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ABSTRACT OF THE DISSERTATION

The Econometric Analysis of Interval-Valued Time Series
by
Yun Luo

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2019
Dr. Gloria Gonzalez-Rivera, Chairperson

This dissertation covers three topics in modeling and forecasting interval-valued
time series.

In Chapter 1, we propose a model for interval-valued time series (ITS) that aims to
generate valid point-valued forecasts. We dispense with the positive constraint on the range
by estimating a bivariate system of the center/log-range. However, a forecast based on this
system needs to be transformed to the original units of center/range, which requires bias
correction. We examine the out-of-sample forecast performance of naive transformed fore-
casts (biased), parametric bias-corrected forecasts, and semiparametric correction methods
like smearing correction and bootstrap forecasts. Monte Carlo simulations show that the
biased correction methods do not generate forecasts that are uniformly superior. We apply
these methods to the daily low/high intervals of the SP500 index and Google prices.

In Chapter 2, we go beyond point forecasts to construct the probabilistic forecasts
for interval-valued time series. We estimate a bivariate system of the center/log-range,

which may not be normally distributed. Implementing analytical or bootstrap methods, we

vii



directly transform prediction regions for center/log-range into those for center/range and
upper /lower bounds systems. We propose new metrics to evaluate the regions performance.
Monte Carlo simulations show bootstrap methods being preferred even in Gaussian systems.
We build prediction regions for daily SP500 low/high return intervals, and apply them to
develop a trading strategy.

In Chapter 3, we develop an alternative model directly on the ITS (upper/lower
bounds system). The model specifies the conditional joint distribution of the upper and
lower bounds of the interval to be a mixture of truncated bivariate normal distribution. This
specification guarantees that the natural order of the interval (upper bound not smaller than
lower bound) is preserved. The model also captures the potential conditional heteroscedas-
ticity and non-Gaussian features in I'T'S. We propose an EM algorithm for model estimation.
We establish the consistency of the maximum likelihood estimator. Monte Carlo simula-
tions show the new EM algorithm has good convergence properties. We apply the model
to the interval-valued IBM daily stock returns and it exhibits superior performance over

competing methods.
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Chapter 1

Point Forecast for Interval-valued

Time Series

1.1 Introduction

Data sets in interval format are common in many disciplines. See Blanco-Fernandez
and Winker (2016) for different data generation mechanisms of interval data. In economics,
we have many examples. For instance, in stock markets, it is standard to provide the daily
interval of low/high asset prices. In bond markets, traders report bid/ask intervals. In
energy markets, the US Energy Information Administration provides min/max retail prices
of electricity at the state level. The US Department of Agriculture also provides daily low
and high prices on agricultural commodities and livestock. In earth sciences, temperatures
are also recorded in the min/max format. It should be noted that in many instances, the

interval format is the only available format to the researcher. There are several reasons to



prefer interval records. For instance, in stock markets it is customary to report the daily
closing price, which is just one-point measurement, while we observe plenty of price points
over the trading day. Other records, like an average temperature or like those provided by
USDA as daily weighted average prices on commodities and livestock, are not very infor-
mative to market participants. In other instances in which the data is sensitive to privacy
concerns such as income reporting, the records must be aggregated, e.g. income intervals.

Our interest is in interval-valued times series defined as a collection of interval
realizations ordered over time, i.e., {(y ¢, Yut)} for t = 1,..T, where y;; is the lower bound
and y, ¢ is the upper bound of the interval at time ¢, such that y;; < y,; for all . An
equivalent representation is given by considering the center of the interval Cy = (y;++Yu.t)/2
and the range Ry = yur — y1e > 0, ie., {(C, Ry)} for t = 1,...T. Most of the econometric
analysis in this area has focused on model estimation and inference, and though it is possible
to construct point forecasts based on a given model or algorithm.

When dealing with lower/upper bounds systems, one needs to incorporate the
constraint y;; < v, into the estimation. Gonzalez-Rivera and Lin (2013) propose a two-
step estimator (Maximum Likelihood (ML) and Least Squares (LS)) and a modified two-step
estimator (ML and Minimum Distance) based on assuming a truncated bivariate normal
density of the errors of the lower/upper bounds system. The estimation of the system is
complex but it is possible to construct a direct bivariate density forecast for the upper/lower
bounds, if the truncated bivariate normal density is the right assumption. Alternatively,
dealing with the center/range system, one needs to incorporate the constraint R; > 0.

Lima Neto and De Carvalho (2010) impose non-negative constraints on the parameters of



the range equation, which are unnecessarily too restrictive and complicate the estimation
of the system. Tu and Wang (2016) overcome the restriction R; > 0 by log-transforming
the range, and estimating the center/log-range system without imposing any distributional
assumptions. However, forecasting the center/range or lower/upper bounds will be more
complicated. First, for point forecasts, one needs the inverse transformation, i.e. Ry =
exp[log R;], which itself introduces non-trivial econometric issues. Secondly, for a density
forecast, a joint distributional assumption for the center and range or for the upper and
lower bounds is required.

We will start with the estimation of a dynamic model for the system center/log-
range. We specify a VAR system to be estimated by quasi-maximum likelihood, assuming
a bivariate Gaussian density, that guarantees the consistency of the estimators. Tu and
Wang (2016) used the estimator of Yao and Zhao (2013) that relies on kernel estimates
of the likelihood. This estimator is computationally more demanding than QMLE and
depends on the choice of tuning parameters. However, their empirical results suggest that
both estimators are very similar. Since our purpose is to forecast the center/range system,
a naive inverse transformation of the log-range, i.e. R; = expllog R;], will generate biased
estimates of the conditional mean of the range and of its point forecasts (Granger and
Newbold, 1976). We analyze three different bias correction approaches. The first is a
parametric factor correction as in Guerrero (1993) that it is very easy to implement and
works well when log-range is normally or almost normally distributed. The other two are
semiparametric corrections that do not rely on any particular distributional distribution of

the errors. The smearing estimator proposed by Duan (1983), also used by Tu and Wang



(2016), estimates the unknown error distribution by the empirical CDF of the residuals
and take the desired expectation with respect to the estimated error distribution. Duan’s
estimator was designed to obtain the fitted values of the range (in-sample) and we extend it
to obtain the range forecasts at any forecasting horizon. The bootstrap estimator (Pascual
et al., 2005) is another semiparametric correction that, as the smearing estimator, does
not require a distributional assumption and has the advantage of incorporating parameter
uncertainty in the construction of the forecasts.

We perform several Monte Carlo simulations to assess the out-of-sample perfor-
mance of a naive point forecast compared to bias-corrected point forecasts. It is interesting
to note that biased-corrected forecasts are not uniformly superior to the naive forecast,
which in some instances is the preferred choice when faced with a Mean-Absolute-Error loss
function.

We apply these methods to the time series of the daily low/high price intervals of
the SP500 and Google (GOOG) stock. We deviate from the standard practice in financial
econometrics in that we work directly with prices and not with the end-of-day returns.
These intervals are more informative than just a daily one-point measurement as they
encompass all prices during the day. There are commonalities between the analysis of
the center/range system of prices and the standard analysis of end-of-the-day returns and
their volatility. As returns, the first-differenced center has large kurtosis, which is more
pronounced in the individual stock GOOG than in the index SP500. The log-range, which
is close to be normally distributed, is a proxy for volatility as proposed by Parkinson (1980)

and Alizadeh et al. (2002). It shows a strong autocorrelation as that of an autoregressive



process, which is similar to the patterns found in ARCH processes and stochastic volatility.
We also find that that there is Granger-causality from the first-differenced center to the log-
range such that positive and large changes in the center will predict narrower ranges, which
is similar to the so-called leverage effect. However, an important difference pertains to the
construction of the forecasts. In standard ARCH and stochastic volatility processes, the
forecast of the return is mostly zero and together with a forecast of the conditional volatility
and some conditional distribution of the return, it is possible to generate a density forecast
of future returns. In the interval approach, we forecast directly the future low/high prices
and construct prediction regions of the center and range prices at any desired horizon that
do not require parametric distributional assumptions. We find that there is a substantial
overlap between the one-day-ahead interval forecast and realized intervals up to 54%.

The organization of the chapter is as follows. In section 2, we explain the esti-
mation of the system center/log-range. In section 3, we present the bias-corrected point
forecasts for the center/range system. In section 4, we analyze several Monte Carlo simu-
lations. In section 5, we analyze the time series of the SP500 and GOOG low /high prices,

and in section 6, we conclude.

1.2 The Center/Log-Range System

For the interval-valued time series {(y ¢ yu,)} for ¢ = 1,...T, we consider the
equivalent representation, center/range, {(Ct, Ry)} for t = 1,...7 with R; > 0. Our objective
is to build a model-based point forecast for either representation. To that end, we start

with the estimation of a dynamic bivariate system. We propose a linear VAR(p) for the



center/log-range system, from which we construct forecasts for {(Cy, log R;)}. We transform
the forecasts to the original measures {(Cy, R¢)} or {(yi+,yus)} and explore the properties
of the point forecasts and approximated prediction regions. Let us call y.; = C; and

yrt = log R;. Consider the bivariate VAR(p) system

p p
Yot = Q1 + Z ﬁﬁ)yc,t—i + Z 5&)Z/r,t—i +ect (1.1)
i=1 i=1
p . p .
Yrt = a2 + Z B8 e + Z B yremi + Eng (1.2)
i=1 i=1

where the components of the error vector (e14,£2;)" are white noise processes, possi-
bly contemporaneous correlated, with covariance matrix ). The estimation of the sys-
tem proceeds by least squares. The OLS estimator is consistent under mild assump-
tions and it will also be a full information maximum likelihood (ML) estimator when
bivariate normality of the errors is the true density. Otherwise, assuming bivariate nor-
mality, a quasi-maximum likelihood (QML) estimator will be equivalent to a LS estima-
tor. Let 0 = (al,az,ﬂﬁ), . g), ...,ﬂg), . %), ...) be the parameter vector to estimate.
Following White (1982), the asymptotic distribution of the Gaussian QML estimator is
VT (6 —6) 4 N(0, A=*BA™1) where matrix A is the (minus) expectation of the Hessian
and matrix B is the expectation of the outer product of the score of a Gaussian log-likelihood
function.

The QML environment will be the most common estimation approach because
bivariate normality of (g1 ¢, 62’15)/ will be difficult to entertain. To guarantee bivariate nor-

mality of the system, the conditional densities as well as the marginal densities must also



be normal functions. For financial data, there is evidence that the log-range y,; (as a proxy
for volatility) is near-normal (Alizadeh, Brandt, and Diebold, 2002). The center y.; is less
likely to be normally distributed because the prevalence of fat tails at least in financial data
at a relative high frequency, e.g. daily financial returns. In the empirical section, we will
test the assumption of bivariate normality as a starting step to construct density forecasts
of the full system. Notice that, even if bivariate normality is the correct assumption, the
system (1.1-1.2) will generate density forecasts for the center and log-range, but ultimately
we will be interested in density forecasts of the center/range system.

Given an information set up to time 7', the optimal h-step forecast is the condi-
tional mean i.e. §.7yp 7 and g, pr whenever the loss function is symmetric. The point

forecasts of the center and the log-range are

p p
Jorinr =01+ Y 6511)QC,T+h7i|T +)° 5512)?%,T+h7i\T (1.3)
i=1 i=1
~ 500 ~ 50
et =02+ > Byl Gerrnir + D By3 UrrshifT (1.4)
i=1 i=1

where Je 14 h—i7 = Ye,r+n—i a0d Gp. oy h—ij7 = Yr1+h—i for ¢ > h. The corresponding forecast
EITOrS are €. 7447 = Ye,+h — Ye,7+h|T a0 €r 7y hT = Yr,7+h — U 74n7- The Mean Squared
Prediction Error (MSPE) or, in this case, the variance-covariance matrix W}, of the forecast
error vector (eqpih|r €rrinr) 18 Wi = Q + Z?:_ll U, QU; where the coefficient matrix
U, come from the MA(co) representation of the VAR(p) system. In practice, we plug in

consistent parameter estimates, i.e. 4,2, and \f/i, in the VAR(p) to obtain the estimated

point forecasts and their estimated variance-covariance matrix. Parameter uncertainty will



contribute to the MSPE but it will be negligible when the sample size T is large relative to

the number of estimated parameters.

1.3 Forecasting the Center /Range System

Taking advantage of the forecasts produced by the VAR(p) for the center/log-
range system, we wish to construct the forecasts for the center/range system. The main
problem lies in the equation of the log-range. It is easy to see that by taking the exponential
transformation of the conditional mean of the log-range, we will obtain a downward biased
forecast. By the Jensen’s inequality, we have that exp(E(y,ryn 1)) < Er(exp(yrr1n))- In
the following sections, we explore different bias correction techniques for point forecasts and
different approaches to construct prediction regions for the center/range system.

We start with the simplest forecast. Let y;f’T hIT be the forecast for the range of
the interval. The biased naive forecast of the range is just the exponential transformation

of the forecast of the log-range, i.e.,

y:7T+h|T = eXp(ET(yr,TJrh)) = eXp(@r,T+h|T) (15)

1.3.1 Point Forecasts: Factor correction

An approximate bias correction factor can be obtained based on a Taylor’ s expan-

sion of y, 75 around the conditional mean E7(exp(y,r+p)). By adapting Guerrero (1993)



to the bivariate VAR(p), the biased-corrected forecast of the range is

Wh 22 )

Yo = €XP(Jr14+n|T) €XP( (1.6)

where W), 99 is the lower term of the diagonal of the variance-covariance matrix of the
forecast errors W},. This approximation holds for any distributional assumption of the log-
range. However, if we assume that the log-range is normally distributed the expression (1.6)
is exact (for details, see the Appendix). For large deviations from normality e.g., skewness

or fat tails, we expect that this bias-corrected forecast will not perform well.

1.3.2 Point Forecasts: Smearing correction

Consider the forecast of the log-range (1.4). We write the random variable y, 74,
as the sum of its optimal forecast plus the corresponding forecast error, i.e. y,.7yp =

Ur,74-hT + €rrynr- Then, the conditional mean of the range, i.e. Er(exp(y,1+n)), is

Yrrinr = Er(exp(yrrin)) = exp(Jr 1 nr) Er(exple,rinr)) (1.7)

that is an unbiased forecast of the range. If we know the distribution function of the forecast
error, we can calculate the correction factor Er(exp(e, s 7)). In the absence of such a
knowledge, we introduce the smearing correction based on a nonparametric estimator of
the unknown distribution given by the empirical cdf of the forecast error. The smearing
estimator was introduced by Duan (1983) in the context of a regression model (in-sample

estimation) where the smearing estimator was based on the empirical distribution of the



regression residuals. We adapt this estimator to the forecast errors of the log-range equation
of the VAR(p) system. The forecast error e, pr is a linear function of the unknown
innovations from time T+ 1 to T'+ h. Then, we will need the multivariate density function
of these innovations, i.e. fr(erryh, ErT4h—1,Ec,THh—1sEr,T+h—2s Ec,T4h—25 oy ErT4+1s Ec,T+1)-
Under the assumption that the vector (e.¢,er) in the VAR(p) system (1.1)-(1.2) is i.i.d, the
multivariate density simplifies to a product of identical bivariate densities and a marginal,

i.e
9r(erm4n) fr(Errrh—1,€cm4h—1) fr(Er,T4h—2, EcT+h—2) X oo X fr(erTi1,€cm+1)  (1.8)

The empirical counterparts to these functions will be the basis for the implementation of
the smearing estimator. As an example, consider a VAR(1) system and h = 2. Then, the

two-step-ahead forecast of the range is

Erlexp(yrr12)] = Erlexp(og + fo1ye,r+1 + Booyrr41 + €r142)] = (1.9)

= exp(Cr)Erlexp(Baiccr+1 + Pazer 41 + Er112)]

where Cr = ag + Bo1(a1 + Briye,r + Bi2yrr) + B22(2 + B21Yer + B22yrr). Considering
(1.8), the conditional expectation of the transformed forecast error will be estimated by the

smearing estimator

N

T T
1 1
Erlexp(Bai€c,r+1 + Ba2errs1 +erri2)] = [f E eXp(fSr,i)} [f E exp(Ba1&c,; + 522673]‘)}
=1 =

(1.10)
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1.3.3 Point Forecasts: Bootstrap approach

The three previous approaches to construct the forecast of the range (naive (1.5),
factor correction (1.6), and smearing correction (1.7)) depend on the parameter estimates of
the VAR(p) system. When the estimation sample is not very large, the effect of parameter
estimation on the forecast and on the correction factors is not negligible. In order to account
for parameter uncertainty, we extend the bootstrap procedure proposed by Pascual et al.
(2005) to a VAR system.

The procedure consists of the following steps:

Step 1. Estimate the VAR(p) system (1.1)-(1.2). Obtain the residual vector
(éctsért). Center the residuals, i.e. & —&; where & = %_p Zf:p 11 €t- Rescale the residuals

P

using the factor [TT_;

p_d]l/Q

, where d is the number of parameters to estimate. Denote the
empirical distribution of the centered and rescaled residuals as Fr.

Step 2. From Fg, draw pairwise residuals (éqt,ém)’ with replacement. Together
with the parameter estimates from Step 1, generate bootstrap series {ygl, ...,ygT} and

{:%13717 oo sz} as follows,

p D
ygvt = a1+ Z Bﬁ)ygt,i + Z ﬁg).%lf,tfi + Ect
i=1 i1

p ) p »
yff}t =az+ Z 6521)3/2,?5—2' + Z 5512)%13,1&—1' + &t
=1 i=1

Fix p initial values of y.; and v, , that is, ygt = Y+ and yﬁt =yps fort =1,...,p . For the

b
o
bootstrap replicate, estimate a VAR(p) to obtain bootstrap parameter estimates &” =

~b
Qo

11



Ab(i Ab(e
CHENEIEY

and Bb =
5b(i)  5b(2)
Ba1 2]
Step 3. Construct the bootstrap h-step ahead future values of the vector (Ye,74h, Yr.7+h)’
as follows,

b b b .
Yertn = + Z 5111)1% T+h—i T Z@g Yrryn—i T EcT4h

(%) ~b A
yr T+h — O£2 + Z 521 yc ,T+h—i + Z B22 Yr T +h—i +&rT+h
=1 i=1

where g]ZTJrh_i = YeT+h—i, and g)fZ’TJrh_i = Yp14h—i for i > h, and (écrin,Eérrin) are
pairwise random draws with replacement from Fg. Notice that the last p values of the
original data are fixed in this step.

Step 4. Repeat steps 2 and 3 B times. We obtain a bootstrap conditional distri-
bution of the vector (g)’;T o g)f;T 1) and, by taking the exponential of log-range, we finally
obtain a bootstrap conditional distribution of (QS,T o exp(gng 1)) that we denote as Fé’ .

Step 5. The h-step ahead bootstrap forecasts of the center and range of the interval

are obtained by averaging over the number of bootstrap replicates,

YoTshT = B EYXE it T+hi (1.11)

B ~
Yo T = 5 2ic1 P i) (1.12)

12



1.4 Monte Carlo Simulations

We perform extensive Monte Carlo simulations to assess the performance of the
point forecasts for the center/range system obtained by implementing the different ap-
proaches surveyed in section 3.

We consider a VAR(1) for the center/log-range system (1.1)-(1.2) with the follow-
ing parameter values: (g, a2) = (0,0), (811 Bi2| Bo1 B22) = (0.4 0.1 0.2 0.4)" (mid-
persistent dynamics), and (811 Si2| B21 Ba22)’ = (0.5 0.1] 0.2 0.8)" (high-persistent dy-
namics). The dominant roots of the respective characteristic equations are 0.54 and 0.86 in
the mid-persistent and high-persistent cases. The variance-covariance matrix of the error
term 2 will be determined according to the assumed marginal distributions of the cen-
ter and the range, as we will see in the following sections. The VAR(1) center/log-range
system is estimated recursively by least squares. We consider three forecast horizons, i.e.
h =1,2,3. We construct point forecasts for the center and range according to the methods
in section 3. The point forecasts are evaluated in an out-of-sample exercise with P = 100
observations. The number of Monte Carlo replications is 500 and the number of bootstrap
samples is B = 2000.

We consider several probability density functions for the center and the range
and log-range. For the center, we assume (i) normal density and (ii) Student-t with 7
degrees of freedom. For the range, we assume (i) exponential density with A = 1, and (ii)
log-normal density so that the log-range is normally distributed. Note that the bivariate
density of the system center/range will not be normal for any combination of the assumed

marginal densities of the center and the range. We simulate data from the four possible
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combinations of the center/range marginal densities. We also need to assume some degree of
contemporaneous dependence between the two equations of the VAR(1). When the center
and the log-range are simulated under the normal assumption, we assume that the variance-
covariance matrix of the errors of the VAR has a non-zero covariance. In the remaining three
cases, we generate contemporaneous dependence between the center and log-range by using
a bivariate normal copula function (correlation coefficient equal to 0.5) with the assumed
marginal densities, i.e. (normal center, exponential range), (Student-t center, exponential
range), and (Student-t center, normal log-range).

We evaluate the point forecasts according to four loss functions: Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), Mean Distance Error (MDE), and Average of
Coverage and Efficiency Rates (ACE). We convert the center and range forecasts into the
lower and upper bounds forecasts of the interval, i.e., (y:’Tth'T - (1/2)y:7T+h|T, yZTJrth +
(1/2)yj’T+h‘T) = (Y1,74-h/T> Yu,T+n|7) Decause this is the final object of interest.

The RMSE of the upper bound (RMSEU) and of the lower bound (RMSEL)

forecasts are

1 T+P—h
RMSFEU = P_h+l ; (yu,t+h—yu,t+h|t)2 ; (1.13)
1 T+P—h
RMSFEL = P_hi1 ; (Yi,t4n — yl,t+h\t)2

14



The MAE of the upper bound (MAEU) and of the lower bound (MAEL) forecasts

are

1 T+P—h
MAFEU = P_hil ; \yu,t+h - yu,t+h\t‘ ; (1.14)
1 T+P—h
MAEL = 5 t; [Yre+h = Yuesniel

These two loss functions, RMSE and MAE, consider the performance of each
bound forecast separately. If we wish to asses the interval forecast as a whole and not just
each of the bounds, we need either distance measures or measures of coverage between the
actual and the forecast interval.

The MDE is defined as

1 T+P—h

1
where D (yt+h, yt+h|t) = \%[(yu,t—i-h - yu,t+h|t)2 + (Yit+h — yl,t+h\t)2] 2.

The Coverage Rate (CR) and the Efficiency Rate (ER) are defined as

1 Eil W(Yn N yt+hlt) 1 Rty W (Yt rn N Z/t+h\t)
CR= -t Y  BR=p g Y
P—h+1 = W(Yitn) P—h+1 t=T w(yt+h|t)

(1.16)
where w(X) is the width of interval X and “N” the intersection of two intervals. The ACE

is the simple average of CR and ER, i.e., ACE = (CR+ ER)/2.
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Next, we compare and comment on the simulation results for the following cases

with more details:

1.4.1 Center and Log-Range are Normally distributed

Since the log-range is normally distributed, the Guerrrero biased-corrected forecast
of the range is exact (see expression 1.6) and this forecast is the conditional mean of the
range variable at time T4+ h. The forecasts based on the smearing and bootstrap approaches
will also deliver the conditional mean of the future center and range variables. Consequently,
we expect Guerrero, smearing, and bootstrap approaches outperform (lower loss) the naive
forecast when the loss function is quadratic. The naive forecast is under-biased and, thus iit
will not be the minimizer of the expected quadratic loss function. In Table 1.1, we report
the values of the RMSE loss functions associated with the one-, two-, and three-step ahead
forecasts of the upper and lower bounds of the intervals. We estimate the mid-persistence
VAR(1) with variance-covariance matrix of the error term Q = (2 0.5/ 0.5 1)’. We run two
estimation samples T" = 100 and 7" = 500 and the average loss is calculated over an out-of-
sample period of 100 observations, i.e. P = 100. The RMSE losses delivered by Guerrero,
Smearing and Bootstrap approaches are practically identical with Guerrero having a very
tiny advantage. The loss delivered by the naive approach is slightly higher than the other
approaches; it is between 1 and 4 % larger than the loss attached to Guerrero’s bias-corrected
forecast. As expected, when T' = 500 the losses are smaller than those when T' = 100. This
is because the contribution of parameter uncertainty is less important as the estimation

sample becomes larger.
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Naive | Guerrero | Smearing | Bootstrap || Nve./Guer.
T =100
P =100 RMSEU
1-step 2.3938 2.3666 2.3701 2.3675 1.012
2-step 2.6612 2.6292 2.6356 2.6307 1.012
3-step | 2.7306 | 2.6954 2.7034 2.6979 1.013
RMSEL
l-step | 1.9306 | 1.8895 1.8930 1.8909 1.022
2-step | 1.9928 | 1.9363 1.9433 1.9385 1.029
3-step 1.9971 1.9333 1.9414 1.9355 1.033
Naive | Guerrero | Smearing | Bootstrap || Nve./Guer.
T =500
P =100 RMSEU
l-step | 2.3787 | 2.3370 2.3366 2.3376 1.012
2-step | 2.6441 | 2.5987 2.5987 2.5996 1.017
3-step 2.7141 2.6682 2.6684 2.6691 1.017
RMSEL
l-step | 1.9230 | 1.8666 1.8674 1.8673 1.030
2-step | 1.9864 | 1.9198 1.9209 1.9204 1.035
3-step 1.9932 1.9245 1.9261 1.9254 1.036

In Table 1.2, we run similar experiment but for the high-persistence VAR(1). We
observe that when 7' = 100 and P = 100, the naive method delivers substantially lower
losses than Guerrero, smearing, and bootstrap methods.
25% lower than that of Guerrero. Though these results are puzzling, they are two possible
explanations. First, this is a small sample estimation problem. When the sample is increased

to T' = 500 so that parameter estimates are more precise, the naive loss is similar to that

Table 1.1: RMSE losses. Mid-persistence VAR(1)

The naive loss can be up to

of the other approaches, though still 5-8% lower than that of Guerrero’s.
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Naive | Guerrero | Smearing | Bootstrap Naive/Guerrero
T =100
P =100 RMSEU P =100 | P =1000
l-step | 17.3680 | 19.5536 20.2202 19.3771 0.888 0.973
2-step | 20.5549 | 25.5747 27.6231 25.5726 0.804 0.947
3-step | 21.5866 | 28.6626 32.2994 29.4509 0.753 0.938
RMSEL
1-step | 16.9687 | 19.1570 19.8272 18.9868 0.886 0.973
2-step | 19.9160 | 24.9597 27.0185 24.9715 0.798 0.946
3-step | 20.8181 | 27.9295 31.5851 28.7459 0.745 0.937
Naive | Guerrero | Smearing | Bootstrap Naive/Guerrero
T = 500
P =100 RMSEU P =100 | P =2000
1-step | 15.8332 | 16.6583 16.7766 16.6272 0.950 1.009
2-step | 18.5702 | 19.9974 20.2574 20.0655 0.929 1.007
3-step | 19.7148 | 21.5187 21.9005 21.8275 0.916 1.006
RMSEL
l-step | 15.4485 | 16.2687 16.3876 16.2399 0.949 1.009
2-step | 17.9623 | 19.3955 19.6583 19.4670 0.926 1.007
3-step | 18.9771 | 20.7992 21.1865 21.1167 0.912 1.006

Table 1.2: RMSE losses. High-persistence VAR(1)

The second reason is related to the small size of the evaluation sample P. For sim-
plicity consider h = 1 and compare point-wise the forecast errors associated with the naive
forecast (1.5) and the Guerrero bias-corrected forecast (1.6) for the bivariate VAR (1.1)-
(1.2). The one-step-ahead forecast error for the range associated with the naive approach is
eZXT T = exp(Jr,r41|7)(€xp(err+1) — 1). The one-step- ahead forecast error for the range

based on the Guerrero method is erG,TJrlIT = exp(Jy.r41)t) (exp(er,141) — exp(0?/2)) where
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2

O

is the variance of e, 741. Then,

’eST+1|T| > ‘ei\,]T+1|T’ for &7 <0
’eST+1|T| > or < |e7JXT+1‘T| for  0<e i1 <07/2

|efT+1|T| < ‘67]"\,[T+1|T| for 02/2 < erri1

Since €, 741 is symmetrically distributed around zero, we expect that \efT +1|T] >
\efT +1|T] will happen for more than 50% of the observations in the evaluation sample.
In addition, the distribution of the forecast errors is skewed to the right because of the
exponential transformation. It is only when 02/2 < &,741, that the Guerrero forecast
errors become smaller than those of the naive approach. How often will encounter these
cases will depend on the magnitude of o2 and, when h > 1, on the magnitude of the
parameters of the model as well. In a small sample environment, e.g. P = 100, the RMSE
is likely to be dominated by instances like |eST +1‘T| > ]efn\fT +1|T|; we will need a very large
sample for the full skewed distribution of the forecast errors to show up. In Table 1.2, we
show that for 7" = 100 and P = 1000, the ratio naive/Guerrero RMSEs increases from
about 0.80 to about 0.95. When we increase both the estimation sample and the evaluation
sample sizes, i.e. T = 500 and P = 2000, the RMSE loss values attached to the Naive
approach are larger than those attached to Guerrero’s corrected forecast, as we expected.
In summary, in small samples the simplest naive approach delivers a good point forecast of
the interval evaluated according to a RMSE loss function.

