3.3, also known as the LHF algorithm. In

Algorithm 3, steps 1-3 correspond to the hypergraph spectrum estimation, while steps 4-6 describe

the process of sharpness-based filtering as (3.11).

33

LHF Algorithm Complexity

The computational complexity of LHF isO(N2+N logN+Nk(N
2
k+Nk+1)N) for an unorganized

point cloud, and O(N logN + (N3
k + N2

k + Nk + 1)N) for an organized point cloud. First,

the complexity for generating sL,p,i for all points is O(N2) and O(N) for an unorganized point

cloud and organized point cloud, respectively. Second, unlike HKC and HKF, the hypergraph

spectrum bases would differ for each point and its corresponding local signals. Thus, one needs to

estimate hypergraph spectrum basis VH,i,as and VH,i,bs for each of point. Consequently, the total

computational complexity is of O(NN3
k). Next, Fourier transforms and inverse Fourier transforms

further require computation ofO(NN2
k). Finally, the total complexity of computing γi isO(NNk),

plus O(N logN) for sort the resulting γi.

Algorithm 3.3 Local Hypergraph Filtering (LHF)

Input: A point cloud with N nodes characterized by P = [p>1 · · ·p>N]>, resampling ratio α,
local lengths Na, Nb.
for i = 1, 2, · · · , N do

1. Find the nearest (Na − 1) and (Nb − 1) neighbors of point i;
2. Use coordinates of point i and its (Na−1) and (Nb−1) neighbors to estimate the hypergraph
spectrum bases VH,i,a, VH,i,b, respectively;
3. Use hypergraph spectrum basis VH,i,a and VH,i,b to calculate the Fourier transform ŝL,p,i,a
and ŝL,p,i,b, respectively;
4. Calculate the local sharpness γ(ŝL,p,i,a) and γ(ŝL,p,i,b) in (3.10a) and (3.10b);

end for
5. Calculate the weighted average of γi(ŝL,p,i,a) and γi(ŝL,p,i,b) using (3.11) and (3.12).
6. Sort the local sharpness γi and select the top Nr = αN points as the resampled point cloud.

3.2.4 Discussion

To conclude, HKC and HKF are more suitable for evenly distributed point clouds, while LHF

exhibits more robust performance over unevenly distributed point clouds. All three algorithms have

comparable complexity. The HKC algorithm has the complexity of O(N2 + N logN + Nk(Nk +

1)N + N3
k) for an unorganized point cloud, while in an organized point cloud, the computational

complexity is only O(N logN + (N2
k + Nk + 1)N + N3

k). The runtime of HKF is shorter than

34

HKC by eliminating the iHGFT. Such difference is more significant when applying a large Nk in

the convolution kernel. The runtime of LHF is higher than both HKC and HKF because of the need

to estimate hypergraph spectrum basis for every local signal.

3.3 Experimental results

Table 3.1: Numerical results of methods using point clouds of all shapes.

HKC HKF
Noise Level Precision Recall F1-Score Mean Distance Precision Recall F1-Score Mean Distance
No Noise 0.3701 0.8558 0.4824 1.3731 0.3470 0.8581 0.4734 1.5441
10% 0.3502 0.8217 0.4579 1.5003 0.3265 0.7818 0.4308 1.5773
15% 0.3344 0.7722 0.4337 1.6691 0.3211 0.7480 0.4178 1.7409
20% 0.2686 0.6035 0.3436 1.9078 0.2452 0.5539 0.3116 2.0004
25% 0.2105 0.4577 0.2656 2.3482 0.2153 0.4615 0.2695 2.4392
30% 0.1774 0.3635 0.2181 2.8434 0.1795 0.3623 0.2190 2.9141

LHF GFR
Noise Level Precision Recall F1-Score Mean Distance Precision Recall F1-Score Mean Distance
No Noise 0.3265 0.8069 0.4345 1.6662 0.4254 0.9168 0.5324 1.0931
10% 0.2017 0.5079 0.2670 1.9891 0.3917 0.8903 0.5015 2.7102
15% 0.1719 0.4252 0.2262 2.2813 0.3306 0.7198 0.4214 3.1772
20% 0.1492 0.3514 0.1915 2.5181 0.2407 0.5411 0.3068 3.6121
25% 0.1431 0.3339 0.1838 2.7349 0.1959 0.4182 0.2450 3.9423
30% 0.1317 0.2990 0.1677 2.9003 0.1624 0.3333 0.1994 4.1074

EA PCA-AC
Noise Level Precision Recall F1-Score Mean Distance Precision Recall F1-Score Mean Distance
No Noise 0.3269 0.8417 0.4471 2.0033 0.3417 0.8605 0.4594 2.2471
10% 0.3264 0.8534 0.4487 1.7571 0.3451 0.8517 0.4592 1.8261
15% 0.3211 0.8429 0.4418 1.8173 0.3364 0.8379 0.4498 1.7489
20% 0.3099 0.8097 0.4251 1.9690 0.3226 0.8182 0.4349 1.7061
25% 0.2770 0.7245 0.3798 2.3033 0.3126 0.7966 0.4223 1.6027
30% 0.2377 0.6156 0.3241 2.6570 0.2945 0.7447 0.3966 1.8527

We now describe our experiment setup and present test results of the three proposed new

resampling algorithms.

3.3.1 Edge Preservation of Simple Synthetic Point Clouds

As we described in Section III, one important resampling objective is to preserve sharp features in

a point cloud such as edges and corners. In this part, we study the edge preserving capability of our

proposed algorithms by testing over several simple synthetic point clouds. The reason for selecting

35

synthetic point clouds in this test is to take advantage of the known ground truth regarding edges

and our ability to label them. We generate these synthetic point clouds by uniformly sampling the

external surface of models constructed from combinations of cubes, cylinders and pyramids of

various sizes. Examples of synthetic point clouds are shown in Fig. 3.5, where the points on edges

are marked in red while the remaining points are in blue.

To measure the accuracy of the preserved edges, we evaluate the F1 score, defined by

F1 = 2 · Precision · Recall

Precision + Recall
, (3.13)

where precision denotes the fraction of edge points correctly preserved among all (false or correct)

edge points for a resampling algorithm while the recall is the ratio of correctly preserved edge

points versus all ground truth edge points. We also calculate the mean distance to their closest

ground truth edge point respectively to show the ability of the algorithms in capturing the model

surface.

We compare the three proposed algorithms with graph-based resampling and traditional

edge detection methods. For graph-based resampling, we use the graph-based fast resampling

(GFR) method with the Haar-like highpass graph filter introduced in [41] for comparison to

show the strength of hypergraph in capturing multilateral features by generalizing traditional

GSP and the advantage of applying hypergraph analysis in point cloud resampling over graph

based methods. In addition, we also consider an edge detection method based on eigenvalues

analysis (EA) and another edge detection scheme using Principal Component Analysis (PCA)

and agglomerative clustering (PCA-AC) [48]. The parameters of GFR method are set to the

typical values suggested by [41]. For EA and PCA-AC, we retain the points with higher cluster

numbers or larger surface variation in the resampled point cloud to yield the same resampling ratio.

Here, we set the resampling ratio α = 0.2 for all point clouds as an example. Additional results

with different resampling ratios will be further presented in Section IV-C. In order to study the

robustness of algorithms, we also add 10% to 30% of Gaussian measurement noises, i.e., noises of

36

Figure 3.5: Synthetic Point Clouds with Labeled Edge.

N (0, (0.1d(i))2) toN (0, (0.3d(i))2), to point coordinates of the cloud. Here d(i)c denotes the intrinsic

resolution of point clouds. Table. 3.1 summarizes our test results. To better illustrate test results, we

mark the best results among HGSP and GSP methods in bold font and underlined the best results

of all methods. We also mark results with different colors from warm to cold to demonstrate poor

to good performance (i.e. red marks poor performance and green marks good performance).

Compared with the GSP based GFR method, the newly proposed HKC algorithm performs

robustly for point clouds under larger measurement noises. Since the local signals in HKC are

defined by the number of points in the voxel of kernel, weaker noises on a single point with

perturbation below dc/2 would not affect local signals. In addition, the hypergraph-based methods

exhibit a smaller mean distance than GFR in all the shapes, which indicates that our proposed

methods generate more robust edges than the graph-based method.

On the other hand, LHF algorithm does not perform well against noisy point clouds

because sizable noises directly distort the local hypergraph and neighbors. Overall, our proposed

HGSP-based methods demonstrate stronger robustness than the traditional graph-based GFR

algorithm for noisy data. Using a generic signal processing approach they also deliver competitive

performance against non-graph based EA and PCA-AC methods that were designed specifically

for edge detection.

37

(a) Original
Point Cloud

(b) HKC (c) HKF (d) LHF (e) GFR (f) EA (g) PCA-AC

Figure 3.6: Examples of Edge Detection for Realistic Practical Point Clouds.

3.3.2 Edge Preservation Results on Real-Life Point Clouds

To test our proposed algorithm in a more general setting, we also implement edge detection based

on our resampled data in more complex and practical point clouds. For these datasets, there are no

explicit ground truth edges to provide quantitative results. Therefore, we present these results as

visible point cloud pictures to illustrate the test performance in Fig. 3.6, where the left column

shows the original point clouds and the right columns are the resampled point clouds for our

proposed methods and methods under comparison, respectively. From Fig. 3.6, all methods can

detect the edges of the model. Hypergraph and graph based methods tend to contain some points

on a surface, while EA and PCA-AC methods tends to emphasize points closer to edges for point

clouds of sofa and bookshelf in the first and second rows. We also test the algorithms on both the

Boxer point cloud in 8i Voxelized Surface Light Field (8iVSLF) Dataset [50] and the Bi-plane

point cloud in ScanLAB Projects [51]. We considered resampling ratio α of 0.001 and 0.005,

respectively. The results are shown in Fig. 3.7 and Fig. 3.8. As shown in Fig. 3.7, the HKC and

HKF methods can detect continuous edges and textures on the clothes of Boxer point cloud, similar

to results from EA and PCA-AC. However, GFR method fails to detect continuous textures. It tends

38

(a) Original
Point Cloud

(b) HKC (c) HKF (d) LHF (e) GFR (f) EA (g) PCA-AC

Figure 3.7: Examples of Edge Detection for Boxer Point Cloud in 8iVSLF Dataset

(a) Original

(b) HKC (c) HKF (d) LHF (e) GFR (f) EA (g) PCA-AC

Figure 3.8: Resampled results using ScanLAB Projects: Bi-plane point cloud data set

to keep more points on the entire surface. Furthermore, as shown in Fig. 3.8, both HKC and HKF

methods are able to capture clear edges and preserve the shape of the cabin on the biplane better

than other methods. We also note that the LHF method captures more clear features of the wheels.

These results show that our resampling methods effectively detect 3D object contours (outlines) in

real scenarios.

3.3.3 Point Cloud Recovery from Resampling

In the next test, we investigate the new algorithms’ ability to preserve high degree of point cloud

information after resampling. In particular, we shall attempt to recover the dense point cloud after

39

(a) Original Point Cloud of a Cap. (b) Resampled Result with α =
0.2.

(c) Recovered Point Cloud.

Figure 3.9: Example of original point cloud, resampled point cloud and the recovered point cloud
for HKC method.

resampling and assess the similarity between the original point cloud and the recovered point cloud

from resampling.

Dense Point Cloud Recovery

A typical method for dense point cloud recovery consists of two steps: a) reconstructing the surface

of object from the resampled point cloud; and b) sampling the reconstructed object surface to

generate a recovered point cloud. Since points of edge preserving resampled point clouds tend to

concentrate near areas of high local variations, e.g., edges/corners, points of these resampled point

clouds are not uniformly distributed, as shown in Fig. 3.9(b). For this reason, some generic surface

reconstruction methods such as Poisson reconstruction [52] may perform poorly on such sparse

point clouds. We must pay special attention to surface reconstruction methods chosen for such

type of resampled point cloud data.

In order to reconstruct surfaces from edge preserving and sparsely resampled point clouds,

we propose to first construct the alpha complex [53] from the resampled point cloud, since

this approach is well-known and widely-used method for surface reconstruction based on 3D

coordinates of points, and is also quite robust when handling unevenly distributed point clouds.

To mitigate the potentially degrading impact of imperfect reconstruction, we decide to reconstruct

six different surface models for each resampled point cloud by applying different parameters. We

then apply Poisson-disk resampling to sample the alpha complex to form a recovered point cloud.

40

Table 3.2: Example of original and resampled point clouds with resampling ratio α = 0.2.

Original HKC HKF LHF GFR EA PCA-AC

To further mitigate the effect due to the possible construction of extraneous surfaces absent from

the original object, we select a threshold distance dθ three times the intrinsic resolution of the

original point cloud. Using the threshold distance, we only retain the best recovered point cloud

which contains the largest number of points that are within the threshold distance dθ from the

original point cloud.

Distance Between Point Clouds

To assess the quality of point cloud recovery, we need to define distances between the original

and the recovered point clouds. Let pi denote a point in the original and pc,j denote a point in the

recovered point cloud. When computing our distance between two point clouds, we neglect any

distances between point pi in the original point cloud and pc,j in the recovered point cloud such

that the minimum distances minj ‖pi − pc,j‖ and mini ‖pi − pc,j‖ are greater than dθ.

41

Table 3.3: Example of original and recovered point clouds with resampling ratio α = 0.2.

Original HKC HKF LHF GFR EA PCA-AC

We define a distance and a dual distance between the original and the recovered point cloud as

D0 =
1

N1

N1∑
i=1

min
j:‖pi−pc,j‖<dθ

‖pi − pc,j‖, (3.14)

Ď0 =
1

N2

N2∑
j=1

min
i:‖pi−pc,j‖<dθ

‖pi − pc,j‖, (3.15)

where N1 is the number of points in the original point cloud that satisfy ‖pi − pc,j‖ < dθ for some

pc,j and N2 is the number of points in the recovered point cloud that satisfy ‖pi − pc,j‖ < dθ for

some pi. In other words, D0 is the average distance for points that are in the original point cloud

within dθ from the closest points in the best recovered point cloud. The dual distance Ď0 is the

average distance for points in the best recovered point cloud that are within dθ from their closest

points in the original point cloud.

42

(a) Original
Point Cloud

(b) α = 0.1 (c) α = 0.2 (d) α = 0.4 (e) α = 0.6 (f) α = 0.8

Figure 3.10: Example of resampled results of EA with different α.

(a) α = 0.1 (b) α = 0.2 (c) α = 0.4 (d) α = 0.6 (e) α = 0.8

Figure 3.11: Example of resampled results of PCA-AC with different α.

Visual and Numerical Results

We use six different categories of point clouds from ShapeNet [54] in our experiments. Similar to

experiments discussed earlier, we test our HKF method together with the GSP-based GFR method

in [41] plus the EA and PCA-AC methods from [48]. We also test each method using downsampled

Boxer point cloud in 8iVSLF dataset [50]. We first uniformly downsample the Boxer point cloud

with 10% points remaining in the output point cloud, before sending the resulting point cloud as the

input for each method. We use the downsampled point cloud for memory and transport efficiency

because the original Boxer point cloud has nearly 3,500,000 points. For fairness, we use the same

resampling ratio for all the methods.

Our experiments follow the following steps. First, we apply resampling and edge detection

methods to calculate the resampled point clouds with resampling ratio α. Next, we apply our

proposed recovery method to generate recovered point clouds. Based on the resampled point

clouds, we compute the numerical performance metrics for different algorithms in comparison.

We measure the performance under three metrics: 1) distance defined in (3.14); 2) average of

distance and dual distance as defined in (3.14) and (3.15), respectively; and 3) average number N1

of points within the threshold dθ between the original and recovered point cloud. Smaller distance

and larger number of points within the threshold indicate better performance.

43

Table 3.4: Mean distance between the best recovered point cloud and the original point cloud for
resampling ratio α = 0.2 using ShapeNet dataset.

Categories HKC HKF LHF GFR EA PCA-AC
Cap 0.0111 0.0101 0.0117 0.0102 0.0087 0.0115
Chair 0.0111 0.0113 0.0116 0.0118 0.0125 0.0126
Laptop 0.0106 0.0106 0.0103 0.0105 0.0110 0.0110
Mug 0.0134 0.0134 0.0150 0.0141 0.0150 0.0147
Rocket 0.0069 0.0069 0.0078 0.0070 0.0070 0.0073
Skateboard 0.0079 0.0080 0.0080 0.0079 0.0082 0.0083
Average 0.0102 0.0101 0.0107 0.0103 0.0104 0.0109

Table 3.5: Average number of points within dθ between the best recovered point cloud and the
original point cloud for resampling ratio α = 0.2 using ShapeNet dataset.

