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Dr. Gloria González-Rivera, Chairperson
Dr. Tae-Hwy Lee
Dr. Aman Ullah



Copyright by
Yun Luo

2019



The Dissertation of Yun Luo is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

First of all, I would like to sincerely thank my advisor Professor Gloria González-Rivera
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ABSTRACT OF THE DISSERTATION

The Econometric Analysis of Interval-Valued Time Series

by

Yun Luo

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, June 2019

Dr. Gloria González-Rivera, Chairperson

This dissertation covers three topics in modeling and forecasting interval-valued

time series.

In Chapter 1, we propose a model for interval-valued time series (ITS) that aims to

generate valid point-valued forecasts. We dispense with the positive constraint on the range

by estimating a bivariate system of the center/log-range. However, a forecast based on this

system needs to be transformed to the original units of center/range, which requires bias

correction. We examine the out-of-sample forecast performance of naive transformed fore-

casts (biased), parametric bias-corrected forecasts, and semiparametric correction methods

like smearing correction and bootstrap forecasts. Monte Carlo simulations show that the

biased correction methods do not generate forecasts that are uniformly superior. We apply

these methods to the daily low/high intervals of the SP500 index and Google prices.

In Chapter 2, we go beyond point forecasts to construct the probabilistic forecasts

for interval-valued time series. We estimate a bivariate system of the center/log-range,

which may not be normally distributed. Implementing analytical or bootstrap methods, we
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directly transform prediction regions for center/log-range into those for center/range and

upper/lower bounds systems. We propose new metrics to evaluate the regions performance.

Monte Carlo simulations show bootstrap methods being preferred even in Gaussian systems.

We build prediction regions for daily SP500 low/high return intervals, and apply them to

develop a trading strategy.

In Chapter 3, we develop an alternative model directly on the ITS (upper/lower

bounds system). The model specifies the conditional joint distribution of the upper and

lower bounds of the interval to be a mixture of truncated bivariate normal distribution. This

specification guarantees that the natural order of the interval (upper bound not smaller than

lower bound) is preserved. The model also captures the potential conditional heteroscedas-

ticity and non-Gaussian features in ITS. We propose an EM algorithm for model estimation.

We establish the consistency of the maximum likelihood estimator. Monte Carlo simula-

tions show the new EM algorithm has good convergence properties. We apply the model

to the interval-valued IBM daily stock returns and it exhibits superior performance over

competing methods.
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Chapter 1

Point Forecast for Interval-valued

Time Series

1.1 Introduction

Data sets in interval format are common in many disciplines. See Blanco-Fernández

and Winker (2016) for different data generation mechanisms of interval data. In economics,

we have many examples. For instance, in stock markets, it is standard to provide the daily

interval of low/high asset prices. In bond markets, traders report bid/ask intervals. In

energy markets, the US Energy Information Administration provides min/max retail prices

of electricity at the state level. The US Department of Agriculture also provides daily low

and high prices on agricultural commodities and livestock. In earth sciences, temperatures

are also recorded in the min/max format. It should be noted that in many instances, the

interval format is the only available format to the researcher. There are several reasons to
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prefer interval records. For instance, in stock markets it is customary to report the daily

closing price, which is just one-point measurement, while we observe plenty of price points

over the trading day. Other records, like an average temperature or like those provided by

USDA as daily weighted average prices on commodities and livestock, are not very infor-

mative to market participants. In other instances in which the data is sensitive to privacy

concerns such as income reporting, the records must be aggregated, e.g. income intervals.

Our interest is in interval-valued times series defined as a collection of interval

realizations ordered over time, i.e., {(yl,t, yu,t)} for t = 1, ...T , where yl,t is the lower bound

and yu,t is the upper bound of the interval at time t, such that yl,t ≤ yu,t for all t. An

equivalent representation is given by considering the center of the interval Ct = (yl,t+yu,t)/2

and the range Rt = yu,t − yl,t ≥ 0, i.e., {(Ct, Rt)} for t = 1, ...T . Most of the econometric

analysis in this area has focused on model estimation and inference, and though it is possible

to construct point forecasts based on a given model or algorithm.

When dealing with lower/upper bounds systems, one needs to incorporate the

constraint yl,t ≤ yu,t into the estimation. González-Rivera and Lin (2013) propose a two-

step estimator (Maximum Likelihood (ML) and Least Squares (LS)) and a modified two-step

estimator (ML and Minimum Distance) based on assuming a truncated bivariate normal

density of the errors of the lower/upper bounds system. The estimation of the system is

complex but it is possible to construct a direct bivariate density forecast for the upper/lower

bounds, if the truncated bivariate normal density is the right assumption. Alternatively,

dealing with the center/range system, one needs to incorporate the constraint Rt ≥ 0.