In Table 1.3, we report the values of the MAE, MDE, and ACE loss functions for

the mid-persistence VAR(1) and the small sample case, i.e. T = 100 and P = 100. When
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considering the MAE function, the h-step forecast minimizer is the conditional median of the
variable at time T + h. Recall that after estimating the VAR system, we obtain the h-step
ahead forecast of the log-range, i.e. g, 7 pr, which is the conditional mean of y,. ryp. Since
the log-range is normally distributed, this conditional mean is also the conditional median
of yr7+r. The naive approach applies a monotonic transformation to g, 7,y so that the
quantile is preserved and the naive forecast exp(g, 74p¢) is also the conditional median of
the range at time 7'+ h. Consequently, we expect the naive forecasts for center and range to
deliver smaller MAE losses than Guerrero, smearing and bootstrap approaches. However,
on translating the forecasts of center/range into the forecasts of the lower/upper bounds
of the interval, this may not be the case because the median does not have the additivity
property. In Table 1.3, we observe that the four approaches are practically equivalent and

they deliver similar losses.
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Naive | Guerrero | Smearing | Bootstrap || Nve./Guer.
T =100
P =100 MAEU
1-step | 1.6333 | 1.6576 1.6611 1.6589 0.985
2-step | 1.8157 | 1.8441 1.8510 1.8475 0.985
3-step | 1.8605 | 1.8891 1.8979 1.8945 0.985
MAEL
1-step 1.3160 1.3190 1.3227 1.3216 0.998
2-step 1.3647 1.3494 1.3566 1.3531 1.011
3-step 1.3704 1.3451 1.3546 1.3490 1.019
Naive | Guerrero | Smearing | Bootstrap || Nve./Guer.
T =100
P =100 MDE
1-step | 1.5610 | 1.5995 1.6029 1.6022 0.976
2-step | 1.6866 | 1.7335 1.7406 1.7389 0.973
3-step | 1.7150 | 1.7626 1.7722 1.7701 0.973
Naive | Guerrero | Smearing | Bootstrap || Boot./Nve.
T =100
P =100 ACE
1-step | 0.3232 | 0.3865 0.3850 0.3880 1.200
2-step | 0.3017 | 0.3926 0.3906 0.3951 1.309
3-step | 0.2975 | 0.3987 0.3970 0.4021 1.352

Table 1.3: MAE and MDE losses and ACE. Mid-persistence VAR(1)

We evaluate the joint performance of the lower/upper bounds forecasts with the
MDE and ACE functions. For the MDE, all four approaches deliver similar losses with the
naive approach showing a slight better performance. However, when we assess the coverage
and efficiency of the interval forecast, Guerrero, smearing and bootstrap forecasts are much

superior to the naive forecast even in this small sample setting. The bootstrap approach

delivers between 20 and 35% improvement in ACE over the naive forecast.
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1.4.2 Center is Student-t and Log-Range is Normally distributed

We deviate from bivariate normality of the center/log-range system by introducing
fat tail behavior in the center. We assume that the conditional density of the center is
Student-t with 7 degrees of freedom while the log-range remains normally distributed. We
estimate the same mid-persistence VAR(1) with variance-covariance matrix of the error
term Q = (1.4 0.6/ 0.6 1)’ and an estimation sample of 7' = 100. The average losses are
calculated over an out-of-sample period of 100 observations, i.e. P = 100. In Table 1.4,
we report the values of the RMSE, MAE, MDE, and ACE functions. Regarding RMSE,
the Guerrero’s bias-corrected forecast, the smearing and the bootstrap forecasts deliver
similar losses. Guerrero’s bias correction is not exact any longer as it does not consider the
kurtosis in the center. Nevertheless, Guerrero’s bias-corrected forecast and the bootstrap
forecast have similar performance and they are preferred to the naive approach. Regarding
MAE, the naive approach seems to have a slight advantage over the other three methods.
Regarding MDE, the naive forecast delivers the smallest losses overall but, when the ACE
function is considered, the naive forecast does not provide as much efficiency and interval
coverage as the bootstrap forecast. The bootstrap approach delivers between 18 and 32%

improvement in ACE over the naive forecast.
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Naive | Guerrero | Smearing | Bootstrap || Nve./Boot.
T =100
P =100 RMSEU
1-step 2.5108 2.4583 2.4661 2.4302 1.033
2-step | 2.8117 | 2.7796 2.7925 2.7874 1.009
3-step | 2.8785 | 2.8439 2.8554 2.8555 1.008
RMSEL
1-step | 1.8946 1.8229 1.8309 1.7953 1.055
2-step | 1.9968 1.9311 1.9448 1.9395 1.029
3-step 2.0080 1.9363 1.9494 1.9482 1.031
Naive | Guerrero | Smearing | Bootstrap || Nve./Boot.
T =100
P =100 MAEU
1-step | 1.4971 1.5308 1.5362 1.5310 0.978
2-step | 1.6818 1.7309 1.7478 1.7474 0.962
3-step | 1.7285 1.7775 1.7993 1.8019 0.959
MAEL
1-step | 1.0636 1.0675 1.0741 1.0690 0.995
2-step | 1.1176 1.1047 1.1232 1.1209 0.997
3-step 1.1263 1.1031 1.1272 1.1266 0.999
Naive | Guerrero | Smearing | Bootstrap || Nve./Boot.
T =100
P =100 MDE
1-step | 1.3643 1.4059 1.4120 1.4078 0.969
2-step | 1.4949 1.5528 1.5710 1.5712 0.951
3-step | 1.5251 1.5850 1.6086 1.6118 0.946
Naive | Guerrero | Smearing | Bootstrap || Boot./Nve.
T =100
P =100 ACE
1-step | 0.3905 | 0.4582 0.4572 0.4602 1.178
2-step | 0.3665 | 0.4647 0.4639 0.4682 1.277
3-step | 0.3607 | 0.4711 0.4704 0.4752 1.317

Table 1.4: RMSE, MAE and MDE losses and ACE. Mid-persistence VAR(1)
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1.4.3 Center is Student-t and Range is Exponential ()\) distributed

We deviate from bivariate normality of the center/log-range system by introduc-
ing fat tail behavior in the center and skewness in the log-range. We assume that the
conditional density of the center is Student-t with 7 degrees of freedom and that of the
range is exponentially distributed, i.e. exp(A = 1). On applying the log transformation to
the exponentially distributed range, the asymmetry in the log-range still persists. We esti-
mate the same mid-persistence VAR(1) with variance-covariance matrix of the error term
Q= (1.4 0.77] 0.77 1.69)" and an estimation sample of 7' = 100. The average losses are
calculated over an out-of-sample period of 100 observations, i.e. P = 100. In Table 1.5,
we report the values of the RMSE, MAE, MDE, and ACE functions. Since the departure
from bivariate normality is more acute, we expect the naive and Guerrero’s bias-corrected
forecasts to be bad approximations to the conditional means of the center and range at time
T + h and consequently, they will not be able to minimize the RMSEs. This is what we ob-
serve. The Guerrero’s bias-corrected forecast delivers between 3 and 7% higher losses than
the bootstrap forecast while the smearing and bootstrap approaches provide the smallest
RMSE losses. Regarding MAE, Guerrero’s bias-corrected forecast is also the worst per-
former. Naive, smearing, and bootstrap forecasts seem to be equivalent. Regarding MDE,
the naive forecast delivers the smallest losses but, when the ACE function is considered, the
naive forecast does not provide as much efficiency and interval coverage as the other three
methods. The bootstrap approach delivers between 20 and 38% improvement in ACE over

the naive forecast.
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Naive | Guerrero | Smearing | Bootstrap || Guer./Boot.

T =100
P =100 RMSEU
1-step | 2.3527 | 2.3980 2.3069 2.3082 1.039
2-step | 2.6584 | 2.7013 2.6149 2.6162 1.033
3-step | 2.7334 | 2.7624 2.6861 2.6859 1.028
RMSEL
l-step | 1.6873 | 1.7083 1.5974 1.5985 1.069
2-step | 1.7635 | 1.7722 1.6607 1.6616 1.067
3-step | 1.7703 1.7620 1.6591 1.6598 1.062

Naive | Guerrero | Smearing | Bootstrap || Nve./Boot.

T =100
P =100 MAEU
1-step | 1.5946 | 1.7181 1.6274 1.6264 0.980
2-step | 1.7896 1.9736 1.8509 1.8544 0.965
3-step | 1.8387 | 2.0367 1.9099 1.9141 0.960
MAEL
l-step | 1.1129 | 1.1971 1.0972 1.0963 1.015
2-step | 1.1680 | 1.2754 1.1440 1.1445 1.020
3-step | 1.1766 | 1.2830 1.1441 1.1463 1.026

Naive | Guerrero | Smearing | Bootstrap || Nve./Boot.

T =100

P =100 MDE
1-step | 1.4521 1.5891 1.4817 1.4821 0.980
2-step | 1.5892 1.8007 1.6525 1.6573 0.959
3-step | 1.6204 | 1.8536 1.6954 1.7030 0.951

Naive | Guerrero | Smearing | Bootstrap || Boot./Nve.

T =100

P =100 ACE
1-step | 0.4039 | 0.5118 0.4820 0.4860 1.203
2-step | 0.3799 | 0.5360 0.4979 0.5037 1.326
3-step | 0.3742 | 0.5493 0.5076 0.5153 1.377

Table 1.5: RMSE, MAE and MDE losses and ACE. Mid-persistence VAR(1)
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1.4.4 Center is Normal and Range is Exponential (\) distributed

We deviate from bivariate normality of the center/log-range system by introducing
only skewness in the log-range. We assume that the conditional density of the center is
normal and that of the range is exponentially distributed, i.e. exp(A = 1). We estimate
the same mid-persistence VAR(1) with variance-covariance matrix of the error term Q =
(2 0.92] 0.92 1.69)" and an estimation sample of ' = 100. The average losses are calculated
over an out-of-sample period of 100 observations, i.e. P = 100. In Table 1.6, we report
the values of the RMSE, MAE, MDE, and ACE functions. Regarding RMSE, Guerrero’s
correction ignores the skewness and the bias-corrected forecast as well as the naive forecast
generate the largest losses. The smearing and bootstrap approaches provide the smallest
RMSE losses. Regarding MAE, Guerrero’s bias-corrected forecast is the worst performer.
Naive, smearing, and bootstrap forecasts seem to be equivalent. Regarding MDE, the
naive forecast delivers the smallest losses but, when the ACE function is considered, the
naive forecast does not provide as much efficiency and interval coverage as the other three
methods. The bootstrap approach delivers between 22 and 43% improvement in ACE over

the naive forecast.
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Naive | Guerrero | Smearing | Bootstrap || Guer./Boot.

T =100
P =100 RMSEU
1-step | 2.7333 | 2.7649 2.6777 2.6756 1.033
2-step | 3.0916 | 3.1110 3.0369 3.0323 1.026
3-step | 3.1861 | 3.1929 3.1311 3.1248 1.022
RMSEL
1-step | 1.9832 | 1.9954 1.8848 1.8836 1.059
2-step | 2.0745 | 2.0599 1.9587 1.9546 1.054
3-step | 2.0811 | 2.0477 1.9599 1.9537 1.048

Naive | Guerrero | Smearing | Bootstrap || Nve./Boot.

T =100
P =100 MAEU
1-step | 1.8624 | 1.9811 1.8929 1.8915 0.985
2-step | 2.0878 | 2.2579 2.1457 2.1447 0.973
3-step | 2.1495 | 2.3292 2.2161 2.2138 0.971
MAEL
1-step | 1.3214 | 1.3995 1.3019 1.3008 1.016
2-step | 1.3844 1.4724 1.3519 1.3484 1.027
3-step | 1.3942 1.4699 1.3491 1.3442 1.037

Naive | Guerrero | Smearing | Bootstrap || Nve./Boot.

T =100

P =100 MDE
1-step | 1.7032 | 1.8400 1.7323 1.7316 0.984
2-step | 1.8608 | 2.0677 1.9231 1.9230 0.968
3-step | 1.8998 | 2.1235 1.9727 1.9727 0.963

Naive | Guerrero | Smearing | Bootstrap || Boot./Nve.

T =100

P =100 ACE
1-step | 0.3508 | 0.4569 0.4269 0.4294 1.224
2-step | 0.3284 | 0.4843 0.4423 0.4469 1.361
3-step | 0.3221 | 0.5004 0.4539 0.4600 1.428

Table 1.6: RMSE, MAE and MDE losses and ACE. Mid-persistence VAR(1)
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1.4.5 Summary

1. When the departure from bivariate normality of the center/log-range system
is large, we recommend implementing a bootstrap forecast or a smearing forecast if the
loss function of the forecaster is RMSE. If log-range is normal or approximately normal,
the Guerrero’s biased-corrected forecast is also equivalent to the bootstrap forecast. If the
overall system is closely bivariate normal, it should be noted that the naive forecast can be
a good performer when the estimation sample is small.

2. If the loss function of the forecaster is MAE, the Guerrero’s biased-corrected
forecast should not be implemented; the naive, smearing, and bootstrap forecasts are pre-
ferred.

3. If the loss function of the forecaster is MDE, the naive forecast performs well.

4. If the loss function is ACE, a bootstrap forecast provides a large coverage of

the realized interval with coverage rates between 40 % and 52%.

1.5 Empirical Application

We collect the daily intervals of low/high prices (in $) of the SP500 index and of
the Google (GOOG) stock from January 2, 2009 to January 25, 2017 for a total of 2030 daily
observations. The center time series is non-stationary and we work with the first differences
of the center. In Table 1.7, we provide the descriptive statistics of the first-differenced
center, range, and log-range. For the SP500, the first-differenced center shows fat tails with
a coefficient of kurtosis of 6.29 and it is slightly skewed to the left. The range is skewed with

a long right tail but the log-range is almost symmetric and has a kurtosis of about 3. For
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GOOG, the first-differenced center is skewed to the right and very fat-tailed with a kurtosis
of 35.81. The range is also heavily skewed to the right and the log-range, though slightly
skewed to the right, has a kurtosis of about 3. We can appreciate these characteristics in
Figure 1.1 where we plot the first-differenced center and range of the daily intervals and
their unconditional bivariate density function. In both cases, SP500 and GOOG, we are
dealing with a fat-tail density for the first-differenced center, more pronounced in GOOG
than in the SP500 index, and a log-range that seems to be normally distributed. These

characteristics are similar to those in the simulation case presented in section 4.2.

SP500 Index

D(Center) ‘ Range | log-Range
Mean 0.68 | 17.53 2.73
Standard Error 0.25 0.22 0.01
Median 1.30 15.13 2.72
Mode -0.92 9.26 2.23
Standard Deviation 11.48 | 10.08 0.52
Sample Variance 131.69 | 101.66 0.27
Kurtosis 6.29 11.34 2.90
Skewness -0.55 2.11 0.16
Minimum -86.40 3.68 1.30
Maximum 58.27 | 101.79 4.62

GOOG stock

D(Center) \ Range \ log-Range
Mean 0.33 7.46 1.85
Standard Error 0.13 0.11 0.01
Median 0.15 6.19 1.82
Mode -0.94 5.38 1.95
Standard Deviation 6.04 4.92 0.55
Sample Variance 36.47 | 24.17 0.30
Kurtosis 395.81 15.47 3.18
Skewness 2.06 2.68 0.33
Minimum -36.67 1.09 0.09
Maximum 86.90 | 54.00 3.99

Table 1.7: Descriptive Statistics for first-differenced center, range, and log-range of daily
intervals (Jan.2, 2009-Jan.25, 2017)
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Figure 1.1: SP500 and GOOG. Time series plots of first-differenced center and range and
bivariate density

We proceed with the modeling of the bivariate system first-differenced center /log-
range from which we will construct the point forecasts. We split the total sample into an
estimation sample from January 2, 2009 to December 31, 2015 with 1762 observations, and
an evaluation sample from January 4, 2016 to January 25, 2017 with 268 observations. In
Figure 1.2, we present the autocorrelograms of the first-differenced center and the range.
For both, the SP500 and GOOG, the profiles of the ACF and PACF are very similar. The
first-differenced center has only a mild autocorrelation of order one of about 0.2-0.3, which
may be induced by a bid-ask effect. This is in agreement with what we observed when we
model the more traditional end-of-the-day return. The ACF and PACF of the log-range
present the profile of an autoregressive process with strong memory. An AR(6) for the

SP500 index and an AR(8) for GOOG seem to be appropriate to capture these dynamics.
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This mimics the autocorrelation that we observe in squared (end-of-the-day) returns when
modelling a conditional variance, which is not very surprising because range or log-range
are good proxies for volatility. The SIC selects a VAR(6) for the SP500 Index and a VAR(5)
for GOOG. Conservatively, we proceed to estimate a VAR(6) for the SP500 and a VAR(8)

for GOOG. The estimation results are presented in Table 1.8.
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SP500 Index. VAR(6) for first-differenced center and log-range system

‘ ‘ D(Center) ‘ | log-Range ‘
‘ ‘ Coeff. estimate ‘ SE (robust) ‘ t-statistic H Coeff. estimate ‘ SE (robust) ‘ t-statistic ‘
Constant -0.9344 2.0444 -0.4571 0.0759 0.0784 9.4694
D-C(-1) 0.3404 0.0305 11.1607 -0.0112 0.0010 -11.2000
D-C(-2) -0.1530 0.0321 -4.7664 -0.0027 0.0010 -2.7000
D-C(-3) 0.0314 0.0408 0.7696 -0.0030 0.0010 -3.0000
D-C(-4) -0.0551 0.0297 -1.8552 -0.0022 0.0009 -2.4444
D-C(-5) -0.0209 0.0301 -0.6944 0.0010 0.0010 1.0000
D-C(-6) -0.0011 0.0305 -0.0361 -0.0009 0.0009 -1.0000
log-R(-1) -0.5030 0.6925 -0.7264 0.0852 0.0265 3.2151
log-R(-2) 0.1281 0.6207 0.2064 0.1845 0.0258 7.1512
log-R(-3) -0.1556 0.6141 -0.2534 0.1539 0.0228 6.7500
log-R(-4) 0.9157 0.6925 1.3223 0.0760 0.0253 3.0040
log-R(-5) -0.2561 0.5895 -0.4344 0.1086 0.0252 4.3095
log-R(-6) 0.4266 0.5911 0.7217 0.1227 0.0229 5.3581
| Adj. R-squared | 0.1086 \ 0.3975 \

GOOG. VAR(8) for first-differenced center and log-range system

‘ ‘ D(Center) ‘ | log-Range ‘
‘ ‘ Coeff. estimate ‘ SE (robust) ‘ t-statistic H Coeff. estimate ‘ SE (robust) ‘ t-statistic ‘
Constant 0.0465 0.6253 0.0744 0.2345 0.0427 5.4918
D-C(-1) 0.1807 0.0330 5.4825 -0.0019 0.0019 -0.9938
D-C(-2) -0.0391 0.0266 -1.4718 -0.0010 0.0018 -0.5683
D-C(-3) -0.0022 0.0439 -0.0496 -0.0001 0.0016 -0.0714
D-C(-4) -0.0060 0.0347 -0.1740 -0.0001 0.0015 -0.0951
D-C(-5) -0.0481 0.0226 -2.1304 0.0008 0.0016 0.4752
D-C(-6) 0.0240 0.0274 0.8750 0.0011 0.0017 0.6839
D-C(-7) -0.0109 0.0227 -0.4789 0.0011 0.0017 0.6257
D-C(-8) -0.0241 0.0259 -0.9289 0.0011 0.0017 0.6719
log-R(-1) 0.0001 0.4121 0.0002 0.3306 0.0262 12.5943
log-R(-2) -0.1060 0.3291 -0.3220 0.0781 0.0250 3.1249
log-R(-3) 0.4226 0.4521 0.9345 0.1182 0.0264 4.4768
log-R(-4) 0.0565 0.3521 0.1606 0.0705 0.0257 2.7453
log-R(-5) 0.0148 0.3324 0.0444 0.1011 0.0235 4.2955
log-R(-6) -0.1495 0.4707 -0.3176 0.0265 0.0265 1.0023
log-R(-7) -0.2280 0.3365 -0.6775 0.0486 0.0243 2.0039
log-R(-8) 0.1448 0.3117 0.4645 0.0945 0.0221 4.2689
| Adj. R-squared | 0.0275 \ 0.4616 \

Table 1.8: SP500 and GOOG. Estimation of VAR for first-differenced center and log-range
system (Jan.2, 2009-Dec. 31, 2016)

As expected, the first-differenced center equation does not have much predictive
power. Only its own past (one or two lags) first-differenced centers are statistically signifi-

cant at the conventional significance levels. There is not dynamic effect of past log-ranges
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Figure 1.2:

SP500 and GOOG. Autocorrelograms of first-differenced center and log-range
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on center and the overall in-sample R-squared are 0.11 for the SP500 Index and 0.03 for
GOOG. On the other hand, the goodness-of-fit in the log-range equation is much higher
with R-squared of 0.40 for the SP500 and 0.46 for GOOG. In the case of SP500 Index, the
first-differenced center Granger-causes the log-range in such a way that past first-differenced
centers are negatively correlated with current log-ranges. i.e. positive and large changes in
centers today will predict smaller ranges tomorrow. In both cases, SP500 and GOOG, the
most relevant aspect is the strong and statistically significant autoregressive nature of the
log-range as we have already observed in the ACF/PACF. The residuals corresponding to
these systems are all clear of any autocorrelation. The residuals from the first-differenced
center equations remain leptokurtic and the residuals from the log-range equations remain
basically symmetric around zero with a sample kurtosis of about 3. With these characteris-
tics, the joint density of first-differenced center and log-range will not be bivariate normal.

Formally, we test for bivariate normality by implementing the Generalized Auto-
ContouR (G-ACR) (in-sample) tests based on the Probability Integral Transforms (PIT)
of the joint density under the null hypothesis of bivariate normality (Gonzalez-Rivera and
Sun, 2015). In Table 1.9, we report the result of the t-statistics (¢4 ) that canvas from the
1% to 99% PIT autocontours for k = 1,2, ...5 lags. The null hypothesis is strongly rejected
at the 5% significance level for mostly all but the 10%, 90% and 95% autocontours in the
case of the SP500 index and the 5% , 90% and 95% autocontours in the case of GOOG. The
aggregated test Cj also reinforce the strong rejection of bivariate normality. In Figure 1.3,
we plot just some of the autocontours of the PITs (ACenter;, log-range;_1) and (ACenter;,

log-range;_o) for SP500 and GOOG. Under the correct null, the distribution of the PITS
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should be uniformly distributed within these autocontour squares. For GOOG we observe
a much less uniform distribution of the PITs than for the SP500 index.

Over the evaluation period, January 4, 2016 to January 25, 2017 (268 observa-
tions), we assess the performance of the point forecasts of center and range for h = 1,2,3
days ahead. In Table 1.10, we report the values of RMSE, MAE and MDE losses associated
with several forecasts of the center and range as well as the ACE measure. For both, SP500
and GOOG, we observe similar behavior. There are no differences across methods regarding
the forecast of the center because the center equation is the same across methods and it
does not need any transformation. In terms of RMSE, it is only for the range that the
naive forecast is the worst performer, as expected, and the bias-corrected, smearing, and
bootstrap forecasts are very much equivalent on delivering the same RMSE loss. Recall
that the log-range is almost normal, so the Guerrero bias-correction is exact. However, in
terms of MAE, the naive forecast is the best for the SP500 system and it is equivalent to
the bias-corrected, smearing, and bootstrap forecasts for the GOOG system. In terms of
MDE, there are not major differences across methods. In terms of ACE, we observe some
minor differences. The bias-corrected, smearing, and bootstrap forecasts offer, on average,
slightly more coverage of the realized intervals than the naive forecast. The coverage rates
are large for h = 1, 52% (SP500) and 54% (GOOG) and they decrease with the forecasting
horizon, i.e. for h = 2, 39% (SP500) and 38% (GOOG), and for h = 3, 34% (SP500) and
31% (GOOG). In Figures 1.4 and 1.5, we plot the time series of the one-day-ahead forecast
intervals (smearing approach) compared to the realized intervals. With a few exceptions,

we observe that the overlap between forecast and realized intervals is substantial.
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SP500 Index

t-statistics (tx,q)
Q lag k
1 2 3 4 )
0.01 -2.55 -1.44 -2.99 -2.10 -2.76
0.05 -2.41 -0.62 -3.15 -1.55 -1.74
0.1 -1.60 0.31 -1.26 -0.20 -0.20
0.2 1.42 2.65 1.77 2.71 3.01
0.3 2.82 3.87 2.81 3.34 4.35
0.4 3.34 3.40 3.52 3.57 3.99
0.5 3.85 3.34 3.75 3.66 4.10
0.6 3.97 3.89 4.06 4.04 4.42
0.7 4.19 4.07 4.43 4.39 4.34
0.8 2.69 2.77 3.10 2.84 3.04
0.9 0.76 0.70 0.97 1.08 1.08
0.95 0.21 0.36 0.51 0.51 0.74
0.99 -3.64 -3.48 -3.31 -3.14 -2.97

| C-statistic (Cy) | 60.34 | 49.86 | 65.21 | 52.87 [ 62.69

GOOG
t-statistics (tx,qa)
« lag k
1 2 3 4 )
0.01 -2.76 -2.76 -2.10 -3.42 -1.87
0.05 -2.02 -0.33 -1.17 -1.26 -1.44
0.1 2.74 3.73 2.23 2.77 2.44
0.2 7.08 6.48 5.84 6.79 6.33
0.3 8.53 8.06 7.76 8.57 7.95
0.4 8.70 7.84 7.71 7.98 8.18
0.5 7.30 6.89 6.56 6.69 6.99
0.6 6.61 6.17 6.05 5.89 6.31
0.7 5.44 5.43 5.42 5.49 5.25
0.8 4.04 3.94 4.02 4.06 3.83
0.9 1.14 1.02 1.19 1.18 1.00
0.95 -0.66 -0.66 -0.35 -0.36 -0.52
0.99 -3.65 -3.48 -3.32 -3.15 -2.98

| C-statistic (Cy) | 152.06 | 121.20 [ 112.77 | 135.82 | 119.98 |
C aggregates all 13 autocontours for a given lag k; its
5% critical value is 22.36

Table 1.9: Generalized-AutoContouR (G-ACR) tests (Gonzélez-Rivera and Sun, 2015) for
SP500 and GOOG
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SP500

1-step RMSER | RMSEC || MAEC | MAER MDE ACE
Naive 9.0925 12.7157 9.5614 | 6.2643 || 10.5232 || 0.5010
Guerrero 8.9864 12.7157 9.5614 | 6.4007 || 10.5606 || 0.5153
Smearing | 8.9872 12.7157 9.5614 | 6.4052 || 10.5618 || 0.5155
Bootstrap | 9.0070 12.7181 9.5767 | 6.4060 || 10.5656 || 0.5156
2-step RMSER | RMSEC || MAEC | MAER MDE ACE
Nalve 9.2584 20.0343 || 14.4127 | 6.3505 || 15.2939 || 0.3760
Guerrero 9.0845 20.0343 || 14.4127 | 6.4578 || 15.2953 || 0.3904
Smearing | 9.0847 20.0343 || 14.4127 | 6.4632 || 15.2961 || 0.3907
Bootstrap | 9.0910 20.0119 || 14.4044 | 6.4564 || 15.2984 || 0.3890
3-step RMSER | RMSEC || MAEC | MAER MDE ACE
Naive 9.6236 24.7139 || 17.5703 | 6.6207 || 18.3425 || 0.3267
Guerrero 9.4354 24.7139 || 17.5703 | 6.7845 || 18.3592 || 0.3379
Smearing | 9.4360 24.7139 || 17.5703 | 6.7918 || 18.3604 || 0.3381
Bootstrap | 9.4291 24.6802 || 17.5748 | 6.7334 || 18.3546 || 0.3348
GOOG
1-step RMSER | RMSEC || MAEC | MAER MDE ACE
Naive 5.5337 7.8902 5.7694 | 3.6162 6.3013 || 0.5256
Guerrero 5.3989 7.8902 5.7694 | 3.5985 6.3076 | 0.5375
Smearing | 5.3963 7.8902 5.7694 | 3.6006 6.3084 || 0.5379
Bootstrap | 5.3977 7.9077 5.7797 | 3.5948 6.3167 || 0.5366
2-step RMSER | RMSEC || MAEC | MAER MDE ACE
Nalive 5.7015 12.4717 8.9958 | 3.6068 9.4745 || 0.3651
Guerrero 5.5134 12.4717 8.9958 | 3.6171 9.4632 || 0.3777
Smearing | 5.5093 12.4717 8.9958 | 3.6203 9.4633 || 0.3781
Bootstrap | 5.5305 12.4986 9.0219 | 3.6114 9.4871 | 0.3759
3-step RMSER | RMSEC || MAEC | MAER MDE ACE
Nalive 5.8619 15.8074 || 11.3515 | 3.7513 || 11.8010 || 0.2996
Guerrero 5.6739 15.8074 || 11.3515 | 3.7594 || 11.8110 || 0.3094
Smearing | 5.6700 15.8074 || 11.3515 | 3.7641 || 11.8118 || 0.3097
Bootstrap | 5.6933 15.8138 || 11.3669 | 3.7386 || 11.8209 || 0.3073

Table 1.10: SP500 and GOOG. Loss functions and ACE measure for center/range point
forecasts. January 4, 2016 to January 25, 2017 (268 observations)
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Figure 1.4: SP500. Daily one-step-ahead interval forecasts from January 4, 2016 to January
25, 2017
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Figure 1.5: GOOG. Daily one-step-ahead interval forecasts from January 4, 2016 to January
25, 2017
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Summarizing our findings:

1. The center and log-range are not bivariate normal. The center comes from
a fat-tail density though the log-range is distributed close to normal. The log-range has
strong memory though the first-differenced center has almost none. Features shared by the
end-of-the-day returns and their volatility.