Categories HKC HKF LHF GFR EA PCA-AC
Cap 2628.3 2632.4 2315.7 2635 1427.5 2160.4
Chair 2656.1 2657.9 2658 2653.9 2458.2 2469.9
Laptop 2754.4 2784.4 2785.6 2774.3 2626.4 2584.6
Mug 2818.6 2819.9 2716.6 2810.7 2633.7 2418.2
Rocket 2364.4 2361 2317.4 2360.6 1904.4 2004.5
Skateboard 2559.8 2562 2568.2 2563.1 2409.9 2381.2
Average 2630.3 2636.3 2560.25 2632.93 2243.35 2336.47

Table 3.6: Mean distance between the best recovered point cloud and the original point cloud for
different resampling ratios using downsampled Boxer point cloud in 8iVSLF dataset.

α HKC HKF LHF GFR EA PCA-AC
0.1 2.7889 2.7942 2.6646 2.7705 2.7656 2.3536
0.2 2.4446 2.1716 2.8015 2.4362 2.7639 2.2698
0.4 1.9837 1.9841 2.4528 1.9747 2.7877 2.3825
0.6 1.8525 1.8522 1.9854 1.8522 2.8042 2.5412
0.8 1.7802 1.7790 1.8574 1.8598 2.8128 2.6750
Average 2.1700 2.1162 2.3523 2.1787 2.7868 2.4444

To start, Table. 3.2 and Table. 3.3 provides a set of the resampled point clouds and their

corresponding recovered ones from different methods of ShapeNet dataset. Visual inspection

shows that our proposed HKC, HKF, and LHF algorithms generally deliver consistently strong

results in resampling and recovery of point clouds, regardless of the dataset under study.

To quantitatively illustrate the performance comparison, Table. 3.4 and Table. 3.5 present the

numerical results for α = 0.2. From the test results, we observe that our HKF algorithm exhibits

44

Table 3.7: Average of distance and dual distance between the best recovered point cloud and
the original point cloud for different resampling ratios using downsampled Boxer point cloud in
8iVSLF dataset.

α HKC HKF LHF GFR EA PCA-AC
0.1 2.5368 2.5450 2.4381 2.4859 2.5660 4.9831
0.2 2.2974 2.1641 2.4492 2.3440 2.5225 2.3647
0.4 2.1475 2.0771 2.3687 2.0614 2.5381 5.2107
0.6 2.0890 2.0892 2.0752 2.0856 2.5576 5.2772
0.8 1.9825 1.9816 2.0204 2.0196 2.5703 2.5087
Average 2.2160 2.1714 2.2703 2.1993 2.5509 4.0689

the best performance in terms of both mean distance and number of matched points versus the

traditional GFR graph method and two edge detection methods. Compared with the edge detection

methods, our proposed algorithms consistently retain larger numbers of points within the threshold

dθ in most point cloud categories.

The comparison also demonstrates a potential issue of the specialized edge detection based

methods. In particular, resampled point cloud of edge detection methods may over-emphasize only

part of the original point cloud, as shows in Fig. 3.10 and Fig. 3.11. The points in the middle to the

top of the rocket are kept only for α larger than or equal to 0.6. As a result, substantial number of

points may not be retained by the generic edge detection methods during resampling.

We also examine the effect of sampling ratio α and graphically illustrate the variation of mean

distance, average of distance and dual distance, and average number within threshold against

different sampling ratios in Fig. 3.12, Table. 3.6 and Table. 3.7. Here we use the same set of

point clouds in the numerical results of ShapeNet dataset for α = 0.2. Note that the behavior

of PCA-AC is more erratic because it could over-emphasize certain parts of the original point

cloud, as shown in Fig. 3.13. It is clear and intuitive that higher resampling ratio leads to better

performance of all methods under study. It is important to note that our proposed methods exhibit

performances superior to the traditional EA and PCA-AC methods in terms of mean distance

for various resampling ratios. This result indicates that our proposed hypergraph-based methods

tend to preserve the geometric information more efficiently in resampling. The hypergraph-based

methods also exhibit better results with respect to the number of corresponding nodes between

45

(a) Mean distance against α.

(b) Average of distance and dual distance against α.

Figure 3.12: Plots of recovered accuracy against resampling ratio α of all methods in ShapeNet
Dataset

reconstructed and original point clouds.

46

(c) Average number of points in recovered point cloud dθ against α.

Figure 3.12: Continue of the Plots of recovered accuracy against resampling ratio α of all methods
in ShapeNet Dataset

Figure 3.13: Resampling result of PCA-AC method using resampled Boxer Point cloud.

3.3.4 Runtime of all methods

To compare the complexity of the proposed methods with traditional graph-based and PCA-based

methods, we record the runtime of all methods using the downsampled Boxer point clouds in

47

8iVSLF dataset [50] with different number of points. The resampling ratio α is 0.2 for all methods

and the result is as Fig. 3.14. We also record the average runtime of biplane point cloud with the

resampling ratio of 0.005. The result is summarized in Table 3.8.

Figure 3.14: Runtime of all methods

Table 3.8: Comparison of average running time (in seconds) for point clouds in different datasets.

Boxer (s) Bi-plane (s)
HKC 54.603 1501.288
HKF 50.880 1445.801
LHF 82.243 2225.681
GFR 56.815 6277.067
EA 67.840 1937.953
PCA-AC 776.976 4793.139

The runtime result shows that our HKC and HKF algorithms require a shorter runtime than

GFR method. The runtime of the LHF method is longer than GFR method because we used two

different local signal lengths Na and Nb such that the entire progress is calculated twice, unlike for

HKC and HKF.

Note that the computational time of GFR increases drastically for the biplane point cloud.

This happens because it is nearly impossible to store the entire adjacency matrix in memory and

implement the GFR processing for such a large point cloud. To make the GFR method feasible, we

modified GFR by calculating the optimal resampling distribution for each point directly without

48

forming the adjacency matrix. Unlike GFR, our proposed HKC and HKF algorithms are more

efficient and do not require the formation of hypergraphs for the whole point cloud.

In summary, our test results demonstrate the efficiency of the proposed resampling while

preserving the underlying structural features and geometric information among point cloud data.

They further demonstrate that hypergraph presents a promising alternative beyond regular graph

for modeling point clouds in some point cloud related applications.

3.3.5 Parameter selection

Table 3.9: Mean Distance of Different Methods.

Noise Level No Noise 10% 15% 20% 25% 30%
HKC
Basic (dc) 1.915 2.176 3.412 4.027 4.291 4.374
Noise-dependent ↑ 2.071 2.399 2.574 2.679 2.843
Optimized 1.373 1.500 1.669 1.908 2.348 2.843
HKF
Basic (dc) 1.910 2.370 3.533 4.088 4.308 4.376
Noise-dependent ↑ 2.090 2.498 2.671 2.757 2.914
Optimized 1.492 1.577 1.741 2.000 2.439 2.914
LHF
Basic (6) 3.090 3.808 4.050 4.209 4.281 4.331
Noise-dependent ↑ 2.807 3.043 3.119 3.147 3.147
Optimized 1.666 1.989 2.281 2.518 2.735 2.900
GFR
Optimized 1.093 2.710 3.177 3.612 3.942 4.107

Table 3.10: Robustness over Different Parameters: Edge Detection for Synthetic Dataset and
Recovery for Realistic Dataset.

HKC HKF LHF GFR
Variation of Mean Distance
(Synthetic Dataset) 1.2321 1.1906 0.5416 1.4154
Variation of Average Distance
(ShapeNet Dataset) 3.04E-07 2.25E-07 6.29E-06 6.97E-07

In this part, we provide guidelines for the parameter selection. Given a point cloud without

prior knowledge of overall measurement error (noise), we suggest setting the kernel size as the

49

resolution dc and Ni = 6 as baseline values. When the measurement accuracy is known (i.e., the

level of noise is given in practice), we recommend increasing 30% of the kernel size each time

the noise grows by 10% for HKC and HKF. For LHF, we increase Ni by 4 for every 10% noise

increase. We compare the mean distance of edge detection with GFR in the synthetic datasets under

different guidelines as Table 3.9. From the results, we can see that our proposed methods deliver

better performance under some simple guidelines without exhaustive tuning or hindsight.

3.4 Conclusion

This chapter investigates new ways for efficient and feature preserving resampling of 3D point

cloud based on hypergraph signal processing (HGSP). We have established HGSP as an efficient

tool to model multilateral point relationship and to extract features in point cloud applications.

We have proposed three new methods based on HGSP kernel convolution and spectrum filtering.

Although typical HGSP tools tend to require high computational complexity, our proposed

algorithms bypass certain steps for hypergraph construction and only require modest complexity to

implement. Our experimental results have demonstrated that the proposed hypergraph resampling

algorithms can outperform traditional graph-based methods in terms of feature preservation and

robustness to measurement noise.

50

Chapter 4

Body Motion Segmentation via Multilayer

Graph Processing

4.1 Introduction

Human motion analysis has recently emerged as an active research field, stemming from its broad

applications in many areas, ranging from human-robot interaction to autonomous driving [55–57].

Among a variety of tasks, human motion segmentation serves as an important preprocessing step,

benefiting a wide range of motion/action-related tasks, such as gesture recognition, human activity

recognition, and human gait analysis [58]. Generally, human motion segmentation aims to divide

a long sequence of motion frames into several short, non-overlapping temporal sections [59], each

of which has its distinct physical meaning, as shown in Fig. 4.1(a). Specifically, we aim to process

motion skeleton data extracted from video or synthesized from multiple sensors, instead of the raw

video footage. Thus, the question of how to cluster the motion video/sequence into meaningful

clips plays an important role in human motion analysis.

Despite many works focused on temporal segmenting videos about motions [60–62], the

existing motion segmentation methods within the scope of processing motion sequences can

be categorized into either unsupervised segmentation or supervised classification. Unsupervised

51

(a) (b)

Figure 4.1: Illustration of Human Motion: (a) Example of Motion Segmentation; (b)
Spatial-Temporal Relationships Modeled By Multilayer Graph.

motion segmentation usually utilizes the temporal dependency in the video sequence, including

that in accelerometer and gyroscope data, to segment different motions. Typical clustering methods

include low-rank transfer clustering [59], hierarchical aligned cluster analysis (HACA) [63],

and subspace clustering [64]. However, these clustering-based approaches usually focus on the

temporal information and require some additional information, such as the exact number of

different actions, which may not be contained in the datasets. On the other hand, supervised

approaches usually assume prior-labeled datesets to train the deep learning networks. For example,

in [65], a deep neural network is proposed for human action classification. Other methods also

include long short-term memory networks (LSTM) [66] and few-shot learning [71]. Despite

some notable successes, most learning based methods need training sets that are often labeled

by human supervisors, which may be inaccurate and unavailable in real applications, limiting the

practicability of the supervised learning methods. The development of a more efficient method for

motion segmentation remains an open direction of endeavor.

Recent development of geometric approaches, including graph signal processing (GSP) [1] and

52

graph neural networks (GNN) [2, 3], has provided another promising alternative to solve human

motion segmentation, for both supervised and unsupervised scenarios. In [72], a spatial temporal

graph convolutional networks (ST-GCN) is introduced for skeleton-based action recognition.

Extended from ST-GCN, the authors of [73] proposed a multi-stage spatial-temporal graph

convolutional neural network (MS-GCN). In addition, [79] introduced spatio-temporal graph

cuts for event-based motion segmentation. However, most existing works assume that human

motion relies on a homogeneous spatial graph structure whereas, in fact, an alternative multilayer

heterogeneous structure could be more informative. As shown in Fig. 4.1b, joints in each temporal

framework might have different underlying geometric structures due to the motion dynamics,

suitable for a multilayer graph (MLG) structure. Moreover, limited by the homogeneous spatial

structure, existing works are inefficient in processing the inter-layer (temporal) and intra-layer

(spatial) correlations jointly, but they separate the spatial and temporal analysis. How to jointly

extract spatial-temporal geometric features remains a challenge. Fortunately, within the context

of GSP, a multilayer graph signal processing (M-GSP) framework has been introduced for MLG

based on tensor representation [17]. Different from traditional multiway GSP (MWGSP) [81],

M-GSP allows different spatial layers to represent heterogeneous geometric structures, and defines

a joint MLG spectral space for data analysis. M-GSP has shown great potentials in spectrum

analysis, image compression, clustering, hyperspectral image segmentation and classification

[18, 19].

To capture the heterogeneous underlying geometry and address the spatial-temporal

relationships jointly, we apply M-GSP and propose two novel MLG-based methods for

unsupervised human motion segmentation. More specifically, we first introduce the MLG modeling

for human motion datasets and define a MLG singular space for motion analysis. We then

investigate the M-GSP spectral properties and design a M-GSP Haar-like highpass filter for feature

extraction, based on which a spectral segmentation is implemented. To reduce the complexity

and enhance the efficiency, we present another M-GSP based approach according to the tensor

representation of MLG. Our experimental results demonstrate the power of M-GSP in extracting

53

spatial-temporal features, as well as the efficiency of the proposed method. We summarize our

contributions as follows:

• To characterize the spatial-temporal geometric correlations in human motion sequences, we

introduce an MLG model, together with its tensor representation, for motion segmentation.

To our best knowledge, we are the first to apply M-GSP/GSP in human motion analysis.

• To derive the geometric features of human motions, we propose an M-GSP spectral method

for unsupervised motion segmentation, and to investigate the properties in the MLG singular

space.

• Beyond spectral analysis, we also introduce an M-GSP based motion segmentation in the

vertex domain by exploring the tensorial and structural features of MLG.

• Based on guidelines for parameter selection, our experimental results demonstrate the

efficacy of the proposed methods in both unsupervised and supervised testing setups.

We organize the rest of the chapter as follows. In Section 4.2, we first review related works on

motion segmentation of motion capture data. Next, we present the MLG models for human motion

datasets in Section 4.3, with which we propose two novel unsupervised motion segmentation

algorithms in the spectrum domain and the vertex domain, respectively, in Section 4.4. We present

the experimental results of the proposed methods in both supervised and unsupervised setup in

Section 4.5, before summarizing our work in Section 4.6.

4.2 Related Works

In this section, we first briefly review the existing works on motion segmentation. Generally, the

existing motion segmentation can be categorized into either unsupervised motion clustering or

supervised motion recognition.

54

4.2.1 Unsupervised motion clustering

The unsupervised motion clustering usually exploits the global information of a motion sequence,

and divides the sequence into several meaningful sections [84]. For example, conventional

clustering algorithms, such as K-means clustering [82] and spectral clustering [83], can be

applied for human motion segmentation. However, these traditional clustering algorithms are often

inefficient to capture geometric information in human motions. For example, the efficacy of some

conventional clustering algorithms, such as K-means clustering, are constrained by the fact that

they are only optimal for spherical clusters, making them unsuitable for capturing distinctive

distances of sections in motion sequences [63]. Furthermore, even for the same motion, the

lengths of segments in human motion vary due to inconsistency in movement speeds, leading to

difficulties for these basic clustering algorithms. Extending traditional clustering, an aligned cluster

analysis (ACA) together with its extension hierarchical ACA (HACA) is introduced in [63] as a

generalization of kernel k-means (KKM) and spectrum clustering (SC) for time series clustering

and embedding. The ACA algorithm combines dynamic time alignment kernel (DTAK) with KKM

and SC to better capture features of segments with different lengths. Leveraging ACA, the HACA

provides a hierarchical structure at different temporal scales to refine temporal segmentation results

while reducing computational complexity. Other typical algorithms also include low-rank transfer

clustering [59], transfer subspace clustering, kernel subspace clustering [64] and auto-encoder [85].

In addition, most existing clustering algorithms focus on temporal dynamics while ignoring

the joint spatial-temporal information, which can be more informative in realistic scenarios.

These algorithms simply treat all data within the same time frame as a vector of features.

However, in realistic scenarios, changes of spatial connections within a single frame, along with

the consideration of joint spatial-temporal connections can provide more informative insights.

As shown in Fig. 4.1, a multilayer graph (MLG) built on the motion sequence can naturally

capture spatial-temporal connections. Also, the M-GSP framework proposed in [17] has shown

its ability to capture and process joint spatial-temporal information. In this chapter, we investigate

the MLG-based clustering algorithm to characterize both spatial and temporal correlations, which

55

is capable of efficient joint spatial-temporal processing.

4.2.2 Supervised Motion Recognition

Supervised motion recognition usually assumes a given prior-labeled dataset to train the neural

networks. For example, a deep neural network called SE3-NETS was proposed in [65] to segment

point clouds into distinct objects and jointly predict their rigid body motion. Another typical

type of learning framework is temporal convolutional networks (TCN). Specifically, a multi-stage

temporal convolutional networks (MS-TCN) was proposed in [94]. By stacking multiple stages

sequentially, MS-TCN can process on all temporal resolutions of videos to achieve better results.