Lima Neto and De Carvalho (2010) impose non-negative constraints on the parameters of

2



the range equation, which are unnecessarily too restrictive and complicate the estimation

of the system. Tu and Wang (2016) overcome the restriction Rt ≥ 0 by log-transforming

the range, and estimating the center/log-range system without imposing any distributional

assumptions. However, forecasting the center/range or lower/upper bounds will be more

complicated. First, for point forecasts, one needs the inverse transformation, i.e. Rt =

exp[logRt], which itself introduces non-trivial econometric issues. Secondly, for a density

forecast, a joint distributional assumption for the center and range or for the upper and

lower bounds is required.

We will start with the estimation of a dynamic model for the system center/log-

range. We specify a VAR system to be estimated by quasi-maximum likelihood, assuming

a bivariate Gaussian density, that guarantees the consistency of the estimators. Tu and

Wang (2016) used the estimator of Yao and Zhao (2013) that relies on kernel estimates

of the likelihood. This estimator is computationally more demanding than QMLE and

depends on the choice of tuning parameters. However, their empirical results suggest that

both estimators are very similar. Since our purpose is to forecast the center/range system,

a naive inverse transformation of the log-range, i.e. Rt = exp[logRt], will generate biased

estimates of the conditional mean of the range and of its point forecasts (Granger and

Newbold, 1976). We analyze three different bias correction approaches. The first is a

parametric factor correction as in Guerrero (1993) that it is very easy to implement and

works well when log-range is normally or almost normally distributed. The other two are

semiparametric corrections that do not rely on any particular distributional distribution of

the errors. The smearing estimator proposed by Duan (1983), also used by Tu and Wang

3



(2016), estimates the unknown error distribution by the empirical CDF of the residuals

and take the desired expectation with respect to the estimated error distribution. Duan’s

estimator was designed to obtain the fitted values of the range (in-sample) and we extend it

to obtain the range forecasts at any forecasting horizon. The bootstrap estimator (Pascual

et al., 2005) is another semiparametric correction that, as the smearing estimator, does

not require a distributional assumption and has the advantage of incorporating parameter

uncertainty in the construction of the forecasts.

We perform several Monte Carlo simulations to assess the out-of-sample perfor-

mance of a naive point forecast compared to bias-corrected point forecasts. It is interesting

to note that biased-corrected forecasts are not uniformly superior to the naive forecast,

which in some instances is the preferred choice when faced with a Mean-Absolute-Error loss

function.

We apply these methods to the time series of the daily low/high price intervals of

the SP500 and Google (GOOG) stock. We deviate from the standard practice in financial

econometrics in that we work directly with prices and not with the end-of-day returns.

These intervals are more informative than just a daily one-point measurement as they

encompass all prices during the day. There are commonalities between the analysis of

the center/range system of prices and the standard analysis of end-of-the-day returns and

their volatility. As returns, the first-differenced center has large kurtosis, which is more

pronounced in the individual stock GOOG than in the index SP500. The log-range, which

is close to be normally distributed, is a proxy for volatility as proposed by Parkinson (1980)

and Alizadeh et al. (2002). It shows a strong autocorrelation as that of an autoregressive

4



process, which is similar to the patterns found in ARCH processes and stochastic volatility.

We also find that that there is Granger-causality from the first-differenced center to the log-

range such that positive and large changes in the center will predict narrower ranges, which

is similar to the so-called leverage effect. However, an important difference pertains to the

construction of the forecasts. In standard ARCH and stochastic volatility processes, the

forecast of the return is mostly zero and together with a forecast of the conditional volatility

and some conditional distribution of the return, it is possible to generate a density forecast

of future returns. In the interval approach, we forecast directly the future low/high prices

and construct prediction regions of the center and range prices at any desired horizon that

do not require parametric distributional assumptions. We find that there is a substantial

overlap between the one-day-ahead interval forecast and realized intervals up to 54%.

The organization of the chapter is as follows. In section 2, we explain the esti-

mation of the system center/log-range. In section 3, we present the bias-corrected point

forecasts for the center/range system. In section 4, we analyze several Monte Carlo simu-

lations. In section 5, we analyze the time series of the SP500 and GOOG low/high prices,

and in section 6, we conclude.

1.2 The Center/Log-Range System

For the interval-valued time series {(yl,t, yu,t)} for t = 1, ...T , we consider the

equivalent representation, center/range, {(Ct, Rt)} for t = 1, ...T with Rt ≥ 0. Our objective

is to build a model-based point forecast for either representation. To that end, we start

with the estimation of a dynamic bivariate system. We propose a linear VAR(p) for the
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center/log-range system, from which we construct forecasts for {(Ct, logRt)}. We transform

the forecasts to the original measures {(Ct, Rt)} or {(yl,t, yu,t)} and explore the properties

of the point forecasts and approximated prediction regions. Let us call yc,t ≡ Ct and

yr,t ≡ logRt. Consider the bivariate VAR(p) system

yc,t = α1 +

p∑
i=1

β
(i)
11 yc,t−i +

p∑
i=1

β
(i)
12 yr,t−i + εc,t (1.1)