2. The center is Granger-causing the range with negative correlation; this is similar
to the leverage effect in conditional volatility models.

3. The bias-corrected forecast works well because of the normality of the log-range
but, if this is not the case, the smearing and bootstrap forecasts will be preferred. We find

that there is substantial overlap between forecast and realized intervals up to 54%.

1.6 Conclusions

We have generated point forecast for an interval-valued time series. We started
by estimating a Gaussian VAR(p) model for the center/log-range system because we avoid
imposing the positive constraint in the range and the estimation is straightforward and de-
livers QMLE results. We have transformed the point forecasts to the center/range system
by exploring and comparing several bias-corrected methods . We have shown the com-
monalities and differences between modeling the daily low /high price interval of the SP500
Index and GOOG stock and the more standard approach in financial econometrics of mod-
eling the end-of-the-day return and its volatility process. The predictability of the interval
is higher than the predictability of the end-of-the day return. We have found that, on

average, one-step-ahead interval forecasts covered more than 50% of the realized intervals.
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Chapter 2

Prediction Regions for

Interval-valued Time Series

2.1 Introduction

Most of the econometric analysis of interval-valued data has focused on model
estimation and inference, and though it is possible to construct point forecasts based on
a given model or algorithm (e.g., chapter 1), the question of constructing probabilistic
forecasts for interval data has not been addressed yet. This is the main question that we
aim to analyze in this chapter. There are several routes to construct a probabilistic forecast
for the lower/upper bounds system or for the center/range system, which involve some
trade-offs between estimation and prediction decisions.

In this chapter, we contribute to the literature by approximating a probabilistic

forecast for interval-valued time series. We offer alternative approaches to construct bi-
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variate forecast regions of the center and the range (or lower and upper bounds) of the
interval. We will start with a dynamic model for the center/log-range system. We specify a
VAR system to be estimated by quasi-maximum likelihood (QML), maximizing a bivariate
Gaussian density, that guarantees the consistency of the estimators.! We estimate only the
center/log-range system, construct prediction regions for this system, and based on these
estimates, construct prediction regions for the center/range system and for the upper/lower
bounds system. We implement analytical and numerical approaches to move a prediction
region for the center/log-range system to prediction regions for the other systems. If the
center/log-range system is bivariate normally distributed, we obtain analytical forecast el-
lipsoids with a desired probability coverage. Furthermore, as proposed by Lutkephol (1991),
we could also construct forecast regions by using Bonferroni rectangles, which are simpler
and rather popular among practitioners. However, the center and/or the log-range are often
not normally distributed and the joint system will not be bivariate normal. In these cases,
we obtain forecasts of the center/log-range system using the bootstrap procedure proposed
by Fresoli et al. (2015) for VAR models, which does not require any specific assumption
on the forecast error distribution. After obtaining bootstrap replicates of future values of
the center/log-range system, we construct forecast regions as ellipsoids, Bonferroni rectan-
gles, or using the Tukey peeling. Implementing either analytical or bootstrap methods, the
prediction regions constructed for the center/log-range system can be directly transformed
into prediction regions for the center/range system. For instance, consider a normal ellipse

with (1 — «)% probability coverage. The boundary of this ellipse is the (1 — )% bivariate

!Tu and Wang (2016) used the estimator of Yao and Zhao (2013) that relies on kernel estimates of the
likelihood. This estimator is computationally more demanding than QML and depends on the choice of
tuning parameters. Their empirical results suggest that both estimators are very similar and, consequently,
we focus on the QML estimator.
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quantile. Its boundary points (center, log-range) can be transformed into another bound-
ary of points (center, exp(log-range)) of a prediction region for the center/range system.
The new region will not preserve the shape of an ellipse but it will have the same coverage
because the exponential function is a monotonic transformation. An important advantage
of our approach is that, by focusing on prediction regions rather than on point forecasts,
we avoid the biases that are associated with the exp-transformation of the point forecasts
of log-transformed variables, for which a bias correction is necessary to obtain the condi-
tional mean of the variable of interest?; see, for example, Granger and Newbold (1976) and
Guerrero (1993).

We compare the performance of the prediction regions considered in this chapter
according to several metrics. The most basic required property is coverage so that regions
are reliable when the empirical coverage is close to the nominal coverage. Beyond coverage,
the literature on evaluating multivariate prediction regions is rather thin. To our knowledge,
there is one additional metric that brings the volume of the region to interact with its
coverage (Golestaneh et al., 2017). In this chapter, we also contribute to this literature
by introducing several new measures that account for (i) the location of out-of-the-region
points with respect to a central point of the region, (ii) the tightness of the intervals that
result from projecting the two-dimensional region into one-dimensional intervals, and (iii)

the distance of the also projected out-of-the-region points to the projected one-dimensional

2For point forecasts of Gaussian VAR models, Arifio and Franses (2000) and Bardsen and Lutkepohl
(2011) give explicit expressions for the optimal point forecasts of the levels when both variables are log-
transformed. Furthermore, Bardsen and Lutkepohl (2011) show that, despite its theoretical advantages,
optimal point forecasts are inferior to naive forecasts if specification and estimation uncertainty are taken
into account. Hence, they conclude that, in practice when the interest is a point forecast, using the expo-
nential of the log-forecasts is preferable to using the optimal forecasts; see also Mayr and Ulbricht (2015)
for an empirical application to forecasting GDP. Finally, it is important to point out that the optimal
transformations are not designed to obtain density forecasts.
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interval. These new measures bring a notion of risk associated with the prediction region.
In addition, we also provide a description of the distribution of the out-of-the-region points
around the region to measure whether the region is probability-centered.

For the three systems (center/log-range, center/range, and upper/lower bounds),
we perform several Monte Carlo simulations to assess the out-of-sample performance of the
prediction regions constructed with analytical and bootstrap methods. We evaluate bivari-
ate Gaussian and non-Gaussian center/log-range systems and their implied distributions
for the center/range and upper/lower bounds systems. We note that even for Gaussian
systems, bootstrap methods to construct ellipsoids and Bonferroni rectangles deliver the
best performance, mainly when the estimation sample is small and estimation uncertainty
is most relevant. For non-Gaussian systems, the performance depends on whether the joint
distribution of the center/log-range system is symmetric or not. If symmetry is present,
bootstrap ellipsoids and their transformations are recommended. For asymmetric non-
Gaussian systems, bootstrap Bonferroni rectangles are preferred.

Using the analytical and bootstrap procedures described above, we construct fore-
cast regions for a time series of daily low/high return intervals of the SP500 index. These
intervals are more informative than just a daily one-point measurement (end-of-day return)
as they encompass all returns during the day. There are commonalities between the analysis
of return intervals and the standard analysis of end-of-the-day returns and their volatility.
The center of the return interval has large kurtosis and does not have any autocorrelation.
The log-range, which is close to be normally distributed, is a proxy for volatility as pro-

posed by Parkinson (1980) and Alizadeh et al. (2002). It shows a strong autocorrelation

47



as that of an autoregressive process, which is similar to the patterns found in ARCH and
stochastic volatility processes. We also find that there is Granger-causality from the center
of the interval to the log-range such that positive and large changes in the center will predict
narrower ranges, which is similar to the so-called leverage effect. However, an important
difference pertains to the construction of the forecasts. In standard ARCH and stochastic
volatility processes, the forecast of the return is mostly zero and together with a forecast of
the conditional volatility and some conditional distribution of the return, it is possible to
generate a density forecast of future returns. In the interval approach, we forecast jointly
the future low/high return interval and construct prediction regions of the center and range
of the interval at any desired horizon that do not require parametric distributional assump-
tions. Overall, the main advantage of the interval approach is that allows for the modeling
of the joint conditional density of the return level and the return volatility, which in our
sample are contemporaneous and negatively correlated, and consequently allows for the
construction of bivariate density forecasts. We develop a new trading strategy by extending
the strategy by He et al. (2010) for point forecasts of high/low prices to account for the
density forecasts of high /low returns. We found this strategy profitable in the out-of-sample
evaluation environment.

The organization of the chapter is as follows. In section 2, we establish notation by
describing the VAR model for the center/log-range system, its estimation and construction
of point forecasts. In section 3, we present analytical prediction regions for a Gaussian
center/log-range system and how they translate into those for the center/range and up-

per/lower bounds systems. In section 4, we introduce bootstrap procedures to deal with
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prediction regions for non-Gaussian center/log-range systems and their implications for
those regions in the center/range and upper/lower bounds systems. In section 5, we pro-
pose several new metrics to evaluate the performance of the different prediction regions. In
section 6, we report Monte Carlo simulations to compare the performance of the proposed
procedures to construct forecast regions. In section 7, we model the SP500 low/high return
interval and construct several prediction regions for the interval, based on which we develop

a trading strategy. We conclude in section 8.

2.2 The Center/Log-Range System

Even if the final goal is to obtain probabilistic forecasts of the center/range or
lower /upper bounds systems, we start by estimating a dynamic model for the center/log-
range system that is not subject to any restriction as we are log-transforming the range.
We consider a linear bivariate VAR(p) for the center/log-range system from which we will
construct a probabilistic forecast for (Ct,log Ry). Let us call y.y = Cy and y,; = log R;.

The bivariate VAR(p) is given by

P P
Yer =01+ Y B ye—i + > B yrt—i + € (2.1)
i=1 i=1
p . p .
Yri = a2 + Z B yes—i + Z B8 i + Er (2.2)
i=1 =1

where the components of the error vector (e.,ert)" are white noise processes, possibly
contemporaneous correlated, with covariance matrix 2. The estimation of the parame-

ters of the VAR(p) model proceeds by LS, which is consistent under mild assumptions.
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The LS estimator is a full information ML estimator when the errors have a bivariate
normal distribution. Otherwise, if the errors are non-normal, a QML estimator based
on maximizing the Gaussian likelihood will be equivalent to a LS estimator. Let 6 =
(a1, ag,ﬂﬁ), - BY{),BS), - Bg), g), ...,5511)), Bg), o 512’)) be the parameter vector to esti-
mate. Following White (1982), the asymptotic distribution of the Gaussian QML estimator
is VT(6 - 0) 4 N(0, A=*BA~1) where matrix A is the (minus) expectation of the Hessian
and matrix B is the expectation of the outer product of the score of a Gaussian log-likelihood
function. The QML environment will be the most common estimation approach given that
bivariate normality of (., amg)/ is difficult to entertain. To guarantee bivariate normality of
the system, the conditional densities as well as the marginal densities must also be normal
density functions. For financial data, there is evidence that the log-range y,; (as a proxy
for volatility) is near-normal (Alizadeh et al., 2002). However, the center y.; is less likely
to be normally distributed because the prevalence of fat tails, at least in financial data at
a relative high frequency, e.g. daily financial returns. In the empirical section, we will test
the assumption of bivariate normality as a starting step to construct density forecasts of
the full system.

Given an information set available at time 7T, if the loss function is quadratic,
the optimal h-step-ahead point forecasts of the system (y.¢,yr¢) are the conditional means
denoted by y. ripr and y, pyp 7. Since the VAR(p) model is always invertible, the condi-

tional mean is a linear function of the observations. Therefore, point forecasts of the center
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and log-range are given by

p p
Ye,T+hT = Q1 + Z 5§ﬁ)yc,T+h4|T + Z /Bglz)yr,TJrhfi\T (2.3)
=1 =1
~ 500 ~ 50
YrdrhiT = 02+ > Byt Yersh—ir + 3 Bo3 UrTh—ilT (2.4)
=1 =1

where Yo 7y n—ij7 = Ye,r+h—i and Y, rop—ijr = Yr1+n—i for i > h. The corresponding fore-

cast error vector is (e FR|T> ErT4h|T) = (Ye,r4n— Ye,T4+-h|T> Yr,T+h — yr,T+h|T) with variance-
. . — / .
covariance matrix W = Q+ Z?:ll U,;QU, where matrices ¥; come from the MA(o0) repre-

A A

sentation of the VAR(p) model. In practice, we plug in consistent estimates, i.e. 6,€), and
U;, in the VAR(p) to obtain the estimated h-step-ahead point forecasts and their estimated
variance-covariance matrices that are denoted by J. ryn7s r 7407, and W, respectively.

If the center /log-range system is bivariate normal, then pointwise bivariate density

forecasts can be obtained as follows,

Ye,T+h Yerrnr| |Whit Whaiz
— N( : ) (2.5)
YrT+h Yrrrnr| |[Whor Wh2e

Note that the variance-covariance matrices of the forecast densities in (2.5) do not incor-
porate parameter uncertainty, which will be negligible when the sample size T is large
relative to the number of estimated parameters. When the center/log-range system is
non-Gaussian, we can obtain bootstrap pointwise forecast densities by implementing the
bootstrap procedure proposed by Fresoli, Ruiz, and Pascual (2015), which will be described

in the forthcoming section 4. The bootstrap forecast densities incorporate parameter un-
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certainty without relying on any specific forecast error distribution. Even in the Gaussian
case, if the estimation sample is not very large, the effect of parameter uncertainty on the

forecast may not vanished, and so the use of bootstrap forecast densities may be desired.

2.3 Gaussian Center/Log-Range System

2.3.1 Prediction regions for the center/log-range system

Using the forecast densities in (2.5), we can construct pointwise h-step-ahead fore-
cast regions. The 100 x (1 — )% h-step-ahead forecast ellipsoid for Y71 = (ye, 711, yr,T+h)/

is given by
NErin = [Yren| (Yrgn — YT+h|T)/Wh_1[YT+h - YT+h\TH < qi-as (2.6)

where q1_q is the (1 — «) quantile of the chi-square distribution with 2 degrees of freedom.
The ellipse is a countour of the bivariate normal center /log-range system with 100 x (1—a)%
coverage.

A straightforward and easy to construct h-step-ahead forecast region is a Bonfer-
roni rectangle with (at least) 100 x (1 —«a)% coverage. This rectangle will have the following

sides

[beaasbei—aja) = [erinr — Zasa\ Whits Jerinr + Zasay) Whii] (2.7)
[br,a/lla br,l—a/4] = [Qr,T+h|T — Ra/4)\/ Wh,??a gr,T—&-h\T + Raf4\/ Wh,QQ]) (28)
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where 2,/ is the a/4-quantile of the standard normal distribution. Given the bivariate
normality of the system (2.5), the marginal probability density functions of y. 7y, and
Yr,T+h are also normal.

To include the contemporaneous linear correlation between the center and log-
range, we modify the Bonferroni rectangles as in Fresoli et al. (2015). The corners of the

modified rectangle are

[bc,a/4a br,a/4+p21,hbc,a/4}a [bc,a/47 br,l—a/4+p21,hbc,a/4]v (29)

[bc,lfa/4a br,a/4 +p21,hbc,1fa/4]7 [bc,lfa/47 br,lfa/4 +p21,hbc,lfa/4]

where poy ), = Wh,gl / Wh,ll- The area of the modified Bonferroni rectangle is the same as
that of the Bonferroni rectangle. However, the theoretical coverage rate may be slightly dif-
ferent depending on the quantiles associated with the modified terms, e.g., b, o/4+P21,1nbc o /4,
which in turn depend on the magnitude and sign of psy ;. Simulations results will provide
some information on the coverage rate of the modified Bonferroni rectangle. To illustrate the
shapes of the three forecast regions described above, in Figure 2.1 we plot the 1-step-ahead
95% ellipse, Bonferroni rectangle and modified Bonferroni rectangle for the center/log-range
system generated by a VAR(4) model with parameter values as reported in Table 1 and
Gaussian errors with contemporaneous correlations of -0.24. The forecast regions have been
obtained after estimating the parameters based on T=1000 observations so that the param-
eter estimation uncertainty is negligible. In Figure 2.1, we also plot 1000 realizations of
Y74+1. We observe that both the ellipse and the modified Bonferroni rectangle are able to

capture the negative correlation between the center and the log-range while the Bonferroni
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rectangle cannot inform about this correlation. Note that the Bonferroni rectangle has large

empty areas without any realization of Y.

Prediction Regions (Center/Log-Range System)

2 e
O  realized one-step ahead values
Normal ellipse
Bonferroni rectangle
1.5 Modified Bonferroni rectangle
Bootstrap ellipsoid
Bootstrap Bonferroni rectangle
1L . Modified Bootstrap Bonferroni rectangle
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05
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Figure 2.1: 95% prediction regions for the center/log-range system obtained from a simu-
lated VAR(4) model with Gaussian errors and 7" = 1000.

2.3.2 Prediction regions for center/range and lower/upper systems

Moving from the center/log-range system to the center/range system or to the
lower /upper bounds system, we can implement either analytical or numerical methods to

construct prediction regions for the center/range system or for the lower/upper bounds
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system. Under bivariate normality of center/log-range, the bivariate density of the cen-

ter /range system is

1 1

1 . . )
fWer+hs Rrin) = exp[—5 (Yr4n — Yoinr) Wy ' (Yoen — Yronr)). (2.10)

ot ’Wh‘ Rpip

Since the center of the interval y. = (yu + y1)/2 and the range R = (y, — ;) are
linear combinations of the upper and lower bounds, it is easy to see that that the conditional
bivariate density of the upper/lower bounds is also given by (2.10).

We construct analytical contours for the center/range and lower/upper bounds
system by horizontally cutting the bivariate density (2.10) at a value determined by the
nominal coverage 100 x (1 — «)% that we wish to obtain. Such a value is obtained by
numerical simulation. Based on the same simulated system described above, in Figure 2.2
we illustrate the shape of the forecast regions for the center/range system obtained using
the analytical density in (2.10) by plotting the 95% forecast region and 1000 realizations of
(Cry1, Rry1). We observe that, as expected, the region is not an ellipse.

As an illustration of the shapes of the regions for the lower/upper bounds system,
in Figure 2.3 we plot the 95% forecast regions based on (2.10) and a close-up detail of the
central area of the region. In Figure 2.4, we plot close-ups of the extreme areas of the
regions.

For the center/range system, we also construct numerical contours based on the
100 x (1—a)% normal ellipse (2.6) of the center/log-range system by transforming the points

(center, log-range) sitting on the boundary of (2.6) to points (center, exp(log-range)). The
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Figure 2.2: 95% prediction regions for the center/range system obtained by transforming
the regions obtained for the center/log-range system as well as the analytical contour based
on (2.10). Normal ellipse refers to the transformed normal ellipse T-NE and Bootstrap
ellipse refers to the transformed bootstrap ellipse T-BE, which are identical.
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Prediction Regions (Upper/Lower System)
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Figure 2.3: 95% prediction regions for the upper/lower bounds system. The lower panel is
a close-up of the central area of the regions.
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Figure 2.4: 95% prediction regions for the upper/lower bounds system. Detail of the extreme
areas of the regions.
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new shapes will not be ellipsoids but they will maintain the coverage, and have the advantage
of delivering strictly positive values for the range?.

The 100 x (1 — a)% transformed normal ellipse (T-NE) is given by

T-NE74h = { [(Ye+ns expllog Rri4])] (2.11)

such that (YT—‘,-h - YT+h|T)/Wh_1(YT+h - YT+h‘T) = (J1_a}

In Figure 2.2, we illustrate the shape of the transformed ellipse using the same simulated
example previously described. The transformed shape is similar to the analytical although
are not identical.

Similarly, we transform the Bonferroni and modified Bonferroni rectangles by tak-
ing the exponential transformation of the log-range intervals (2.8) and the range terms in
(2.9) respectively.

Transformed Bonferroni rectangle:

(et — 2aya\| Waits Gerinr + Zaja\) Whoi] (2.12)
[ exp(Jr14hT — Zaja\/ Wha9), exXP(Jr, 74h|T + Za/a\/ Wh,2z)]

Transformed modified Bonferroni rectangle:

[bc,a/47 eXp(br,a/zl +p21,hbc,a/4)}7 [bc,a/47 eXp(bT,lfa/Al +p21,hbc,a/4)]7 (213)

[bc,l—a/47 exp(br,a/4 +p21,hbc,1—a/4)]v [bc,l—a/4y exp(br,l—a/él +p21,hbc,1—a/4)]

3This approach cannot be implemented to find prediction regions for the lower /upper bounds system
because there is not a monotonic transformation from the boundary points of the center/log-range region to
the boundary points of the lower/upper bounds region.
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In Figure 2.2, we illustrate the shapes of the transformed Bonferroni rectangles.
Observe that while the transformed modified Bonferroni rectangle also shows the correlation
between center and range, the transformed Bonferroni rectangle does not and some portions

of the area are empty.

2.4 Non-Gaussian Center/Log-Range System

2.4.1 Prediction regions for the center/log-range system

Following Fresoli et al. (2015), we implement the following bootstrap procedure
to obtain bootstrap forecasts of the center/log-range system:
Step 1. Estimate the parameters of the VAR(p) model in (2.1)-(2.2) by LS and

obtain the residual vector & = (éc7t,ér7t)’ . Center the residuals, i.e. & — & where & =

ﬁ ZtT:p 41 &t- Rescale the residuals using the factor [TT;f d]l/ 2 where d is the number
of parameters to estimate. Denote the empirical distribution of the centered and rescaled
residuals as Fe.

Step 2. Using the parameter estimates obtained in Step 1, generate in sample

bootstrap series {yz(lb),. ,yCT } and {yr1 .. .,y:(Tb)}, fort=1,...,T, as follows,

* *(b
Yert —041+Z,811yct z+zﬁ12yrt z+6 g

=1

(b
_a2+25211) :t)z+zﬁ212) :t z+€7“t)’

where (g},,¢,)" are random pairwise extractions with replacement from F: and, for ¢ =
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1,...,p, y:(tb) = Yet and y;‘:(tb) = yr7t.4 Using yz(tb),yr(t) , estimate the VAR(p) parameters
A *(b) 5r(1)(b) A (i)(b)
& . g
a0 — 1 and <0 11 12
~%(b Ax(1) (b 5%(2) (b
a2( ) ﬁﬁ )(b) 2§ )(b)

i=1,...,,p
Step 3. Construct bootstrap h-step-head future values of the vector (ye r4n, Yrr+n)

as follows,
~x(b) b) l)(b #(b) l)(b #(b) #(b)
Yer+nr = + Z i Yerrn—ir T Z B9, T+h—i|T T EcT4h
=1
~x(b) A*(b A*(b *(b)
Yo rrnr = Yy Z 521 Yertn—ir T Z 522 Yo7 th—iiT T ErThs
(b (b *(b b
where y:,(T)-i-h—i\T = YeT+h—i, and y;k,(T)Jrh_“T Yr T+h—i for i > h, and (e (T)Jrh,S:fTLh)’ are

pairwise random draws with replacement from Fg. Notice that, in order to obtain forecasts
conditional on the available data set, the last p values of the original data are fixed in this
step.

Step 4. Repeat steps 2 and 3 B times.

~#(b) ~(b) )/ see

We obtain B bootstrap replicates of the vector YTEF})LIT = (yc |7 Y T h T
Fresoli, Ruiz, and Pascual (2015) for the asymptotic validity of the bootstrap procedure.

The bootstrap replicates obtained through the procedure proposed by Fresoli et
al.(2015) can be used to obtain the following pointwise bootstrap ellipsoid with 100x (1—a)%

coverage

BErih = [Yruul Yren = Yo pr) Sy« (B) " [Yeun = Yoy rl] < dias (2.14)

4 Alternatively, we can use the permutation bootstrap initially proposed by LePage and Podgorski (1996),
which is expected to have a better performance in the presence of heavy-tailed errors; see Cavaliere et al.
(in press) for an application to non-causal time series.
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is the sample mean of the B bootstrap replicates v Sy=«(h) is the

\/ %
where Y T+h|T

TR|T
corresponding sample covariance matrix and ¢j_, is the (1 — «) quantile of the empirical
distribution of the quadratic form [Y;ﬁ - Y +h|T]' Sy (h)*l[Y;Sf})L - Y +h|T].

Pointwise bootstrap prediction regions for the center/log-range system can also

be constructed as Bonferroni rectangles with at least 100 x (1 — «)% coverage with the

following corners

[qz,a/47q;‘k,a/4]’ [q;a/47q:,1fa/4]7 [q:,lfa/47q:,o¢/4]7 [qz,lfa/47q:,lfa/4] (215)

where q:’a /4 and q;f’a /g A€ the ar/4 quantiles from the respective marginal bootstrap distri-
butions of the center and the log-range.

If we wish to correct for the contemporaneous correlation between the center and
the log-range, we construct a pointwise bootstrap modified Bonferroni rectangle with the

following corners

B B
97 0/00 @ apa + P2 0Geasals  |deayas Gra—aja T PR g4l (2.16)

B B
401 —aja Grapa + PARD —aja)s @10/ Gri—aja T P21 R0 1—ay4)

where pfl,h = Sy« (h)21/Sy~*(h)11.

Note that neither the bootstrap ellipsoid nor the Bonferroni rectangles need to
be probability-centered when the joint distribution of the center/log-range system is not
normal; see, for example Beran (1993) for the desirable properties of multivariate forecast

regions. In this case, these regions will be only approximations to the true shape of the
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bootstrap forecasts. Alternatively, probability-centered forecast regions can be constructed
using the convex hull peeling method of Tukey (1975); see Green (1985) for a description.”
The Tukey peeling method consists of constructing a series of convex prediction polygons.
Given a data cloud, the first layer of the Tukey convex hull is the convex polygon formed
by the boundary of the data. It continues by peeling the first layer off and finding the
second layer for the remaining data. This process is repeated until no convex polygon can

be constructed anymore. In our case, we have a two-dimensional bootstrap data cloud

v g ® e

rinr = Wergnr Iy Jrh‘T)’ . We construct layers of convex polygons and we choose the

polygon that provides the closest coverage to the desired nominal coverage rate. This is the
Tukey nonparametric region. The bootstrap forecast regions for the center /log-range system
can obviously be also constructed even if the errors are normal. As an illustration, Figure
2.1 we plot the 95% bootstrap ellipse and the Bonferroni and modified Bonferroni rectangles
when the data is generated by the same data generating process described in the previous
section. These regions are based on B=4000 bootstrap replicates. Given the large sample
size T = 1000 to estimate the parameters, the uncertainty due to parameter estimation
is negligible. Consequently, the normal and bootstrap ellipses have identical shapes. The
Tukey hull follows very closely the ellipses. The bootstrap Bonferroni rectangles are also

very similar to their normal counterparts.