However, the predictions of each stage in MS-TCN tend to have over-segmentation errors. To

address this issue, MS-TCN++ was proposed in [67] by introducing a dual dilated layer, which

combines both large and small receptive fields. Additionally, the authors in [68] proposed a new

cascading paradigm and a smoothing operation to enhance the adaptability and improve prediction

confidence of the model for ambiguous frames. Another approach called efficient two-step network

(ETSN) was introduced in [69] by using local burr suppression (LBS) to significantly reduce the

over-segmentation errors. To further improve the performance, [70] presented a hierarchical action

segmentation refiner (HASR), which can be plugged into MS-TCN model to refine the segment

labels by referring to the entire video.

Recently, graph neural networks have attracted significant attention in motion segmentation.

A spatial temporal graph convolutional network (ST-GCN) has been introduced in [72] for

skeleton-based action recognition. Later, the authors in [74] extended ST-GCN by introducing

the stacked hourglass architecture to improve the accuracy. Meanwhile, a decoupling GCN

model was proposed in [75]. Similar to the decoupling aggregation mechanism in CNNs, this

decoupling GCN model can improve the graph modeling ability without additional cost. Another

graph convolutional network called central difference graph convolution (CDGC) was proposed

in [76] by considering aggregating both node and gradient information in the learning model.

Despite the successes, their graph modeling are normally limited by physical adjacency of the

56

Figure 4.2: Example of Skeleton-based Human Motion Dataset in CMU graphics lab motion
capture database.

elements. To address this issue, the authors in [77] introduced two separate GCN models for

spatial and temporal information modeling. To further improve the performance, the authors of

[73] combined temporal convolutional neural network (TCN) with ST-GCN blocks to build a

multi-stage spatial-temporal graph convolutional neural network (MS-GCN), which can lead to

better segmentation. In addition, the authors of [71] added the connectionist temporal classification

(CTC) into MS-GCN to improve temporal alignment between network predictions and ground

truth. In [92], a local self-expression subspace learning network was proposed, where local

self-expression layers maintain the representation relations between temporally adjacent motion

frames. Besides, an end-to-end involving distinguished temporal graph convolutional networks

called IDT-GCN was introduced in [78], where an involving distinction graph convolutional

model and temporal segment regression module could enhance the spatial and temporal modeling

capacity, respectively. However, most learning-based methods require training datasets that are

labeled by human supervisors, which are usually unavailable and inaccurate in many practical

applications.

57

Figure 4.3: Example of MLG model for one motion sequence.

4.3 Problem Description and Modeling

We now introduce our problem description, together with the MLG models of the human motion

sequence.

4.3.1 Problem Description

Similar to [72], we focus on the skeleton-based human motion segmentation for wearable sensors.

Such skeleton-based motion dataset can be collected by body sensors or reconstructed from videos

[91]. As shown in Fig. 4.2, a human body in motion within the skeleton dataset is abstracted into

N joints, which can be annotated with additional information, including three-dimensional (3D)

coordinates, accelerometer data and gyroscope data. Suppose that the human motion sequence

contains M frames. Then, the annotated signals of the joint i in layer α is defined by a feature

vector xαi. Our goal in this work is to segment the N temporal frames into several successive

sections, which could capture the features of human behavior and match the realistic human

motion. Instead of training on prior-labeled data samples, we focus on the unsupervised human

motion segmentation.

58

4.3.2 Multilayer Graph Construction

Next, we introduce the MLG construction for human motion sequence. For most skeleton-based

motion data captured by sensors, the number of data points within one frame is constant for one

motion sequence. Thus, we can apply an MLG with the same number of nodes on each layer to

model one such motion sequence shown as Fig. 4.3. Suppose that the motion sequence contain M

temporal frames and N joints in each frame. Intuitively, such multilayer spatial-temporal structure

can be viewed as projecting N entities into M layers, where the entity is defined by the spatial

joints and the layer is defined by temporal frames. Note that, if the motion data sequence contains

unequal numbers of joints across layers, we can add some dummy nodes in the MLG to keep the

same number of nodes across different layers. These dummy nodes are isolated to all other nodes,

and would not change the topological structure of the original multilayer architecture.

With such definition, any skeleton-based motion sequence can be intuitively modeled by an

MLG, which can be represented by the forth-order adjacency tensor

AM = (AM,αiβj) ∈ RM×N×M×N , (4.1)

where 1 ≤ α, β ≤M, 1 ≤ i, j ≤ N .

Here, α, β ∈ [1,M] are the indices of layer in MLG, while i, j ∈ [1, N] are the indices of

joints in each layer. Each entry in the adjacency tensor, i.e., AM,αiβj , represents the relationship

between the i-th joint in α-th temporal layer and the j-th joint in β-th temporal layer. Now, we

need to define the weights of AM,αiβj to capture the geometric similarity among different joints.

One common choice is to set the value of the element AM,αiβj by Gaussian kernel [1], i.e.,

AM,αiβj = exp

(
−‖xαi − xβj‖2

σ2

)
, (4.2)

where xαi and xβj represent data vectors, such as the coordinates, of the i-th joint in α-th temporal

layer and the j-th node in β-th temporal layer, respectively. Also, the standard deviation σ controls

59

the support of the kernel function.

Considering the different natures in the interlayer (inter-temporal) and intralayer (spatial)

connections, we apply different σ. i.e., σ = σs when calculating the (spatial) similarity between

two nodes within the same layer with α = β, while using σ = σt when calculating the (temporal)

similarity between two nodes in different layers with α 6= β. More specially, the value of σs and σt

should be related to the statistics of all spatial and temporal distances. Thus, we apply the average

of all distances as the value in this work, i.e.,

σs =
1

Ns

∑
i,j∈[1,N],α=β

‖xαi − xβj‖, (4.3)

and

σt =
1

Nt

∑
α∈[1,M−1],β=α+1,i=j

‖xαi − xβj‖, (4.4)

where Ns is the total number of point pairs that are on the same frame, Nt is the total number of

point pairs that are on the successive frames with the same index.

To highlight the interlayer correlations from the same joint, we utilize the multiplex structure in

which each node only connects to its counterparts in its successive layers with i = j and |α−β| =

1. This structure further simplifies the inter-layer geometric models. Then, the final weight of each

entry AM,αiβj shall be calculated as

AM,αiβj =

exp

(
−‖xαi−xβj‖

2

σ2
s

)
if α = β

exp
(
−‖xαi−xβj‖

2

σ2
t

)
if i = j and |α− β| = 1

0 otherwise

. (4.5)

With the calculated adjacency tensor AM, tensor decomposition can be applied via (2.14) or

(2.15) to obtain the MLG Fourier space or singular space for data analysis. Since the HOSVD is

faster and more robust in comparison with CP decomposition, we calculate the singular space of

the undirected multilayer graph via HOSVD for spectral feature extraction. More details regarding

60

Figure 4.4: Example of window cuts in motion sequence and the multilayer network construction.

M-GSP singular analysis shall be discussed later in Section 4.4.1.

4.4 M-GSP Body Motion Segmentation

We now introduce our MLG-based body motion segmentation. Since many body motion sequences

in most dataset have thousands of frames with dozens of data points in each frame, it is unpractical,

in terms of memory and computational time, to build the MLG and decompose the MLG for the

entire sequence. To solve this problem, we focus on a short-time processing method. As shown

in Fig. 4.4, we first cut the entire motion sequence into Nseg shorter segments with window

length Wd for temporal frames. Successive segments may overlap with one other to give a smooth

representation of the current motion. For each segment, we build an MLG using the 3D coordinates

or other annotated information by using the model introduced in Section 4.3.2. We then extract

features from the MLG as representation of the corresponding motion. In this work, we have two

different MLG segmentation approaches: 1) spectrum-based MLG motion segmentation based on

spectral signals; and 2) vertex-based MLG motion segmentation based on structure signals.

61

Figure 4.5: Block Diagram of Spectrum-based MLG Motion Segmentation. The diagram is broken
into two parts for clearer view, where the overlapping elements in two parts are labeled in green.

4.4.1 Spectrum-based MLG Motion Segmentation

As shown in Fig. 4.1(a), the body motion sequence consists of some major movements, which can

be captured by the low-frequency components, and detailed joint actions, which can be captured

by the high-frequency components. To highlight the detailed behavior of body motions, such

as leg movement and hand waving, we apply an M-GSP filter for feature extraction. To locate

high-frequency components in M-GSP singular domain, we first estimate the singular space of

each segment using HOSVD in (2.15). We then transform the signal into the singular space using

these spectrum basis. Given the features of motion sequences, we denote the features of the joint i

62

in layer α as xαi ∈ RK , where K is the feature dimension of each joint in a given temporal frame,

including angles, coordinates and other available features. Suppose that xαi[a] is the a-th annotated

feature of the joint i in layer α. The whole signals for the a-th feature is represented by

x[a] = (xαi[a]) ∈ RM×N (4.6)

According to (2.18), the joint M-GST of the a-th feature signal can be calculated by

x̌[a] = WT
f x[a]We ∈ RM×N . (4.7)

Next, we aggregate all features into one signal š = (šαi) ∈ RM×N , where each entry is

calculated as

šαi = ||[x̌αi[1]], · · · , x̌αi[K]||22, (4.8)

where K is the dimension of features.

For the aggregated signals, an M-GSP highpass filter can be designed to extract the details in

body motions. In this work, we combine two different kinds of highpass filters: ideal highpass filter

and Haar-like highpass filter. Given the singular domain signal š ∈ RM×N , we first flatten it into a

vector, and keep top k elements in the high frequency part, i.e., š′ = [š1, · · · , šk, 0, · · · , 0] ∈ RMN .

Thereafter, we use a Haar-like highpass filter VHaar to process š′. Suppose that λM,αi denotes

the spectrum coefficient corresponding to the basis of α-th layer and the i-th entity. The filter VHaar

is defined as

VHaar = I− diag(λM) (4.9)

=

1− λM,11 · · · 0

...

0 · · · 1− λM,MN

 . (4.10)

63

The filtered signal is calculated as

y̌ = VHaarš
′ ∈ RMN . (4.11)

Finally, we reshape y̌ into š′′ ∈ RM×N and implement the inverse M-GST to get the vertex

domain signal y, which can be expressed as

y = Wf šW
T
e ∈ RM×N . (4.12)

Upon obtaining the vertex domain signal for all Nseg segments in one body motion sequence,

we calculate a similarity graph AM,sim ∈ RNseg×Nseg , whose elements are given by

AM,sim[m,n] = e−||y
(m)−y(n)||22 , (4.13)

where y(m) and y(n) are the vertex domain signal for m-th and n-th segment in the motion

sequence, respectively. We then convert the similarity graph AM,sim into a sparse self similarity

matrix (SSSM)M ∈ RNseg×Nseg by finding the peak values in AM,sim in each row. The threshold

for finding the peaks is set to top 3% largest value among all elements in AM,sim. To keep theM

symmetric, once the element AM,sim[m,n] is selected in each row as the peak values, the element

AM,sim[n,m] will also be set to the same value. All these peaks and its symmetrical elements are

considered as the nearest neighbors.

To find the cutting frame based on the SSSM M, we use a similar region growing search

technique introduced in [84]. The search technique contains two steps: forward step and backward

step. The forward step starts from the upper left corner ofM and attempts to extend the connected

region to the next row, while the backward step starts from the lower right corner ofM and tries to

extend the connected region to the previous row. In the forward step, a connected region starts as a

seed denoted byM[1, 1]. The region is extended to the next rows as long as the nearest neighbors

in the updated region increases. Similarly, in the backward step, a connected region starts as a

64

Algorithm 4.1 Spectrum-based MLG Segmentation (SMLGS)
Input: Features of motion sequences withM temporal frames andN joints in each frame, where
each joint in a given frame is annotated by K-dimensional features.
1. Calculate the spatial and temporal intrinsic resolutions, σs and σt, of motion sequences in
(4.3) and (4.4);
2. Cut the motion sequences into overlapping segments of length Wd in frames;
for each segment do

3. Construct the adjacency tensor based on (4.5);
4. Estimate the singular bases using HOSVD in (2.15);
5. Transform the signals/features to the singular space using these spectrum bases;
6. Use a Haar-like highpass filter to extract features as (4.9) and (4.11);

end for
7. Calculate the similarity graph using the extracted features as (4.13);
8. Find the cutting frame based on the similarity graph using the region growing search technique
in [84].

seed i.e., M[Nseg, Nseg], and the region is extended to the previous rows as long as the nearest

neighbors in the updated region increases. If no new neighbors are found between segment i and

i+ ω in the larger region, except for the neighbors from the main diagonal ofM, then the current

region search is considered complete. The parameter ω is set to 8 in our experiments. The major

steps of spectrum-based MLG Motion Segmentation (SMLGS) is presented in Algorithm 4.1.

4.4.2 Vertex-based MLG Segmentation

To reduce complexity, another set of features to consider is the multilayer graph structure signal.

To extract structural features in the vertex domain, we first reshape the adjacency tensor AM ∈

RM×N×M×N into a feature vector after constructing the MLG for each overlapping shorter segment

with length Wd. We denote the feature vector for the m-th segment as z(m) ∈ RM2N2 . Once we get

z(m) for all Nseg segments, we concatenate all z(m) into one matrix

z = [z(1), z(2), · · · , z(Nseg)] ∈ RM2N2×Nseg . (4.14)

We subsequently reduce the size of z by keeping top k elements with highest variance across

all segments as follows:

65

Algorithm 4.2 Vertex-based MLG Segmentation (VMLGS)
Input: Features of motion sequences withM temporal frames andN joints in each frame, where
each joint in a given frame is annotated by K-dimensional features.
1. Calculate the spatial and temporal intrinsic resolutions, σs and σt, of motion sequences in
(4.3) and (4.4);
2. Cut the motion sequences into overlapping windows of length Wd in frames;
for each segment do

3. Construct the adjacency tensor based on (4.5) and reshape it into a vector z(m);
end for
4. Concatenate all z(m) into feature matrix z and calculate the variance for each row of z;
5. Select the rows in z with k highest variance to form the sampled feature matrix z′;
6. Calculate the similarity graph using the extracted features as (4.15);
7. Find the cutting frame based on the similarity graph using the region growing search technique
in [84].

• We first calculate the variance for each row in z, and concatenate them into σ2(z) ∈ RM2N2

• Then we find indices of the elements in σ2(z) with k largest variances and denote the indices

by I = {I1, · · · , Ik} ∈ Rk;

• Finally, we construct the sampled feature matrix z′ ∈ Rk×Nseg by keeping the rows in z with

same indices in I, i.e., the pth row in z′ is the Ip-th row of z.

In this way we can remove the low frequency elements in the feature matrix.

With the extracted high-frequency structure signals, we use the column vector of z′ to calculate

the similarity graph AM,sim. Let a′(m) be the m-th column vector of a′. The similarity graph

AM,sim is calculated by

AM,sim[m,n] = e−||z
′(m)−z′(n)||22 . (4.15)

We then convert the similarity graph AM,sim into an SSSM as SMLGS, and find the cutting

frames using the region growing search technique introduced in Section 4.4.1. The major steps

of vertex-based MLG Motion Segmentation (VMLGS) is presented in Algorithm 4.2.

66

Figure 4.6: Block Diagram of Vertex-based MLG Motion Segmentation. The diagram is broken
into two parts for clearer view, where the overlapping elements in two parts are labeled in green.

4.5 Experiments

We now present the experimental results of the proposed algorithms in both unsupervised and

supervised setup compared to the existing clustering and recognition approaches.

4.5.1 Dataset

In our experiment, we test over two different datasets: 1) the CMU Graphics Lab Motion Capture

Database; and 2) the Human Gait Database.

67

Figure 4.7: Example of the location of inertial measurement units in HuGaDB.

CMU Graphics Lab Motion Capture Database

The CMU graphics lab motion capture database1 have 2605 trials in 6 categories and 23

subcategories. They are captured at 120 Hz with images of 4 megapixel resolution. An example

motion trail in the database is shown in Fig. 4.2. We test all motion segmentation methods on

trails 01 to 14 of subject 86, which have the human (supervisor)-labeled motion segmentation. In

this work, we use the optimal cutting frame as the ground truth. We do not account for transitions

between distinct actions in a manner similar to that of [63].

Human Gait Database (HuGaDB)

HuGaDB is an action segmentation dataset, where the subjects record typical lower limb activities,

e.g. walking, running, and cycling [58]. 18 subjects are included in this dataset. MoCap was

performed with 6 inertial measurement units (IMUs) at a sampling frequency of 60 Hz in HuGaDB.