yr,t = α2 +

p∑
i=1

β
(i)
21 yc,t−i +

p∑
i=1

β
(i)
22 yr,t−i + εr,t (1.2)

where the components of the error vector (ε1,t, ε2,t)
′ are white noise processes, possi-

bly contemporaneous correlated, with covariance matrix Ω. The estimation of the sys-

tem proceeds by least squares. The OLS estimator is consistent under mild assump-

tions and it will also be a full information maximum likelihood (ML) estimator when

bivariate normality of the errors is the true density. Otherwise, assuming bivariate nor-

mality, a quasi-maximum likelihood (QML) estimator will be equivalent to a LS estima-

tor. Let θ ≡ (α1, α2, β
(1)
11 , ..., β

(1)
12 , ..., β

(1)
21 , ..., β

(1)
22 , ...) be the parameter vector to estimate.

Following White (1982), the asymptotic distribution of the Gaussian QML estimator is

√
T (θ̂ − θ) d→ N(0, A−1BA−1) where matrix A is the (minus) expectation of the Hessian

and matrix B is the expectation of the outer product of the score of a Gaussian log-likelihood

function.

The QML environment will be the most common estimation approach because

bivariate normality of (ε1,t, ε2,t)
′ will be difficult to entertain. To guarantee bivariate nor-

mality of the system, the conditional densities as well as the marginal densities must also
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be normal functions. For financial data, there is evidence that the log-range yr,t (as a proxy

for volatility) is near-normal (Alizadeh, Brandt, and Diebold, 2002). The center yc,t is less

likely to be normally distributed because the prevalence of fat tails at least in financial data

at a relative high frequency, e.g. daily financial returns. In the empirical section, we will

test the assumption of bivariate normality as a starting step to construct density forecasts

of the full system. Notice that, even if bivariate normality is the correct assumption, the

system (1.1-1.2) will generate density forecasts for the center and log-range, but ultimately

we will be interested in density forecasts of the center/range system.

Given an information set up to time T , the optimal h-step forecast is the condi-

tional mean i.e. ŷc,T+h|T and ŷr,T+h|T whenever the loss function is symmetric. The point

forecasts of the center and the log-range are

ŷc,T+h|T = α1 +

p∑
i=1

β
(i)
11 ŷc,T+h−i|T +

p∑
i=1

β
(i)
12 ŷr,T+h−i|T (1.3)

ŷr,T+h|T = α2 +

p∑
i=1

β
(i)
21 ŷc,T+h−i|T +

p∑
i=1

β
(i)
22 ŷr,T+h−i|T (1.4)

where ŷc,T+h−i|T = yc,T+h−i and ŷr,T+h−i|T = yr,T+h−i for i ≥ h. The corresponding forecast

errors are ec,T+h|T = yc,T+h− ŷc,T+h|T and er,T+h|T = yr,T+h− ŷr,T+h|T . The Mean Squared

Prediction Error (MSPE) or, in this case, the variance-covariance matrix Wh of the forecast

error vector (ec,T+h|T , er,T+h|T )′ is Wh = Ω +
∑h−1

i=1 ΨiΩΨ
′
i where the coefficient matrix

Ψi come from the MA(∞) representation of the VAR(p) system. In practice, we plug in

consistent parameter estimates, i.e. θ̂, Ω̂, and Ψ̂i, in the VAR(p) to obtain the estimated

point forecasts and their estimated variance-covariance matrix. Parameter uncertainty will

7



contribute to the MSPE but it will be negligible when the sample size T is large relative to

the number of estimated parameters.

1.3 Forecasting the Center/Range System

Taking advantage of the forecasts produced by the VAR(p) for the center/log-

range system, we wish to construct the forecasts for the center/range system. The main

problem lies in the equation of the log-range. It is easy to see that by taking the exponential

transformation of the conditional mean of the log-range, we will obtain a downward biased

forecast. By the Jensen’s inequality, we have that exp(E(yr,T+h|T )) < ET (exp(yr,T+h)). In

the following sections, we explore different bias correction techniques for point forecasts and

different approaches to construct prediction regions for the center/range system.

We start with the simplest forecast. Let y∗r,T+h|T be the forecast for the range of

the interval. The biased naive forecast of the range is just the exponential transformation

of the forecast of the log-range, i.e.,

y∗r,T+h|T = exp(ET (yr,T+h)) = exp(ŷr,T+h|T ) (1.5)

1.3.1 Point Forecasts: Factor correction

An approximate bias correction factor can be obtained based on a Taylor’ s expan-

sion of yr,T+h around the conditional mean ET (exp(yr,T+h)). By adapting Guerrero (1993)
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to the bivariate VAR(p), the biased-corrected forecast of the range is

y∗r,T+h|T ' exp(ŷr,T+h|T ) exp(
Wh,22

2
) (1.6)

where Wh,22 is the lower term of the diagonal of the variance-covariance matrix of the

forecast errors Wh. This approximation holds for any distributional assumption of the log-

range. However, if we assume that the log-range is normally distributed the expression (1.6)

is exact (for details, see the Appendix). For large deviations from normality e.g., skewness

or fat tails, we expect that this bias-corrected forecast will not perform well.