®One can also construct prediction regions using the High Density Regions proposed by Hyndman (1996)
based on kernel estimates of the joint bootstrap empirical density or using the Monge-Kantorovich distance
as proposed by Chernozhukov et al. (2017).
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2.4.2 Prediction regions for center/range and lower/upper systems

As in the previous section, we can construct prediction regions for the center/range
system based on the bootstrap 100 x (1—a)% ellipsoid (2.14) of the center/log-range system.
By transforming the points (center, log-range) sitting on the boundary of (2.14) to points

(center, exp(log-range)), we obtain the 100 x (1 — )% transformed bootstrap ellipse (T-BE)

T-BEr11, = {[(Ye,74n, exp[log Rr44])'] (2.17)

such that  (Yrin — Y75y 7)) Sy+(h) ™ (Yrin — Y yr) = €}

Similarly, we obtain the transformed bootstrap Bonferroni rectangle for the cen-

ter /range system with corners

(9 025 exP(@ 0 /0))s 40 as XD (@010 0)]; (2.18)

[0 1— a1 €XP(Gra/a)]s  1dm1—a/a €XP(q) 10 /4)]

and the transformed bootstrap modified Bonferroni rectangle with corners

* * B * * * B *
[qc7a/4’exp(q7",o¢/4 +p21,hqc,a/4)}’ [qc7a/47exp(qr7l—a/4 +p21,hqc7a/4)]’ (219)

B B
671020 €XP(r 0 /s + P2 RGe1—a/)]s  1de1—a/a €XP(G1_aa + P21 pGe1—a/4)]

where p2Bl,h is defined as in (4.3).
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We also construct the Tukey nonparametric region for the data cloud of bootstrap

. . ~%(b
realizations of center and range (y:(TLh‘T,

exp(y:’(;Lh‘T))’. In Figure 2.2, we plot these
regions for the same simulated system considered above.

Finally, for the lower /upper bounds system, we calculate first the bootstrap upper

and lower bounds based on the bootstrap realizations of the center and range as follows

#(b)  _ x(b) 1 x(b)

Yu,7+n = Yer4nr T 5 exp(d,. . p7) (2.20)
#(b) _ x(b) 1 < (b)

Y740 = Yernr — 9 exp(yT’TJrth) (2.21)

and construct a bootstrap ellipsoid for the upper and lower bounds as

11—«

BEML, = [YEh| YEh = YRR o SPE () T YRS, - Y < aifi] (2.22)
where YL = (yur4n, yir4n) and Y JFL,;']T and SUL(h) represents the mean vector and
variance covariance matrix, respectively, of the bootstrap upper/lower bound realizations.

Finally, a Tukey nonparametric region can be constructed for the data cloud of
bootstrap realizations of upper and lower bounds (y:;f? +h’y;<,£.llz}|-h))/' Note that for this
system, we do not construct Bonferroni rectangles because they may contain unfeasible
subregions of points where the lower bound is greater than the upper bound.

In Figures 2.1-2.4, we illustrate the shapes of the different prediction regions. We
run a single simulation to construct the one-step-ahead 95%-probability forecast regions
based on the estimation of a VAR(4) model (T = 1000) for the center/log-range system

whose errors follow a bivariate normal distribution with contemporaneous correlation of
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-0.24. For the bootstrap procedures, we use B = 4000. In Figure 2.1, we plot seven regions
for the center/log-range system. As expected, the Normal ellipse and the bootstrap ellipse
have identical shapes. The Tukey convex hull follows very closely the ellipses. The modified
Bonferroni rectangles are able to capture the negative correlation between center and log-
range. In Figure 2.2, we plot the seven regions for the center/range system. As expected,
the transformed Normal ellipse and the transformed bootstrap ellipse have identical shapes.
The Tukey convex hull and the analytical contour based on (2.10) follow very closely the
transformed ellipses. In Figures 2.3 and 2.4, we plot the 95% bootstrap forecast ellipsoid
and the Tukey region for the upper/lower bounds system. The analytical contour based on
(2.10) and the Tukey convex hull are very close to each other. However, for this particular
realization, the bootstrap ellipsoid is somehow different mainly in the center and upper

right corner of the distribution of the lower/upper bounds system.

2.5 Evaluation of the Prediction Regions

We present several criteria to evaluate the prediction regions. As in the case of
loss functions, it is only the objective of the forecaster that will define which criterium is
the most appropriate.

At the most basic level, the forecaster will aim for reliability, that is, those pre-
diction regions that provide the closest coverage to the nominal coverage rate. In an out-

of-sample environment, for a regions with 100 x (1 — «)% nominal coverage, the average

66



coverage rate is defined as

1 —a
Coay = w3 I (2.23)

where N is the number of out-of-sample forecasts and It(lfa) is an indicator variable that

is equal to 1 if the observed outcome falls within the prediction region and 0 otherwise.
Following Golestaneh et al. (2017), we combine reliability with sharpness, a pref-

erence for regions with smaller area or volume, and they propose the following average

coverage-volume score for regions with 100 x (1 — a)% nominal coverage

N
1 —« —a)d
CViewy = |52 7Y =@ -] x [V (2.24)
t=1

where Vt(lfa)

is the volume of the prediction region with nominal coverage rate (1 — «) at
time t, and p is the dimension of the outcome variable, which in our case is p = 2. The
forecaster would prefer a lower score as he is aiming for regions with high reliability and
small area.

Another aspect to the evaluation of forecast regions is to consider the observations

outside of the 100 x (1 — «)% region and to assess how far they are from a central point

within the prediction region. We propose the following average outlier distance

N
1 —a
O(-a) = EE 11 x Dy, My) (2.25)
t=1

where G is the number of observations outside the region, D is a distance measure (e.g.

Euclidean distance) of each outside-the-region outcome y; from M;, which is a central point
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in the region. We choose M; to be the median of the realizations generated at each time
t according to the methods explained in Section 4. However, defining the median for a
multi-dimensional dataset (2-dimensional in our case) is not as straighforward as it is for a
one-dimensional dataset. To obtain My, we implement the definition of median in a multi-
dimensional setting introduced by Zuo (2003), known as ‘projection depth median’, and
programmed in the Matlab package (Liu and Zuo, 2015). A brief description follows.

With a one-dimensional dataset, Z = {Z;}, i = 1,...n, a robust measurement of
the outlyingness of a point z (a scalar) relative to Z is the outlying function

|z — Med(Z)]

%2 = D)

where Med is the median of data set Z and MAD(Z) = Med{|Z; — Med(Z)|,i = 1,...,n}.
When z and Z are p-dimensional (p > 1), the above outlying function is applied by
projecting z and Z into a one-dimensional space, i.e., o1(u’z,u’ Z), where u € S and
S ={v e RP:|v| =1} is a set of unit vectors in the p-dimensional space. The projec-
tion depth of point z with respect to Z is defined as PD(z,Z) = (1 + O(z, Z))~!, where
0(z,72) = sug o1(ul'z,uTZ). Under some mild conditions (Zuo, 2013), there exists a
ug

unique single point (2* € RP, not necessarily from Z) that maximizes PD(z, Z) for a data
set Z. This z* is defined as the ‘projection depth median’ of Z.

The 100 x a% outside-the-region observations can be considered ‘risk’ that the

forecaster has to bear and, in this sense, he would like to minimize O(;_,). For two regions

with similar coverage, the forecaster will choose that with a lower average outlier dispersion.
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We also evaluate the prediction region by the sharpness or tightness of the intervals
that result from projecting the two-dimensional region into one-dimensional intervals. We
draw a large number of directions, which are given by the lines drawn from the zero origin
of the unit circle to any point in its boundary. For each direction, we find the two bounding
tangent lines to the prediction region that are perpendicular to that direction. We calculate
the length of the projected interval bounded by the tangent lines. See Figure 2.5 (top panel)
for a graphical representation. Denote d; € T as the i** direction in Y, where Y is the set
of all directions, and let D be the number of directions. At time ¢, the average projection

length over all directions is

where ug, is the upper bound and [4, the lower bound of the projected interval in the
it" direction. Then, over the prediction sample, the average length of the projected

intervals associated with the (1 — a)% prediction region is

LN
Pi o = szt (2.26)
t=1

The forecaster would prefer prediction regions that deliver tight projected intervals.

We now consider the realized data points over the prediction period in conjunction
with the projected intervals. For each direction, we also project each point into that direc-
tion and measure whether the point falls into or outside of the projected interval (see Figure

2.5, top panel) . An indicator function I will assign the value 0 if the point falls inside and
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Projected interval in the direction d;

\ Bounding tangents
\

ug, — lg;:length of projected interval

lg, — x4,: distance of projected outlier C

Outliers evenly distributed in the direction d;

. Hy(di, M;)
d;

¢ ¢ Hy(d;, My)

Figure 2.5: Projected interval and projected outliers (top panel). Outlier distribution
around a region (bottom panel)
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1 if the point falls outside of the projected interval. At time t, over all D directions, we

calculate the average distance of the projected outliers to the projected interval as
D
OP, = =N (s, — 5a) (w4, < la,) + (2, — w4 (24, > a,)]
t D pa d; d; d; d; d; d; d; d;

where z4, is the coordinate of the data point projected on the ith direction. Then, over the
prediction sample, the average distance of the projected outliers associated with the

100 x (1 — «)% prediction region is

N
1
OPy o) = NZOPt (2.27)
t=1

The forecaster prefers prediction regions with projected outliers close to the projected in-
tervals.

We expect that when the length of the projected interval is large, the distance of
the projected outliers to the interval will be smaller. To take into account this a trade-off,
we propose a combined criterium POP;, = P; x OP,; so that, over the prediction sample, the

average trade-off associated with the 100 x (1 — )% prediction region is
N
POPu-a) = ; POP, (2.28)

A smaller POP(;_,) would be preferred by the forecaster.
Finally, we assess whether the prediction region is probability-centered. We check
whether the points outside of the prediction region are evenly distributed around the region.

At time ¢, we consider a cloud of data points and calculate the median M; as in Zuo (2003).
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We also consider a number of directions D that pass through M;. We define H,(d;, M;) as
the half-plane above the line generated by the direction d; and H;(d;, M) as the half-plane
below the same line. See Figure 2.5 (bottom panel) for a graphical representation. For a
given direction d; and the 100 x (1 — a)% prediction region R, we consider the number of
points outside of the region, i.e., z € R® which are either in H,(d;, M;) or in H;(d;, My),

that is

Cu(di, My)) = {#z|(z € R°) N (z € Hy(di, My))}

Cl(di,Mt) = {#1"((1} € RC) N (1’ S Hl(di,Mt))}

where Cy,(d;) and Cj(d;) are functions providing the number of of outlier points falling in
the upper half-plane or lower half-plane respectively. If the outliers are evenly distributed
around the 100 x (1 — «)% prediction region, we expect the following statistic S(;_q)(M;)

to be close to zero

D
Sae (M) = 15 D [Culds, My)) = Cildi, My)| (229)
i=1

Though S(1_4)(M;) will not be feasible with real data (we will have only one realized
observation at time ¢ that could be in or out of the prediction region), in a simulated
environment, we will be able to assess the probability-centered property of each prediction

region.
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2.6 Monte Carlo Simulations

We perform extensive Monte Carlo simulations to assess the performance of the
prediction regions constructed with the analytical and semiparametric methods explained
in sections 3 and 4. The regions are evaluated according to the seven criteria described in
section 5.

We generate a small sample of T" = 200 observations and a large sample of 7' = 1000
observations (estimation samples) from a VAR(4) for the center /log-range system (1.1)-(1.2)
with parameter values reported in Table 2.1. We consider four cases regarding distributional
assumptions from which the errors are drawn: (1) center and log-range errors are both
normally distributed; (2) center errors are Student-t with 5 degrees of freedom and log-range
errors are normally distributed; (3) center errors are Student-t with 5 degrees of freedom
and range errors are exponentially (A) distributed; and (4) center errors are normal and
range errors exponentially (A) distributed. Note that the distributional assumptions are on
the marginal densities of the errors of each equation. It is only in case (1) that the bivariate
density of the center and log-range is normal; in the rest of the cases, we do not know the

exact bivariate densities.%

SFor the system to have the desired marginal density functions and the stated correlation structure, we
have generated bivariate errors from a Gaussian copula and re-transform the PITs of the corresponding
univariate normal variates according to the desired density, e.g. Student-t, to obtain the new error variates,
which need to be adjusted to have the desired mean and variance.
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‘ Center equation H log-Range equation

Constant -0.9344 0.0759
C(-1) 0.3404 -0.0112
C(-2) -0.1530 -0.0027
C(-3) 0.0314 -0.0030
C(-4) -0.0551 -0.0022
log-R(-1) -0.5030 0.0852
log-R(-2) 0.1281 0.1845
log-R(-3) -0.1556 0.1539
log-R(-4) 0.9157 0.0760

Variance-covariance matrix of the errors:

0 o? o12|  [111.24 —1.02
" lowie o3| [-1.02 0.16

Contemporaneous correlation between the center and log-range errors = -0.24.

Table 2.1: Monte Carlo simulations. VAR(4) parameter values for the center/log-range
system

We consider 1- and 3-step-ahead prediction regions with 95% nominal coverage.”
We calculate the empirical coverage by simulating 1000 future values of the required vector
at time T, i.e. center/log-range, center/range, and upper/lower bounds, at the forecast
horizon, and calculating the proportion of these values that falls within the constructed
prediction regions. The number of Monte Carlo replications is 500, the number of bootstrap
samples is B = 2000, and the number of directions to calculate the average length of the

projected intervals and outliers is D = 100.

2.6.1 Center and Log-Range are Normally distributed

The errors of the center equation of the VAR(4) are drawn from a normal density
as well as the errors of the log-range equation. In Tables 2.2-2.3, we report the evaluation of

the prediction regions for the three systems (center/log-range, center/range and upper/lower

"The results for h = 3 are provided in the Supplementary Material, Tables S1-S4.
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bounds) for forecast horizon h = 1 with estimation samples 7' = 1000 and 7" = 200. Note
that we only estimate the VAR/(4) once for the center/log-range, construct prediction regions
for this system, and based on these estimates, we proceed to construct prediction regions
for the other two systems.

Given the bivariate normality of the center/log-range system, the prediction re-
gions based on the normal ellipse (2.6) and on the analytical methods (2.10) would be exact
if parameter estimation were not a concern. For a large estimation sample 7' = 1000 (Table
2.2), all regions, except for the Tukey convex hull, are very reliable with empirical coverage
Cos of mostly 95%. Bootstrap ellipse and bootstrap Bonferroni rectangles, which account
for parameter uncertainty, deliver the closest value to 95% in the three systems. Bonferroni
rectangles have the largest areas compared to the normal ellipse and to the regions based
on analytical methods, but because they provide good coverage, they enjoy one of the low-
est average coverage-volume scores C'Vgs. The larger area of the Bonferroni rectangles is
somehow compensated by a lower average outlier distance Ogs, though this metric is very
similar for all prediction regions considered across the three systems. The tightest regions
i.e., those projecting tight one-dimensional intervals measured by PO Pys, correspond to the
normal ellipse, bootstrap ellipsoids, and those regions based on exact analytical expressions.
These are also the regions with outliers more evenly distributed around their boundaries.

For small estimation sample 7" = 200 (Table 2.3), the bootstrap regions provide a
clear advantage with respect to the other regions. In small samples, parameter uncertainty
plays a more important role than in large samples. Boostrap methods are designed to take

into account estimation uncertainty. Across systems, bootstrap ellipsoids and bootstrap
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Bonferroni rectangles are still very reliable with empirical coverage close to 95%. They also
enjoy the smallest score C'Vgs. The tightest regions, i.e small PO Pys, are provided by the
bootstrap ellipsoid and its transformed regions followed by the Tukey region.

Considering the overall performance assessed by the metrics C, CV, and POP, for
large estimation samples, normal ellipses, bootstrap ellipsoids, and those regions based on
analytical methods are the best performers, and as expected, better than the Tukey convex
hull. Bonferroni rectangles, though providing good coverage, tend to be conservative in
area, which in turn provides some advantages regarding the lower dispersion of the outliers.
For small samples, the bootstrap ellipsoid is the best performer. These conclusions hold

regardless of whether h =1 or h = 3.
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Large Estimation Sample 7' = 1000 EVALUATION CRITERIA
CENTER/log-RANGE system Cos [ VM2 [ CVos ]| Oss [ Pos | OPys [ POPys || Sos
NE: Normal ellipse (2.6) 0.9469 || 8.7059 | 0.0645 || 18.8891 || 25.8596 | 0.0275 || 0.7090 || 0.0089
Bonferroni rectangle (2.7)-(2.8) 0.9484 || 9.1321 | 0.0646 | 18.3628 || 24.9220 | 0.0375 || 0.9309 || 0.0088
Modified Bonferroni rectangle (2.9) 0.9516 || 9.1321 | 0.0655 || 18.5670 || 24.9306 | 0.0372 || 0.9255 || 0.0095
BE: Bootstrap ellipsoid (2.14) 0.9493 || 8.7842 | 0.0801 || 19.0161 || 26.0994 | 0.0262 || 0.6773 || 0.0087
Bootstrap Bonferroni rectangle (2.15) 0.9493 || 9.2184 | 0.0819 || 18.4758 || 25.1222 | 0.0373 || 0.9293 || 0.0096
Modified Bootstrap Bonferroni rectangle (2.16) | 0.9521 || 9.2184 | 0.0848 || 18.6347 || 25.1309 | 0.0371 || 0.9240 || 0.0104
Tukey convex hull 0.9414 || 8.6389 | 0.1028 || 18.5770 || 26.1263 | 0.0283 || 0.7265 || 0.0107
CENTER/RANGE System ‘ 095 H V1/2 ‘ CV95 H 095 H P95 ‘ OP95 H POP95 H 59_5 ‘
Analytical method (2.10) 0.9470 || 9.8933 | 0.0782 || 18.7056 || 26.2543 | 0.0263 || 0.6885 || 0.0161
T-NE: T-Normal ellipse (2.3.2) 0.9469 || 10.1606 | 0.0756 || 18.9612 | 25.9781 | 0.0280 || 0.7259 || 0.0089
T-Bonferroni rectangle (2.12) 0.9484 || 10.7382 | 0.0758 || 18.4471 || 25.4849 | 0.0349 || 0.8849 || 0.0088
T-Modified Bonferroni rectangle (2.13) 0.9513 || 10.9309 | 0.0788 || 18.5675 || 25.5757 | 0.0343 || 0.8742 || 0.0101
T-BE: T-Bootstrap ellipsoid (2.4.2) 0.9493 || 10.2637 | 0.0940 || 19.0892 || 28.8440 | 0.0267 || 0.7346 || 0.0087
T-Bootstrap Bonferroni rectangle (2.4.2) 0.9493 || 10.8482 | 0.0966 || 18.5638 || 25.6943 | 0.0347 || 0.8832 || 0.0096
T-Modified Bootstrap Bonferroni rectangle (2.19) | 0.9519 || 11.0436 | 0.1036 || 18.6581 || 25.7867 | 0.0342 || 0.8722 || 0.0109
Tukey convex hull 0.9411 || 10.2071 | 0.1237 || 18.6050 || 26.2517 | 0.0287 || 0.7406 || 0.0119
UPPER/LOWER system | Cos [[ V2 [ CVis || Oos [ Pos | OPss || POPss | Sos |
Analytical method (2.10) | 0.9470 || 9.8763 | 0.0781 || 26.3045 || 46.5574 | 0.0463 || 2.1514 || 0.0095
Bootstrap ellipsoid (2.22) | 0.9488 || 10.4679 | 0.1010 || 24.3205 || 47.3650 | 0.0414 || 1.9393 || 0.0126
Tukey convex hull 0.9411 || 10.1884 | 0.1232 || 26.1956 || 46.5761 | 0.0506 || 2.3167 | 0.0114

Table 2.2: Evaluation of the h-step ahead 95% prediction regions from a GAUSSIAN

center /log-range system (h = 1); 500 Monte Carlo simulations from a VAR(4). In the
first column, the numbers in parenthesis e.g., (x.x) are the corresponding equations in the

text.
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Small Estimation Sample 7' = 200 EVALUATION CRITERIA
CENTER,/log-RANGE system Cos | V2 [ CVes | Ogs || Pos | OPps || POPy || Ses
NE: Normal ellipse (2.6) 0.9323 || 8.5326 | 0.1687 || 18.4343 || 25.4321 | 0.0369 || 0.9220 || 0.0208
Bonferroni rectangle (2.7)-(2.8) 0.9352 || 8.9625 | 0.1559 || 18.0943 || 24.5124 | 0.0490 || 1.1831 || 0.0198
Modified Bonferroni rectangle (2.9) 0.9378 || 8.9625 | 0.1421 || 18.1143 || 24.5209 | 0.0488 || 1.1768 || 0.0201
BE: Bootstrap ellipsoid (2.14) 0.9465 || 8.9272 | 0.1302 || 19.0901 || 26.6052 | 0.0276 || 0.7146 || 0.0172
Bootstrap Bonferroni rectangle (2.15) 0.9455 || 9.3834 | 0.1384 || 18.4711 || 25.6546 | 0.0408 || 1.0206 || 0.0181
Modified Bootstrap Bonferroni rectangle (2.16) | 0.9480 || 9.3834 | 0.1320 || 18.4979 || 25.6636 | 0.0406 || 1.0152 | 0.0178
Tukey convex hull 0.9334 || 8.7457 | 0.1775 || 18.3070 || 26.8745 | 0.0310 || 0.8045 || 0.0222
CENTER/RANGE System ‘ 095 H V1/2 ‘ CV95 H 095 H P95 ‘ OP95 H POP95 H 59_5 ‘
Analytical method (2.10) 0.9327 || 9.7378 | 0.1927 || 18.4312 || 25.8139 | 0.0356 || 0.9029 || 0.0247
T-NE: T-Normal ellipse (2.3.2) 0.9323 || 9.9933 | 0.1971 || 18.5044 || 25.5514 | 0.0376 || 0.9434 || 0.0209
T-Bonferroni rectangle (2.12) 0.9352 || 10.5726 | 0.1836 || 18.1739 || 25.0743 | 0.0457 || 1.1273 || 0.0199
T-Modified Bonferroni rectangle (2.13) 0.9373 || 10.7899 | 0.1750 || 18.1043 || 25.1757 | 0.0450 || 1.1140 || 0.0208
T-BE: T-Bootstrap ellipsoid (2.4.2) 0.9465 || 10.4975 | 0.1528 || 19.1640 || 26.7346 | 0.0281 || 0.7324 || 0.0173
T-Bootstrap Bonferroni rectangle (2.4.2) 0.9455 || 11.1567 | 0.1645 || 18.5525 || 26.2772 | 0.0378 || 0.9673 || 0.0181
T-Modified Bootstrap Bonferroni rectangle (2.19) | 0.9472 || 11.3987 | 0.1633 || 18.4061 || 26.3916 | 0.0371 || 0.9548 || 0.0187
Tukey convex hull 0.9338 || 10.4532 | 0.2114 || 18.3920 || 27.0735 | 0.0311 || 0.8151 || 0.0224
UPPER/LOWER system | Cos [[ V2 [ CVis || Oos [ Pos | OPss || POPss | Sos |
Analytical method (2.10) | 0.9327 || 9.7528 | 0.1931 || 25.9290 || 45.7581 | 0.0629 || 2.8261 || 0.0198
Bootstrap ellipsoid (2.22) | 0.9470 || 10.7473 | 0.1919 || 25.1246 || 48.4270 | 0.0429 || 2.0190 || 0.0180
Tukey convex hull 0.9338 || 10.4590 | 0.2118 || 25.8989 | 48.0060 | 0.0550 || 2.5477 || 0.0220

Table 2.3: Evaluation of the h-step ahead 95% prediction regions from a GAUSSIAN
center /log-range system (h = 1); 500 Monte Carlo simulations from a VAR(4). In the
first column, the numbers in parenthesis e.g., (x.x) are the corresponding equations in the

text.
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2.6.2 Student-t(5) Center and Normal Log-Range

In Tables 2.4-2.5, we report the performance of the different predictions regions
when the errors of the center equation of the VAR(4) are leptokurtic and the errors of the
log-range equation are normal. Thus, the bivariate system center/log-range is not normally
distributed but symmetric. Consequently, the normal ellipse, Bonferroni rectangles, and
their corresponding transformed regions tend to undercover with empirical coverage rates
of about 94% in large samples, and about 93% in small samples because they do not consider
the fat tails of the errors in the center equation. The bootstrap regions, which are robust to
distributional assumptions and capture estimation uncertainty, are better performers with
coverage rates close to 95% in large and small samples. They also provide the smallest score
C'Vys and, according to Sos, tend to have a more evenly distribution of outliers around the
regions. For small samples, the performance of bootstrap regions is even more striking with
the bootstrap ellipsoid being the best region in terms of Cgs, C'Vys, and Sgs.These results
hold for both horizons h =1 or h = 3.