1http://mocap.cs.cmu.edu/

68

Table 4.1: Accuracy of motion segmentation on CMU 86 dataset

SMLGS VMLGS SC ACA EUTS
86 01 0.9067 0.9558 0.7372 0.9212 0.9505
86 02 0.9387 0.9396 0.8916 0.8891 0.9469
86 03 0.9277 0.9488 0.8406 0.8953 0.9262
86 04 0.9138 0.9294 0.7539 0.8735 0.9267
86 05 0.8928 0.9228 0.6523 0.8963 0.9252
86 06 0.9058 0.9631 0.7325 0.9237 0.9068
86 07 0.9377 0.9537 0.8920 0.9214 0.9449
86 08 0.9527 0.9317 0.7808 0.9384 0.9682
86 09 0.9471 0.9235 0.8334 0.8761 0.9058
86 10 0.9709 0.9666 0.9626 0.8928 0.9238
86 11 0.9380 0.9603 0.9228 0.9147 0.9672
86 12 0.9150 0.9712 0.8730 0.8498 0.9275
86 13 0.7671 0.8612 0.8075 0.8206 0.6073
86 14 0.9136 0.9131 0.6049 0.7308 0.9216
Average 0.9163 0.9386 0.8061 0.8817 0.9106

Each IMU contains one accelerometer and one gyroscope. The IMUs were placed on the right and

left thighs, shins and feet, as shown in Fig. 4.7. This dataset contains 364 IMU trials in 12 action

categories. Since the accelerometer data and gyroscope data are different captures of the same

motion, they should be processed in different ways. In our test, we further divide each trial into

three datasets: accelerometer only (ACC) dataset, gyroscope only (GYRO) dataset, and one dataset

containing both accelerometer and gyroscope data. We test all motion segmentation methods on

all these three datasets to further investigate the robustness of motion segmentation methods on

different kinds of data.

4.5.2 Unsupervised Motion Segmentation

We first evaluate the performance of proposed methods in unsupervised setup. Here, we compare

our proposed method with four unsupervised motion methods: spectral clustering (SC), Aligned

Cluster Analysis (ACA), Hierarchical Aligned Cluster Analysis (HACA) [63], and Efficient

Unsupervised Temporal Segmentation (EUTS) [84] on CMU and HuGaDB datasets. For the CMU

dataset, we convert data into 3D coordinates of all joints as input for our proposed algorithm,

69

Figure 4.8: Segmentation result on CMU trial 86.

70

i.e., xαi ∈ R3. For the HuGaDB dataset, we directly use the accelerometer data aαi ∈ R3 and

gyroscope data gαi ∈ R3 as the input of out proposed algorithm, where xαi ∈ R6. The parameters

of the proposed method are fixed for all trials in one dataset. We vary the window size Wd from

2 to 10 in our experiment. We chose the parameters of all the existing methods based on the set

of parameters provided in the original paper and codes with the best performance. To evaluate the

clustering accuracy, we calculate the mean intersection over union (mIoU) on each trial.

The average accuracy and segmentation result on CMU datasets are shown in Table. 4.1 and

Fig. 4.8, respectively. The average accuracy results on HuGaDB dataset are shown in Table. 4.2,

and an example of segmentation on the first dataset in HuGaDB is shown in Fig. 4.10. The best

performance is marked in bold font and the second best result is underlined. As shown in Fig. 4.8,

our proposed spectrum-based (SMLGS) algorithm tends to segment each motion sequence into

larger sections, whereas the vertex-based (VMLGS) algorithm cuts the motion sequence into

finer sections. This distinction highlights the focus of SMLGS algorithm in capturing significant

differences between distinct motions, whereas the VMLGS algorithm excels at detecting subtle

variations among elements, even within the same motion. The average accuracy results presented

in Table 4.1 indicate that VMLGS algorithm achieves superior overall accuracy. However, the

increased number of segments generated by VMLGS may pose a greater challenge to the classifier

in real-world applications. On the other hand, the number of segments generated by SMLGS

closely aligns with the ground truth in the majority of CMU 86 datasets. From these test results,

vertex-based MLG method (VMLGS) provides the best performance in most of the dataset while

spectrum-based method (SMLGS) ranks the second best. The results demonstrate the strength

of M-GSP in body motion analysis and the robustness of the proposed algorithms. From the

visualization results, our proposed algorithms provide a clearer segment boundary and fewer

segments, which is closer to the ground truth. This further demonstrates the benefits of applying

M-GSP in body motion analysis.

71

Table 4.2: Average accuracy of motion segmentation on HuGaDB dataset

acc gyro both
SC 0.6162 0.4738 0.4540
ACA 0.7167 0.5436 0.5341
HACA 0.7210 0.5276 0.5314
SMLGS 0.8171 0.7000 0.8249
VMLGS 0.7667 0.8495 0.8551

Table 4.3: Average accuracy on HuGaDB dataset with both accelerometer and gyroscope data.

Bi-LSTM 86.1
TCN 88.3
ST-GCN 88.7
MS-TCN 86.8
MS-GCN 90.4
SMLGS (w. optimal parameters) 87.9
VMLGS (w. optimal parameters) 90.2

4.5.3 Supervised Motion Recognition

Although our algorithms are designed under unsupervised setup, we also test and provide

comparison with supervised motion segmentation. To ensure a fair comparison, we tune the

parameters of our algorithms based on the best performance from the training dataset. Here, we

compare our proposed method with several existing supervised motion methods: (1) bidirectional

long short term memory-based network (Bi-LSTM)[66], (2) temporal convolutional neural

networks (TCN)[93], (3) spatial-temporal graph convolutional neural network (ST-GCN) [72],

(4) multi-stage temporal convolutional neural networks (MS-TCN) [94], and (5) multi-stage

spatial-temporal graph convolutional neural networks (MS-GCN) [73] on HuGaDB datasets.

We present the results in Table 4.3. From the results, our proposed algorithms have

competitive performance against supervised learning machines, even without ever utilizing the

label information for clustering. This demonstrate the effectiveness of our proposed method in

terms of feature extraction from body motion sequences. Note that our clustering algorithms can

be easily integrated with the supervised learning machines to further improve the performance. We

shall investigate applications of M-GSP in deep learning in our future works.

72

Figure 4.9: Example of the similarity matrix for different window sizes on HuGaDB dataset with
GYRO data.

4.5.4 Ablation study on window size

In this section we test our proposed method under different window sizes to show its characteristics

as a short-time processing method. We test the average accuracy on CMU dataset, ACC dataset in

HuGaDB and GYRO dataset in HuGaDB. We only change the window size Wd of each segment

73

Figure 4.10: Segmentation result on HuGaDB trial 01 data 00.

where we extract the features while keeping all other parameters fixed. From Fig. 4.11, our result

indicates that the optimal window size would vary for different datasets. It also shows that a larger

window size will lower the average accuracy performance once it exceeds the optimal value. As

shown in Fig. 4.9, the similarity matrix of window size Wd = 10 is smoother than the similarity

matrix of Wd = 2, which makes it more difficult to accurately locate the cut frame between two

body motions. In practice, the optimal window size may be estimated from a small subset within

the entire dataset.

Note also that SMLGS performs better in the ACC dataset in HuGaDB while the VMLGS

is more robust across different datasets. The reason is that SMLGS implements the spectrum

74

Figure 4.11: Average accuracy for different window sizes.

decomposition to extract additional features while introducing uncertainty during HOSVD. Thus,

for simpler datasets, such as CMU data with only coordinate information, it could lead to superior

performance with extracted spectral features. On the other hand, VMLGS evaluates the MLG via

structural features, which is more stable and robust in complicated dataset, such as HuGaDB.

4.5.5 Robustness

In this part of test, we compare our proposed method with Efficient Unsupervised Temporal

Segmentation (EUTS) [84] on CMU dataset with Gaussian noise. We add the Gaussian noise

directly to the original dataset with varying standard deviation σ between 0.1 and 0.2. To test

robustness against different level of noise, we add the Gaussian noise to 10% to 90% of the frames

in the sequence. These noisy frames are randomly selected with equal probability and we repeat

the process 10 times for each trial for each noisy frame ratio. In order to minimize the effect of

randomness, we average the accuracy over these 10 noisy samples to arrive at the final result. As

shown in Fig. 4.12, our proposed method exhibits stronger robustness against additive Gaussian

noise.

75

(a)

(b)

Figure 4.12: Average accuracy on CMU trial 86 with different noisy frame ratio. (a) σ = 0.1; (b)
σ = 0.2.

76

4.6 Conclusions

This chapter studies the use of M-GSP for body motion analysis. More specially, we have

introduced the MLG models for body motion sequence, with which we propose two different

M-GSP filter-based algorithms for motion segmentation. Our proposed methods are easier

to implement, and show robustness across multiple datasets. Our experimental results have

demonstrated the efficacy of the proposed methods and the potentials of M-GSP in motion analysis.

This chapter have established M-GSP as an efficient tool to model multilateral relationship and to

extract features in motion sequence applications. In our future works, we shall investigate new ways

to integrate machine learning methods and M-GSP for better feature extraction. The interpretation

of body motion from the perspective of graph Fourier space is another interesting direction for

exploration.

77

Chapter 5

Efficient Eigenvalue Decomposition for

Low-Rank Symmetric Matrices in Signal

Processing

5.1 Introduction

Graph based signal processing methods, including graph signal processing (GSP) and graph neural

networks (GNN), have garnered significant attention in recent years. This surge in interest is driven

by the wide-ranging application in diverse domains, such as the Internet, social networks, financial

data, sensor networks, traffic patterns, and biological systems [1, 4, 5]. All the network-structured

data in these domains can be naturally modeled by graphs, which highlights the significance of

employing graph-based methods for signal analysis and processing. In this field, the exploration

of graph spectral domain, such as graph spectral analysis and filtering [24, 25], has become a key

component of research. Additionally, analyzing the graph spectra facilitates feature extraction and

signal processing, making it a fundamental tool of GSP. As a result, the eigenvalue decomposition

(EVD) algorithms have become prevalent within the domain of GSP as the key to calculate the

graph spectral domain from representation matrix of the data structure.

78

Figure 5.1: Example of the dynamic graph at time t and time t + 1. The additional vertices and
edges at time t+ 1 are labeled in red and red dash lines, respectively.

The pursuit of efficient EVD algorithm with low computational complexity has attracted

intensive investigation from the community. The challenges of computational complexity and the

peak memory utilization become problems for EVD algorithms when dealing with large-sized

matrices. Despite the achievements of many existing works on efficiently approximating

eigen-pairs of all scales of matrices [95], most algorithms are focused on static graphs. However,

in many real-world applications, such as dynamic point clouds and social networks, the graph

size keeps changing over time. One example of such dynamic graph is shown in fig. 5.1, where

there are additional vertices at time t+ 1, which will increase the dimension of the corresponding

representation matrix, so that the eigen-pairs needs to be recomputed or approximated based on

the result at time t. In these dynamic scenarios, the straightforward approach of recomputing

eigen-pairs upon each alteration in the graph presents a significant computational burden. This

demand for continual recomputation highlights the need to develop EVD algorithms that can

effectively handle the evolving nature of dynamic graphs. In this work, we focus on the updating

problem upon the largest k eigenvalues and the corresponding eigenvectors of symmetric adjacency

matrices of undirected graphs as the graph size increases. The estimation results of the top k

eigen-pairs are commonly used in applications such as spectral clustering and graph filtering.

79

Despite the study of eigen-updating algorithms has started many years ago, many existing

works are focused on rank-one or rank-k EVD update problems [96–98], which can not be directly

applied in real-world graph based applications. In these scenarios, there is no guarantee that each

change of the graph has to be limited to rank-one or rank-k. Only a few studies are focused on

such issues. The authors in [99, 100] proposed an eigen-pair updating algorithm based on the

perturbation of matrices in a generalized eigenvalue system. This method needs to calculate the

matrix inverse whenever updating the eigenvectors, which is computational costly. An efficient

incremental eigen-approximation algorithm was proposed in [101]. However, compared with the

general decomposition expression of the updated matrix given by [102], the proposed algorithm

ignore the residual elements to further simplify the decomposition expression, which enlarges the

approximation error of the result. This assumption also implies that the top K eigen-pairs of the

original matrix will maintain their relative order to be in top K in the updated matrix, which may

not hold in general cases. Another kinds of fast eigen-function tracking algorithms were proposed

in [103], where the changes of the adjacency matrices are viewed as perturbations. Based on the

matrix perturbation theory in [104], the authors proposed first-order and higher-order eigen-pair

tracking algorithms, named TRIP-BASIC and TRIP, respectively. However, the approximation

errors of the TRIP-BASIC algorithm is high, while the computational complexity of the TRIP

is large.

To solve the eigen-updating problem efficiently, this chapter proposes an incremental EVD

algorithm for low rank symmetric matrices (IEVD-LR). More specifically, our approach updates

the top k eigen-pairs by iteratively increasing the matrix size one-by-one, instead of updating the

increase of multiple dimensions at once. This strategy provides us two advantages with acceptable

increase on the computational complexity of the algorithm. First, we have more control over the

approximation errors on each iteration. Compared with the proposed algorithm in [101], we design

a novel error correction branch whenever the approximation error exceed the tolerance in each

iteration. Second, the intermediate variables of our proposed algorithm have smaller size, which

reduces the peak memory usage. Consequently, our method exhibits smaller approximation errors

80

and less peak memory usage while maintaining the same order of computational complexity. Our

experimental results validate its accuracy and efficiency on both synthetic and real-world datasets

in applications like spectral clustering and graph filtering. We summarize our contributions as

follows:

• To reduce the final approximation errors, we design a novel error correction branch whenever

the approximation error exceed the tolerance in each iteration. To the best of our knowledge,

we are the first to introduce such error correction algorithm in EVD approximation.

• To gain more flexibility of error control and reduce the memory cost, we adapt an iterative

eigen-updating strategy for our IEVD-LR algorithm. In each iteration we increase the size

of the matrix by one and update the tracking eigen-pairs.

• To demonstrate the accuracy and efficiency of our proposed IEVD-LR algorithm, we analyze

its error performance, computational complexity and memory cost.

• Beyond the theoretical analysis, our experimental results validate the accuracy and efficiency

of the proposed algorithm on both synthetic and real-world datasets in applications like

spectral clustering and graph filtering.

We organize the rest of the chapter as follows. In Section 5.2, we first review the related

works. Then, we present the proposed IEVD-LR algorithm in Section 5.3. Next, we present

the experimental results of the proposed method on both synthetic and real-world datasets in

applications such as spectral clustering and graph filtering in Section 5.4, before summarizing

our work in Section 5.5.

5.2 Related Works

In this section we give an overview of the related works.

81

5.2.1 Fast Matrix Decomposition

Many existing works on EVD updating are focused on rank-one or rank-k EVD update problems

[96–98], which can not be directly applied in real-world graph based applications. In these

scenarios, there is no guarantee that each change of the graph has to be limited to rank-one or

rank-k. Only a few studies are focused on such issues. The authors in [99, 100] considered a

generalized eigenvalue system such that Bx = λCx, where both B ∈ RN×N and C ∈ RN×N

are symmetric, and λ and x are the eigenvalue and corresponding eigenvector that needs to be

determined. They proposed the eigen-pair updating algorithm based on finding the perturbation

of eigenvalue and eigenvectors according to the perturbation of matrices B and C. However,

this method needs to calculate the matrix inverse whenever updating the eigenvectors, which is

computational costly. An efficient incremental eigen-approximation algorithm was proposed in

[101]. This algorithm assumes that the updated matrix E ∈ RM×M can be written in the form that

E = [B C]>[B C]

=

B>B B>C

C>B C>C

 , (5.1)

where D = B>B ∈ RN×N is the original matrix before the size change, B ∈ RK×N is the

decomposition matrix of D, C ∈ RK×M is the difference between the decomposition matrix of

E and D, and K is the highest rank of D and E. However, this decomposition expression is

incomplete. The general expression of decomposition expression of the updated matrix, given by

[102], should be

E =

B C1

0 C2

> B C1

0 C2

=

B>B B>C1

C1
>B C1

>C1 + C2
>C2

 .
(5.2)

82

Comparing (5.1) and (5.2), the former decomposition expression drops the residual element

of C2
>C2, which enlarges the approximation error. Additionally, the former decomposition

expression overlooks the existence of additional rows in the decomposition matrix. These rows

could correspond to the new top K eigen-pairs of the updated matrix E, and be kept in the final

result. Therefore, the approximation errors of the proposed algorithm is enlarged.

Another kinds of fast eigen-function tracking algorithms were proposed in [103], where

the changes of the adjacency matrices are viewed as the perturbation. Based on the matrix

perturbation theory in [104], the authors proposed first order and higher order eigen-pairs tracking

algorithms, named TRIP-BASIC and TRIP, respectively. However, the approximation errors of the

TRIP-BASIC algorithm is in the order of the norm of the perturbation of adjacency matrix. The

approximation error which will be high when the norm of perturbation is large and there is no

control on that. On the other hand, the computational complexity of the TRIP is O(k4) for each

iteration, where k is the number of eigenvalues that are tracking. Such complexity is too high for a

large k.