1.3.2 Point Forecasts: Smearing correction

Consider the forecast of the log-range (1.4). We write the random variable yr,T+h

as the sum of its optimal forecast plus the corresponding forecast error, i.e. yr,T+h =

ŷr,T+h|T + er,T+h|T . Then, the conditional mean of the range, i.e. ET (exp(yr,T+h)), is

y∗r,T+h|T = ET (exp(yr,T+h)) = exp(ŷr,T+h|T )ET (exp(er,T+h|T )) (1.7)

that is an unbiased forecast of the range. If we know the distribution function of the forecast

error, we can calculate the correction factor ET (exp(er,T+h|T )). In the absence of such a

knowledge, we introduce the smearing correction based on a nonparametric estimator of

the unknown distribution given by the empirical cdf of the forecast error. The smearing

estimator was introduced by Duan (1983) in the context of a regression model (in-sample

estimation) where the smearing estimator was based on the empirical distribution of the
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regression residuals. We adapt this estimator to the forecast errors of the log-range equation

of the VAR(p) system. The forecast error er,T+h|T is a linear function of the unknown

innovations from time T + 1 to T +h. Then, we will need the multivariate density function

of these innovations, i.e. fT (εr,T+h, εr,T+h−1, εc,T+h−1, εr,T+h−2, εc,T+h−2, ..., εr,T+1, εc,T+1).

Under the assumption that the vector (εc,t, εr,t) in the VAR(p) system (1.1)-(1.2) is i.i.d, the

multivariate density simplifies to a product of identical bivariate densities and a marginal,

i.e

gT (εr,T+h)fT (εr,T+h−1, εc,T+h−1)fT (εr,T+h−2, εc,T+h−2)× ....× fT (εr,T+1, εc,T+1) (1.8)

The empirical counterparts to these functions will be the basis for the implementation of

the smearing estimator. As an example, consider a VAR(1) system and h = 2. Then, the

two-step-ahead forecast of the range is

ET [exp(yr,T+2)] = ET [exp(α2 + β21yc,T+1 + β22yr,T+1 + εr,T+2)] = (1.9)

= exp(CT )ET [exp(β21εc,T+1 + β22εr,T+1 + εr,T+2)]

where CT = α2 + β21(α1 + β11yc,T + β12yr,T ) + β22(α2 + β21yc,T + β22yr,T ). Considering

(1.8), the conditional expectation of the transformed forecast error will be estimated by the

smearing estimator

ÊT [exp(β21εc,T+1 + β22εr,T+1 + εr,T+2)] =
[ 1

T

T∑
i=1

exp(εr,i)
][ 1

T

T∑
j=1

exp(β21εc,j + β22εr,j)
]

(1.10)
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1.3.3 Point Forecasts: Bootstrap approach

The three previous approaches to construct the forecast of the range (naive (1.5),

factor correction (1.6), and smearing correction (1.7)) depend on the parameter estimates of

the VAR(p) system. When the estimation sample is not very large, the effect of parameter

estimation on the forecast and on the correction factors is not negligible. In order to account

for parameter uncertainty, we extend the bootstrap procedure proposed by Pascual et al.

(2005) to a VAR system.

The procedure consists of the following steps:

Step 1. Estimate the VAR(p) system (1.1)-(1.2). Obtain the residual vector

(ε̂c,t, ε̂r,t)
′. Center the residuals, i.e. ε̂t− ε̄t where ε̄t = 1

T−p
∑T

t=p+1 ε̂t. Rescale the residuals

using the factor [ T−p
T−p−d ]1/2, where d is the number of parameters to estimate. Denote the

empirical distribution of the centered and rescaled residuals as F̂ε̂.

Step 2. From F̂ε̂, draw pairwise residuals (ε̂c,t, ε̂r,t)
′ with replacement. Together

with the parameter estimates from Step 1, generate bootstrap series {ybc,1, ..., ybc,T } and

{ybr,1, ..., ybr,T } as follows,

ybc,t = α̂1 +

p∑
i=1

β̂
(i)
11 y

b
c,t−i +

p∑
i=1

β̂
(i)
12 y

b
r,t−i + ε̂c,t

ybr,t = α̂2 +

p∑
i=1

β̂
(i)
21 y

b
c,t−i +

p∑
i=1

β̂
(i)
22 y

b
r,t−i + ε̂r,t

Fix p initial values of yc,t and yr,t, that is, ybc,t = yc,t and ybr,t = yr,t for t = 1, ..., p . For the

bootstrap replicate, estimate a VAR(p) to obtain bootstrap parameter estimates α̂b =

α̂b1
α̂b2
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and β̂b =

β̂
b(i)
11 β̂

b(i)
12

β̂
b(i)
21 β̂

b(i)
22


i=1,...,,p

.