The Tukey regions, which do not require any distributional assumption, are in-
between the bootstrap regions and the regions based on normality. Note that the Tukey
regions have a superior advantage according to PO Pys. Sacrificing a bit of coverage, the
Tukey region provides the tightest one-dimensional projections across systems, estimation

samples, and forecast horizons.
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Large Estimation Sample 7' = 1000 EVALUATION CRITERIA
CENTER,/log-RANGE system Cos | V2 [ CVes | Ogs || Pos | OPps || POPy || Ses
NE: Normal ellipse (2.6) 0.9412 || 8.6797 | 0.0890 || 22.6435 || 28.0054 | 0.1126 || 3.1971 || 0.0088
Bonferroni rectangle (2.7)-(2.8) 0.9398 || 9.1163 | 0.1026 || 21.9114 | 24.8483 | 0.1269 || 3.1407 || 0.0090
Modified Bonferroni rectangle (2.9) 0.9429 || 9.1163 | 0.0850 || 22.3330 || 24.8572 | 0.1266 || 3.1360 || 0.0100
BE: Bootstrap ellipsoid (2.14) 0.9488 || 8.9704 | 0.0760 || 23.7767 || 26.6225 | 0.1029 || 2.7149 || 0.0079
Bootstrap Bonferroni rectangle (2.15) 0.9492 || 9.6376 | 0.0850 || 21.5902 || 27.3796 | 0.0984 || 2.6631 || 0.0092
Modified Bootstrap Bonferroni rectangle (2.16) | 0.9523 || 9.6376 | 0.0854 || 22.0367 || 27.3895 | 0.0982 || 2.6586 | 0.0100
Tukey convex hull 0.9413 || 8.8669 | 0.1045 || 21.0923 || 29.6214 | 0.0785 || 2.2802 || 0.0106
CENTER/RANGE system ‘ Coys H V1/2 ‘ CVys H Ogs H Pos ‘ OPys ‘ POPy; H So5 ‘
Analytical method (2.10) 0.9411 || 9.9212 | 0.1058 || 22.5047 || 26.1741 | 0.1090 || 2.8408 || 0.0143
T-NE: T-Normal ellipse (2.3.2) 0.9412 || 10.1810 | 0.1048 || 22.7112 || 28.3778 | 0.1129 || 3.1091 || 0.0087
T-Bonferroni rectangle (2.12) 0.9398 || 10.7807 | 0.1219 || 21.9890 || 25.4332 | 0.1215 || 3.0773 || 0.0090
T-Modified Bonferroni rectangle (2.13) 0.9426 || 10.9858 | 0.1053 || 22.3062 || 25.5306 | 0.1206 || 3.0676 || 0.0109
T-BE: T-Bootstrap ellipsoid (2.4.2) 0.9488 || 10.5704 | 0.0897 || 23.8431 || 34.9965 | 0.1027 || 3.1692 || 0.0079
T-Bootstrap Bonferroni rectangle (2.4.2) 0.9492 || 11.4053 | 0.1009 || 21.6829 || 27.9724 | 0.0944 || 2.6087 || 0.0091
T-Modified Bootstrap Bonferroni rectangle (2.19) | 0.9518 || 11.6538 | 0.1043 || 21.9587 || 28.0838 | 0.0937 || 2.5993 || 0.0109
Tukey convex hull 0.9416 || 10.5931 | 0.1239 || 21.1648 || 29.8935 | 0.0776 || 2.2727 || 0.0123
UPPER/LOWER system | Cos [[ V2 [ CVis || Oos [ Pos | OPss || POPss | Sos |
Analytical method (2.10) | 0.9411 || 9.8875 | 0.1053 || 31.6801 || 46.4097 | 0.1959 || 9.0588 || 0.0090
Bootstrap ellipsoid (2.22) | 0.9486 || 10.9656 | 0.1034 || 30.8649 || 49.3236 | 0.1642 || 8.0201 || 0.0112
Tukey convex hull 0.9416 || 10.5863 | 0.1236 || 29.8004 | 53.1740 | 0.1386 || 7.2162 || 0.0106

Table 2.4: Evaluation of the h-step ahead 95% prediction regions from a system with
center STUDENT-t(5) distributed and NORMAL log-range (h = 1); 500 Monte

Carlo simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x)

are the corresponding equations in the text.
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Small Estimation Sample 7" = 200

EVALUATION CRITERIA

CENTER/log-RANGE system Cos || V2 [ CVes | Oos | Pos | OPss || POPss || Sos
NE: Normal ellipse (3.1) 0.9280 || 8.5034 | 0.1946 || 21.5578 || 25.3124 | 0.1243 || 3.0850 || 0.0198
Bonferroni rectangle (3.2)-(3.3) 0.9281 || 8.9418 | 0.2017 || 20.9695 || 24.4282 | 0.1400 | 3.3598 || 0.0200
Modified Bonferroni rectangle (3.4) 0.9309 || 8.9418 | 0.1841 || 21.1982 || 24.4369 | 0.1398 || 3.3548 | 0.0200
BE: Bootstrap ellipsoid (4.1) 0.9465 || 9.1088 | 0.1302 || 23.8342 || 27.0845 | 0.1018 || 2.6898 || 0.0151
Bootstrap Bonferroni rectangle (4.2) 0.9444 || 9.7872 | 0.1448 || 21.5150 || 27.8271 | 0.1044 | 2.8057 | 0.0176
Modified Bootstrap Bonferroni rectangle (4.3) | 0.9471 || 9.7872 | 0.1376 || 21.7377 || 27.8371 | 0.1042 || 2.8013 || 0.0174
Tukey convex hull 0.9339 || 8.9892 | 0.1761 || 20.7920 || 30.3991 | 0.0836 | 2.4223 || 0.0213
| CENTER/RANGE system | Cos [ V2 [ CVes || Oos [ Pos [ OPys [ POPys [ Sos |

Analytical method (3.5) 0.9280 || 9.6810 | 0.2227 || 21.5371 || 25.7212 | 0.1207 || 3.0448 || 0.0233
T-NE: T-Normal ellipse (3.6) 0.9280 || 9.9215 | 0.2269 || 21.6251 || 30.6254 | 0.1244 || 3.4822 || 0.0199
T-Bonferroni rectangle (3.7) 0.9281 || 10.5185 | 0.2370 || 21.0455 || 24.9815 | 0.1344 || 3.2963 || 0.0199
T-Modified Bonferroni rectangle (3.8) 0.9303 || 10.7436 | 0.2278 || 21.1401 || 25.0872 | 0.1333 || 3.2845 || 0.0209
T-BE: T-Bootstrap ellipsoid (4.4) 0.9465 || 10.6969 | 0.1525 || 23.9020 || 36.2004 | 0.1017 || 3.1213 || 0.0150
T-Bootstrap Bonferroni rectangle (4.5) 0.9444 || 11.6073 | 0.1712 || 21.5993 || 28.4407 | 0.0999 || 2.7454 || 0.0174
T-Modified Bootstrap Bonferroni rectangle (4.6) | 0.9461 || 11.9048 | 0.1724 || 21.5778 || 28.5761 | 0.0991 || 2.7347 | 0.0181
Tukey convex hull 0.9343 || 10.7344 | 0.2128 || 20.8409 || 30.6042 | 0.0839 || 2.4434 || 0.0218
UPPER/LOWER system | Cos [[ V2 [ CVis || Oos [ Pos | OPys || POPss | Sos |
Analytical method (3.5) 0.9280 || 9.6699 | 0.2229 || 30.3216 || 45.5948 | 0.2173 || 9.7108 || 0.0178
Bootstrap ellipsoid (4.9) 0.9464 || 11.1371 | 0.1877 || 31.5378 || 50.2535 | 0.1626 || 7.9359 || 0.0153
Tukey convex hull 0.9343 || 10.7409 | 0.2131 || 29.3517 || 54.4157 | 0.1498 || 7.7539 || 0.0196

Table 2.5: Evaluation of the h-step ahead 95% prediction regions from a system with
center STUDENT-t(5) distributed and NORMAL log-range (h = 1); 500 Monte
Carlo simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x)
are the corresponding equations in the text.
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2.6.3 Student-t(5) Center and Exponential Range

In Tables 2.6-2.7, we report the performance of the different predicitons regions
when the errors of the center equation of the VAR(4) are drawn from a Student-t with 5
degrees of freedom and the errors of the log-range equation are those resulting from assuming
that the range itself is exponentially distributed. The exponential errors introduce some
asymmetry that is not fully corrected when they are transformed into errors of the log-range
equation. The resulting bivariate system center /log-range is not normally distributed as it
exhibits leptokurtosis and asymmetry.

For small and large samples, the bootstrap regions (ellipsoids and Bonferroni rect-
angles) provide the best coverage Cgs; with empirical rates very close to 95%, followed by
the Tukey region that covers around 94% of the events. The same regions have the small-
est scores C'Vys and the smallest POPys. As in the previous case, the Tukey region has a
clear advantage over the other regions when we are interested in the smallest PO Pys5. It is
interesting to note that the boostrap Bonferroni rectangles are able to distribute outliers
more evenly around their perimeters than any other prediction regions. These results hold

for the two horizons considered h = 1 and h = 3.
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Large Estimation Sample 7' = 1000

EVALUATION CRITERIA

CENTER/log-RANGE system Cos | V2 [ CVos || Oos | Ps | OPy || POPss | Sos

NE: Normal ellipse (3.1) 0.9368 || 8.7108 | 0.1201 || 21.1329 || 27.9739 | 0.1133 || 3.2150 || 0.0280
Bonferroni rectangle (3.2)-(3.3) 0.9341 || 9.1404 | 0.1482 || 20.7347 || 24.8541 | 0.1273 || 3.1531 || 0.0298
Modified Bonferroni rectangle (3.4) 0.9357 || 9.1404 | 0.1375 || 20.8467 || 24.8628 | 0.1271 || 3.1475 | 0.0280
BE: Bootstrap ellipsoid (4.1) 0.9492 || 9.3037 | 0.0779 || 22.1716 || 32.8760 | 0.0937 || 2.9613 || 0.0233
Bootstrap Bonferroni rectangle (4.2) 0.9502 || 9.7724 | 0.0905 || 22.0051 || 27.3986 | 0.0988 || 2.6772 | 0.0099
Modified Bootstrap Bonferroni rectangle (4.3) | 0.9524 || 9.7724 | 0.0920 || 22.4823 || 27.4082 | 0.0986 || 2.6727 || 0.0108
Tukey convex hull 0.9428 || 9.0187 | 0.1055 || 21.4827 || 29.6579 | 0.0790 || 2.3001 || 0.0122

| CENTER/RANGE system | Cos [ V2 [ CVes || Oos [ Pos [ OPys [ POPys [ Sos |

Analytical method (3.5) 0.9433 || 9.9723 | 0.0914 || 22.5306 || 26.1769 | 0.1083 || 2.8242 || 0.0186
T-NE: T-Normal ellipse (3.6) 0.9368 || 10.2383 | 0.1419 || 21.0668 || 30.7229 | 0.1121 || 3.4644 || 0.0289
T-Bonferroni rectangle (3.7) 0.9341 || 10.8315 | 0.1767 || 20.6600 || 25.4505 | 0.1212 || 3.0713 || 0.0309
T-Modified Bonferroni rectangle (3.8) 0.9337 || 11.0282 | 0.1877 || 20.3441 || 25.5449 | 0.1205 || 3.0672 || 0.0312
T-BE: T-Bootstrap ellipsoid (4.4) 0.9492 || 11.0252 | 0.0923 || 22.0965 || 32.9957 | 0.0930 || 2.8497 || 0.0240
T-Bootstrap Bonferroni rectangle (4.5) 0.9502 || 10.1569 | 0.0941 || 21.9978 || 27.5380 | 0.0976 || 2.6566 || 0.0100
T-Modified Bootstrap Bonferroni rectangle (4.6) | 0.9545 || 10.3666 | 0.0996 || 23.1236 || 27.6214 | 0.0970 || 2.6486 || 0.0109
Tukey convex hull 0.9425 || 9.4339 | 0.1060 || 21.2823 || 29.9939 | 0.0763 || 2.2415 || 0.0117
UPPER/LOWER system | Cos || V2 [ CViys || Oos || Pos | OPps || POPys || Sos

Analytical method (3.5) 0.9433 || 9.9574 | 0.0911 || 31.8056 | 46.4025 | 0.1954 || 9.0708 || 0.0105
Bootstrap ellipsoid (4.9) | 0.9498 || 9.4454 | 0.0911 || 35.2534 || 46.7651 | 0.1925 || 8.9307 || 0.0074
Tukey convex hull 0.9425 || 9.4304 | 0.1056 || 30.0265 || 53.4562 | 0.1364 || 7.1413 || 0.0099

Table 2.6: Evaluation of the h-step ahead 95% prediction regions from a system with center
STUDENT-t(5) distributed and EXPONENTIAL range (h = 1); 500 Monte Carlo
simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x) are

the corresponding equations in the text.
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Small Estimation Sample 7" = 200

EVALUATION CRITERIA

CENTER/log-RANGE system Cos | V2 [ CVos || Oos | Ps | OPy || POPss | Sos

NE: Normal ellipse (3.1) 0.9261 || 8.5167 | 0.2056 || 20.6548 || 25.3141 | 0.1247 || 3.0939 || 0.0310
Bonferroni rectangle (3.2)-(3.3) 0.9251 || 8.9470 | 0.2239 || 20.4164 || 24.4319 | 0.1404 || 3.3677 || 0.0322
Modified Bonferroni rectangle (3.4) 0.9256 || 8.9470 | 0.2220 || 20.3442 || 24.4403 | 0.1401 || 3.3622 || 0.0321
BE: Bootstrap ellipsoid (4.1) 0.9465 || 9.3814 | 0.1325 || 22.2371 || 27.8365 | 0.0945 || 2.5540 || 0.0242
Bootstrap Bonferroni rectangle (4.2) 0.9462 || 9.9340 | 0.1571 || 22.2250 || 27.8960 | 0.1042 || 2.8043 || 0.0183
Modified Bootstrap Bonferroni rectangle (4.3) | 0.9481 || 9.9340 | 0.1491 || 22.4270 || 27.9057 | 0.1040 || 2.7995 || 0.0178
Tukey convex hull 0.9354 || 9.0890 | 0.1825 || 21.4695 || 30.1396 | 0.0856 || 2.4598 || 0.0222

| CENTER/RANGE system | Cos [ V2 [ CVes || Oos [ Pos [ OPys [ POPys [ Sos |

Analytical method (3.5) 0.9316 || 9.6907 | 0.1955 || 21.7117 || 25.7230 | 0.1197 || 3.0188 || 0.0232
T-NE: T-Normal ellipse (3.6) 0.9261 || 9.9385 | 0.2419 || 20.5949 || 28.0041 | 0.1237 || 3.2429 || 0.0318
T-Bonferroni rectangle (3.7) 0.9251 || 10.5207 | 0.2657 || 20.3489 || 24.9834 | 0.1339 || 3.2846 || 0.0332
T-Modified Bonferroni rectangle (3.8) 0.9236 || 10.7321 | 0.2891 || 19.9189 || 25.0827 | 0.1332 || 3.2787 || 0.0352
T-BE: T-Bootstrap ellipsoid (4.4) 0.9465 || 11.0513 | 0.1571 || 22.1626 || 34.6414 | 0.0937 | 2.7120 || 0.0247
T-Bootstrap Bonferroni rectangle (4.5) 0.9462 || 10.4326 | 0.1637 || 22.2054 || 28.0685 | 0.1026 || 2.7783 || 0.0184
T-Modified Bootstrap Bonferroni rectangle (4.6) | 0.9493 || 10.6796 | 0.1551 || 22.6885 || 28.1671 | 0.1019 || 2.7678 || 0.0174
Tukey convex hull 0.9356 || 9.6360 | 0.1871 || 21.1415 || 30.5515 | 0.0826 || 2.4063 || 0.0227
UPPER/LOWER system | Cos [[ V2 [ CViys | Oos | Pos OPy; || POPys || Sos

Analytical method (3.5) 0.9316 || 9.6745 | 0.1953 || 30.6485 | 45.6115 | 0.2165 || 9.6754 || 0.0181
Bootstrap ellipsoid (4.9) | 0.9488 || 9.7179 | 0.1664 || 36.3154 || 47.9860 | 0.1862 || 8.7110 || 0.0134
Tukey convex hull 0.9356 || 9.6336 | 0.1873 || 29.8330 || 54.4258 | 0.1477 || 7.6642 || 0.0194

Table 2.7: Evaluation of the h-step ahead 95% prediction regions from a system with center
STUDENT-t(5) distributed and EXPONENTIAL range (h = 1); 500 Monte Carlo
simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x) in
the first column are the corresponding equations in the text.
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2.6.4 Normal Center and Exponential Range

In Tables 2.8-2.9, we report the performance of the different predictions regions
when the errors of the center equation of the VAR(4) are drawn from a normal distribution
and the errors of the log-range equation are those resulting from assuming that the range
itself is exponentially distributed. The resulting bivariate system center/log-range is not
normally distributed as asymmetry is introduced through the log-range equation.

For large samples, all regions have an empirical coverage Cys between 94 and
95% with the bootstrap ellipoid and the bootstrap Bonferroni rectangle being very close
to 95%. It is interesting to note that the normal ellipse in the center/log-range system
and its analytically derived regions for the center/range and upper/lower systems provide
a very competitive coverage of almost 95% and the smallest scores CVgs. The bootstrap
ellipsoid and its transformed regions come as the next best performer with some advantage
regarding the PO Pys criterium. In small samples, the boostrap methods provide the best
coverage with an empirical rate of almost 95%. The bootstrap ellipsoid delivers the best
performance when considering C'Vys and POPy;. The normal ellipse and its analytically
derived formulas tend to undercover with rates around 93%. We obtain similar results for

h=1and h=3.
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Large Estimation Sample 7' = 1000

EVALUATION CRITERIA

CENTER/log-RANGE system Cos | V2 [ CVos || Oos | Ps | OPy || POPss | Sos

NE: Normal ellipse (3.1) 0.9435 || 8.7270 | 0.0781 || 17.5784 || 25.8654 | 0.0278 || 0.7161 || 0.0299
Bonferroni rectangle (3.2)-(3.3) 0.9426 || 9.1588 | 0.0872 || 17.4485 || 24.9354 | 0.0376 || 0.9352 || 0.0304
Modified Bonferroni rectangle (3.4) 0.9445 || 9.1588 | 0.0830 || 17.4346 || 24.9442 | 0.0373 || 0.9282 | 0.0283
BE: Bootstrap ellipsoid (4.1) 0.9489 || 8.9423 | 0.0747 || 17.5336 || 26.5065 | 0.0237 || 0.6226 || 0.0281
Bootstrap Bonferroni rectangle (4.2) 0.9506 || 9.3471 | 0.0837 || 18.7679 || 25.1703 | 0.0372 || 0.9274 | 0.0099
Modified Bootstrap Bonferroni rectangle (4.3) | 0.9521 || 9.3471 | 0.0877 || 18.9354 || 25.1792 | 0.0369 || 0.9216 || 0.0114
Tukey convex hull 0.9427 || 8.7490 | 0.1003 || 18.7555 || 26.1170 | 0.0284 || 0.7289 || 0.0120

| CENTER/RANGE system | Cos [ V2 [ CVes || Oos [ Pos [ OPys [ POPys [ Sos |

Analytical method (3.5) 0.9501 || 9.9939 | 0.0690 || 18.6000 || 26.2658 | 0.0252 || 0.6607 || 0.0186
T-NE: T-Normal ellipse (3.6) 0.9435 || 10.2792 | 0.0925 || 17.4961 || 28.6147 | 0.0271 || 0.7610 || 0.0304
T-Bonferroni rectangle (3.7) 0.9426 || 10.8600 | 0.1040 || 17.3532 || 25.5328 | 0.0341 || 0.8679 || 0.0311
T-Modified Bonferroni rectangle (3.8) 0.9426 || 11.0572 | 0.1134 || 17.0028 || 25.6268 | 0.0338 || 0.8619 || 0.0311
T-BE: T-Bootstrap ellipsoid (4.4) 0.9489 || 10.5592 | 0.0886 || 17.4463 || 29.2689 | 0.0231 || 0.6586 || 0.0285
T-Bootstrap Bonferroni rectangle (4.5) 0.9506 || 9.7196 | 0.0871 || 18.7588 || 25.3102 | 0.0362 || 0.9074 || 0.0100
T-Modified Bootstrap Bonferroni rectangle (4.6) | 0.9541 || 9.8967 | 0.0932 || 19.3375 || 25.3842 | 0.0357 || 0.8981 || 0.0111
Tukey convex hull 0.9422 || 9.1509 | 0.1053 || 18.6275 || 26.3466 | 0.0270 || 0.6995 || 0.0118
UPPER/LOWER system | Cos || V2 [ CViys || Oos || Pos | OPps || POPys || Sos

Analytical method (3.5) 0.9501 || 9.9568 | 0.0687 || 26.2449 || 46.5699 | 0.0459 || 2.1299 || 0.0107
Bootstrap ellipsoid (4.9) | 0.9498 || 9.2576 | 0.0893 || 28.2307 || 45.8963 | 0.0513 || 2.3358 || 0.0090
Tukey convex hull 0.9422 || 9.1278 | 0.1048 || 26.2808 || 46.8771 | 0.0480 || 2.2145 || 0.0107

Table 2.8: Evaluation of the h-step ahead 95% prediction regions from a system with center
NORMALLY distributed and EXPONENTIAL range (h = 1); 500 Monte Carlo
simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x) are

the corresponding equations in the text.
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Small Estimation Sample 7" = 200

EVALUATION CRITERIA

CENTER/log-RANGE system Cos | V2 [ CVos || Oos | Ps | OPy || POPss | Sos

NE: Normal ellipse (3.1) 0.9316 || 8.5318 | 0.1691 || 17.7070 || 25.4302 | 0.0373 || 0.9311 || 0.0327
Bonferroni rectangle (3.2)-(3.3) 0.9322 || 8.9649 | 0.1732 || 17.6845 || 24.5118 | 0.0494 || 1.1909 || 0.0332
Modified Bonferroni rectangle (3.4) 0.9329 || 8.9649 | 0.1708 || 17.5768 || 24.5204 | 0.0491 || 1.1835 | 0.0328
BE: Bootstrap ellipsoid (4.1) 0.9470 || 9.0687 | 0.1279 || 17.7878 || 27.0149 | 0.0253 || 0.6623 | 0.0280
Bootstrap Bonferroni rectangle (4.2) 0.9473 || 9.5201 | 0.1538 || 19.0599 || 25.7098 | 0.0409 || 1.0245 | 0.0190
Modified Bootstrap Bonferroni rectangle (4.3) | 0.9490 || 9.5201 | 0.1457 || 19.0867 || 25.7188 | 0.0407 || 1.0184 || 0.0185
Tukey convex hull 0.9362 || 8.8415 | 0.1775 || 18.7765 || 26.8598 | 0.0311 || 0.8061 || 0.0231

| CENTER/RANGE system | Cos [ V2 [ CVes || Oos [ Pos [ OPys [ POPys [ Sos |

Analytical method (3.5) 0.9368 || 9.7262 | 0.1603 || 18.4753 || 25.8099 | 0.0345 || 0.8731 || 0.0238
T-NE: T-Normal ellipse (3.6) 0.9316 || 9.9864 | 0.1991 || 17.6350 || 25.5484 | 0.0367 || 0.9196 || 0.0334
T-Bonferroni rectangle (3.7) 0.9322 || 10.5660 | 0.2060 || 17.6041 || 25.0697 | 0.0453 || 1.1154 || 0.0341
T-Modified Bonferroni rectangle (3.8) 0.9308 || 10.7842 | 0.2258 || 17.2095 || 25.1711 | 0.0448 || 1.1076 || 0.0360
T-BE: T-Bootstrap ellipsoid (4.4) 0.9470 || 10.6754 | 0.1508 || 17.7025 || 27.1477 | 0.0248 || 0.6518 || 0.0284
T-Bootstrap Bonferroni rectangle (4.5) 0.9473 || 10.0196 | 0.1607 || 19.0394 || 25.8880 | 0.0397 || 0.9992 || 0.0191
T-Modified Bootstrap Bonferroni rectangle (4.6) | 0.9501 || 10.2369 | 0.1506 || 19.2279 || 25.9780 | 0.0391 || 0.9879 || 0.0182
Tukey convex hull 0.9353 || 9.3801 | 0.1893 || 18.5592 || 27.0879 | 0.0300 || 0.7844 || 0.0235
UPPER/LOWER system | Cos [[ V2 [ CViys | Oos | Pos OPy; || POPys || Sos

Analytical method (3.5) 0.9368 || 9.7297 | 0.1604 || 26.0705 || 45.7636 | 0.0625 || 2.8067 || 0.0200
Bootstrap ellipsoid (4.9) | 0.9488 || 9.5331 | 0.1753 || 29.0966 || 47.0634 | 0.0520 || 2.3831 || 0.0168
Tukey convex hull 0.9353 || 9.3782 | 0.1894 || 26.1874 || 48.1843 | 0.0535 || 2.4796 || 0.0214

Table 2.9: Evaluation of the h-step ahead 95% prediction regions from a system with center
NORMALLY distributed and EXPONENTIAL range (h = 1); 500 Monte Carlo
simulations from a VAR(4). The numbers in parenthesis e.g., (x.x) in the first column are
the corresponding equations in the text.
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In summary, considering the three systems (center/log-range, center/range, and
upper/lower) and assessing the overall performance of the prediction regions by the sum-
mary metrics Cos, C'Vys, and PO Pys, we conclude the following;:

1. If the center/log-range system is bivariate normal (case 6.1) or approximately
normal (case 6.4) and the estimation sample is large, the prediction regions based on the
normal ellipse (2.6) and on the analytical methods (2.10) are the best performers. However,
with a small estimation sample, we recommend implementing a bootstrap ellipsoid (2.14)
and its transformed regions (2.4.2), and (2.22).

2. If the center/log-range system is not bivariate normal but the joint distribution
is symmetric (case 6.2) and the estimation sample is large, any of the bootstrap regions
(ellipsoids and Bonferroni rectangles) (2.14, (2.15), and (2.16), their transformed (2.4.2),
(2.4.2), (2.19), as well as (2.22) are the best performers. In small samples, a bootstrap
ellipsoid (2.14) and its transformed regions (2.4.2), as well as (2.22) are preferred.

3. If the center/log-range system is not bivariate normal and the joint distribu-
tion is leptokurtic and asymmetric (case 6.3), for large and small samples, we recommend
implementing the bootstrap Bonferroni rectangles (2.15), and (2.16) and their transformed

(2.4.2), (2.19), as well as (2.22).

2.7 Prediction Regions for SP500 Low/High Return Interval

We collect the daily intervals of low /high prices of the SP500 index from January
2, 2009 to April 20, 2018 for a total of 2341 observations. Since prices are non-stationary,

we construct the daily interval of low/high returns by calculating the daily minimum and
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maximum returns with respect to the closing price of the previous day. In this way, we
will model stationary intervals. In the Appendix B Table B1, we provide the descriptive
statistics of the center, range and log-range of the low/high return intervals. The center
average is zero with a standard deviation of 0.64. The center exhibits fat tails with a
coefficient of kurtosis of 7 and it is slightly skewed to the left. The range has a mean of
1.15 and a larger standard deviation, 0.83, than the center, it is positively skewed, and
it is negatively correlated with the center with a coefficient of correlation of -0.12. The
log-transformation of the range corrects the asymmetry and large kurtosis of the range so
that log-range is only slightly skewed to the right and has a coefficient of kurtosis of about
3. The coefficient of correlation of center and log-range is about -0.10. The Q-statistics
for the center indicate no autocorrelation while those for the range and log-range indicate
high autocorrelation. In Figure 2.6, we plot the time series of the center and the range as
well as their unconditional bivariate density function. The heavy tails in the center and the
almost normality of the log-range are similar distributional characteristics to those of the
simulation case in section 6.2 (Student-t(5) center and normal log-range).

We proceed with the modeling of the bivariate system of center/log-range. We split
the total sample into an estimation sample from January 2, 2009 to December 31, 2016 (2014
observations) and a prediction/evaluation sample from January 1, 2017 to April 20, 2018
(327 observations). The autocorrelograms of the center seem to indicate no autocorrelation
in contrast to those of the log-range that exhibit a profile of an AR(6) with strong memory
(see Figure Bl in the Appendix B). These features mimic the autocorrelation that we

observe in the end-of-the day returns and in their squared returns when modeling the
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conditional variance, which is not very surprising because range or log-range are good proxies
for volatility. The SIC also selects a VAR(6) and we proceed with the VAR estimation. The
results are presented in Table B2 of the Appendix B. As expected, all the regressors (lagged
center and lagged log-range) in the equation for the center are not statistically significant
and we re-estimate a restricted VAR where the center equation has only a constant. On the
contrary, the equation for the log-range present interesting dynamics. The center Granger-
causes the log-range such that the lagged centers are negatively correlated with the current
log-range, i.e. positive and large changes in the center return today will predict a narrower
range tomorrow. This is similar to a leverage effect in a conditional variance equation.
Another relevant aspect is the strong and statistically significant autoregressive nature of
log-range in agreement with the ACF/PACF profiles. The goodness of fit for the log-range
equation is high with an adjusted R-squared of 52%. The residuals corresponding to this
system are all clear of any autocorrelation. The center residuals and log-range residuals are
contemporaneous negatively correlated with a correlation coefficient of -0.17. The residuals
from the center equation have the same characteristics as the center, that is, are leptukortic
with a sample kurtosis of 7 and slightly skewed to the left. The residuals from the log-range
equation remain almost symmetric around zero and they have a sample kurtosis of 3. With
these characteristics, the conditional joint density of the center and log-range cannot be
bivariate normal.

Formally, we test for conditional bivariate normality by implementing the Gener-
alized AutoContouR (G-ACR) (in-sample) tests based on the Probability Integral Trans-

formations (PIT) of the joint density under the null hypothesis of bivariate normality
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(Gonzélez-Rivera and Sun, 2015). In Table B3 of the Appendix B, we report the results
of the t-statistics (t5) that canvas the density from the 1% to the 99% PIT autocontours
for lags k = 1,2,...5. The null hypothesis is strongly rejected at the 5% significance level
for mostly all but the 10%, 90% and 95% autocontours. The portmanteau test Cj also
reinforces the strong rejection of bivariate normality. In Figure B2 of the Appendix B, we
plot the autocontours of the contemporaneous PITs (center:, log-range,|center;). Under the
correct null hypothesis, the distribution of the PITs should be uniformly distributed within
these autocontour squares. It is obvious that this is not the case.