5.3 Method and Analysis

In this section we will introduce our incremental EVD algorithm for low rank symmetric matrices

(IEVD-LR), we assume the input matrix of the algorithm is low rank in this section for better

understanding while keeping the mathematical integrity of the expression.

5.3.1 Basic Incremental eigenvalue decomposition

Here we describe one iteration of our IEVD-LR algorithm, which only increases the matrix size by

one and updates the eigen-pairs. In practice applications where we need to increase the matrix size

by ` from time t to time t+ 1, we will run the following iteration by ` times, as shown in Fig. 5.2.

In each iteration, one new pair of αi and di are used as the inputs of the algorithm to update the

EVD result. In this way we will have better control on the approximation errors in each iteration

83

Figure 5.2: Example of iterative update of our IEVD-LR algorithm. D is the original low rank
symmetric matrix whose EVD matrices are known. In each iteration of the IEVD-LR algorithm,
one new pair of αi and di are used as the inputs of the algorithm to update the EVD result.

and lower peak memory usage.

Assuming we already have the truncated eigenvalue decomposition of rank k for the matrix

D ∈ Rn×n as follows:

D = QΣQ>, (5.3)

where Σ ∈ Rk×k is a diagonal matrix with the k ordered eigen values of D on the diagonal,

i.e., Σ = diag(λ1, · · · , λk), Q ∈ Rn×k is the matrix of the corresponding k eigenvectors of

D ∈ Rn×n. with Q>Q = Ik,

Our objective is to perform an eigenvalue decomposition update only employing Q ∈ Rn×k,

α ∈ Rn, and d ∈ R for the following matrix E

E =

 D α

α> d

 . (5.4)

84

We compute the residual vector e of α ∈ Rn by projecting it onto the subspace spanned by the

columns of Q ∈ Rn×k, i.e.,

e = α−QQ>α. (5.5)

The norm of the residual vector e corresponds to the approximation error of the final result.

Therefore, we want to correct the error when it is too large. On the other hand, when the

approximation error is small, there is no need to make such correction with additional complexity

cost. In our algorithm, we use a predefined tolerance ε to determine whether the approximation

error is small or not.

(a) Case 1: Small Residual Vector Norm

If the norm of the residual vector is small, i.e., p = ‖e‖ < ε, then we have

α ≈ QQ>α, (5.6)

so that the matrix E can be approximated by

E ≈

 D QQ>α

α>QQ> d

=

 Q 0

0 1

 Σ Q>α

α>Q d

︸ ︷︷ ︸

Y1

 Q 0

0 1

>

=

 Q 0

0 1

Q1Σ1Q
>
1

 Q 0

0 1

>

.

(5.7)

Here Q1Σ1Q
>
1 is the EVD of the middle matrix Y1. Q1 and Σ1 can be computed by standard EVD

algorithm. Given that the size of Y1 is (k + 1) × (k + 1) and k � n, we can greatly reduce the

85

computational cost compared with direct recomputing the EVD of E.

To further reduce the computational complexity as well as the memory cost, we can perform

truncation by ignoring the smallest eigenvalue of Y1 when it is small. In our algorithm we use

another predefined threshold ελ to determine if the eigenvalue is small. A typical value of ελ is

0.1ε. If the smallest eigenvalue of Y1 is small, then we perform truncation and this suggest the

follow update

Q←

 Q 0

0 1

Q1(:, 1 : k),

Σ← Σ1(1 : k, 1 : k).

(5.8)

Otherwise, we consider the following full-dimension update

Q←

 Q 0

0 1

Q1,

Σ← Σ1.

(5.9)

The updated Q and Σ will be the input of the next iteration of the IEVD-LR algorithm as the

approximated EVD of E.

(b) Case 2: Large Residual Vector Norm

If the norm of the residual vector is large, i.e., p = ‖e‖ ≥ ε, we have the following fundamental

theorem

86

Theorem 1. Let ẽ = e/p, then the updated matrix E can be expressed by the identity

E =

 Q ẽ 0

0 0 1

Σ 0 Q>α

0 0 p

α>Q p d

︸ ︷︷ ︸

Y2

 Q ẽ 0

0 0 1

>

=

 Q ẽ 0

0 0 1

Q2Σ2Q
>
2

 Q ẽ 0

0 0 1

>

(5.10)

Proof. The right-hand side of (5.10) can be written as

 Q ẽ 0

0 0 1

Σ 0 Q>α

0 0 p

α>Q p d

 Q ẽ 0

0 0 1

>

=

 QΣ 0 QQ>α + ẽp

α>Q p d

Q> 0

ẽ> 0

0 1

=

 QΣQ> QQ>α + e

α>QQ> + e> d

(5.11)

Substitute (5.5) into (5.11), we have

 Q ẽ 0

0 0 1

Σ 0 Q>α

0 0 p

α>Q p d

 Q ẽ 0

0 0 1

>

=

 QΣQ> α

α> d

= E,

(5.12)

87

which completes the proof.

It is easy to see that 0 must be the eigenvalue of Y2, hence the last column of Q2 represents an

unused subspace dimension and should be suppressed. Similar to the case when the norm of the

residual vector is small, when the second smallest eigenvalue of Y2 is small, the truncation update

is

Q←

 Q ẽ 0

0 0 1

Q2(:, 1 : k),

Σ← Σ2(1 : k, 1 : k).

(5.13)

Otherwise, we perform the full-dimensional update

Q←

 Q ẽ 0

0 0 1

Q2(:, 1 : k + 1),

Σ← Σ2(1 : k + 1, 1 : k + 1).

(5.14)

For the case of multiple dimension increase, we will update the EVD result by multiple

iterations using the introduced algorithm. Assuming we have the EVD matrices Qinit ∈ Rn×k

and Σinit ∈ Rk×k for the rank k initial matrix Dinit ∈ Rn×n, the final matrix Efinal ∈ R(n+`)×(n+`),

where ` ≥ 1, we summarize our proposed basic IEVD-LR algorithm in Algorithm 5.1.

5.3.2 Fast Incremental eigenvalue decomposition

We can reduce the computational complexity of the basic IEVD-LR algorithm. To do this, we adapt

a new decomposition model. Instead of performing rotations on the large eigenvector matrices, we

maintain the eigenvalue decomposition (5.3) in the form of five matrices

D = Q̃Q̂ΣQ̂>Q̃>, (5.15)

where Q̃ ∈ Rn×k and Q̂ ∈ Rk×k such that the product of these two matrices Q = Q̃Q̂ is

orthonormal. The expansive outer matrices Q̃ and Q̃> solely capture the eigen subspace’s span.

88

Algorithm 5.1 Basic Incremental Eigenvalue Decomposition Algorithm (IEVD-LR-BASIC)

Input: Decomposition matrix Qinit, diagonal eigenvalue matrix Σinit, additional vectors {αi, i ∈
1, · · · , `}, additional singular values {di, i ∈ 1, · · · , `} tolerance ε for residual vector and
threshold ελ for eigenvalue;
Output: Decomposition matrix Q and diagonal eigenvalue matrix Σ as the approximated EVD
of Efinal;
1. Set Q and Σ as Qinit and Σinit respectively;
for i from 1 to ` do

2. Calculate the residual vector ei and its norm using (5.5);
if p = ‖e‖ < ε then

3. Calculate the EVD of Y1 defined in (5.7);
if the smallest eigenvalue of Y1 is smaller than ελ then

4. Update Q and Σ using (5.8);
else

5. Update Q and Σ using (5.9);
end if

else
6. Calculate the EVD of Y2 defined in (5.10);
if the second smallest eigenvalue of Y2 is smaller than ελ then

7. Update Q and Σ using (5.13);
else

8. Update Q and Σ using (5.14);
end if

end if
end for

They are extended by adding rows to Q̃ when the rank of the update matrix remains the same,

and by appending both new rows and columns when the rank of the update matrix increases. The

transforms of these subspace bases that make Σ diagonal are maintained in the much smaller Q̂

matrix, whose size only extends when the rank of the update matrix increases. This makes the

update much faster and eliminates the numerical error that would accumulate if the bases specified

by the tall Q̃ matrix was rotated on each update.

With the new expression of the decomposition form in (5.15), we can write down the new

update equations of our IEVD-LR algorithm.

89

(a) Case 1: Small Residual Vector Norm

If the norm of the residual vector is small, i.e., p = ‖e‖ < ε, based on the preceding discussion in

Section. 5.3.1, it is imperative to ensure that the product Q = Q̃Q̂ remains orthogonal. Referring

to equations (5.8) and (5.9), we can deduce that the right-side update must adhere to the following

form

Q̃new Q̂new =

 Q̃old Q̂old 0

0 1

X, (5.16)

where Q̃old and Q̂old correspond to the original matrix D, and Q̃new and Q̂new correspond to

the updated matrix E. X is a variable matrix that takes different values in different cases. In cases

where the rank increases, let X = Q1, and when the rank remains unchanged, set X = Q1(:, 1 : k).

We can reduce the computational complexity of (5.16) by keeping on updating a small

pseudo-inverse matrix Q̂+
old. When the rank does not increase, we can further reduce the complexity

by splitting Q1(:, 1 : k) ∈ R(k+1)×k into the form

Q1(:, 1 : k) =

 W ∈ Rk×k

w ∈ R1×k

 , (5.17)

where submatrix W is a linear transform that will be applied to Q̂old, and row-vector w is

the subspace projection of the new data vector. By substituting (5.17) into (5.16), the resulting

right-side update becomes

Q̂new ← Q̂old W;

Q̂+
new ←W+Q̂+

old ;

Q̃new ←

 Q̃old

wQ̂+
new

 .
(5.18)

Conveniently, the pseudo-inverse W+ can be computed in O (k2)-time using only

90

matrix-vector and vector-vector products via the identity

W+ = W> +
w>

1− ‖w‖2
(
wW>) . (5.19)

When the update is rank-increasing, the right-side update in (5.16) can be replaced by

Q̂new ←

 Q̂old 0

0 1

Q1;

Q̂+
new ← Q>1

 Q̂+
old 0

0 1

 ;

Q̃new ←

 Q̃old 0

0 1

 .
(5.20)

(b) Case 2: Large Residual Vector Norm

If the norm of the residual vector is large, i.e., p = ‖e‖ ≥ ε, referring to equations (5.13) and

(5.14), the update must satisfy

Q̃new Q̂new =

 Q̃old Q̂old ẽ 0

0 0 1

X,

where X is a variable matrix that takes different values in different cases. When the rank remains

unchanged, set X = Q2(:, 1 : k) and split X =

 W ∈ R(k+1)×k

w ∈ R1×k

. In cases where the rank

increases, let X = Q2(:, 1 : k + 1) and split X =

 W ∈ R(k+1)×(k+1)

w ∈ R1×(k+1)

.

91

The update is simply

Q̂new ←

 Q̂old 0

0 1

W;

Q̂+
new ←W+

 Q̂+
old 0

0 1

 ;

Q̃new ←

[

Q̃old ẽ

]
wQ̂+

new

 .
(5.21)

For the case of multiple dimension increase, we will update the EVD result by multiple

iterations using the introduced algorithm. Assuming we have the EVD matrices Qinit ∈ Rn×k

and Σinit ∈ Rk×k for the rank k initial matrix Dinit ∈ Rn×n, the final matrix Efinal ∈ R(n+`)×(n+`),

where ` ≥ 1, we summarized our proposed fast IEVD algorithm for multiple dimension increase

case in Algorithm 5.2.

92

Algorithm 5.2 Fast Incremental Eigenvalue Decomposition Algorithm (IEVD-LR-FAST)
Input: Decomposition matrices Qinit, diagonal eigenvalue matrix Σinit, additional vectors
{αi, i ∈ 1, · · · , `}, additional singular values {di, i ∈ 1, · · · , `}, tolerance ε for residual vector
and threshold ελ for eigenvalue;
Output: Decomposition matrix Q and diagonal eigenvalue matrix Σ as the approximated EVD
of Efinal;
1. Set Q̃ and Σ as Qinit and Σinit respectively, and set both Q̂ and Q̂+ as identity matrix I;
for i from 1 to ` do

2. Calculate the residual vector ei and its norm using (5.5);
if p = ‖e‖ < ε then

3. Calculate the EVD of Y1 defined in (5.7);
if the smallest eigenvalue of Y1 is smaller than ελ then

4. Calculate W and W+ based on Q1 using (5.17) and (5.18);
5. Update Q̃, Q̂, Q̂+ and Σ using (5.19);

else
6. Update Q̃, Q̂, Q̂+ and Σ using (5.20);

end if
else

6. Calculate the EVD of Y2 defined in (5.10);
7. Calculate W and W+ based on Q2 using (5.18);
8. Update Q̃, Q̂, Q̂+ and Σ using (5.21);

end if
end for
9. Calculate Q using Q̃ and Q̂;

5.4 Experiments

We now present the experimental results of the proposed fast IEVD algorithm, comparing its

performance in both synthetic and real datasets against existing EVD approximation approaches.

Specifically, we evaluate our IEVD-LR-FAST algorithm alongside other state-of-the-art methods,

including efficient eigen-updating (EEU) algorithm presented in [101], the TRIP-BASIC and TRIP

algorithm outlined in [103], as well as the conventional eigen-decomposition (EIG) algorithm.

93

5.4.1 Synthetic dataset

In this subsection, we evaluate the error performance and runtime of our proposed IEVD-LR-FAST

algorithm using positive definite symmetric matrices. The reason for selecting such matrices is to

demonstrate the algorithm’s versatility across different matrix sizes. We generate these random

symmetric matrices as follows: we first generate an n-by-n size random matrix whose elements

are randomly sampled from uniform distribution from 0 to 1. Sequentially, we calculate the mean

of this random matrix and its transpose to form a symmetric matrix. We then calculate the EVD

matrices Q and Σ of the symmetric matrix using conventional EIG algorithm. Next, we set the

elements of Σ to its absolute value. Finally, we use Q and updated Σ to generate a positive definite

symmetric matrix.

Throughout our experiments, we set the final matrix of all EVD algorithms to an n-by-n size,

while the initial matrix Dinit is configured as the top left submatrix of size 0.9n-by-0.9n. We focus

on updating top K eigen-pairs to match the task in Section 5.4.2, i.e., the input decomposition

matrices Qinit and Σinit are the truncated by keeping the top K eigen-pairs of the initial matrix

Dinit. After getting the estimation result of the EVD algorithm, we truncate the output matrices Q

and Σ in the same way, and compare them with the ground truth result given by EIG algorithm on

the final matrix. To reduce the impact of the randomness, we conduct 100 Monte Carlo runs for

each matrix size and use the average estimation error as the metric. For measuring the estimation

errors on eigenvector matrix Q, we first reorder the columns in Q to find the best match with the

ground truth. We then calculate the Frobenius norm of the difference between the reordered matrix

and the ground truth. In this way we can avoid the order mismatch of the eigenvectors caused by

the small turbulence on the estimation of eigenvalues. On the other hand, we use the L2 norm to

measure the difference of eigenvalues with the ground truth. The average estimation errors of all

EVD algorithms are shown in Fig. 5.3. Our proposed IEVD-LR-FAST has the lowest estimation

errors on all matrix sizes ranging from 1,000 to 30,000, which demonstrate the accuracy of our

proposed algorithm. Considering the fact that the main difference between the EEU algorithm

and our proposed IEVD-LR-FAST algorithm is the error correction branch, this performance

94

(a)

(b)

Figure 5.3: Estimation errors of the EVD algorithm on synthetic dataset. (a) Average estimation
errors of eigenvector matrix Q, measured by Frobenius norm. (b) Average estimation errors of
eigenvector matrix Σ, measured by L2 norm.

95

improvement demonstrate the effect of the error correction branch in our proposed algorithm. Also,

the TRIP and the TRIP-BASIC algorithms preform bad compared with other algorithms, showing

that these two algorithms are not suitable for EVD updating problem when the size of the matrix

is increasing.

Figure 5.4: Average runtime of the EVD algorithm on synthetic dataset.

We also collect the average runtime of all EVD algorithms for different matrix sizes. All the

algorithms are implemented in MATLAB and executed on the same computer equipped with

i5-9600K CPU at 3.7 GHz. As shown in Fig. 5.4, all EVD algorithms are much faster than the

conventional EIG algorithm. The runtime of our proposed IEVD-LR-FAST algorithm is smaller

than TRIP-BASIC, but larger than TRIP and EEU algorithms. Such higher runtime of our proposed

algorithm is partially caused by the high number of loops in the implementation. Considering both

TRIP and EEU are updating the matrix changes in one step, they have lower number of loops than

our proposed IEVD-LR-FAST algorithm.