Step 3. Construct the bootstrap h-step ahead future values of the vector (yc,T+h, yr,T+h)′

as follows,

ŷbc,T+h = α̂b1 +

p∑
i=1

β̂
b(i)
11 ŷbc,T+h−i +

p∑
i=1

β̂
b(i)
12 ŷbr,T+h−i + ε̂c,T+h

ŷbr,T+h = α̂b2 +

p∑
i=1

β̂
b(i)
21 ŷbc,T+h−i +

p∑
i=1

β̂
b(i)
22 ŷbr,T+h−i + ε̂r,T+h

where ŷbc,T+h−i = yc,T+h−i, and ŷbr,T+h−i = yr,T+h−i for i ≥ h, and (ε̂c,T+h, ε̂r,T+h)′ are

pairwise random draws with replacement from F̂ε̂. Notice that the last p values of the

original data are fixed in this step.

Step 4. Repeat steps 2 and 3 B times. We obtain a bootstrap conditional distri-

bution of the vector (ŷbc,T+h, ŷ
b
r,T+h)′ and, by taking the exponential of log-range, we finally

obtain a bootstrap conditional distribution of (ŷbc,T+h, exp(ŷbr,T+h))′ that we denote as F by .

Step 5. The h-step ahead bootstrap forecasts of the center and range of the interval

are obtained by averaging over the number of bootstrap replicates,

y∗c,T+h|T = 1
B

∑B
i=1 ŷ

b
c,T+h,i (1.11)

y∗r,T+h|T = 1
B

∑B
i=1 exp(ŷbr,T+h,i) (1.12)
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1.4 Monte Carlo Simulations

We perform extensive Monte Carlo simulations to assess the performance of the

point forecasts for the center/range system obtained by implementing the different ap-

proaches surveyed in section 3.

We consider a VAR(1) for the center/log-range system (1.1)-(1.2) with the follow-

ing parameter values: (α1, α2)′ = (0, 0)′, (β11 β12| β21 β22)′ = (0.4 0.1| 0.2 0.4)′ (mid-

persistent dynamics), and (β11 β12| β21 β22)′ = (0.5 0.1| 0.2 0.8)′ (high-persistent dy-

namics). The dominant roots of the respective characteristic equations are 0.54 and 0.86 in

the mid-persistent and high-persistent cases. The variance-covariance matrix of the error

term Ω will be determined according to the assumed marginal distributions of the cen-

ter and the range, as we will see in the following sections. The VAR(1) center/log-range

system is estimated recursively by least squares. We consider three forecast horizons, i.e.

h = 1, 2, 3. We construct point forecasts for the center and range according to the methods

in section 3. The point forecasts are evaluated in an out-of-sample exercise with P = 100

observations. The number of Monte Carlo replications is 500 and the number of bootstrap

samples is B = 2000.

We consider several probability density functions for the center and the range

and log-range. For the center, we assume (i) normal density and (ii) Student-t with 7

degrees of freedom. For the range, we assume (i) exponential density with λ = 1, and (ii)

log-normal density so that the log-range is normally distributed. Note that the bivariate

density of the system center/range will not be normal for any combination of the assumed

marginal densities of the center and the range. We simulate data from the four possible
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combinations of the center/range marginal densities. We also need to assume some degree of

contemporaneous dependence between the two equations of the VAR(1). When the center

and the log-range are simulated under the normal assumption, we assume that the variance-

covariance matrix of the errors of the VAR has a non-zero covariance. In the remaining three

cases, we generate contemporaneous dependence between the center and log-range by using

a bivariate normal copula function (correlation coefficient equal to 0.5) with the assumed

marginal densities, i.e. (normal center, exponential range), (Student-t center, exponential

range), and (Student-t center, normal log-range).

We evaluate the point forecasts according to four loss functions: Root Mean Square

Error (RMSE), Mean Absolute Error (MAE), Mean Distance Error (MDE), and Average of

Coverage and Efficiency Rates (ACE). We convert the center and range forecasts into the

lower and upper bounds forecasts of the interval, i.e., (y∗c,T+h|T − (1/2)y∗r,T+h|T , y∗c,T+h|T +

(1/2)y∗r,T+h|T ) = (yl,T+h|T , yu,T+h|T ) because this is the final object of interest.

The RMSE of the upper bound (RMSEU) and of the lower bound (RMSEL)

forecasts are

RMSEU =

√√√√ 1

P − h+ 1

T+P−h∑
t=T

(yu,t+h − yu,t+h|t)2 ; (1.13)

RMSEL =

√√√√ 1

P − h+ 1

T+P−h∑
t=T

(yl,t+h − yl,t+h|t)2
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The MAE of the upper bound (MAEU) and of the lower bound (MAEL) forecasts

are

MAEU =
1

P − h+ 1

T+P−h∑
t=T

|yu,t+h − yu,t+h|t| ; (1.14)

MAEL =
1

P − h+ 1

T+P−h∑
t=T

|yl,t+h − yl,t+h|t|

These two loss functions, RMSE and MAE, consider the performance of each

bound forecast separately. If we wish to asses the interval forecast as a whole and not just

each of the bounds, we need either distance measures or measures of coverage between the

actual and the forecast interval.