We evaluate the out-of-sample performance of the one-step-ahead 95% prediction
regions from January 1, 2017 to April 20, 2018 (327 observations). The results are reported
in Tables 2.10. For the system center/log-range, the bootstrap Bonferroni rectangles (2.15)
and (2.16) offer the best coverage Cys; with empirical rates of mostly 95% and they are
the most reliable with the lowest average coverage-volume scores C'Vys. Together with the
Tukey convex hull, they also provide the lowest average outlier distance Ogs. Both rectangles
(2.15) and (2.16) also provide the tightest projected one-dimensional regions measured by
POPys. For the system center/range, we find that the transformed modified bootstrap
Bonferroni rectangle (2.19) is the best performer according to most metrics Cos, C'Vys and
PO Pys. For the system upper/lower bounds, the Tukey convex hull offers the best coverage
and the lowest scores for Ogs and POPys. As expected, the analytic methods (2.10) are
not reliable as they tend to undercover. On the contrary, the bootstrap ellipsoid (2.14)
and its transformed region (2.4.2), and (2.22) tend to overcover. All these results are very

consistent with the Monte Carlo findings of the previous section.
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SP500 Low/High Returns

EVALUATION CRITERIA

CENTER/log-RANGE system

Cos [ VI2 | CVis | Ogs || Pos | OPys || POPys

NE: Normal ellipse (3.1) 0.9541 || 2.2238 | 0.0094 || 1.6077 || 2.4307 | 0.0038 || 0.0093
Bonferroni rectangle (3.2)-(3.3) 0.9450 || 2.3134 | 0.0114 || 1.4657 || 2.8953 | 0.0020 || 0.0058
Modified Bonferroni rectangle (3.4) | 0.9480 || 2.3134 | 0.0043 || 1.4534 || 2.9125 | 0.0015 || 0.0045
BE: Bootstrap ellipsoid (4.1) 0.9602 || 2.3616 | 0.0252 || 1.6859 || 2.5819 | 0.0027 || 0.0070
Bootstrap Bonferroni rectangle (4.2) | 0.9480 || 2.4732 | 0.0040 || 1.3783 || 3.1022 | 0.0009 || 0.0027
Modified Bootstrap Bonferroni (4.3) | 0.9511 || 2.4732 | 0.0031 || 1.3631 || 3.1222 | 0.0005 || 0.0015
Tukey convex hull 0.9450 || 2.1422 | 0.0103 || 1.3317 || 2.5003 | 0.0020 || 0.0049
| CENTER/RANGE system | Cos [ V2 [ CVis || Oss || Pos | OPys || POPys
Analytical method (3.5) 0.9358 || 1.8135 | 0.0319 || 1.5232 || 2.2083 | 0.0085 || 0.0188
T-NE: T-Normal ellipse (3.6) 0.9541 || 1.8879 | 0.0024 || 1.7135 || 2.2555 | 0.0055 || 0.0125
T-Bonferroni rectangle (3.7) 0.9450 || 1.9778 | 0.0180 || 1.4464 || 2.5824 | 0.0039 || 0.0100
T-Modified Bonferroni rectangle (3.8) | 0.9480 || 1.9904 | 0.0131 || 1.4425 || 2.6327 | 0.0030 || 0.0078
T-BE: T-Bootstrap ellipsoid (4.4) 0.9602 || 2.0147 | 0.0080 || 1.8537 || 2.4211 | 0.0042 || 0.0103
T-Bootstrap Bonferroni rectangle (4.5) | 0.9480 || 2.1867 | 0.0127 || 1.3101 || 2.8656 | 0.0026 || 0.0074
T-Modified Bootstrap Bonferroni (4.6) | 0.9511 || 2.2146 | 0.0021 || 1.2391 || 2.9464 | 0.0012 || 0.0036
Tukey convex hull 0.9450 || 2.0480 | 0.0252 || 1.2361 || 2.4935 | 0.0035 || 0.0088

UPPER/LOWER system | Cys || VY2 | CVis || Ogs || Pos | OPys [| POPys

Analytical method (3.5) | 0.9358
Bootstrap ellipsoid (4.9) | 0.9602
Tukey convex hull 0.9450

1.8112 | 0.0321 || 1.6816 || 3.1735
2.2105 | 0.0214 || 1.6737 || 3.5801
2.0481 | 0.0253 || 1.3109 || 3.6115

0.0083
0.0047
0.0027

0.0265
0.0170
0.0099

Table 2.10: SP500 Low/High Returns. Evaluation of the one-step ahead 95% prediction
regions (Jan.1, 2017-April 20, 2018). In the first column, the numbers in parenthesis e.g.,
(x.x) are the corresponding equations in the text.
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In Figures 2.7 and 2.8, we plot the one-step ahead 95% prediction regions for the
center/log-range and center/range systems respectively. We choose six random dates over
the prediction sample (March 15, May 11, August 30, December 8, 2017 and February 22,
April 6, 2018). In all six dates, the one-step-ahead realized values of the (center, log-range)
and (center, range) fall within the regions; only the realized values on December 8, 2017 and
April 6, 2018 are slightly more extreme and they fall towards the boundaries of the prediction
regions. For the center/log-range system, the normal ellipse and the bootstrap ellipse are
very similar but in the center/range system, the bootstrap ellipse tends to be wider adapting
to the kurtosis of the center and the asymmetry of the range. The differences among the
Bonferroni rectangles are more obvious in the center/range system. In the center/log-range
system, the Tukey convex hull has a cone shape over all the six dates though the shape

becomes more irregular in the center/range system.

94



. SP500 (One step ahead prediction regions) B SP500 (One step ahead prediction regions)
Forecast period: Mar 15, 2017 © realized one-step ahead values Forecast period: May 11, 2017 ®  realized one-step ahead values
25| ——— Normal elipse 25 Norma elipse

Bonlerroni rectangle
Modified Bonferroni rectangle

Bonferroni ectangle

oL —— Booisiap olipsoid 2 Bootstap elipsoid
Bootstrap Bonerroni ectangle Bootstrap Bonferroni rectangle
Modified Bootstrap Borferroni rectange Modified Bootstrap Bonferroni rectangle
15l — — Tukey Convex Hull 5 — — Tukey Convex Hull
s 1
o o
2 2
£ oo £os —
g g = —
ot o
f . \ /
\
05t \ 05 ! N
° ’
F 1 /
/
-
st 15 -
~
3 2 ] 0 1 2 3 4 3 Kl o 1 2 3 4
Center Center

SP500 (One step ahead prediction regions) SP500 (One step ahead prediction regions)

ar 3
Forecast period: Aug 30, 2017 ®  realized one-step ahead values Forecast period: Dec 8, 2017 © realized one-step ahead values
L ——— Nomal elpse Norma elipse
25 ~— Bonferroni rectangle 25 Bonferroni rectangle
—— Nodified Bonferoni rectangle Wodiied Borierroni rectangle
ol —— Booistap aipsoic 2 Booisiap elipsoid
Boosiap Bonfroni ectang Boolstrap Borferroni rectangle
——— Modified Boolstrap Borferron rectangle Modified Bootstap Bonferroni ectangle
sk — — Tukey Comvex Hl 15 — — Tukey Comvex Hl
it 1
§ &
& ost g os |
) 3 g S
2 2 < N
or 0
N\
N
051 05 <
-
L 4 -
-
&
A5 15 ~ —
E . . . . . . . . 2 . . . . . . . .
- 3 2 Kl o 1 2 3 4 “ 3 2 E o 1 2 3 4
Center Center
. SP500 (One step ahead prediction regions) B SP500 (One step ahead prediction regions)
Forecast period: Feb 22, 2018 © reaized one-siep ahead values Forecast period: Apr 6, 2018 et e eep ahoad alves
25 Romsl olkes 25 Sooron e
rierron rectngle Modiied Bonferoni rectangle
ed Borferroi ectangle ool
o Socsrmpolosid 2 Soomtap e g
cisiap Borferrori eciangle e e ectang’
Modilied Boalstrap Bonferron rectangle e oo Senleronirecangle
sk — — Tukey Convex Hul 15
it = 1 \
o N o
2 E 2
& os & os
g . g
o 7|} o
/
s
osf -
05 N Vi 05
RIS 1
st 15
E 2
3 2 1 o 1 2 3 4 4 3 2 Bl o 1 2 3 4
Center Center

(e) ()

Figure 2.7: One-step-ahead 95% prediction regions for the center/log-range system of the
SP500 return intervals corresponding to different dates of the out-of-sample period.
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Figure 2.8: One-step-ahead 95% prediction regions for the center/range system of the SP500
return intervals corresponding to different dates of the out-of-sample period.

96



2.8 A Trading Strategy

We develop a trading strategy based on the prediction regions for the SP500 daily
high and low returns. We extend the strategy proposed in He et al. (2010, thereafter HKW)
for point forecasts of crude oil high/low prices to account for the probabilistic distribution
forecasts of high and low returns. Denote O; as the opening return at day t, calculated

using the opening price at day ¢ with respect to the closing price at day ¢ — 1. Consider

|Ot_i/t+h‘

- , Where ﬁt+h and Ut+h are the low and the high return
Ut+h_0t|

the following ratio s =

forecasts respectively. If the magnitude of Ut+h — Oy is larger than that of O; — ﬁt+h, then
the return is more likely to go up than down in the next h days. And if this is observed
for several days, it is reasonable to believe that the market is forming an upward trend.
Therefore, a “buy alert signal” should be generated (see HKW). Similar argument can be
applied to the “sell alert signal”. Unlike HKW where the comparison of ’U'Hh — Ot‘ and

‘Ot — ﬁHh is based on the point forecasts Ut+h and ﬁt+h, we compare the probability

of ‘UtJrh — Ot‘ > ‘Ot — ﬁt+h’ with the probability of ‘UtJrh — Ot‘ < ‘Ot — j/t+h , which is

equivalent to comparing the probabilities of s < 1 (buy signal) and s > 1 (sell signal). In
Figure 2.9, we illustrate the trading strategy. Notice that s is the absolute value of the
slope of any line that connects point A = (O, O;) and any other point below the 45 degree
line. The ellipse represents the h-step ahead prediction region of the high and low returns.
The slope of line AB is equal to one and it is perpendicular to the 45 degree line. Hence,
the area under the 45 degree line can be divided by the line AB into two areas: s > 1 to
the left of line AB, and s < 1 to the right of line AB. Therefore, counting the bootstrap

realizations in the two subareas of the prediction region, we can estimate the probability of
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s < 1 with that of s > 1 for a given (1 — )% confidence region. Then, the trading strategy

consists of the following steps:

e At day t, plot Figure 1 based on O; and the h-step ahead prediction region of high
and low returns. Within the prediction region, if the number of bootstrap realizations
(obtained as in 3.4 and 3.5) on the right hand side of the line AB is larger than that

on the left hand side of the line AB, a “buy alert signal” is generated.

e Buy the asset on day t + m — 1 using the closing price on that day if the “buy alert

signal” is observed for m consecutive days beginning with day t.

e After buying the asset, on any other day d, watch for the“sell alert signal”, that is,
the number of bootstrap realizations on the left hand side of the line AB should be

larger than that on the right hand side of the line AB within the prediction region.

e Sell the asset on day d + m — 1 using the closing price on that day if the “sell alert
signal” is observed for m consecutive days beginning with day d. Otherwise, hold the

asset.

We evaluate this trading strategy by considering the forecasts of the SP500 high /low
returns for the out-of-sample period (Jan. 1, 2017 to Apr. 20, 2018, 327 observations). We
consider the bootstrap ellipse (BEg_fh) and the Tukey Convex Hull (THg_fh) prediction
regions with a 95% nominal coverage rate. For the implementation, the choice of m should
not be too small because it will introduce substantial noise in trading but it should not
be too large either because we could miss profitable trades. We consider m = 1,2,3,4

and h = 1,2,3. We apply a transaction cost of 0.1%, and we annualize the profit/loss for
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Figure 2.9: Buy and sell signals from trading strategy.
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each trade because each trade will have a different holding period.The annualized return is
calculated as AR = (C“’éit_ct - 0.001)(?’]@) where Cy and Cy4; (j > 0) are the closing prices
for the buying and selling days respectively. The investor can buy the asset again before the
previous bought asset is sold. At the end of the evaluation period, if there are still assets
that have not been sold, these assets will not be considered when calculating the profits.
In Table 2.11, we report the averaged annualized returns, the max and min annu-
alized returns, and the percentage of trade with positive returns for all cases. HKW is the
trading strategy in He et al. (2010) based on the point forecasts of the high and low returns
obtained by the bootstrap algorithm applied to our estimated model. For all cases but two,
the averaged annualized returns are positive. The choice of m is very relevant because the
gap between the max and min annualized returns narrows as m increases for all h. A large
m means that the investor is looking for a stronger signal and, though she may miss some
trades with extreme positive returns, she will also avoids those extreme negative returns
that can be catastrophic. There is also a monotonic positive relation between m and the
percentage of trades with positive returns. For average annualized returns, the performance

of BE is better than that of T"H in most cases, and the performance of BE or T H is better

than HKW in particular when m = 4.
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m=1 m=2 m=3 m=4

HKW BE TH HKW BE TH HKW BE TH HKW BE TH
h=1
Averaged annualized returns 26.16% 33.12% 33.14% -5.71% 10.89% 5.94% 43.49% 42.52% 38.04% 38.76%  40.25%  40.25%
max annualized returns 853.58% 853.58% 853.58% 239.83% 239.83% 239.83% 155.24%  155.24%  155.24% 85.18%  85.18%  85.18%
min annualized returns -3760.12% -3760.12% -3760.12% -1621.35% -1621.35% -1621.35% -116.43% -116.43% -116.43% 4.64% 4.64% 4.64%
% of trades with positive returns 61.04% 61.54% 61.54% 78.26% 81.48% 80.77% 75.00% 75.00% 75.00% 100% 100% 100%
h=2
Averaged annualized returns 29.86% 30.39% 29.15% 2.02% -1.53% 0.79% 45.44% 48.10% 38.76%  38.76%  38.76%
max annualized returns 853.58% 853.58% 853.58% 239.83% 239.83% 239.83% 155.24%  155.24% y 85.18%  85.18%  85.18%
min annualized returns -3760.12% -3760.12% -3760.12% -1621.35% -1621.35% -1621.35% -116.43% -116.43% - 4.64% 4.64% 4.64%
% of trades with positive returns 61.54% 62.82% 61.25% 76.00% 76.00% 76.00% 75.00% 71.43% 100% 100% 100%
h=3
Averaged annualized returns 29.92% 11.48% 3.31% 4.55% 9.53% 42.37% 20.67% 17.26% 43.01% 63.75%  61.42%
max annualized returns 853.58% 853.58% 853.58% 239.83% 239.83% 175.56%  175.56%  175.56% 85.18% 102.78% 102.78%
min annualized returns -3760.12% -3760.12% -3760.12% -1621.35% -1621.35% -1621.35% -116.43% -116.43% -116.43% 20.14%  26.47%  26.47%
% of trades with positive returns 62.67% 58.97% 57.69% 80.77% 78.57% 77.78% 88.89% 71.43% 57.14% 100% 100% 100%

Table 2.11: Trading strategy comparison. SP500 average annualized returns over the out-
of-sample period Jan. 1, 2017 to April 20, 2018.

2.9 Conclusion

The interest in interval data arises because interval measurements offer a more
complete description of a data set. In time series, each time realization has joint information
on the level and the dispersion of the process under study. However, statistical analysis of
interval-valued data requires that the natural order of the interval is preserved. Though
there are several works that consider the problem of estimation with constraints, we are
not aware of any work that considers the construction of forecasts for interval-valued data
satisfying the natural constraint in each period of time, i.e. lower bound is not larger than
the upper bound, or equivalently, the range of the interval must be strictly positive. Our
contribution lies on approximating a probabilistic forecast of an interval-valued time series
by offering alternative approaches to construct bivariate prediction regions of the center
and the range, or the lower and upper bounds, of the interval.

To overcome the positive constraint of the range, we have estimated a Gaussian

bivariate system for the center/log-range system, which also delivers QML properties for our
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estimators. However, the interest of the researcher is not the prediction of the center/log-
range but the center/range or upper/lower bounds of the interval. By implementing either
analytical or bootstrap methods we have directly transformed the prediction regions for the
center/log-range system into those for the center/range and upper/lower bounds systems.
It is important to remark that we do not focus on point forecast purposely. By focusing on
prediction regions rather than on point forecasts, we avoid the biases that are associated
with the exp-transformation of the point forecasts of log-transformed variable. In this
case, bias-correction techniques are necessary if one’s interest is the conditional mean of
the future variable. A prediction region for the center/log-range does not need any bias
correction when we transform it to a prediction region of the center/range system because
the quantile is preserved under a monotonic transformation like the exp-transformation.
However, these transformed prediction regions can have very irregular shapes even in the
most straightforward scenario of bivariate normality of the center/log-range system. If a
central point forecast is of interest, the researcher can always calculate the centroid of the
region.

Beyond the standard coverage rate, we have proposed several new metrics to eval-
uate the performance of different prediction regions. We have introduced a notion of risk to
the evaluation of the regions by considering the location of the out-of-the-region outcomes
with respect to some central point in the region. The researcher would like to minimize risk
once the empirical coverage of the region is close to the nominal coverage. We have consid-
ered Gaussian and non-Gaussian systems and our recommendation leans towards bootstrap

methods, even for Gaussian systems. Bootstrap ellipsoids and their transformed are best
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when the joint distribution of the center/log-range system is symmetric. If it is not, then
bootstrap Bonferroni rectangles will be preferred.

We have analyzed the time series of the daily low/high return interval of the SP500
index. We modeled and predicted the joint conditional density of the return level and the
return volatility. We showed that the construction of several prediction regions of the center
and range of the return interval do not require strong parametric distributional assumptions.
We also developed a trading strategy based on the constructed prediction regions for SP500

high and low daily returns, and showed its profitability.
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Chapter 3

A Truncated Mixture Transition

Model for Interval-valued Time

Series

3.1 Introduction

Interval data refers to data sets where the observation is an interval in contrast
to a single point. Intervals arise in a variety of situations. There are instances when the
data is directly collected in interval format. A standard example is survey design that
avoids asking participants about private or sensitive information, e.g. income, and the
answer is provided in interval format, e.g. [$50K, $100K]. In these cases, interval data is
the only data format available to the researchers. In other instances, intervals arise as a

result of aggregating data. The data may be collected at the individual level, e.g., gas
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prices in a gas station, but the research question deals with a larger unit, e.g., gas prices
at the county level. Rather than providing an average of gas station prices, aggregating
the data in interval format for each county is more informative because it preserves the
internal price variation of each county. Financial data, e.g., tick-by-tick stock transaction
data recorded at the ultra-high frequency, generally collapses to a lower frequency single
point, e.g. the daily closing price. Aggregating the data into intervals, e.g. daily max/min
price interval, is more useful because it provides information on both the price level and
the daily price volatility. A similar example is the interval of daily low/high temperature
that provides relevant information for decision making. Finally, intervals can also arise
because there is uncertainty on the measurement of the variable of interest. Regardless of
the data generation mechanism of intervals, we define an interval-valued time series (ITS)
as a collection of interval data observed over time.

The literature on modeling interval data and I'TS can be divided into two categories
depending on the data representation: the center/range system (e.g. center and range are
respectively the midpoint and the distance between the upper and lower bounds.) or the
upper/lower bound system. In the center/range system, the interval constraint is that the
range cannot be smaller than zero. Lima Neto and de Carvalho (2010) propose modeling
center and range separately while imposing non-negative constraints on the parameters of
the range equation, which are unnecessarily too restrictive and complicate the estimation of
the system. Tu and Wang (2016) overcome this restriction by log-transforming the range.
However, it requires bias correction for the conditional mean and can fail when zero is

present in range data. In the upper/lower bound system, an equivalent interval constraint
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is that the upper bound cannot be smaller than the lower bound. Gonzélez-Rivera and Lin
(2013) propose a constrained regression model (GL) that preserves this natural order of the
interval. They assume that the bivariate errors of the system of bounds follow a bivariate
truncated normal distribution, where the truncation encloses the constraint that the upper
bound is not smaller than the lower bound. However, this assumption is restrictive as the
consistency of the estimators heavily depends on it.

The previous literature explores a variety of ways to preserve the interval con-
straint, and mainly focuses on modeling the conditional mean of ITS. To the best of our
knowledge, none of the existing work has considered modeling the potential conditional
heteroskedasticity in I'TS, a feature that has been widely recognized in point-valued time
series (PTS). One exception is that GL may produce conditional heteroskedasticity as a
byproduct. In addition, many PTS exhibit non-Gaussian features that may also appear in
ITS, such as flat streches, burst of activities, outliers and changepoints (see e.g., Le et.al.
1996, Wong and Li 2000), opening a door for models capable of generating more flexible
predictive densities, an issue that has not been addressed in the current ITS literature. By
contrast, there is a vast amount of literature on modeling conditional heteroskedasticity
and non-Gaussian behaviors for PTS. Particularly, Le et. al. (1996) propose a Mixture
Transition Distribution (M1 D) model for the univariate PTS that seeks to account for the
non-Gaussian features. Their idea is to specify the conditional distribution for the variable
of interest as a mixture distribution, where each component contains only one lag from
the information set. The fact that MTD is able to handle conditional heteroskedasticity

is noted and discussed by Berchtold and Raftery (2002). MTD is generalized by Wong
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and Li (2000) under the name of Mixture Autoregressive (M AR) model to entertain more
flexibility by allowing each component to depend on the full information set. Hassan and
Lii (2006) extend MTD for the marked point process under a bivariate setting.

In this chapter, we propose a model for ITS in the upper/lower bound system in
the spirit of the MTD model. We specify the joint distribution of the upper bound (z;)
and lower bound (y;) conditional on the information set as a mixture of truncated bivariate
normal distribution, where for each component the bivariate normal distribution is trun-
cated at x; > y;. The information set enters the conditional distribution as a linear function
through the pseudo location parameter of the truncated bivariate normal distribution for
each component.! The model comes with several benefits. First, it can preserve the natural
order of ITS, that is, the upper bound not smaller than the lower bound. Second, it can
capture conditional heteroskedasticity without modeling it explicitly, as the dynamics enter
the covariance matrix via the truncation and the mixture framework. Third, the mixture
distribution that the model based on provides great flexibility to approximate the underlying
true conditional distribution, and hence can improve the quality of density forecast.

It is well known that the maximum likelihood estimator (MLE) does not have a
closed-form solution for mixture models resulting from the complexity of the likelihood.
In the literature, EM algorithm is a standard device to find the MLE for mixture models
due to its simplicity and monotonicity in the likelihood (see e.g. Hamilton 1990, Le et.
al. 1996, Hassan and Lii 2006). However, such a standard EM algorithm fails in our

model as no closed-form solution can be obtained in the M step. This is caused by the

!The pseudo location parameter of a truncated bivariate normal distribution can be interpreted as the
location parameter of the bivariate normal distribution (before the truncation). It is called pseudo because
it no longer represents the mean (location) of the truncated distribution after the truncation is imposed.
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normalizing factor in the truncated normal distribution, which possesses a complex form
after taking the derivative. To overcome this problem, we propose a new EM algorithm.?
The innovation is made by constructing a high level pseudo complete data generating process
that brings in more latent variables than the standard EM algorithm. Specifically, at each
time the observation is generated in four steps. First, a membership variable (latent) is
generated from a multinomial distribution that suggests which component the observation
truly comes from. Second, conditional on the observation coming from the component
indicated in the previous step, a variable (latent) is obtained from a geometric distribution
that indicates the number of invalid observations (z: < y:) before the occurrence of a valid
observation (z; > y;). Third, generate the corresponding number of invalid observations
(latent) independently from the area of the bivariate normal distribution where x; < y;.
Fourth, draw one observation from the area of the bivariate normal distribution where
xt > Y, and treat it as the valid observation. The Monte Carlo simulations indicate that
the new EM algorithm performs well with the finite sample. We show that the MLE is
consistent under some regular assumptions. We apply the model to IBM daily stock return
ITS and show that it outperforms the competing models.

The organization of the chapter is as follows. In Section 2, we introduce the
truncated mixture transition model and discuss its properties. In Section 3, we propose the
new EM algorithm. In Section 4, we show the consistency of the MLE. In Section 5, we
perform the Monte Carlo simulations. In Section 6, we apply our model to IBM daily stock

return ITS. We conclude in Section 7.

2The new EM algorithm can be applied generally to data sets with any kinds of truncation either in the
time series setting or for cross-sectional probability clustering.
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3.2 The Truncated Mixture Transition Model

3.2.1 Definition

Let x; be the upper bound, and y; be the lower bound of the interval observed at

time ¢. The interval time series data has the following format

{ (xy,y),t=1,...T }

where by construction x; > y;, and we denote Y; = (x4, ;)" hereafter. We say that
Y, is generated by a truncated mixture transition (T'MT(P,Q)) model if its conditional

density function given the past information set can be written as

P

FORFY =)o ;YD) (3.1)
j=1

P

 aj=1la;>0j=1,...,P

j=1

where P is the number of components and is assumed to be fixed, and @ is the
number of lags in each component.? F!~! is the information set up to time ¢ — 1, and
Yf_‘é = (Yie0,Yi—Q+1, -, Yim1). f](Yt]Yf__é) is a truncated bivariate normal probability
density function truncated at x; > y;. That is, for each component, the upper bound is not

smaller than the lower bound. The truncated density has the following form (see e.g. Nath

3The analysis in this chapter can be modified to accommodate the case where Q is allowed to be compo-
nent specific.
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1972)

apl— 2 (Vi — o) T (Vi — 1) (3.2)

FOYEY) = ;

1
2m| 25| F g
where 1 ; = Cj + Bj1Yi—1+ ... + Bj gYi—g, Cj (2 x 1) is a constant vector, Bj,
(2x2) (r=1,..,Q) is a matrix, X; (2 x 2) is a positive semi-definite matrix, and |A] is
the determinant of matrix A. (3.2) differs from a bivariate normal distribution in the extra

!
—w' g j

Vw' Xw

the truncated area (x; > y;). ® is the standard normal cumulative distribution function,

normalization term: F;j = 1 — ®( ), which represents the cumulative distribution of

and w = (1,-1)".

3.2.2 Theoretical properties

Given the definition above, we can write down the conditional mean of Y;:

Y“’rt ! ZQJ ot] +/*Lt7]) (33)
where
¥ (ke
W w' X w
;,t,j = - 7 (3.4)

Iy . —w' g
w le q)(\/m)

¢ is the standard normal density function. Unlike the normal density, where ji
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is the mean for component j, the additional term, M!, .. represents the mean shift after

0,t,57
the truncation (see Nath 1972 for moments of truncated normal distribution). As a result,
the conditional mean is no longer j;; but a nonlinear function of Ft=1. We also show
that the natural order of interval time series is preserved at the conditional mean level:
w' E(Y;|F=1)) > 0. The proof can be found in Appendix B.1.

A promising feature of T'MT model is that it can produce a time-varying con-

ditional variance to capture conditional heteroskedasticity. To see this, the conditional

variance is given by:

V(Y F (3.5)
=EYY/|F"™) = E|FHEX|F Y
P
_ 2 1 ! 1 / /
=Y (Mg g+ (M) + Moy juy g + ey )
j=1
P
-Q_a
j=1

P
j(Mc},t,j + Mt,j))(z aj(Mol,t,j + paeg))
j=1

where

/ / ¢ U, )
2 S ijw Zj —W pj Vw' Xiw
J w’ij w/ij 1— (I)( —w/ut,j )

Vw' Xjw

(3.6)
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3.3 Estimation

In this section, we discuss the estimation of the T'MT model using maximum
likelihood (ML). The goal is to estimate the set of parameters ¥ = {aj, A, ¥;|Vj} by

maximizing the likelihood:

T P
L) =45 log[Zajfj(Kllﬂfé,Bjan)] (3.7)
¢ Q
t=Q+1 J=1

where A; = (C}, Bj1, ..., Bj,g). We first consider an unconditional version of (3.7),
where p; ; = p; doesn’t depend on the information set. The corresponding log-likelihood

function for © = {«;, uj, X;|Vj} can be written as

1 T P
L®e) = TZlog[Zajfj(thj,Ej)] (3.8)
=1  j=1

Estimating @ is easier than ¥ because the conditional distribution of Y; doesn’t
depend on the information set and can be viewed as if the data is drawn i.i.d. from the
mixture distribution. Therefore, we will first illustrate the ML estimation of (3.8) and then
(3.7).

Clearly, no closed-form solution can be obtained from maximizing (3.8). In fact,
the likelihood functions of mixture models are usually non-concave, and often have several
local maxima (see e.g. Redner and Walker 1984). Dempster et. al. (1977) propose the

expectation maximization (EM) algorithm, and it has been widely applied to find the ML
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estimators for mixture models due to its simplicity and monotonicity property (see Dempster
et. al. 1977), e.g., Hamilton (1990) uses EM algorithm to estimate the regime switching
model. The statistical properties of EM algorithm have been studied extensively in the
literature (see e.g. Wu 1983, Meng 1994, McLachlan and Krishnan 2007, and Balakrishnan,
et. al. 2017).