96

5.4.2 Real Multimedia Datasets

In this subsection, we assess the error performance and runtime of our proposed IEVD-LR-FAST

algorithm on real multimedia datasets. Specifically, we subject the EVD algorithms on dynamic

point clouds, wireframe datasets and hyperspectral images as examples for graph-based

applications such as spectral clustering and low-pass filtering. Despite the adjacency matrices for

graphs built on real dataset are typically high rank, our focus lies on updating top K eigen-pairs,

considering the fact that the top K eigen-pairs are commonly used in spectral clustering and

low-pass graph filtering algorithms. To ensure a fair comparison, we standardize the comparison

process by truncating the output matrices Q and Σ of our proposed IEVD-LR-FAST algorithm by

selecting the first K column vectors and diagonal elements, respectively.

In our experiments on all three datasets, we begin by constructing the adjacency matrix based

on the attribute similarities, using it as the final matrix for all EVD algorithms. Subsequently,

we randomly drop some nodes of the data, resulting in a truncated adjacency matrix with the

corresponding rows and columns removed. We then compute the top K eigen-pairs of this

truncated adjacency matrix using conventional EIG algorithm as the input of all EVD algorithms.

Finally, we use the output of these EVD algorithms for spectral clustering and low-pass filtering to

assess their error performance.

For experiments on spectral clustering, we employ the approximated EVD results Q to cluster

the data, comparing the results with the cluster outcomes using the conventional EIG algorithm.

The number of clustering errors serves as the metric to assess error performance. Because spectral

clustering algorithm only uses the estimated eigenvectors, these results reflect the accuracy of

estimating the eigenvectors of EVD algorithms.

In low-pass filtering experiments, we use both ideal graph-based filter and Haar-like

graph-based filter based on the approximated top K eigen-pairs of EVD algorithms to process

the graph signal based on the vector of the first attribute on all nodes. The ideal filter uses

all K estimated eigenvectors, while the Haar-like filter also uses the corresponding estimated

eigenvalues. The ground truth for the filtered spatial domain signal is generated using eigen-pairs

97

from the conventional EIG algorithm, and the L2 norm of the difference between the filtered spatial

domain signal using EVD algorithms and ground truth as the metrics to assess error performance.

The results of ideal graph-based filters reflect the accuracy of estimating eigenvectors of EVD

algorithms, while the results of Haar-like graph-based filters reflect the accuracy of estimating

both eigenvectors and the exact value of all eigenvalues.

(a) Dynamic point clouds

Dynamic point clouds have various applications in autonomous driving [105], virtual reality

[106] and medical imaging [107]. An example of dynamic point cloud with additional nodes

in successive frames is shown in Fig. 5.5. In this example, the points on the right foot are not

captured by the sensors in the first frame. These additional points in the second frame resulting

in the addition of nodes and edges in the new graph, which corresponds to the additional rows

and columns in the new adjacency matrix. As shown in the Fig. 5.5(b), dynamic graph is a

nature method to capture the underling relationship of points in dynamic point cloud. As a

result, graph-based analyzing and processing methods, such as spectral clustering and graph-based

filtering, are popular way of processing dynamic point clouds. The authors in [111] utilize

spectral clustering to separate the motions flows in their proposed object detection and extraction

framework on mobile lidar data. A robust dynamic point cloud segmentation routine is proposed

in [112], where the spectral clustering is used to generate the initial segmentation. A graph-based

low-pass filtering method is proposed in [113] for point cloud denoising.

In this chapter, we only focus on the cases when the size of the point cloud increases. Therefore,

we use the static point clouds in Mythological creatures database [108,109] to simulate a dynamic

point cloud with addition of nodes in successive frames. We conduct 10 Monte Carlo runs on each

point cloud. In each round we first build the ε-neighborhood graph on the point cloud with the

radius of neighborhood ε as three times of the intrinsic distance dr as (2.1). The distance between

two points is measured by the L2 norm of the difference on attributes of these two points. Then we

calculate the adjacency matrix of the constructed graph using the Gaussian kernel. This adjacency

98

(a)

(b)

Figure 5.5: Example of dynamic point cloud with additional nodes in successive frames. (a)
Example of dynamic point cloud, the points on the right foot does not captured by the sensors
in the first frame. (b) Example of the graphs built on the dynamic point cloud, the additional points
in the second frame resulting in the addition of nodes and edges in the new graph, corresponding
to the additional rows and columns in the new adjacency matrix.

matrix is the final matrix of all EVD algorithm. Next, we randomly drop 1% of the nodes in

the point cloud, and remove their corresponding rows and columns in the adjacency matrix. We

then calculate the top K eigen-pairs of this truncated adjacency matrix Ainit to generate the input

decomposition matrix Qinit and Σinit. In our test the number of tracking eigen-pairs K is set to 100.

We summarize this EVD updating algorithm in Algorithm 5.3.

After getting the approximated EVD results Q and Σ of the final matrix, we use them to do

spectral clustering, Haar-like low-pass filtering and ideal low-pass filtering compare them with the

ground truth results using the top K eigen-pairs of the full-sized adjacency matrix. For spectral

99

Algorithm 5.3 Fast Incremental Eigenvalue Decomposition Updating Algorithm for Dynamic
Point Cloud

Input: Coordinates of the updated points Pu, adjacency matrix of the point cloud at the current
frame Ainit, number of tracking eigen-pairs K, intrinsic resolution dr;
Output: Decomposition matrix Q and diagonal eigenvalue matrix Σ as the approximated EVD
of the adjacency matrix of the updated matrix Afinal;
1. For each updated point whose coordinates are in Pu, calculate the additional vector αi as 2.1,
set all singular values {di} as 1.;
2. Calculate Qinit and Σinit containing the top K eigen-pairs of Ainit using conventional EIG
algorithm;
3. Use Algorithm 5.2 to calculate the approximated EVD results Q and Σ for the updated frame;
4. Trim Q and Σ by keeping the top K eigen-pairs.

Table 5.1: Average clustering errors and low-pass filter errors on dynamic point clouds

IEVD-LR-FAST EEU TRIP-BASIC TRIP
Number of
Clustering
Errors

31.0270 41.3378 101.7568 101.2838

L2 (Haar) 51.6431 60.4235 111.5380 111.2226
L2 (Ideal) 68.1637 84.0457 187.3133 186.9413

clustering results, the error performance is measured by the number of points that are incorrectly

clustered. For low-pass filtering results, the error performance is measured by the L2 norm between

the filtered signals using approximated results and ground truth.

The average result is shown in Table. 5.1. Our proposed IEVD-LR-FAST algorithm has the

lowest error in all three metrics, which demonstrate the accuracy of our proposed algorithm

on both eigenvalues and eigenvectors in dynamic point clouds. Compared with EEU algorithm,

our proposed IEVD-LR-FAST algorithm has significant performance improvement. Considering

the fact that the main difference between the EEU algorithm and our proposed IEVD-LR-FAST

algorithm is the error correction branch, this performance improvement demonstrate the effect of

the error correction branch in our proposed algorithm on dynamic point clouds. One example of

the spectraling result using IEVD-LR-FAST algorithm is shown in Fig. 5.6, where the cluster error

points are labeled in pink. As shown in Fig. 5.6(c), our proposed IEVD-LR-FAST algorithm can

keep the majority of the clustering result to be the same as the ground truth.

100

(a) (b)

(c)

Figure 5.6: Example of spectral clustering result in our experiments. (a) Clustering result of the
original point cloud using the ground truth EVD result, updated points are labeled in red. (b)
Clustering result of the updated point cloud using ground truth. (c) Clustering result of the updated
point cloud using estimated EVD results from IEVD-LR-FAST algorithm, clustering errors are
marked in pink.

(b) Large-scale point cloud

In real-world applications, point clouds may contain millions of points. Traditional EVD

algorithms need an enormous amount of memory to process such a large-scale matrix directly,

which makes the process of estimating its eigen-pairs very difficult. However, our proposed

IEVD-LR-FAST algorithm only requires a small amount of memory, which provides a solution for

these problems. In this experiment we test a simple algorithm on estimating the top K eigen-pairs

101

Figure 5.7: Boxer point cloud in 8i Voxelized Surface Light Field (8iVSLF) Dataset.

of the adjacency matrix of a large-scale point cloud. We first select a part of the large-scale point

cloud containing N0 points. Subsequently, we build the adjacency matrix on this part based on

its intrinsic distance with the Gaussian kernel. Then we calculate the top K eigenpairs of this

adjacency matrix as the input of the IEVD-LR-FAST algorithm. Next, we add one point in the

original point cloud each time to the existing part, while using the same intrinsic distance value

to calculate the corresponding additional column vector α and d in the updated adjacency matrix.

α and d are used in the IEVD-LR-FAST algorithm to update the approximation of the top K

eigenpairs. Although this simple algorithm may have large estimation errors on the final result,

especially when N0 is small compared with the number of points in the original point cloud, our

purpose is to demonstrate that IEVD-LR-FAST can be used to estimate the eigenpairs of large-scale

matrix with limit on the memory. On the other hand, how to further improve the accuracy of this

simple algorithm is beyond the scope of this chapter. Therefore, we do not compare the error

performance of this simple algorithm on large-scale matrices.

To demonstrate the memory efficiency of our proposed algorithm, we test it on the Boxer point

102

Figure 5.8: Peak memory usage of the EVD algorithms on Boxer point cloud.

cloud in 8i Voxelized Surface Light Field (8iVSLF) Dataset [50], which contains about 3.49 million

nodes, as shown in Fig. 5.7. We measure the peak memory usage by using the built-in profiler in

Matlab. The peak memory usage result is shown in Fig. 5.8. Compared with the conventional EIG

algorithm, our proposed IEVD-LR-FAST has much lower peak memory usage. This is because

once initial eigenpairs are calculated, we can free the memory of the adjacency matrix.

(c) Motion capture data

Human motion analysis has recently emerged as an active research field, stemming from its broad

applications in many areas, ranging from human-robot interaction to autonomous driving [56].

Motion capture data contains a sequence of data frames captured by sensors mounted on the human

body, as shown in Fig. 5.9. If we consider the attributes of all nodes in one frame as the signal on

one vertex, we can build a temporal correlation matrix on motion capture data. With the number

of data frames increase through out the time, the size of the temporal correlation matrix increases

103

Figure 5.9: Example of motion capture data.

as well, which provides a background for EVD algorithms. One attracting problem on motion

capture data is the motion segmentation, which aims to separate the motion capture sequence into

segments, each corresponds to one kinds of motion. Of all existing works on motion segmentation,

spectral clustering is one of the basic methods. The authors in [63] used spectral clustering as the

basic comparison in their experiments. On the other hand, many works develop new clustering

methods based on spectral clustering. The authors in [114] employed two methods of spectral

clustering, t-nearest neighbors and the Nystrom method, to cluster motion capture data for getting

behavioral segmentation. Spectral clustering was also used in [64] as a part of the proposed

framework of sparse subspace clustering based on Riemannian manifold structure. Graph filters

are also use in motion capture data analysis. A irregular-aware graph filters and graph Fourier

transform were proposed in [115] by considering the irregular relationships between the data points

on applications like motion capture data.

In this part, we test the EVD algorithms on trails 01 to 14 of subject 86 in CMU graphics lab

104

Algorithm 5.4 Fast Incremental Eigenvalue Decomposition Updating Algorithm for Motion
Capture data

Input: Attributes of the updated frames Au, adjacency matrix of the point cloud at the current
frame Ainit, number of tracking eigen-pairs K, intrinsic resolution dr;
Output: Decomposition matrix Q and diagonal eigenvalue matrix Σ as the approximated EVD
of the adjacency matrix of the updated matrix Afinal;
1. For each updated frame whose attributes are in Au, calculate the additional vector αi as 2.1,
set all singular values {di} as 1.;
2. Calculate Qinit and Σinit containing the top K eigen-pairs of Ainit using conventional EIG
algorithm;
3. Use Algorithm 5.2 to calculate the approximated EVD results Q and Σ for the updated frame;
4. Trim Q and Σ by keeping the top K eigen-pairs.

motion capture database1. Similar to Section 5.4.2, we conduct 10 Monte Carlo runs on each trail.

In each run, the temporal correlation matrix is based by the L2 distance between all data values

of two frames, and using a Gaussian kernel to calculate the correlation value. This correlation

matrix is the final matrix of all EVD algorithm. Next, we randomly drop 1% of the frames in the

wireframe sequence, and remove its corresponding rows and columns in the correlation matrix.

We then calculate the top K eigen-pairs of this truncated correlation matrix to generate the input

decomposition matrix Qinit and Σinit. In our testK is still set to 100. After getting the approximated

EVD results Q and Σ of the final matrix, we use them to do spectral clustering, Haar-like low-pass

filtering and ideal low-pass filtering compare them with the ground truth results using the top K

eigen-pairs of the full-sized correlation matrix. We summarize this EVD updating algorithm in

Algorithm 5.4.

The average result is shown in Table. 5.2. Our proposed IEVD-LR-FAST algorithm has the

lowest error in all three metrics, which demonstrate the accuracy of our proposed algorithm on

motion capture data.

(d) Hyperspectral image

Hyperspectral image has been widely used in applications like earth observation and industrial

scanning [110]. As shown in Fig. 5.10, hyperspectral image contains images of multiple bandwidth

1http://mocap.cs.cmu.edu/

105

Table 5.2: Average clustering errors and low-pass filter errors on motion capture data

IEVD-LR-FAST EEU TRIP-BASIC TRIP
Number of
Clustering
Errors

8.2143 22.1429 65.1244 63.1054

L2 (Haar) 0.4568 0.5810 0.8157 0.7982
L2 (Ideal) 0.4569 0.5812 0.8136 0.8065

Figure 5.10: Example of the hyperspectral image with RGB colors.

on the same object. The pixels in hyperspectral image can be viewed as the vertices of a graph,

while the values of all bandwidth form attributes on the vertices. One common sensor of capturing

the hyperspectral image is called pushbroom hyperspectral imager, which scans a line at each

moment in time. Therefore, the size of the hyperspectral image is increasing through out the time,

and this scenario is suitable for the EVD algorithms. Spectral clustering and graph-based filters

are widely used on hyperspectral images. A fast spectral clustering was proposed in [116] for

unsupervised hyperspectral image classification. The authors in [117] proposed a spatial-spectral

106

Algorithm 5.5 Fast Incremental Eigenvalue Decomposition Updating Algorithm for hyperspectral
image

Input: Attributes of the updated points Au, adjacency matrix of the point cloud at the current
frame Ainit, number of tracking eigen-pairs K, intrinsic resolution dr;
Output: Decomposition matrix Q and diagonal eigenvalue matrix Σ as the approximated EVD
of the adjacency matrix of the updated matrix Afinal;
1. For each updated frame whose attributes are in Au, calculate the additional vector αi as 2.1,
set all singular values {di} as 1.;
2. Calculate Qinit and Σinit containing the top K eigen-pairs of Ainit using conventional EIG
algorithm;
3. Use Algorithm 5.2 to calculate the approximated EVD results Q and Σ for the updated frame;
4. Trim Q and Σ by keeping the top K eigen-pairs.

clustering with anchor graph for HSI data clustering. On the other hand, the authors in [118]

designed a linear function to combine the different graph filters in their proposed framework so

that the graph filter can be adaptively determined by training different weight matrices.

In this part, we test the EVD algorithms on the Indian Pines data [119]. We follow the

similar workflow as Section 5.4.2 and Section 5.4.2. The major difference of our experiment for

hyperspectral image is that we drop the last 5% columns of the original hyperspectral image

to simulate the real situation of using a pushbroom hyperspectral imager. We first build the

ε-neighborhood graph on the hyperspectral image with the radius of neighborhood as three times of

the intrinsic distance, where the intrinsic distance is defined as the mean of the distances between

all pixels and its nearest neighbor. The distance between two pixels is measured by the L2 norm

of the difference on attributes of these two pixels. Then we calculate the adjacency matrix of the

constructed graph using the Gaussian kernel. This adjacency matrix is the final matrix of all EVD

algorithm. Next, we drop the last 5% columns of the original hyperspectral image, and remove its

corresponding rows and columns in the adjacency matrix. We then calculate the top K eigen-pairs

of this truncated adjacency matrix to generate the input decomposition matrix Qinit and Σinit. In

our test K is set to 100. We summarize this EVD updating algorithm in Algorithm 5.5.

After getting the approximated EVD results Q and Σ of the final matrix, we use them to do

spectral clustering, Haar-like low-pass filtering and ideal low-pass filtering compare them with the

ground truth results using the top K eigen-pairs of the full-sized adjacency matrix. For spectral

107

Table 5.3: Average clustering errors and low-pass filter errors on hyperspectral images

IEVD-LR-FAST EEU TRIP-BASIC TRIP
Number of
Clustering
Errors

70.5 71.5 1529.5 1875.6

L2 (Haar) 13820 13918 55670 62845
L2 (Ideal) 14756 14872 75525 84772

clustering results, the error performance is measured by the number of pixels that are incorrectly

clustered. For low-pass filtering results, the error performance is measured by the L2 norm between

the filtered signals using approximated results and ground truth.