The MDE is defined as

MDE =
1

P − h+ 1

T+P−h∑
t=T

D(yt+h,yt+h|t) (1.15)

where D(yt+h, yt+h|t) = 1√
2
[(yu,t+h − yu,t+h|t)2 + (yl,t+h − yl,t+h|t)2]

1
2 .

The Coverage Rate (CR) and the Efficiency Rate (ER) are defined as

CR =
1

P − h+ 1

T+P−h∑
t=T

w(yt+h ∩ yt+h|t)
w(yt+h)

; ER =
1

P − h+ 1

T+P−h∑
t=T

w(yt+h ∩ yt+h|t)
w(yt+h|t)

;

(1.16)

where w(X) is the width of interval X and “∩” the intersection of two intervals. The ACE

is the simple average of CR and ER, i.e., ACE = (CR+ ER)/2.
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Next, we compare and comment on the simulation results for the following cases

with more details:

1.4.1 Center and Log-Range are Normally distributed

Since the log-range is normally distributed, the Guerrrero biased-corrected forecast

of the range is exact (see expression 1.6) and this forecast is the conditional mean of the

range variable at time T+h. The forecasts based on the smearing and bootstrap approaches

will also deliver the conditional mean of the future center and range variables. Consequently,

we expect Guerrero, smearing, and bootstrap approaches outperform (lower loss) the naive

forecast when the loss function is quadratic. The naive forecast is under-biased and, thus iit

will not be the minimizer of the expected quadratic loss function. In Table 1.1, we report

the values of the RMSE loss functions associated with the one-, two-, and three-step ahead

forecasts of the upper and lower bounds of the intervals. We estimate the mid-persistence

VAR(1) with variance-covariance matrix of the error term Ω = (2 0.5| 0.5 1)′. We run two

estimation samples T = 100 and T = 500 and the average loss is calculated over an out-of-

sample period of 100 observations, i.e. P = 100. The RMSE losses delivered by Guerrero,

Smearing and Bootstrap approaches are practically identical with Guerrero having a very

tiny advantage. The loss delivered by the naive approach is slightly higher than the other

approaches; it is between 1 and 4 % larger than the loss attached to Guerrero’s bias-corrected

forecast. As expected, when T = 500 the losses are smaller than those when T = 100. This

is because the contribution of parameter uncertainty is less important as the estimation

sample becomes larger.
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Näıve Guerrero Smearing Bootstrap Nve./Guer.

T = 100
P = 100 RMSEU

1-step 2.3938 2.3666 2.3701 2.3675 1.012
2-step 2.6612 2.6292 2.6356 2.6307 1.012
3-step 2.7306 2.6954 2.7034 2.6979 1.013

RMSEL

1-step 1.9306 1.8895 1.8930 1.8909 1.022
2-step 1.9928 1.9363 1.9433 1.9385 1.029
3-step 1.9971 1.9333 1.9414 1.9355 1.033

Näıve Guerrero Smearing Bootstrap Nve./Guer.

T = 500
P = 100 RMSEU

1-step 2.3787 2.3370 2.3366 2.3376 1.012
2-step 2.6441 2.5987 2.5987 2.5996 1.017
3-step 2.7141 2.6682 2.6684 2.6691 1.017

RMSEL

1-step 1.9230 1.8666 1.8674 1.8673 1.030
2-step 1.9864 1.9198 1.9209 1.9204 1.035
3-step 1.9932 1.9245 1.9261 1.9254 1.036

Table 1.1: RMSE losses. Mid-persistence VAR(1)

In Table 1.2, we run similar experiment but for the high-persistence VAR(1). We

observe that when T = 100 and P = 100, the naive method delivers substantially lower

losses than Guerrero, smearing, and bootstrap methods. The naive loss can be up to

25% lower than that of Guerrero. Though these results are puzzling, they are two possible

explanations. First, this is a small sample estimation problem. When the sample is increased

to T = 500 so that parameter estimates are more precise, the naive loss is similar to that

of the other approaches, though still 5-8% lower than that of Guerrero’s.
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Näıve Guerrero Smearing Bootstrap Näıve/Guerrero

T = 100
P = 100 RMSEU P = 100 P = 1000

1-step 17.3680 19.5536 20.2202 19.3771 0.888 0.973
2-step 20.5549 25.5747 27.6231 25.5726 0.804 0.947
3-step 21.5866 28.6626 32.2994 29.4509 0.753 0.938

RMSEL

1-step 16.9687 19.1570 19.8272 18.9868 0.886 0.973
2-step 19.9160 24.9597 27.0185 24.9715 0.798 0.946
3-step 20.8181 27.9295 31.5851 28.7459 0.745 0.937