A review of the EM algorithm for normal mixture models in unconditional setting
(each f;(.) in (3.8) represents a normal distribution) can be found in Appendix B.2. Lee
and Scott (2010) apply the EM algorithm to a truncated normal mixture model with each
component truncated by a rectangle, e.g., s < Y; < k, where s and k are vectors with the
same dimension as Y;. Although our model has a different type of truncation (x; > y,
or w'Y; > 0) , their arguments can be adapted to derive an EM algorithm. However,
this EM algorithm fails to have a closed-form solution in the M step, mainly due to the
truncation term (%) in the density (see Appendix B.3 for details). As a result, numerical

maximization is needed in M step (see e.g. Lange 1995), sacrificing the simplicity of the

EM algorithm. In the following, we propose a new EM algorithm that solves this problem.

3.3.1 A new EM algorithm for truncated normal mixture model (uncon-

ditional case)

The new EM algorithm begins by transforming the data generating process into
a missing data framework as follow. To obtain the observation Y;, a latent variable z; is
generated from a multinomial distribution, indicating which component the observation
truly comes from. Next, conditional on z;, another latent variable n; can be generated

from a geometric distribution. n; represents the number of invalid draws (z; < y;) from
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the respective component (a bivariate normal distribution) before a valid draw (x; > ;)
arrives. The valid draw (the (n; + 1)"* draw) is then treated as the t" observation (Y}).
In other words, only the valid draw can be observed while all the invalid draws (if any)
are latent. Denote YtA ={Yi1,Yi2,.... Yin,, Yin,+1} as all the draws for time ¢. We now
formalize the above data generating process.

Let z; follow a multinomial distribution:

9(z|@) = Hajtj (3.9)

Given the role n; plays in the above pseudo complete data generating process, it
is natural to specify its distribution conditional on z; as a geometric distribution, a discrete
probability distribution that describes the number of failures before the first occurrence of

success.

P .
atnel=,0) = [[[0-F)r]” (3.10)

Jj=1

L _ —w’uj . . . . .
where Fj =1 — &( \/m) is the cumulative distribution for the truncated area
x¢ > y¢) for component j, and represents the probability of getting a valid draw from the
Y J

bivariate normal distribution. Then, the conditional density of YtA is specified as below
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h(}/tA’Zt,TLt,@

N Yin, nt ¢N Y, 2t;
H[fj ( ; +1) (f] ( k))] (3.11)

1— F

j=1 k=1

where fJN (.) is the bivariate normal density of component j. Next, the joint density

function of the pseudo complete data ({Y;4, z;,n:}) can be constructed,

WY 2,m00) = g(2]0)q(nu] 2, OVM(Y 2,14, O)
P n a0
= H[%f Yt,mﬂ)Hffv(YLk)} (3.12)
=1 k1

and we can write down the pseudo complete log-likelihood function.

1
LE(©) TZZ% logaj + log fN (Yime+1) —|—Zlogf (Yir)] (3.13)

t=1 j=1

E Step: the above likelihood (3.13) is replaced with its conditional expectation.

See Appendix B.4 for details.

Q10"

=E(L°(0)|Y,e)

1 N e
:Tzz tj lOQOé]-f-lngJ (Ylfnt+1)+ntj( lng] (Yt’k)(ﬁ

t=1 j=1 J

)dYir)]  (3.14)
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where fJN () and F Jl are respectively fJN (.) and Fj conditional on ©' (the param-

- 1-F!
eter set of the previous (I'") iteration). 7y j = E(ni|z; = 1,Y,0!) = =~ and
j

th = P(thZHY,Ql)

P(zj = 1,Y;]|0Y
P(Y;]6Y)
R0 -
S alfi(Yy) (319)

M Step: We can obtain a closed-form solution by maximizing Q(©|6"). See Ap-

pendix B.5 for details.

T -
I+1 D1 2t

ol = L7 (3.16)

- _ 1,0

per i B (Ve T g (Mg + b))

= U - (3.17)

Dot 25 (L4 7 5)

T - v 4 N TS R

EJZ.H _ >oi—1 25((Ye My )(Ye M ) "‘ntuMd/,ﬂ (3.18)

T - ~
D i 2t (14 7 5)

21 ! 1, 1,0 ! ! !
where Mg, ; = My (5 =) (M) + (M) (= 15+ (1 = 157) (1 =15

1,0 2,1 . 1 9 . ;
M 4 and M 4 are respectively M d.j and M 44 conditional on ©".

My == ' (3.19)
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Yoww'E;  w'py 9 )
wljw |\ Sw'Xw ] — O w'pu )

M;; =X+ (3.20)

It is interesting to notice that (3.17) and (3.18) are the first two moments of the pseudo
complete sample weighted by z. For example, the numerator in (3.17) not only includes
the observed valid draw (Y;) but also imputes the sum of the latent invalid draws at time
t with its conditional expectation that is feasible at the current iteration: 7y (M. ;J + ué)
Similar pattern can also be observed in the denominator with 1+, ; being the total number
of draws at time ¢t. Moreover, our EM algorithm includes the standard EM algorithm for
normal mixture models (Appendix) as a special case. To see this, suppose no truncation is
imposed, we have F; = 1, and 7y j = 0. Therefore, the E step and M step become the same
as in Appendix.

Finally, repeat E step and M step until convergence. Clearly, the new EM algo-
rithm provides a closed-form solution and is able to maintain the monotonicity property.
Furthermore, the constraints on parameters are satisfied by construction, e.g., X! is pos-

itive semi-definite, Zle aéﬂ =1, and a;“ > 0.
3.3.2 A new EM algorithm for truncated normal mixture model (condi-

tional case)

We now discuss the conditional case. The EM algorithm is applied to the likelihood
(3.7) to estimate ¥ = {a;, Aj, X;|Vj € P}. Similar to section 3.1, the pseudo complete log-

likelihood function can be constructed:
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T P
LCw) = Z Z loga]—I—logftj(Y}mH —i—ZlogftJ (Yir)] (3.21)
:Q j=1 k=1

E Step: the conditional expectation of complete log-likelihood function can be

written as

Q')

=E[LE(@)|Y, ¥

1l - N ) N iy (YVer)
= > > zyllogay +1og £ (Vi) + i ([ 1og 5 (Yer) (F2——7)dYo )]
T-Q . 1-F},
t=Q+1 j=1 t.j
(3.22)
~ ft (Y . 1-F} .
where Z;; = ;lé—JJ(‘t:)Wt)' firj = B(ngzy = 1,Y,0) = Ftl;”. ftj\;l() and Ft{j are

respectively fJN (.) and F} conditional on ¥ and with p; replaced by pj = C; + Bj1Yi—1 +
.+ Bj’QY;f—Q.
M Step: maximizing Q(¥|¥') gives the iterated rules for ¥. See Appendix B.6 for

details.
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1 2ot=Qi1 2t

2

a; TP (3.23)
AT = (XY + XMy, 1) (XX + X)) (3.24)
T e _plH1 _AlH1 IS Vo

EJZ.H _ doi—qi1 2[(Ye — A7 X ) (Ve — AT X)) + i i My, S (3.25)

T ~ -
>i=py1 2 (1+ T j)

Va! _ (17l va! 7l — [z (gl l
Whel"e Md,,T,j — (M /,Q“Fl»j’ ciey Md/,T,j)/7 and M /,t,j — thnt7j(Md7t’j + /'Lt,j)’
Mit,j is Mij with ,ué» replaced by '“ff,j = CJZ. + B§71Yt4 + ...+ B;QYt,Q, and MQ,’M

1+1

1] respectively. Furthermore, X'j =

is M 2,,]- with ,ué» and ,ué“ replaced by ,uéﬂ- and u
\/§j7'11+2Q ® X, and X = (T%LQ, (Yg_l)’, o (YlT_Q)/), where 7% is a vector of ones with
dimension a x b. X; = /(%; © ﬁj)711+2Q OX, zZ = (2g+1, - 215), 1y = (RQ+1j, ---nrj),
Y; = \/2j7712®(Yg+1)’, and X, _; = (1,Y/ 4, ..., }QLQ). The operator ® represents Hadamard
product.

The iterated rules for a; and X; remain similar to these in Section 3.1 with only
minor changes. Note that A; has an iterated rule that resembles the format of the maximum
likelihood estimates for a vector autoregressive model (VAR). When truncation is not in
presence, it becomes Aé“ = ( J’Y])’ (X ;)_( ;)7 L. Therefore, (3.24) can be viewed as applying

V AR to the pseudo complete sample.

3.4 Asymptotic theory

In this section, we discuss the asymptotic properties of the ML estimator. The

following theorem shows that under some regular conditions, the MLE is consistent. We
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begin by imposing the following assumptions:

Assumption 1. {Y;} are generated from (3.1), and are strictly stationary and
ergodic.

Assumption 2. ¥ is the true parameter set, and ¥ is an interior point of =,
where = is a compact subset of {¥ € (0,1)7~! x ROTQIP . 5. are positive definite Vj}.

Assumption 3. E(||Y;||?) < oo, where ||.|| is the Euclidean norm.

These assumptions are fairly regular in the literature. It may be challenging to
verify Assumption 1 as the model is nonlinear. The necessary and sufficient conditions for
stationarity and ergodicity that are imposed on parameters remain for future research. No-
tice that for the Gaussian MTD and M AR models, the sufficient and necessary conditions
for first-order and second-order stationarity have been derived (see e.g., Le et. al. 1996,
Wong and Li 2000). Assumption 2 and Assumption 3 are sufficient to ensure the uniform
convergence of the likelihood function.

The following theorem establishes the strong consistency of ML estimator and the
proof can be found in Appendix B.7.

Theorem 1. Under Assumption 1,2 and 3, the maximum likelihood estimator

~

U = argmaxL(¥) is strongly consistent, that is U — ¥y a.s.
vex

3.5 Monte Carlo Simulation

In this section, we perform Monte Carlo simulation to evaluate the finite sample
performance of the proposed EM algorithm on the T"MT model. Experiments are designed

for both unconditional and conditional cases.
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3.5.1 Unconditional case experiments

We consider two cases with the number of components being P =2 (DGP 1) and
P = 3 (DGP 2). The data generating process is as follow. First, we set the parameters
according to the configurations in Table 3.1 and Table 3.2. Second, we calculate 7; for all j,
which represents the corresponding component weight for each component before the trun-
cation is imposed. The relationship between «; and 7n; can be described as: o = %
Third, a large enough sample is drawn from the bivariate normal mixture distribution (com-
ponent weight 7;). Finally, only the observations that satisfy the constraint z; > y, are
kept.4

The initial values of parameters are estimated using K-means °, from where the
EM algorithm iterates until convergence to find the MLE. 6 We consider two sample sizes
(T =200 and T" = 1000). The number of Monte Carlo replications is 100.

In Table 3.1 and Table 3.2, we report the means and standard errors of the esti-
mated parameters across replications. The biases of parameters are small in both DGPs.
As the sample size increases, the estimates get closer to the true values and the standard
errors become smaller. One should bear in mind that in all the DGPs, it is not necessary

to impose constraints on p (e.g., w’'p > 0) since p is not the mean of the truncated normal

distribution.

4From these observations that satisfy the constraint, start collecting from the 101" observation (the
initial 100 observations are discarded, known as the burn-in period) until the desired sample size is reached.

SK-means provides bias estimates because it doesn’t account for the truncation. It treats the sample as if
it comes from a bivariate normal mixture distribution. Nevertheless, in our experiments, these initial values
are usually good enough for the EM algorithm to converge to the true parameters.

5The stopping criterium is set such that either 200 iterations are reached or the increase in log-likelihood
(3.8) is less than e 7.
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Two components « o DX
8 1 05
0.4
True 7 05 1
4 2 03
0.6 3 0.3 2
7.9666 1.0137  0.5303
EM 0.3995 (0.1653) (0.2103)  (0.2237)
(0.0374) 7.0037 0.5303  1.0735
(0.1961) (0.2237)  (0.3297)
(T=200) 3.9657 2.0160  0.3161
0.6005 (0.3028) (0.4444) (0.3399)
(0.0374) 2.9665 0.3161  1.9763
(0.2932) (0.3399)  (0.4059)
7.9961 1.0002  0.4988
EM 0.3997 (0.0730) (0.1015) (0.0774)
(0.0180) 7.0083 0.4988  1.0136
(0.0754) (0.0774) (0.1138)
(T=1000) 3.9994 1.9831  0.2975
0.6003 (0.1122) (0.1873)  (0.1224)
(0.0180) 3.0082 0.2975  1.9995
(0.1301) (0.1224) (0.1994)

Note: the numbers in parentheses are standard errors.

Table 3.1: Simulation results for DGP 1
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Three components 6! i b

10 105
02 9 0.5 1
True 2 31
0.3 5 3
—4 52
0.5 I 5 5
9.7305 1.0930  0.5093
0.1971 (1.4018) (0.4596)  (0.2354)
(0.0280) 8.7987 0.5093  1.0291
(1.2179) (0.2354) (0.4231)
EM 2.2173 2.9945  1.0580
(T=200) 0.2966 (1.5182) (0.9741)  (0.5984)
N (0.0350) 2.1865 1.0580  2.9086
(1.3117) (0.5984) (1.1476)
~4.1199 5.2792  2.0684
0.5063 (0.4724) (1.3622) (0.7550)
(0.0349) —~5.9924 2.0684  4.8277
(0.3916) (0.7550) (0.9366)
10.0053 0.9981  0.5074
0.1991 (0.1045) (0.1107)  (0.0882)
(0.0144) 9.0070 0.5074  1.0219
(0.1022) (0.0882) (0.1183)
EM 2.0231 2.9561  0.9945
B 0.3010 (0.2787) (0.4035) (0.2765)
(T=1000) (0.0159) 2.0295 0.9945  3.0806
(0.2621) (0.2765) (0.5105)
~3.9821 49736 2.0095
0.4999 (0.1661) (0.4139) (0.3685)
(0.0176) ~5.9978 2.0095  4.9974
(0.1804) (0.3685) (0.5284)

Note: the numbers in parentheses are standard errors.

Table 3.2: Simulation results for DGP 2

To visualize the truncations on the mixture distribution, we plot in Figure 3.1 the
truncations for two component in DGP 1. For a better comparison, each component is

re-centered at the origin (shifted by f;) together with the truncation lines.
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Figure 3.1: Truncation of component density

In Figure 3.2(a), we plot the likelihood (3.8) for a one-time implementation of the
EM algorithm in DGP 1. It provides the evidence that monotonicity in likelihood holds
for the new EM algorithm. Moreover, the speed of convergence is fast with convergence

achieved in about 20 iterations.
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(a) Unconditional experiment (b) Conditional experiment

Figure 3.2: Log-likelihood
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3.5.2 Conditional case experiments

Unlike the unconditional case where each observation is temporally independent,
the conditional case carries time dependence in each observation. Hence, the data generating
process is slightly different. First, we set the parameters as in Table 3.3. Second, at time ¢,
we calculate 7 ; for each j, where the subscript ¢ comes from F; ; as u; is now replaced with
;- Notice that «; is fixed while 7 ; changes with time. Third, independent random draws
(e.g. 1000 draws) are made from the bivariate normal mixture distribution (component
weight 7 ;). Fourth, we keep the draws that satisfy the constraint x; > y;, from which one
is selected randomly as the observation at time t. Repeat the above steps until a sample
with desired sample size is generated.”

In Table 3.3, we design three cases (DGP 3 and DGP 4 are TMT(2,1), and DGP 5
is TMT(3,1)). Specifically, DGP 3 considers two components with the constraint (x; > y)
binding for one but not the other. ® DGP 4 focuses on the case where the constraint is
binding for both components. DGP 5 is a combination with the restriction not binding,
binding with low persistency, and binding with high persistency. To visualize the constraint,
we plot in Figure 3.3 the truncations for DGP 5. As the truncation is time varying, it cuts
the density at different locations after re-centering (shifted by p,; for each t and each
j)- The variation in truncations is smaller for the low persistency component because the

location of truncation is more likely to be dominated by the constant C}.

"Similar to section 5.1, the first 100 observations are discarded.
8The constraint will not be binding if w’ ¢ ; = w’'(Cj + Bj1Yi—1+4 ...+ Bj,oYi—g) > 0. In our simulation,
we fix B and manipulate C' to allow the restriction to be binding or not.
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Table 3.3: Data Generating Process (DGP 3 - DGP 5)

5 5
4 4
3 3
2 2

-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 -4 -3 -2 -1 0 1 2 3 4 5
Xt (1) Xt (1)

(a) Binding (high persistency) (b) Not Binding

Vi @)
&

5 L L L L L L L )

i 1)

(c) Binding (low persistency)

Figure 3.3: Truncations of DGP 5
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We initialize the EM algorithm by randomly choosing 50 points from the parameter
space.” Each point runs EM algorithm separately. The one that achieves the highest
likelihood is chosen. We consider two sample sizes (7' = 200 and 7" = 1000). The number
of Monte Carlo replications is 100.

We summarize the average results across replications from Table 3.4 to Table 3.6.
Standard errors are calculated over replications. In all cases, the EM algorithm performs
satisfactory in both small and large sample experiments. The standard error shrinks towards

zero as the sample size increases. Last but not least, we can see in Figure 3.2(b) that the

monotonicity of EM algorithm is preserved for the likelihood (3.7).

DGP 3 a c B )
o4 2 0.1 -0.8 04 0.3
True 0 —0.8 0.1 0.3 04
06 -2 0.7 -0.1 04 0.3
: -2 —0.1 0.7 0.3 04
1.9385 0.1054 —0.7978 0.4177  0.3006
EM 0.3964 (0.7890) (0.0801) (0.0383) (0.2974)  (0.0986)
(0.0319) 0.0510 —0.7941 0.1185 0.3006  0.4096
(0.4026) (0.0632) (0.1738) (0.0986) (0.1867)
(T=200) —1.9644 0.6939 —0.1061 0.3957  0.2997
0.6036 (0.4446) (0.0644)  (0.0766) (0.0560) (0.0476)
(0.0319) —2.0041 —0.1023  0.6891 0.2997  0.4015
(0.3235) (0.0730)  (0.0595) (0.0476)  (0.0661)
2.0073 0.0983  —0.8009 0.3937  0.2931
EM 0.3989 (0.0734) (0.0127) (0.0163) (0.0253)  (0.0230)
(0.0152) 0.0038 —0.8016  0.0989 0.2931  0.3916
(0.0785) (0.0133)  (0.0170) (0.0230) (0.0280)
(T=1000) —2.0037 0.6995 —0.1023 0.4011  0.3006
0.6011 (0.0625) (0.0099) (0.0141) (0.0234) (0.0212)
(0.0152) —2.0038 —0.1012  0.6985 0.3006  0.3987
(0.0615) (0.0102) (0.0144) (0.0212) (0.0261)

Note: the numbers in parentheses are standard errors.

Table 3.4: Simulation results for DGP 3

“Elements of « is uniformly selected from (0, 1) and sum up to one. Elements of B are uniformly selected
from (—1,1). Elements of C' and off-diagonal elements of L are uniformly selected from (—3,3), where L
is the Cholesky decomposition lower triangle matrix of X = LL’. Diagonal elements of L are uniformly
selected from (0, 3). For DGP 9, 200 initial points are chosen to account for a higher dimensional parameter
space.
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DGP 4 a c B ¥
o4 0 0.1 -0.8 04 0.3
Teue 0 —0.8 0.1 0.3 04
06 2 02 —0.1 04 0.3
: 2 —0.1 0.2 0.3 04
—0.0130 0.1034 —0.8003 0.3748  0.2805
EM 0.3988 (0.2122) (0.2689) (0.2610) (0.0747) (0.0718)
(0.0415) 0.0219 —0.7720  0.0607 0.2805  0.3878
(0.2326) (0.2643)  (0.2704) (0.0718)  (0.0945)
(T=200) 1.9462 0.2349 —0.1332 0.4023  0.2879
0.6012 (0.2226) (0.1950)  (0.1854) (0.0723) (0.0568)
(0.0415) 2.0131 —0.0790 0.1753 0.2879  0.3944
(0.2178) (0.2044)  (0.1960) (0.0568) (0.0728)
—0.0088 0.0967 —0.7971 0.3978  0.2940
EM 0.4010 (0.1269) (0.1268) (0.1127) (0.0386) (0.0322)
(0.0177) 0.0208 —0.8237 0.1233 0.2040  0.3983
(0.1076) (0.1111)  (0.1003) (0.0322) (0.0462)
(T=1000) 1.9644 0.2187 —0.1178 0.4085  0.3002
0.5990 (0.1349) (0.0863)  (0.0838) (0.0353)  (0.0306)
(0.0177) 2.0605 —0.1280 0.2271 0.3002  0.4203
(0.1935) (0.1189) (0.1173) (0.0306) (0.0523)

Note: the numbers in parentheses are standard errors.

Table 3.5: Simulation results for DGP 4
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DGP 5 o c B )
05 2 0.1 -08 04 0.3
: 2 —0.8 0.1 0.3 04
True 03 2 03 —0.4 04 0.3
' 0 —04 0.3 0.3 04
09 9 02 —0.1 04 0.3
: 2 ~0.1 0.2 0.3 0.4
1.9985 0.0978 —0.8027 0.3910  0.2908
0.5078 (0.1535) (0.0551)  (0.0687) (0.0665) (0.0560)
(0.0427) 1.9867 —0.7980  0.0972 0.2908  0.3911
(0.1433) (0.0515) (0.0642) (0.0560) (0.0594)
EM 2.0114 0.2991 —0.3892 0.3665  0.2736
(T=200) 0.2932 (0.1505) (0.0640)  (0.0771) (0.0887) (0.0746)
= (0.0378) 0.0055 —0.4047 0.3111 0.2736  0.3664
(0.1390) (0.0610) (0.0753) (0.0746) (0.0792)
—2.0138 0.2002 —0.1047 0.3873  0.2917
0.1990 (0.2691) (0.0892) (0.1025) (0.0944) (0.0820)
(0.0294) —1.8540 —0.1382  0.2350 0.2917  0.4110
(0.4928) (0.1145) (0.1285) (0.0820) (0.1459)
2.0026 0.0990 —0.8016 0.3966  0.2995
0.5000 (0.0583) (0.0223) (0.0247) (0.0272) (0.0228)
(0.0178) 1.9920 —0.7969  0.0953 0.2995  0.3991
(0.0574) (0.0220)  (0.0249) (0.0228) (0.0253)
EM 1.9968 0.3008 —0.3987 0.3907  0.2963
(T=1000) 0.3001 (0.0710) (0.0273)  (0.0304) (0.0334) (0.0274)
= (0.0167) —0.0054 —0.3983  0.2990 0.2963  0.3986
(0.0707) (0.0263) (0.0308) (0.0274)  (0.0334)
—1.9983 0.2003 —0.0987 0.3886  0.2914
0.1999 (0.0954) (0.0298) (0.0437) (0.0483) (0.0382)
(0.0115) —2.0139 —0.0960 0.1996 0.2914  0.3906
(0.1007) (0.0310) (0.0427) (0.0382) (0.0493)

Note: the numbers in parentheses are standard errors.

Table 3.6: Simulation results for DGP 5

3.6 Empirical Application

We apply TMT to model the interval-valued IBM daily stock returns. The
high/low return is calculated as the percentage change of the highest/lowest daily price
with respect to the closing price of the previous day. For example, the high return at time ¢
is: rhight = 100(Phight — Peioset—1)/ Peioset—1- The data is constructed as an interval-valued
time series with rpign+ > 70w ¢ To visualize the data, we plot a sample from 2004/1/1 to

2018/4/1 (3584 observations) in Figure 3.4. We can see that the volatility for the high and
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low returns is high in some periods while remaining quiet in others, suggesting potentially

the presence of multiple regimes in the variance of the system.

High return
Low return

i \”“‘L‘h\x\"“mi‘ ‘5“‘““’\"“‘”U“‘r"\‘%‘\‘\\f'm’nr‘w‘ i bl e

L L L L L L L
0 500 1000 1500 2000 2500 3000 3500

(a) Real data

Figure 3.4: Daily IBM High/Low Stock Returns (2004/1/1 to 2018/4/1)

We consider TMT model with up to seven components and four lags. That is,
P=1{2,..,7}, and Q = {1,2,3,4}, with total 28 specifications. ° The best fitted model
selected by BIC is TMT(4,2). The estimation results are reported in Table 3.7.11 Tt is
interesting to see that the fourth component has high volatility (big X') while only happens
with a small probability (small «). Figure 3.5 shows the truncations for each component
across time after re-centering (shifted by p ; for each ¢ and each j). The truncations vary
by component: the first and second components have truncations almost not binding while

for the last two components the truncations are binding.

"The case when only one component is involved ( TMT(1,Q) ) turns out to be the same as G'L, which,
for a better comparison, will be discussed in the following separately.
"'Standard errors are calculated using block bootstrap (Politis and White 2004)
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Component a C By By X

0.3916 0.0681 —0.1033 —0.0276  0.0327 0.1838 0.1600

. 0.4184 (0.0535) (0.0331) (0.0412) (0.0368) (0.0370) (0.0230)  (0.0195)

(0.0428) —0.2864 —0.0683  0.0801 —0.1285 0.1480 0.1600 0.1909

(0.0688) (0.0411)  (0.0501) (0.0402) (0.0397) (0.0195)  (0.0204)

0.3678 0.1758 —0.1563 0.0152  —0.0857 0.5367  0.5165

) 0.3635 (0.0859) (0.0781)  (0.0829) (0.0442)  (0.0587) (0.0883) (0.0832)

(0.0450) —0.4786 —0.0843 0.1641 —0.2135 0.1674 0.5165 0.7006

(0.0886) (0.0819) (0.1001) (0.0531)  (0.0856) (0.0832)  (0.0840)

0.4125 0.6549  —0.5425 0.1157  —0.2460 0.3476 0.1228

s 0.1323 (0.1946) (0.1715) (0.1354) (0.1214)  (0.0968) (0.0819)  (0.0606)

(0.0508) —0.1677 —0.1510  0.1473 0.1101  —0.2316 0.1228 0.1778

(0.1054) (0.0973) (0.0821) (0.0632) (0.0693) (0.0606) (0.0617)

0.1484 0.1015 —0.1265 0.5265 —0.3146 5.9263 5.4043

1 0.0857 (0.3580) (0.1948)  (0.1856) (0.2271) (0.1736) (0.8068) (0.7199)

(0.0189) —0.9836 —0.1358 0.3614 —0.0414 0.2858 5.4043 6.2028

(0.4077) (0.1980) (0.1778) (0.2525) (0.1805) (0.7199) (0.8251)

Note: the numbers in parentheses are standard errors.
Table 3.7: Estimation results of TMT' (4, 2)
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Figure 3.5: Truncations for the fitted TMT'(4,2)
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We plot in Figure 3.6 the fitted conditional means (3.3) together with the realized
data. The persistency in the data seems to be well described. Figure 3.6 also shows the
fitted conditional variances and correlation coefficients (3.5) of the high/low returns. The
spikes in the fitted variances is aligned with the volatility clustering in the data. The
contemporaneous conditional correlations stay at a relatively high level most of the time
while drop toward zero during the volatile periods. It aligns with the observation that the
ranges (gaps between upper and lower bounds) tend to be larger in these periods. In Figure
3.7, we plot some fitted conditional densities to illustrate the flexibility of the truncated

normal mixture distribution.
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(a) Fitted Conditional Mean (b) Fitted Variance (High Return)
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Figure 3.6: Fitted Conditional Mean, Variance and Correlation of Daily IBM High/Low
Stock Returns (2004/1/1 to 2018/4/1)
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Figure 3.7: Fitted Conditional Density Contours

Given that not all the parameters in Table 3.7 are significant, and to account for
the increase in parameters when the number of components grows larger, we also consider
a restricted version of the model, RTMT(P), where the restriction is imposed such that
each component contains only one lag from the information set. For instance, u;; = C; +
B;;Y;—; and B;, = 0 for r # j. We consider up to seven components (P = {1,...,7})
for RI'MT. Finally, we compare the TMT and RTMT models with four other models.
The number of lags for these models is selected using BIC. The linear vector autoregressive
model serves as a benchmark. Two multivariate GARC H models are considered to account
for conditional heteroskedasticity in the data. See Bauwens et. al. (2006) for a review
of multivariate GARCH models. We also implement GL. Notice that, however, VAR
and VAR — MGARCH models cannot preserve the natural order of the ITS. A detailed

comparison of the six models is summarized in Table 3.8.
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Model for the mean  Model for the variance  Log-likelihood Number of parameters BIC

VAR(T) N 8604 30 17,454
VAR(T) MGARCH(1,1)-SBEKK -8175 35 -16,064
VAR(T) MGARCH(1,1)-DCC -8155 39 -15,991
GL(T) , -8486 33 -17,243
RTMT(5) , -6975 49 -14,352
TMT(4,2) _ -6833 55 14,117

Table 3.8: Evaluation of models

TMT achieves the highest BIC and likelihood while using the most parameters.
RTMT trades the likelihood and BIC for a smaller number of parameters. VAR uses the
smallest number of parameters and ends up having the smallest likelihood and BIC. After
accounting for time-varying conditional variance, the VAR—MGARC H models improve the
performance over VAR significantly, implying that the data is conditional heteroskedastic.
In terms of all criteria, GL lies in between VAR and VAR — MGARCH. This suggests
that although GL preserves the natural oder of the interval data, it has a limited ability

accommodating conditional heteroskedasticity.