The average result is shown in Table. 5.3. Our proposed IEVD-LR-FAST algorithm has the

lowest error in all three metrics, which demonstrate the accuracy of our proposed algorithm on

hyperspectral images.

5.5 Conclusion

This chapter studies the EVD approximation algorithm for low rank matrices. More specially, we

have proposed the basic basic IEVD-LR algorithm with the error correction branch to improve

the estimation accuracy. We have also proposed a faster algorithm named IEVD-LR-FAST by

introducing a five-matrices eigen-decomposition form into the model. Our proposed methods are

easier to implement, and have shown robustness across both synthetic and real-world datasets.

Our experimental results have demonstrated the efficacy on runtime and memory and the accuracy

of the proposed method. This chapter have established IEVD-LR-FAST algorithm as an efficient

tool to approximate EVD results on dynamic point clouds, motion capture data and hyperspectral

images. In our future works, we shall extend this algorithm to process high-order tensors. The fast

EVD algorithm on sparse symmetric matrices with high rank is another interesting direction for

exploration.

108

Chapter 6

Summary and Future Direction

In this chapter, we summarize our contributions we have made in this dissertation, and propose

certain potential directions related to the application of advanced graph approaches.

6.1 Summary of Key Findings

In this dissertation, we investigate the applications of advanced graph signal processing approaches

on multimedia data and the low cost eigen-decomposition updating algorithm for dynamic graphs.

These advanced graph signal processing approaches aiming to capture the underlying multilateral

interactions between data points, with the restriction of limited computational power. The key

findings addressed in this dissertation is summarized as follows.

• The ‘divide and conquer’ strategy proved effective in mitigating storage challenges, allowing

for the processing of high-dimensional graphs in smaller, more manageable subsets. Through

the systematic partitioning and processing of smaller subsets of data, our findings reveal

that this approach not only successfully overcomes storage challenges but also significantly

enhances the scalability and efficiency of the algorithms. The modular processing framework

demonstrates promise as a viable solution for handling large and complex datasets in

real-world applications.

109

• Algorithmic optimizations significantly reduced computational complexity of eigen-updating

problem, especially for the case where the dimension of dynamic graph is increasing,

enhancing the overall efficiency and scalability of high-dimensional graph processing.

By refining algorithms with conditions derived from practical applications, our results

indicate a substantial reduction in computational demands. This optimization makes the

processing of multimedia datasets, including point clouds and motion capture data, more

feasible with little compromising on accuracy. Our findings highlight the adaptability of

high-dimensional graph processing algorithms to specific data characteristics, providing a

valuable contribution to the field.

• The dissertation also aimed to bridge theoretical foundations with practical applications by

applying high-dimensional graph processing algorithms to specific multimedia data types,

such as point cloud data and motion capture data. Through extensive experimentation, our

results showcase the successful application of advanced graph-based algorithms to these

unique datasets. The adaptability and effectiveness of these algorithms underscore their

potential for addressing challenges in multimedia data analysis, thereby contributing to the

advancement of algorithmic exploration in these domains.

The key findings in our exploration of ‘divide and conquer’ strategies, optimization of

computational complexity, and application of advanced graph-based algorithms to multimedia data

contribute to a holistic understanding of high-dimensional graph processing. The integration of

these findings lays the groundwork for more effective and efficient approaches to analyzing diverse

and complex datasets in multimedia applications.

6.2 Future Directions

While our research makes contributions in addressing challenges, it is important to acknowledge

its limitations. Factors such as dataset specificity and problem sensitivity highlight the need for

continued refinement and adaptation in different kinds of multimedia datasets. Building on the

110

insights gained from this dissertation, there are several promising directions for future research:

• Exploration of Advanced Graph based Processing on Other Multimedia Data Based

on our success on applying advanced graph-based processing algorithms to static point

cloud in Chapter 3 and time-varying motion capture data in Chapter 4, our exploration can

extend to further applications of high-dimensional graph processing techniques on diverse

multimedia datasets with varying structures. The dynamic nature of certain multimedia

systems, such as dynamic point clouds, has garnered increased attention in recent years.

Compared with motion capture data, the number of data points in dynamic point clouds

changes over time, introducing a new challenge in efficiently modeling and adapting our

advanced graph-based processing algorithms to accommodate such dynamic systems. This

expansion of our research scope allows us to contribute valuable insights to the broader area

of high-dimensional graph processing in more general dynamic multimedia environments.

• Algorithmic Optimization for Dynamic Multimedia scenarios The IEVD-LR algorithm,

proposed in Chapter 5, focused on the scenarios where the graph size increases over time.

To extend our research focus beyond this specific context, future research directions may

explore optimization strategies for more general contextual conditions. For example, in

multimedia datasets such as dynamic graphs, the number of data points may decrease over

time, which can not be directly solved by our proposed IEVD-LR algorithm. Additionally,

most adjacency matrices of ε-neighborhood graph, one of the common type of graph

constructed on multimedia datasets, are sparse. In our future work, we aim to consider both

the sparse property of the adjacency matrix and the challenge posed by a decreasing graph

size. This expansion of our research allows us to contribute an eigenvalue updating algorithm

to a broader range of scenarios.

• Algorithmic Optimization for High-dimensional Graphs The IEVD-LR algorithm

proposed in Chapter 5 primarily addressed the eigen-space updating problem for

representation matrix of graphs. Another direction of extending the IEVD-LR algorithm

111

is to consider the singular space updating problem for representation tensor of

high-dimensional graphs, initialized by orthogonal CP decomposition or higher-order

singular value decomposition result. This expansion of our research allows us to integrate

the low-complexity algorithm with the high-dimensional graph based processing algorithms,

including those proposed in Chapter 3 and Chapter 4. Such integration will reduce the

complexity obstacle of high-dimensional graph based processing algorithms on complex,

large-scaled multimedia datasets.

112

Funding Acknowledgement

The material conducted in this dissertation was supported by the National Science Foundation

under Grant No. 1824553, No. 2029027, No. 2029848 and No. 2009001.

113

Bibliography

[1] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura and P. Vandergheynst, “Graph Signal

Processing: Overview, Challenges, and Applications,” Proc. IEEE, vol. 106, no. 5, pp.

808-828, May 2018.

[2] T.N. Kipf, and M. Welling, “Semi-supervised classification with graph convolutional

networks,” 2016, arXiv:1609.02907.

[3] S.Zhang, M. Wang, S. Liu,P. Y. Chen, and J. Xiong, “Fast learning of graph neural networks

with guaranteed generalizability: one-hidden-layer case,” in International Conference on

Machine Learning, Nov. 2020, pp. 11268-11277.

[4] W. Hu, J. Pang, X. Liu, D. Tian, C. -W. Lin and A. Vetro, “Graph Signal Processing for

Geometric Data and Beyond: Theory and Applications,” IEEE Transactions on Multimedia,

vol. 24, pp. 3961-3977, 2022.

[5] R. Li et al., “Graph Signal Processing, Graph Neural Network and Graph Learning on

Biological Data: A Systematic Review,” IEEE Reviews in Biomedical Engineering, vol. 16,

pp. 109-135, 2023.

[6] H. E. Egilmez and A. Ortega, “Spectral anomaly detection using graph-based filtering

for wireless sensor networks,” in Proceedings of 2014 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014, pp. 1085-1089.

114

[7] J.D. Medaglia, W. Huang, E.A. Karuza, et al., “Functional alignment with anatomical

networks is associated with cognitive flexibility,” Nature Human Behaviour, vol. 2, pp.

156-164, 2018.

[8] W. Huang, T. A. W. Bolton, J. D. Medaglia, D. S. Bassett, A. Ribeiro and D. Van De Ville,

“A Graph Signal Processing Perspective on Functional Brain Imaging,” Proceedings of the

IEEE, vol. 106, no. 5, pp. 868-885, May 2018.

[9] J. Pang, G. Cheung, A. Ortega and O. C. Au, “Optimal graph laplacian regularization for

natural image denoising,” in Proceedings of 2015 IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 2015, pp.

2294-2298.

[10] U. von Luxburg, “A tutorial on spectral clustering,” Stat. Comput., vol. 17, no. 4, pp.

395-416, 2007.

[11] S. Zhang, S. Cui and Z. Ding, “Hypergraph Spectral Analysis and Processing in 3D Point

Cloud,” IEEE Trans. Image Process., vol. 30, pp. 1193-1206, 2021.

[12] S. Zhang, S. Cui and Z. Ding, “Hypergraph-Based Image Processing,” in Proc. IEEE Int.

Conf. Image Process. (ICIP), Abu Dhabi, United Arab Emirates, Oct. 2020, pp. 216-220.

[13] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, and H. Zhang, “Edge-aware point set

resampling,” ACM Trans. Graph., vol. 32, no. 1, pp. 1-12, Feb. 2013.

[14] S. Zhang, Z. Ding and S. Cui, “Introducing Hypergraph Signal Processing: Theoretical

Foundation and Practical Applications,” IEEE Internet Things J., vol. 7, no. 1, pp. 639-660,

Jan. 2020.

[15] S. Barbarossa and M. Tsitsvero, “An introduction to hypergraph signal processing,” in Proc.

IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Shanghai, China, Mar. 2016, pp.

6425-6429.

115

[16] S. Zhang, S. Cui and Z. Ding, “Hypergraph Spectral Clustering for Point Cloud

Segmentation,” IEEE Signal Process. Lett., vol. 27, pp. 1655-1659, 2020.

[17] S. Zhang, Q. Deng and Z. Ding, “Signal Processing over Multilayer Graphs: Theoretical

Foundations and Practical Applications,” IEEE Internet of Things Journal, Jul. 2023.

[18] S. Zhang, Q. Deng and Z. Ding, “Image Processing via Multilayer Graph Spectra,” 2021,

arXiv :2108.13639.

[19] S. Zhang, Q. Deng and Z. Ding, “Multilayer graph spectral analysis for hyperspectral

images,” EURASIP Journal on Advances in Signal Processing, vol. 1, no. 92, pp. 1-25,

Oct. 2022.

[20] Q. Deng, S. Zhang and Z. Ding, “Point Cloud Resampling via Hypergraph Signal

Processing,” IEEE Signal Processing Letters, vol. 28, pp. 2117-2121, 2021.

[21] Q. Deng, S. Zhang and Z. Ding, “An Efficient Hypergraph Approach to Robust Point Cloud

Resampling,” IEEE Transactions on Image Processing, vol. 31, pp. 1924-1937, 2022.

[22] Q. Deng, S. Zhang and Z. Ding, “Body Motion Segmentation via Multilayer Graph

Processing for Wearable Sensor Signals,” in preparation for IEEE Open Journal of Signal

Processing.

[23] Q. Deng, Y. Zhang, M. Li, S. Zhang and Z. Ding, “Efficient Eigenvalue Decomposition for

Low-Rank Symmetric Matrices in Graph Signal Processing: An Incremental Approach” in

preparation for IEEE Transactions on Signal Processing.

[24] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs: frequency

analysis,” IEEE Transactions on Signal Processing, vol. 62, no. 12, pp. 3042-3054, Jun.,

2014.

[25] A. Sandryhaila, and J. M. F. Moura, “Discrete signal processing on graphs: graph filters,” in

Proceedings of 2013 IEEE ICASSP, Vancouver, Canada, May 2013, pp. 6163-6166.

116

[26] T. Kong, Y. Tian and H. Shen, “A Fast Incremental Spectral Clustering for Large Data Sets,”

in 2011 12th International Conference on Parallel and Distributed Computing, Applications

and Technologies, Gwangju, Korea (South), 2011, pp. 1-5.

[27] A. Banerjee, A. Char and B. Mondal, “Spectra of general hypergraphs,” Linear Algebra

Appl., vol. 518, pp. 14-30, Apr. 2017.

[28] A. Bretto, Hypergraph theory: An introduction (Mathematical Engineering). Cham,

Switzerland: Springer, 2013.

[29] A. Afshar et al. “CP-ORTHO: An orthogonal tensor factorization framework for

spatio-temporal data,” in Proc. 25th ACM SIGSPATIAL Int. Conf. Adv. Geograph. Inf. Syst.,

Redondo Beach, CA, USA, Jan. 2017, pp. 1-4.

[30] J. Pan, and M. K. Ng, “Symmetric orthogonal approximation to symmetric tensors with

applications to image reconstruction,” Numer. Linear Algebra Appl., vol. 25, no. 5, p. e2180,

Apr. 2018.

[31] T. G. Kolda, “Orthogonal tensor decompositions,” SIAM J. Matrix Anal. Appl., vol. 23, no.

1, pp. 243-255, Jul. 2006.

[32] S. Zhang, H. Zhang, H. Li and S. Cui, “Tensor-based Spectral Analysis of Cascading

Failures over Multilayer Complex Systems,” in 2018 56th Annual Allerton Conference

on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 2018, pp.

997-1004

[33] L. De Lathauwer, B. De Moor and J. Vandewalle, “A multilinear singular value

decomposition,” SIAM journal on Matrix Analysis and Applications, vol. 21, no. 4, pp.

1253-1278, 2000.

117

[34] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha and M. Beetz, “Towards 3D point cloud

based object maps for household environments,” Robot. Auto. Syst, vol. 56, no. 11, pp.

927-941, Nov. 2018.

[35] Z. C. Marton, R. B. Rusu and M. Beetz, “On fast surface reconstruction methods for large

and noisy point clouds,” in Proc. IEEE Int. Conf. Robot. Autom., Kobe, Japan, May 2009,

pp. 3218-3223.

[36] R. Schnabel, S. Möser and R. Klein, “A Parallelly Decodeable Compression Scheme for

Efficient Point-Cloud Rendering,” in Proc. Eurograph. Symp. Point-Based Graph., Prague,

Czech Republic, Sep. 2007, pp. 119-128.

[37] S. Gumhold, X. Wang and R. S. MacLeod, “Feature Extraction From Point Clouds,” in Proc.

IMR, Newport Beach, USA, Oct. 2001, pp. 293-305.

[38] R. Q. Charles, H. Su, M. Kaichun and L. J. Guibas, “PointNet: Deep Learning on Point

Sets for 3D Classification and Segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern

Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017, pp. 77-85.

[39] Z. Yang, Y. Sun, S. Liu and J. Jia, “3DSSD: Point-Based 3D Single Stage Object Detector,”

in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Seattle, WA, USA, Jun.

2020, pp. 11037-11045.

[40] T. Hackel, N. Savinov, L. Ladicky, J. D. Wegner, K. Schindler and M. Pollefeys,

“Semantic3D.Net: A new Large-scale Point Cloud Classification Benchmark,” 2017,

arXiv:1704.03847.

[41] S. Chen, D. Tian, C. Feng, A. Vetro and J. Kovačević, “Fast Resampling of

Three-Dimensional Point Clouds via Graphs,” IEEE Trans. Signal Process., vol. 66, no.

3, pp. 666-681, Feb. 2018.

118

[42] Z. Chen, T. Zhang, J. Cao, Y. J. Zhang and C. Wang, “Point cloud resampling using

centroidal Voronoi tessellation methods,” Comput.-Aided Des., vol. 102, pp. 12-21, Sep.

2018.

[43] S. Orts-Escolano, V. Morell, J. Garcı́a-Rodrı́guez and M. Cazorla, “Point cloud data filtering

and downsampling using growing neural gas,” in Proc. Int. Joint Conf. Neural Netw.

(IJCNN), Dallas, TX, USA, Aug. 2013, pp. 1-8.

[44] A. Anis, P. A. Chou and A. Ortega, “Compression of dynamic 3D point clouds using

subdivisional meshes and graph wavelet transforms,” in Proc. IEEE Int. Conf. Acoust.,

Speech Signal Process. (ICASSP), Shanghai, China, Mar. 2016, pp. 6360-6364.

[45] B. Kathariya, A. Karthik, Z. Li and R. Joshi, “Embedded binary tree for dynamic point

cloud geometry compression with graph signal resampling and prediction,” in Proc. IEEE

Vis. Commun. Image Process. (VCIP), St. Petersburg, FL, USA, Dec. 2017, pp. 1-4.

[46] S. Chen, D. Tian, C. Feng, A. Vetro and J. Kovačević, “Contour-enhanced resampling of 3D

point clouds via graphs,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),

New Orleans, LA, USA, Mar. 2017, pp. 2941-2945.

[47] C. Weber, S. Hahmann and H. Hagen, “Sharp feature detection in point clouds,” in Proc.

Shape Modeling Int. Conf., Aix-en-Provence, France, Jun. 2010, pp. 175-186.