Näıve Guerrero Smearing Bootstrap Näıve/Guerrero

T = 500
P = 100 RMSEU P = 100 P = 2000

1-step 15.8332 16.6583 16.7766 16.6272 0.950 1.009
2-step 18.5702 19.9974 20.2574 20.0655 0.929 1.007
3-step 19.7148 21.5187 21.9005 21.8275 0.916 1.006

RMSEL

1-step 15.4485 16.2687 16.3876 16.2399 0.949 1.009
2-step 17.9623 19.3955 19.6583 19.4670 0.926 1.007
3-step 18.9771 20.7992 21.1865 21.1167 0.912 1.006

Table 1.2: RMSE losses. High-persistence VAR(1)

The second reason is related to the small size of the evaluation sample P . For sim-

plicity consider h = 1 and compare point-wise the forecast errors associated with the naive

forecast (1.5) and the Guerrero bias-corrected forecast (1.6) for the bivariate VAR (1.1)-

(1.2). The one-step-ahead forecast error for the range associated with the naive approach is

eNr,T+1|T = exp(ŷr,T+1|T )(exp(εr,T+1)− 1). The one-step- ahead forecast error for the range

based on the Guerrero method is eGr,T+1|T = exp(ŷr,T+1|t)(exp(εr,T+1) − exp(σ2
r/2)) where
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σ2
r is the variance of εr,T+1. Then,

|eGr,T+1|T | > |eNr,T+1|T | for εr,T+1 ≤ 0

|eGr,T+1|T | > or < |eNr,T+1|T | for 0 ≤ εr,T+1 ≤ σ2
r/2

|eGr,T+1|T | � |eNr,T+1|T | for σ2
r/2 < εr,T+1

Since εr,T+1 is symmetrically distributed around zero, we expect that |eGr,T+1|T | >

|eNr,T+1|T | will happen for more than 50% of the observations in the evaluation sample.

In addition, the distribution of the forecast errors is skewed to the right because of the

exponential transformation. It is only when σ2
r/2 < εr,T+1, that the Guerrero forecast

errors become smaller than those of the naive approach. How often will encounter these

cases will depend on the magnitude of σ2
r and, when h > 1, on the magnitude of the

parameters of the model as well. In a small sample environment, e.g. P = 100, the RMSE

is likely to be dominated by instances like |eGr,T+1|T | > |eNr,T+1|T |; we will need a very large

sample for the full skewed distribution of the forecast errors to show up. In Table 1.2, we

show that for T = 100 and P = 1000, the ratio naive/Guerrero RMSEs increases from

about 0.80 to about 0.95. When we increase both the estimation sample and the evaluation

sample sizes, i.e. T = 500 and P = 2000, the RMSE loss values attached to the Naive

approach are larger than those attached to Guerrero’s corrected forecast, as we expected.

In summary, in small samples the simplest naive approach delivers a good point forecast of

the interval evaluated according to a RMSE loss function.

In Table 1.3, we report the values of the MAE, MDE, and ACE loss functions for

the mid-persistence VAR(1) and the small sample case, i.e. T = 100 and P = 100. When
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considering the MAE function, the h-step forecast minimizer is the conditional median of the

variable at time T + h. Recall that after estimating the VAR system, we obtain the h-step

ahead forecast of the log-range, i.e. ŷr,T+h|T , which is the conditional mean of yr,T+h. Since

the log-range is normally distributed, this conditional mean is also the conditional median

of yr,T+h. The naive approach applies a monotonic transformation to ŷr,T+h|T so that the

quantile is preserved and the naive forecast exp(ŷr,T+h|t) is also the conditional median of

the range at time T +h. Consequently, we expect the naive forecasts for center and range to

deliver smaller MAE losses than Guerrero, smearing and bootstrap approaches. However,

on translating the forecasts of center/range into the forecasts of the lower/upper bounds

of the interval, this may not be the case because the median does not have the additivity

property. In Table 1.3, we observe that the four approaches are practically equivalent and

they deliver similar losses.

20



Näıve Guerrero Smearing Bootstrap Nve./Guer.

T = 100
P = 100 MAEU

1-step 1.6333 1.6576 1.6611 1.6589 0.985
2-step 1.8157 1.8441 1.8510 1.8475 0.985
3-step 1.8605 1.8891 1.8979 1.8945 0.985

MAEL

1-step 1.3160 1.3190 1.3227 1.3216 0.998
2-step 1.3647 1.3494 1.3566 1.3531 1.011
3-step 1.3704 1.3451 1.3546 1.3490 1.019

Näıve Guerrero Smearing Bootstrap Nve./Guer.

T = 100
P = 100 MDE

1-step 1.5610 1.5995 1.6029 1.6022 0.976
2-step 1.6866 1.7335 1.7406 1.7389 0.973
3-step 1.7150 1.7626 1.7722 1.7701 0.973

Näıve Guerrero Smearing Bootstrap Boot./Nve.