3.7 Conclusions

We propose a truncated mixture transition model for the interval-valued time
series. The natural order of the data (upper bound greater than lower bound) is guaranteed
in our model using truncated normal distributions. The model enjoys great flexibility in
terms of both parameter and density specifications. However, the standard EM algorithm
to estimate mixture models fails since no closed-form solutions can be obtained in M step.
Therefore, a new EM algorithm is proposed, which brings the pseudo data generating process
to a higher level and encloses a closed-form solution in M step. We prove the consistency

of the maximum likelihood estimator. Simulation results show that the new EM algorithm
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performs well. Last but not least, we illustrate the performance of the model with an
application to the IBM daily high/low stock returns and it ourperforms other competing

models.
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Appendix A

Appendix for Chapter 1

A.1 Bias correction for the forecast of range (Guerrero, 1993)

A second order Taylor expansion of the log-range, i.e., y, 71, around E7(exp(yr7+n))

Yr T+h log(Er(exp(yr,r+n))) +

+ ety o (OPWrrn) = Er(exp(yrrn))) +

1
2(ET1(exp(Yr,T+h

DE (exp(yr,T—i-h) - ET(eXp(yT,T+h)))2

Take conditional expectation,

Urrinr = Er(Yrrin) = log(Er(exp(yrrin)))

1

B 2(Er(exp(yrrin)))? Er(exp(yrr+n) — ET(eXp(yT,T+h)))2
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By approximating the conditional variance of the log-range W}, 22 = Vare(yrr4n) by

1
(Er(exp(Yr.r4h

Wh,22 =~ NE Er(exp(yrr+n) — Br(exp(yrrin)))?

we can write ¥, 7 n 1 = Er(Yrrin) = log(Er(exp(Yrrin))) — %Wh,22- It follows that

Wh 22 )

y:,:m_h = eXP@r,T-yh\T) exp(

If the log-range is in fact normally distributed, the above expression is exact.

We take a Taylor’s expansion of the range, i.e. exp(y,r+p), around the conditional mean

ET (yr,T—l—h)a i-e'v

exp(Yr.rin) = exp(Er(yrrin)) +exp(BEr(Yrrin))Yrren — E7(Yrrin)] +

1
+§ exp(Er(Yr1+n)) Wi — Er(Yrrin) +

1
T3 exp(E7 (Yrr0) Wrren — Br(yrran)]® +

1
41 P(Br (o) wrren = Br(yrrsn)]' + -

By taking conditional expectation and plugging in the conditional moments of a normal

variate, we have

Wh 22
2

Wh 22
(Phaz,

1 1
Erlexp(yrr+n)] = exp(Er(yrrin))[l+ + @3W13,22 + @15W;§’,22 + -]

= exp(E7(Yr1+n))exXp

which is exactly the Guerrero’s bias-corrected forecast.
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Appendix B

Appendix for Chapter 2

Tables and Figures: Modeling SP500 Daily Low/High Return Interval

SP500 Low/High Returns

Center ‘ Range ‘ log-Range
Mean -0.002 1.154 -0.060
Median 0.005 0.928 -0.075
Standard Deviation 0.642 0.826 0.631
Excess Kurtosis 4.021 8.781 -0.215
Skewness -0.337 2.295 0.154
Minimum -4.219 0.146 -1.925
Maximum 3.812 8.731 2.167
Correlation Coefficient (wrt center) -0.122 -0.096
Q (10) (p value) 13.817 (0.18) | 7103 (0) 7296 (0)
Q (15) (p value) 18.201 (0.25) | 9500 (0) 9808 (0)
Q (20) (p value) 34.606 (0.02) | 11569 (0) | 12037 (0)

Table B.1: Descriptive Statistics for Center, Range and log-Range of Daily SP500 Low /High
Return Intervals (Jan.2, 2009-Apr.20, 2018)
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SP500 Low/High Return. Restricted VAR(6) for Center and log-Range System

Center

log-Range

‘ ‘ Coeff. estimate ‘ SE (robust) ‘ t-statistic H Coeff. estimate ‘ SE (robust) ‘ t-statistic ‘

Constant -0.0069 0.0148 -0.4662 -0.0013 0.0092 -0.1435
C(-1) -0.1739 0.0134 -12.9768
C(-2) -0.0900 0.0143 -6.3002
C(-3) -0.0594 0.0136 -4.3840
C(-4) -0.0363 0.0137 -2.6450
C(-5) 0.0130 0.0140 0.9326

C(-6) -0.0087 0.0142 -0.6100
log-R(-1) 0.1651 0.0226 7.2994

log-R(-2) 0.2172 0.0225 9.6581

log-R(-3) 0.1599 0.0226 7.0875

log-R(-4) 0.0922 0.0227 4.0583

log-R(-5) 0.0986 0.0233 4.2373

log-R(-6) 0.1080 0.0217 4.9768

Adj. R-squared 0 0.5229

SP500 Low/High Return. Restricted VAR(6) Residuals

’ ‘ Center ‘ log-Range
Mean 0.000 0.000
Median 0.008 -0.009
Standard Deviation 0.666 0.409
Excess Kurtosis 3.808 0.023
Skewness -0.294 0.149
Minimum -4.212 -1.274
Maximum 3.819 1.575
Correlation (Center/Log-range) -0.1689 -0.1689
Q (10) (p value) 14.232 (0.16) | 17.081 (0.07)
Q (15) (p value) 19.400 (0.20) | 20.626 (0.15)
Q (20) (p value) 34.380 (0.02) | 28.846 (0.09)

Table B.2: Estimation of VAR for Center and log-Range System (Jan. 1, 2009-Dec. 31,

2016)
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SP500 Low/High Return. Tests on VAR(6) residuals

t-statistics (tx,q)
Q lag k
1 2 3 4 )
0.01 3.94 3.32 3.52 3.73 3.72
0.05 3.54 2.48 3.09 2.74 2.29
0.1 -0.08 -1.37 -1.62 -2.12 -1.57
0.2 -3.62 -4.20 -3.95 -5.23 -4.72
0.3 -5.21 -6.12 -5.91 -5.81 -6.27
0.4 -5.75 -6.21 -6.43 -6.24 -6.26
0.5 -6.52 | -6.34 | -6.76 | -6.74 | -6.56
0.6 -6.29 -6.37 -6.43 -6.35 -6.57
0.7 -4.41 -4.72 -4.64 -4.63 -4.65
0.8 -3.34 -3.41 -3.56 -3.48 -3.95
0.9 -0.51 -0.67 -0.61 -0.71 -0.65
0.95 0.99 0.63 0.78 0.79 0.64
0.99 3.64 3.48 3.33 3.01 2.70

| C-statistic (Cy) | 114.60 | 107.23 | 118.33 | 118.34 | 108.55 |
C}, aggregates all 13 autocontours for a given lag k; its
5% critical value is 22.36

Table B.3: Generalized-AutoContouR (G-ACR) tests for conditional bivariate normality
(Gonzélez-Rivera and Sun, 2015) for SP500 Low/High Return Intervals.
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Figure B.1: SP500 low/high return interval. Autocorrelograms of center and log-range.
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Appendix C

Appendix for Chapter 3

C.1 Proof of W' E(Y,|F'1)) >0

It is sufficient to show that w'M}, . +w'u; ; > 0 for all j. Thus, it suffices to prove

ot,3
that
¢( w’E;w) —w’,u]
1—d( _5;]7w) w'Xw
Let A = \/_% . When X < 0, the above inequality obviously holds.
When A > 0, we know that 1—®(\) = %erfc(%), where erfc is the complementary
error function defined as er fe(z) = % [ exp(—t?)dt. Also, we have ¢(\) = \/%e:cp(—/\;).

The inequality becomes

148



1 N2 1 A
——-cexp(— —erfc(—=)A
Nor p(=3) gerfel 2)
Using the property of erfc function: erfe(z) < %%_;2)4, when z > 0, we have
zH+4/ 2+
2
1 exp(—2)\ 1 A
ﬁ 22 > 567’100(72))‘
VY o

1 A2 1 exp(—2)A
T A A 4
" BTVZTtE
1
1>

which obviously holds when A > 0 .

C.2 The EM algorithm for normal mixture model (unconditional case)

This section reviews the EM algorithm when the component density f;(Y;|u;, X;)
in (3.8) is a bivariate normal distribution. EM algorithm transforms the problem into
a missing data framework and constructs a pseudo complete data generating process. It
starts by assuming that each observation comes from one of the P components, and there

is a latent variable indicating which component the observation truly comes from. Let
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2tj € {0,1} be the indicator variable such that ztj = 1 if Y} is generated from component
j and 0 otherwise. The objective is to maximize the pseudo complete likelihood of {Y, z}.
Denote z; = {24, ..., zep}. To construct the complete likelihood, the latent variable 2¢j 18

specified to follow a multinomial distribution:

P
g9(z|@) = H s’ (C.1)
j=1
The conditional density of Y; on z; is
P .
J
n(Yilz, ) = T[4V, = (C:2)

Jj=1

The complete density function becomes

(Y, 2|0) = 9(2|O@)h(Yi|z, 0)

= ]P_[[afg (Wilag, )] (C:3)

Jj=1

Therefore, the complete log-likelihood function for © can be written as

T P T P
1 1
LEO) = = > ajlogas+ 5> > alogfi(Yilus, 2) (C.4)

t=1 j=1 t=1 j=1
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where 1" is the sample size. The EM algorithm begins by initializing the parameter
set, @Y, followed by the E and M steps.

E Step: Because z is not observed, L(0) is replaced with its conditional expec-
tation (Q(©|©")) conditional on the the observed data (Y) and the parameter set from the

previous iteration (6').

T P
Q©16") = B(L°(0)|,6) Zzwloga] TZZthlogfy Yilu;, %) (C5)

t=1 j=1

gtj = E(th‘n,@l)

= P(x;%:,0")

P(ztjaY;h@l)
P(Y, 0
25:1 ai:fk(Y;f|ué72]l)

M Step: The updated parameter set is obtained by O = argmazQ(6|6"):
e

T 5, .
a;—i—l _ thTl Rtj (0'7)
T -
1 Z2t: Yy
uHt = Zt_T1 tj.t (C.8)
pr 1th
T - I4+1y/
o ST w8 (Y — (Y — )
Zj _ (C.9)
Zt:l Ztj
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Iterate E step and M step until convergence. Dempster et. al. (1977) pointed
out that the likelihood (3.8) is closely related to the feasible pseudo complete likelihood
(C.5): L(OY) = Q(OY46) < (61161 < L(61). Therefore, as Q(O]6") is maximized
in each iteration (which implies Q(O!|0") < Q(6'T16")), the likelihood (3.8) increases

monotonically (L(61) > L(6Y)).

C.3 The EM algorithm for truncated normal mixture model (unconditional

case)

Lee and Scott (2010) apply the EM algorithm to the multivariate truncated normal
mixture model with each component truncated by a rectangle, e.g., s < Y < k, where s
and k are vectors with the same dimension as Y. We adapt their arguments to derive the
EM algorithm as below:

E Step: Following the same steps as Appendix A.1, the expression for Z; is the

same as (C.6). However, f;(Y| ué, E;) is now a truncated bivariate normal distribution.

T ~
! D1 2t
aj+1:% (C.10)
S A
7= S s 5 e
t=1~tj
T - I+1 I+1y/
1 25 (Ye — ) (Ve —
Sl _ D=1 2 (Ye — ~)( e py) + Lk, D (C.12)
j T I\ J
Dot 2t

where v; (,u,é-H, ZJH'I) and I; (,uéfH, Ej.‘H) are nonlinear functions of ué“ and ZJHI.

Details are discussed in appendix A.3.1.
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C.3.1 Derivation of the EM algorithm

Let Y follows a truncated bivariate normal distribution:

= ! exr —} — )XY -
= rlEIl oA pl=5 (Y =) Z7 (Y — )] (C.13)

w’ Xw

fY)

Denote Y° =Y — p, and its first and second moments are given as (Nath 1972):

(L)
ML= Jw Vul Zw
0 VwBw (k)

S )

M2 = Y+ Suww'Yy —w'p Vool S
o w'Xw /' Sw 1-( —w/p )
V! Zw

In E step, we can write down the conditional expectation of the complete log-

likelihood function:

T P
1 . 1
Qe = E(LYO)|Y,6} = E E Zij {logaj —log2m — §log\2j]

)

V' 5w

— 5 (Yo — 1) 271 (Y, — py) — log(1 — ®(

where 1 — & —wi; ) = ﬁ [ w,  exp(—t?)dt.

fon! 3.
v ij A /2w/2‘jw

First, we take derivative of log(1 — ®( )) with respect to u;
’ V' Xw J
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0 —w' 1 1 { 1 —w'p }
— |log(1 — ®(———== = ; — J 2
o ) Bl v )

—w'p
. ¢( w’ij) w
- _ ! .
L= d( ) ' e
ww'MOlJ-
- w' Xjw

where Mij is M} with y = p; and X = X

Next, take the derivative of Q(O|6") with respect to u;

T aval
) . 1 ~ . 1 ww Moj
— = —= XY, - X — ——=2 | =0
srlQEle] = 53 0a 5 — - S
t=1
We can get:
Zf:l 5tht
np o= = —vi(k25)
D1
Z-ww’M(} .
where ’Uj(uj, EJ) = 7]111’2]411 ot

Now, we take derivative of Q(©|0") with respect to X;.

First, we can get
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J— /Z‘w
wM?w = wXw+wXw WH v
0,] J J ( w’Z‘]w)[l_@( ,ujuj )]

where ngj is M2 with = pj and X = X.

Next, take derivative of log(1 — &( erlgjw)) with respect to X;
i

R _ 1 T S 0 Y
a5l o) = D { et

V' Xw
, ) ,
( —Ww w' Xjw —ww

1
2 w’ij)(1_¢( _“j';j ) w' Ejw
w'Z;w

/ 2 /
1w Modw —w'Xjw  —wuw'

2 w' Xw w'Xjw

1 1 w’ngw )
R

2 wXiw  (wXjw)?

Then, we take the derivative of Q(©|6!) with respect to X;

T
9 ! 1 . Lor Lo ry—1
75 QOO = 3 a5 4 g ) O ) 5
_l/w[ 1 _ w/MOQJM ]w/
2 wiw  (wXjw)?
=0
Some linear algebra properties were used: al%ﬁ = (A)"!and 896/541;19” =—A"lza’A7L

Finally, we can get:
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T z . _ i Y _ 2/
5 = 2B Ol g, 5

T -~
D1 2t

1 w’Mg’jw
where I;(u;, Xj) = ij[w’ﬂjw T (W'Ejw)?

]U)IE]'.
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C.4 E step of the new EM algorithm

E[LC(0)]Y, 0]

:Ez,n\Y,@l {E[LC(@) |Z, n, }/a @l]}

T P
1
:Ez’n‘yyel{E ZZZU (logay; +logfj (Yene+1) +Zlogfj (Yir))l|z,n Y, 0}
t:l j=1 k=1
| I
e TZZZU loga; + Log fN (YVim, 1) + nEllogf} (Yix)|z,n, Y, 0'))}
=1 j=1

1
=E.vely Z Z zj(logay + 10g [} (Yimet1) + E(mlz, Y, 0N Ellogf¥ (Yi)|2,n, Y, ©1)}
t=1 j=1

T P
1
= z|Y,61{TZZztj(l09aj +10gf}¥ (Yo, +1)+

t=1 j=1
P N,
m” (Yik), .
Z ny H [(1— Fl TLtFl zth)(/logf]N(Y},k) H (fl—(Fff)) " dY )}
nt=0 m=1 m

= Z Z E.v.er{z;(loga; + log [ (Yin41)+

t:l 7j=1
oo P P Nl
(3 e JTI01 = By / tog £ (%) [T (F2-Ctt) ey, )
ns=0 h=1 m=1
1 T P
:TZZP(ZU‘YQ [logaj + log f;" (Yem,+1)+
t=1 j=1
_ gl f?\’v’(y k)
50 10g £V (Y, ) (2 ay
2 o} O i)
T P N.l
1 i (Yer)
ZTZZ tg[logoz]+logffv(1€nt+1)+ntg(/logfj (Yer) (S )dYe)]

where E, .1y oi(.) takes the joint expectation of z and n conditional on Y and el

Law of iterated expectation E(Y|X) = E[E(Y|Z, X)|X] was used.
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C.5 M step of the new EM algorithm

To begin with, we derive the first two moments for Y coming from the invalid

truncation area (x < y), whose density of the has the following form:

_ 1 el (Y — uY Ly —
Y, X)) = S T Z’/;w” pl=g (Y =) 2 (Y —p)] - (C14)

d
x
Let Y¢ =Y — u. Then, the first and second moments of Y% = are:
d
Yy
Ml — —Yw ¢( :’g‘w)
4V S —e( e
, , ¢(“’7/#)
2 __ Jww' Y wp m
Md — E"‘ w/zw \/w’Ew 1_@(\/%
o Take derivative of (3.14) with respect to j;.
Q@) 1 -1 ~1 - -1 ~1 fJNJ(Y;fv’C)
T TZ G2 Ve = X ey [ (X Yk — X5 )( T )dYi] =0
t=1 J
T T T
:Z’ZUY% JZZtJ +ZZ e, (M, +M§~) —Ma‘zita‘ﬁm’ =0
t=1 t=1 t=1

l+1 Ztil Zt]( + nt:] M + Iuj))
=l
Yo A1+ nt,j)

where M is M} with p = pl, ¥ = $L.

e Take derivative of (3.14) with respect to Ej_l.
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Qe 1 .. FL S z+1 I+1
azjl_T;Zw[2EJ Q(Y;f )(Y M )+
I+1 f;v’l(yvt,k)

. 1 1
s [ (5% = 30 = 0k = i i) =0

T T
izétjz _Z (Y Ml“rl) l+1 +Zztjntjz ZZt]nt]Md, = 0
t=1 t=1
41 _ Zt 125V Hl)(y MH_l) + 7, Md/,ﬂ
:>Zj
S 2 (1 + )

21 1,1 1,1
WhereMC%, —M (l ME-H)(MdJ)/‘i‘(Md,j)(MZ M?rl)"‘(ﬂé‘ My )(/‘é 'u?_l)’

and M;Jl is M2 with p = ,ué-, XY= EJZ-.

C.6 M step of the new EM algorithm (conditional case)

The closed-form solution for a;; and X; can be easily derived similar to the un-

conditional case. Here we focus on A;. Notice that maximizing Q(¥|¥') is equivalent to

minimizing the following expression for the purpose of taking derivative with respect to A

T P
LA = > > 5l —A;X0) 57 (Y — A X) +

t=P+1 j=1
N,
t,j ( tk)

Tr
it j / (Vi — A Xe 1) 257 (Yig — Ath—l))(_iFl

—(Ir ® Xj)vec(A;-)] +

)dYy i)

— (I ® Xjvec(A))) (V7' @ Ir—q)[vec(Y))

= Z{ [vec(Y,

/[vec(}}) (I ®X )vec(A ) (E Q It Q)[vec(f/) (I2 QX; )vec(A/)]f]( )dY}
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where }7] =/(2; ©nj)TOY, and Yy, = (Yo41,k, ..., Y1i)'. Take derivative of L(A)

with respect to vec(A}):

OL(A)
dvec(A})

= —2(I, ® X;)(¥; @ Ir_q)vec(Y;) + 2(I2 @ X;) (57" @ Ir_q)(Ia ® X;)vec(A))+

/[—2(12 © X;)(Z; 1 @ Ir—q)vec(Y)) + 2(I ® X;) (271 @ Ir—q) (12 @ Xj)vec(A))] f(Y;)dY;
= — (L ® X)) (' @ Ir_q)vec(Vy) + (Ia ® X;)' (¥, @ Ir—q) (12 ® Xj)vec(A))—

(I ® X;) (27! @ Ir—q)vee(My, 5.) + (I © X;)' (X1 @ Ir—q) (I ® X;)vec(A))

=— [(Z‘;l ® )N(j’-)vec(M;,’T,j) + (X1

] Hvec(Y;)] + (Z1e 1 X5) + (E;1 ® XJ/'XJ‘)]UGC(A,‘)

J

= [vec(f(]’-Mé,ijj_l) + vece( J'S_/jZ._l)] +[Z e ( X+

=— (Z;l ® Ig)vec(XJ/-Md/’T’j + J/Y]) + (2@ ( g/‘Xj + J/-Xj)]vec(A;)

=0

Then, we can write down vec(A}) as:

160



Therefore, we have

C.7 Proof of Theorem 1

First, we introduce a lemma that shows the mixture truncated normal distribution
is identifiable.
Lemma 1. Let v = (u, X)), and suppose that A = {F(Y,v);v € RO)Y € R?} is

the family of distributions whose density is given by

1 1
b =

w!' Xw

(Y =) Z7HY — w)] (C.15)

Then (YY) = Zle a; F(Y,v;), the class of finite miztures of A, is identifiable.
v ={ej,v|Vi}, a; >0, and Zle aj = 1. In other words, Y, (Y) = (V) = v =%

Proof of Lemma 1:

We first define the exponential family.

If, for some o—finite measure p,

dF(Y,7) = a(1)b(Y)exp[r'h(Y)]du(Y) (C.16)
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for Y € R™, 7(m x 1), and h(Y') (m x 1), where a(7) > 0,b(Y) > 0 and a, b, h;, for
j=1,2,...,m are all measurable, then I is called an exponential family member.

Barndorff-Nielsen (1965) proves that the class 1 is identifiable if all of the following
hold: (a) F belongs to the exponential family, (b) u is n-dimensional Lebesgue measure,
(c) functions hj, j = 1,2,...,m, are all continuous, and (d) the set {y : y = h(Y),b(Y) >
0,Y € R"} contains a nonempty open set.

First, we show that the distribution with density given by (C.15) belongs to ex-

ponential family as it can be written as:

dF(Y, T 1 1 _
d ((y)) T o D - (= €$P[—§(Y — 1) Z7HY = p)]
K /|21 - (\/m)]
= a(T)b(Y)exp[r h(Y)]
where p is two-dimensional Lebesgue measure. 7 = (Z*—IM7 _51)60(2—1)),

/
o) = {VIETL- 0 ean(u =0} 00) = & and 1Y) = (¥, vee(ry))-

The image of the mapping h: R? — RS, for z > y is the set 2 = {h(Y),z > y},
which contains an open set 2 = {h(Y),z > y}. In addition, the map from 7 to v is unique.
Lemma 1 follows. O

Now, we can proceed to prove Theorem 1. It is straightforward to see that L(¥)
is a measurable function of data for each ¥ € =, and continuous in ¥. Therefore, it suffices
to show that (a) the log-likelihood follows a uniform strong law of large numbers: ;up ]

ez

L(W)— FE[L(¥)] |— 0 a.s. as T — oo; (b) the identification condition: E[L(¥)] < E[L(¥)],

and E[L(¥)] = E[L(¥)] implies ¥ = ¥y. (see Amemiya (1973, Lemma 3)).
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Let L(¥) = 25>, 1(¥). By Assumption 1 and continuity of [(¥), {(¥) is sta-
tionary and ergodic (see Krengel (1985, Proposition 4.3)), and hence E[L(¥)] = E[l(¥)].
To verify (a), it suffices to show that E[;g}g | L(¥) |] < oo (see Rao (1962) or Straumann
and Mikosch (2006 Theorem 2.7)). Kalliovirta et.al. (2016) prove the the above inequality

holds for the likelihood in their model one side at a time. We are going to adapt similar

similar procedures here. Specifically, we know that

P

(@) = log{_ a;(2m) 1|2y 7"/
j=1

eﬂﬁp[—%(Yt — A X)) (Y - AJXH)]/[%erfC(—W'Athfl/\/ 2w’ Yjw)]}

where w = (1,—1)’. Assumption 2 implies that, A > |X;| > ¢, Vj for some
§d >0, and A < oo, and that w'Xjw > ~, Vj for some v > 0. We also know that
exp[—%(Yt—Ath_l)/Ej_l(Yt—Ath_l)] < 1. In addition, when —w’Ath_l/\/m <0,
erfe(—w'A;X;—1/\/2w' Z;w) > 1, and thus we can see that [(¥) < log(m=16=1/2). When
—w’Ath,l/\/m > 0, we apply the inequality erfe(z) > %emp(—2:p2) (see Chang et.

al. (2011, Theorem 2)), thus
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1
erfe(—w' A; X;—1//20' Xjw) > iexp(—w’Ath_lX,g,lA;-w/w/ij)

1 1
> §exp[f;tr(Xt,ng_lA;ww'Aj)]
1 1 / / 1A
> §exp[——tr(Xt_lXt_l)tr(Ajww Aj)]
Y
1 K
> §ea:p[—;X£,1Xt_1]

where the last inequality holds by compactness of = (Assumption 2). That is,

tr(Ajww'Aj) <k, Vj for some 0 < k < co. Now, it can be seen that

P

K
1) < log{3 oy (2m) 5 eap(” Xy Xia])
j=1

= log(2n'671/2) + EX{_lXt_l
Y

Therefore, regardless of the value of —w'A;X; 1/\/2w'Xjw, we have [(¥) <

log(2r—1671/2) + X 1 X
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On the other hand, it can be seen that

(Ve = A X-1) 271 (Vs — AjXimn)
=tr[(Yy — A X—1)(Ye — A X 1) 271
<tr((Y: — AjXe 1) (Ve — A X ) Jer (2571
=(Yy — AjX-1)' (Vi — A X 1)tr(Z7)

<A+YYi+ X, 1 X 1)p

where the first inequality holds because both (Y; — A;X;1)(Y; — A;X;—1)" and

2]71 are positive semi-definite. The second last inequality is implied by Cauchy-Schwarz

inequality and Assumption 2 (tr(Z;l) < p, Vj for some 0 < p < oo). Furthermore,

erfe(—w'A;j X—1//2w' X;w) < 2, thus

P
1
(@) > log{> aj(27r)_1A_1/26xp[—§(1 +Y/Vi 4+ X]_ 1 X 1))}
7j=1

1
= G1—5p(1+ Y)Y+ X[, Xio1)

for some finite G;. Overall, we have G — %p(l + Y'Y+ X[ 1 Xi1) < U(P)

IN

log or—1§-1/2y L B/ X;_1, from which E[sup | [(¥) |] < oo holds because X/ X;_1 =
¥ t—1 ves t—1

1+4Y Y+ ...+ Y;’,QYt_Q, and E(Y/Y;) < oo for all ¢ by Assumption 3.
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Now, we verify (b). Let s(Yt ! W) be the stationary distribution of Yf_‘é as ,

then

E[L(W)] — E[L(%)]

a; iV, A 8

- [[swdom) 3 e (VY A, o) log 2 G A5 5) oy
j=1 Z —1 9505 (YilY, "5, Aj0, Xjo)
i1 fi(VY 0, Aj, 2))

P
Zj:l O‘j,ij(Yt|Ytt Q17AJ 0, 25,0)

/ Yt ! WO {/ Za] ij YHY s A] 0, jO)NOg dY;t}dYVtt:é

where the inner integral is the negative Kullback-Leibler divergence between two
mixture densities: Zle ajfj(lﬂ}?__é,Aj, X;) and Zle aj70fj(l/}|Yt Y Ajo,Yj0). There-

fore, E[L(¥)] — E[L(¥)] < 0 and the equality holds if and only if

jo P
D a5, A5 25 =Y ajofi(Y S, Ajos Zio)

By the identification result from Lemma 1, we have that o; = aj0, X = X0 and
Aj Xy 1 = AjoXi—q for all j, where A;X;_1 = A;oX;—1 implies either that A; = A;¢ or
that X;_; takes values only on a 2(Q) — 1) dimensional hyperplane. The latter is impossible
as {X;_1} takes values on H C R??, where H has positive Lebesque measure. Therefore,

aj =y, X5 = Yjoand A; = Ajp for all j.
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