[48] D. Bazazian, J. R. Casas and J. Ruiz-Hidalgo, “Fast and Robust Edge Extraction in

Unorganized Point Clouds,” in Proc. Int. Conf. Digit. Image Comput., Techn. Appl. (DICTA),

Adelaide, SA, Australia, Nov. 2015, pp. 1-8.

[49] A. K. Cherri, and M. A. Karim, “Optical symbolic substitution: Edge detection using

Prewitt, Sobel, and Roberts operators,” Appl. Opt., vol. 28, no. 21, pp. 4644-4648, Nov.

1989.

119

[50] M. Krivokuća, P. A. Chou, and P. Savill, “8i Voxelized Surface Light Field (8iVSLF)

Dataset,” document m42914, ISO/IEC JTC1/SC29 WG11(MPEG) Ljubljana, Jul. 2018.

[51] “ScanLAB Projects: Bi-plane point cloud dataset,” Accessed: Oct. 15, 2021. [Online].

Available: https://www.epfl.ch/labs/mmspg/jpeg/

[52] M. Kazhdan, M. Bolitho and H. Hoppe, “Poisson surface reconstruction,” in Proc. 4th Eu-

rograph. Symp. Geometry Process., vol. 7, Jun. 2006, pp. 1-10.

[53] H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes,” ACM Trans. Graph.,

vol. 13, no. 1, pp. 43-72, Jan. 1994.

[54] A. X. Chang, et al., “ShapeNet: An information-rich 3d model repository,” 2015,

arXiv:1512.03012.

[55] T. B. Moeslund and E. Granum, “A survey of computer vision-based human motion

capture,” Comput. Vis. Image Underst., vol. 81, no. 3, pp. 231-268, Mar. 2001.

[56] Y. Desmarais, D. Mottet, P. Slangen and P. Montesinos, “A review of 3d human pose

estimation algorithms for markerless motion capture,” Comput. Vis. Image Underst., vol.

212, Nov. 2021.

[57] J. Sedmidubsky, P. Elias, P. Budikova and P. Zezula, “Content-Based Management of

Human Motion Data: Survey and Challenges,” IEEE Access, vol. 9, pp. 64241-64255, Apr.

2021.

[58] R. Chereshnev and A. Kertész-Farkas, “Hugadb: Human gait database for activity

recognition from wearable inertial sensor networks,” in Proc. Int. Conf. Anal. Images, Soc.

Netw. Texts, 2017, pp. 131-141.

[59] L. Wang, Z. Ding and Y. Fu, “Low-Rank transfer human motion segmentation,” IEEE Trans.

Image Process., vol. 28, no. 2, pp. 1023-1034, Feb. 2019.

120

[60] L. Xi, W. Chen, X. Wu, Z. Liu and Z. Li, “Online Unsupervised Video Object Segmentation

via Contrastive Motion Clustering,” IEEE Trans. Circuits Syst. Video Technol., doi:

10.1109/TCSVT.2023.3288878.

[61] X. Xu, L. Zhang, L. -F. Cheong, Z. Li and C. Zhu, “Learning Clustering for Motion

Segmentation,” IEEE Trans. Circuits Syst. Video Technol., vol. 32, no. 3, pp. 908-919, March

2022.

[62] S. Lin, A. Yang, T. Lai, J. Weng and H. Wang, “Multi-motion Segmentation via

Co-attention-induced Heterogeneous Model Fitting,” IEEE Trans. Circuits Syst. Video Tech-

nol., doi: 10.1109/TCSVT.2023.3298319.

[63] F. Zhou, F. De la Torre and J. K. Hodgins, “Hierarchical Aligned Cluster Analysis for

Temporal Clustering of Human Motion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35,

no. 3, pp. 582-596, Mar. 2013.

[64] G. Xia, H. Sun, L. Feng, G. Zhang and Y. Liu, “Human Motion Segmentation via Robust

Kernel Sparse Subspace Clustering,” IEEE Trans. Image Process., vol. 27, no. 1, pp.

135-150, Jan. 2018.

[65] A. Byravan and D. Fox, “SE3-nets: Learning rigid body motion using deep neural

networks,” in Proceedings of IEEE International Conference on Robotics and Automation

(ICRA), Singapore, 2017, pp. 173-180.

[66] A. Graves and J. Schmidhuber, “Framewise phoneme classification with bidirectional LSTM

networks,” in Proceedings of 2005 IEEE International Joint Conference on Neural Net-

works, vol. 4, pp. 2047-2052, Aug. 2005.

[67] S. Li, Y. A. Farha, Y. Liu, M. -M. Cheng and J. Gall, “MS-TCN++: Multi-Stage Temporal

Convolutional Network for Action Segmentation,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 45, no. 6, pp. 6647-6658, Jun. 2023.

121

[68] Z. Wang, Z. Gao, L. Wang, Z. Li, and G. Wu, “Boundary-Aware Cascade Networks for

Temporal Action Segmentation,” in Proceedings of European Conference on Computer Vi-

sion (ECCV), 2020.

[69] Y. Li, Z. Dong, K. Liu, L. Feng, L. Hu, J. Zhu, L. Xu, S. Liu et al., “Efficient two-step

networks for temporal action segmentation,” Neurocomputing, vol. 454, pp. 373-381, 2021.

[70] H. Ahn and D. Lee, “Refining action segmentation with hierarchical video representations,”

in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp.

16302-16310.

[71] L. Xu, Q. Wang, X. Lin and L. Yuan, “An efficient framework for few-shot skeleton-based

temporal action segmentation,” Computer Vision and Image Understanding, vol. 232, pp.

103707, 2023.

[72] S. Yan, Y. Xiong and D. Lin, “Spatial Temporal Graph Convolutional Networks for

Skeleton-Based Action Recognition,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 32, no. 1, pp. 1-9, Apr. 2018.

[73] B. Filtjens, B. Vanrumste and P. Slaets, “Skeleton-Based Action Segmentation with

Multi-Stage Spatial-Temporal Graph Convolutional Neural Networks,” IEEE Transactions

on Emerging Topics in Computing, pp. 1-11, Dec. 2022.

[74] P. Ghosh, Y. Yao, L. Davis, and A. Divakaran, “Stacked spatio-temporal graph convolutional

networks for action segmentation,” in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision (WACV), March 2020.

[75] K. Cheng, Y. Zhang, C. Cao, L. Shi, J. Cheng, and H. Lu, “Decoupling GCN with dropgraph

module for skeleton-based action recognition,” in Proceedings of European Conference on

Computer Vision (ECCV), Aug. 2020, pp. 536-553.

122

[76] S. Miao, Y. Hou, Z. Gao, M. Xu, and W. Li, “A central difference graph convolutional

operator for skeleton-based action recognition,” IEEE Transactions on Circuits and Systems

for Video Technology, vol. 32, no. 7, pp. 4893-4899, 2021.

[77] C. Wu, X.-J. Wu, and J. Kittler, “Graph2net: Perceptually-enriched graph learning for

skeleton-based action recognition,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 32, no. 4, pp. 2120-2132, 2021.

[78] Y. -H. Li, K. -Y. Liu, S. -L. Liu, L. Feng and H. Qiao, “Involving Distinguished

Temporal Graph Convolutional Networks for Skeleton-Based Temporal Action

Segmentation,” IEEE Transactions on Circuits and Systems for Video Technology,

doi: 10.1109/TCSVT.2023.3285416.

[79] Y. Zhou, G. Gallego, X. Lu, S. Liu and S. Shen, “Event-Based Motion Segmentation With

Spatio-Temporal Graph Cuts,” IEEE Transactions on Neural Networks and Learning Sys-

tems, vol. 34, no. 8, pp. 4868-4880, Aug. 2023.

[80] F. Grassi, A. Loukas, N. Perraudin and B. Ricaud, “A time-vertex signal processing

framework: scalable processing and meaningful representations for time-series on graphs,”

IEEE Transactions on Signal Processing, vol. 66, no. 3, pp. 817-829, Feb. 2018.

[81] J. S. Stanley, E. C. Chi and G. Mishne, “Multiway Graph Signal Processing on Tensors:

Integrative Analysis of Irregular Geometries,” IEEE Signal Processing Magazine, vol. 37,

no. 6, pp. 160-173, Nov. 2020

[82] J. B. Kim, H. S. Park, M. H. Park, and H. J. Kim, “A real-time region-based motion

segmentation using adaptive thresholding and K-means clustering,” in AI 2001: Advances in

Artificial Intelligence: 14th Australian Joint Conference on Artificial Intelligence Adelaide,

Australia, Dec. 2001, pp. 213-224.

123

[83] F. Lauer and C. Schnorr, “Spectral clustering of linear subspaces for motion segmentation,”

in 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 2009, pp.

678-685.

[84] B. Krüger, A. Vögele, T. Willig, A. Yao, R. Klein and A. Weber, “Efficient Unsupervised

Temporal Segmentation of Motion Data,” IEEE Transactions on Multimedia, vol. 19, no. 4,

pp. 797-812, Apr. 2017.

[85] Y. Bai, L. Wang, Y. Liu, Y. Yin, H. Di and Y. Fu, “Human Motion Segmentation via

Velocity-Sensitive Dual-Side Auto-Encoder,” IEEE Transactions on Image Processing, vol.

32, pp. 524-536, 2023.

[86] X. Dong, D. Thanou, L. Toni, M. Bronstein and P. Frossard, “Graph Signal Processing for

Machine Learning: A Review and New Perspectives,” IEEE Signal Processing Magazine,

vol. 37, no. 6, pp. 117-127, Nov. 2020.

[87] M. Onuki, S. Ono, M. Yamagishi and Y. Tanaka, “Graph Signal Denoising via Trilateral

Filter on Graph Spectral Domain,” IEEE Transactions on Signal and Information Processing

over Networks, vol. 2, no. 2, pp. 137-148, Jun. 2016.

[88] Q. Deng, S. Zhang and Z. Ding, “An Efficient Hypergraph Approach to Robust Point Cloud

Resampling,” IEEE Transactions on Image Processing, vol. 31, pp. 1924-1937, Feb. 2022.

[89] K. Pena-Pena, D. L. Lau and G. R. Arce, “t-HGSP: Hypergraph Signal Processing Using

t-Product Tensor Decompositions,” IEEE Transactions on Signal and Information Process-

ing over Networks, vol. 9, pp. 329-345, 2023.

[90] S. Barbarossa and S. Sardellitti, “Topological Signal Processing Over Simplicial

Complexes,” IEEE Transactions on Signal Processing, vol. 68, pp. 2992-3007, 2020.

124

[91] L. Herda, P. Fua, R. Plankers, R. Boulic and D. Thalmann, “Skeleton-based motion capture

for robust reconstruction of human motion,” in Proceedings Computer Animation 2000,

Philadelphia, PA, USA, 2000, pp. 77-83

[92] G. Xia, P. Xue, H. Sun, Y. Sun, D. Zhang and Q. Liu, “Local Self-Expression Subspace

Learning Network for Motion Capture Data,” IEEE Transactions on Image Processing, vol.

31, pp. 4869-4883, Jul. 2022.

[93] C. Lea, M. D. Flynn, R. Vidal, A. Reiter and G. D. Hager, “Temporal Convolutional

Networks for Action Segmentation and Detection,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 1003-1012, Jul. 2017.

[94] Y. Abu Farha and J. Gall, “MS-TCN: Multi-stage temporal convolutional network for action

segmentation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pp. 3570-3579, Jun. 2019.

[95] Q. Zhang, Y. Tian, T. Wang, F. Yuan and Q. Xu, “ApproxEigen: An approximate computing

technique for large-scale eigen-decomposition,” in 2015 IEEE/ACM International Confer-

ence on Computer-Aided Design (ICCAD), Austin, TX, USA, 2015, pp. 824-830.

[96] K. . -B. Yu, “Recursive updating the eigenvalue decomposition of a covariance matrix,”

IEEE Transactions on Signal Processing, vol. 39, no. 5, pp. 1136-1145, May 1991.

[97] R. D. DeGroat and R. A. Roberts, “Efficient, numerically stabilized rank-one eigenstructure

updating (signal processing),” IEEE Transactions on Acoustics, Speech, and Signal Process-

ing, vol. 38, no. 2, pp. 301-316, Feb. 1990.

[98] R. Bru, R. Canto, and A. M. Urbano, “Eigenstructure of rank one updated matrices,” Linear

Algebra and its Applications, vol. 485, pp. 372-391, 2015.

125

[99] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang, “Incremental spectral clustering with

application to monitoring evolving blog communities,” in SIAM International Conference

on Data Mining, Citeseer, 2007.

[100] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. S. Huang, “Incremental spectral clustering by

efficiently updating the eigen-system,” Pattern Recognit., vol. 43, no. 1, pp. 113-127, 2010.

[101] C. Dhanjal, R. Gaudel, and S. Clémençon, “Efficient eigen-updating for spectral graph

clustering,” Neurocomputing, vol. 131, pp. 440-452, May 2014.

[102] J. T. Kwok and H. Zhao, “Incremental eigen decomposition,” in Proc. ICANN, Istanbul,

Turkey, Jun. 2003, pp. 270-273.

[103] C. Chen and H. Tong, “Fast eigen-functions tracking on dynamic graphs,” in Proc. SIAM

Int. Conf. Data Mining, 2015, pp. 559-567.

[104] G. W. Stewart and J.-G. Sun, Matrix Perturbation Theory. Boston, MA, USA: Academic,

1990.

[105] S. Chen, B. Liu, C. Feng, C. Vallespi-Gonzalez and C. Wellington, “3D Point Cloud

Processing and Learning for Autonomous Driving: Impacting Map Creation, Localization,

and Perception,” IEEE Signal Processing Magazine, vol. 38, no. 1, pp. 68-86, Jan. 2021.

[106] W. Zhu, Z. Ma, Y. Xu, L. Li and Z. Li, “View-Dependent Dynamic Point Cloud

Compression,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31,

no. 2, pp. 765-781, Feb. 2021.

[107] D. Rempe, T. Birdal, Y. Zhao, Z. Gojcic, S. Sridhar, and L. J. Guibas, “CaSPR: Learning

canonical spatiotemporal point cloud representations,” in Proc. Conf. Neural Inf. Process.

Syst., 2020, pp. 13688-13701.

[108] A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Numerical geometry of non-rigid

shapes,” Springer, 2008.

126

[109] A. M. Bronstein, M. M. Bronstein, A. M. Bruckstein, and R. Kimmel, “Analysis of

two-dimensional non-rigid shapes,” Intl. J. Computer Vision (IJCV), vol. 78, no. 1, pp.

67-88, June 2008.

[110] V. Lodhi, D. Chakravarty, and P. Mitra, “Hyperspectral imaging system: Development

aspects and recent trends,” Sensing and Imaging, vol. 20, pp. 1-24, 2019.

[111] C. Jiang, D. P. Paudel, D. Fofi, Y. Fougerolle and C. Demonceaux, “Moving Object

Detection by 3D Flow Field Analysis,” IEEE Transactions on Intelligent Transportation

Systems, vol. 22, no. 4, pp. 1950-1963, April 2021.

[112] D. Wang et al., “Separating tree photosynthetic and non-photosynthetic components from

point cloud data using dynamic segment merging,” Forests, vol. 9, no. 5, p. 252, 2018.

[113] R. Watanabe, K. Nonaka, E. Pavez, T. Kobayashi and A. Ortega, “Graph-Based Point Cloud

Color Denoising with 3-Dimensional Patch-Based Similarity,” in ICASSP 2023 - 2023 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes

Island, Greece, 2023, pp. 1-5.

[114] X. Yu, W. Liu, and W. Xing, “Behavioral segmentation for human motion capture data based

on graph cut method,” J. Vis. Lang. Comput., vol. 43, pp. 50-59, Dec. 2017.

[115] B. Girault, A. Ortega and S. S. Narayanan, “Irregularity-Aware Graph Fourier Transforms,”

IEEE Transactions on Signal Processing, vol. 66, no. 21, pp. 5746-5761, 1 Nov.1, 2018.

[116] Y. Zhao, Y. Yuan, and Q. Wang, “Fast spectral clustering for unsupervised hyperspectral

image classification,” Remote Sens., vol. 11, no. 4, pp. 399, Feb. 2019.

[117] Q. Wang, Y. Miao, M. Chen and Y. Yuan, “Spatial-Spectral Clustering With Anchor Graph

for Hyperspectral Image,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60,

pp. 1-13, 2022.

127

[118] Y. Ding et al., “AF2GNN: Graph convolution with adaptive filters and aggregator fusion for

hyperspectral image classification,” Inf. Sci., vol. 602, pp. 201-219, Jul. 2022.

[119] M. F. Baumgardner, L. L. Biehl, and D. A. Landgrebe, “220 Band AVIRIS Hyperspectral

Image Data Set: June 12, 1992 Indian Pine Test Site 3,” Purdue University Research Repos-

itory, 2015.

128