T = 100
P = 100 ACE

1-step 0.3232 0.3865 0.3850 0.3880 1.200
2-step 0.3017 0.3926 0.3906 0.3951 1.309
3-step 0.2975 0.3987 0.3970 0.4021 1.352

Table 1.3: MAE and MDE losses and ACE. Mid-persistence VAR(1)

We evaluate the joint performance of the lower/upper bounds forecasts with the

MDE and ACE functions. For the MDE, all four approaches deliver similar losses with the

naive approach showing a slight better performance. However, when we assess the coverage

and efficiency of the interval forecast, Guerrero, smearing and bootstrap forecasts are much

superior to the naive forecast even in this small sample setting. The bootstrap approach

delivers between 20 and 35% improvement in ACE over the naive forecast.
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1.4.2 Center is Student-t and Log-Range is Normally distributed

We deviate from bivariate normality of the center/log-range system by introducing

fat tail behavior in the center. We assume that the conditional density of the center is

Student-t with 7 degrees of freedom while the log-range remains normally distributed. We

estimate the same mid-persistence VAR(1) with variance-covariance matrix of the error

term Ω = (1.4 0.6| 0.6 1)′ and an estimation sample of T = 100. The average losses are

calculated over an out-of-sample period of 100 observations, i.e. P = 100. In Table 1.4,

we report the values of the RMSE, MAE, MDE, and ACE functions. Regarding RMSE,

the Guerrero’s bias-corrected forecast, the smearing and the bootstrap forecasts deliver

similar losses. Guerrero’s bias correction is not exact any longer as it does not consider the

kurtosis in the center. Nevertheless, Guerrero’s bias-corrected forecast and the bootstrap

forecast have similar performance and they are preferred to the naive approach. Regarding

MAE, the naive approach seems to have a slight advantage over the other three methods.

Regarding MDE, the naive forecast delivers the smallest losses overall but, when the ACE

function is considered, the naive forecast does not provide as much efficiency and interval

coverage as the bootstrap forecast. The bootstrap approach delivers between 18 and 32%

improvement in ACE over the naive forecast.
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Näıve Guerrero Smearing Bootstrap Nve./Boot.

T = 100
P = 100 RMSEU

1-step 2.5108 2.4583 2.4661 2.4302 1.033
2-step 2.8117 2.7796 2.7925 2.7874 1.009
3-step 2.8785 2.8439 2.8554 2.8555 1.008

RMSEL

1-step 1.8946 1.8229 1.8309 1.7953 1.055
2-step 1.9968 1.9311 1.9448 1.9395 1.029
3-step 2.0080 1.9363 1.9494 1.9482 1.031

Näıve Guerrero Smearing Bootstrap Nve./Boot.

T = 100
P = 100 MAEU

1-step 1.4971 1.5308 1.5362 1.5310 0.978
2-step 1.6818 1.7309 1.7478 1.7474 0.962
3-step 1.7285 1.7775 1.7993 1.8019 0.959

MAEL

1-step 1.0636 1.0675 1.0741 1.0690 0.995
2-step 1.1176 1.1047 1.1232 1.1209 0.997
3-step 1.1263 1.1031 1.1272 1.1266 0.999

Näıve Guerrero Smearing Bootstrap Nve./Boot.

T = 100
P = 100 MDE

1-step 1.3643 1.4059 1.4120 1.4078 0.969
2-step 1.4949 1.5528 1.5710 1.5712 0.951
3-step 1.5251 1.5850 1.6086 1.6118 0.946

Näıve Guerrero Smearing Bootstrap Boot./Nve.

T = 100
P = 100 ACE

1-step 0.3905 0.4582 0.4572 0.4602 1.178
2-step 0.3665 0.4647 0.4639 0.4682 1.277
3-step 0.3607 0.4711 0.4704 0.4752 1.317

Table 1.4: RMSE, MAE and MDE losses and ACE. Mid-persistence VAR(1)
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1.4.3 Center is Student-t and Range is Exponential (λ) distributed

We deviate from bivariate normality of the center/log-range system by introduc-

ing fat tail behavior in the center and skewness in the log-range. We assume that the

conditional density of the center is Student-t with 7 degrees of freedom and that of the

range is exponentially distributed, i.e. exp(λ = 1). On applying the log transformation to

the exponentially distributed range, the asymmetry in the log-range still persists. We esti-

mate the same mid-persistence VAR(1) with variance-covariance matrix of the error term

Ω = (1.4 0.77| 0.77 1.69)′ and an estimation sample of T = 100. The average losses are

calculated over an out-of-sample period of 100 observations, i.e. P = 100. In Table 1.5,

we report the values of the RMSE, MAE, MDE, and ACE functions. Since the departure

from bivariate normality is more acute, we expect the naive and Guerrero’s bias-corrected

forecasts to be bad approximations to the conditional means of the center and range at time

T +h and consequently, they will not be able to minimize the RMSEs. This is what we ob-

serve. The Guerrero’s bias-corrected forecast delivers between 3 and 7% higher losses than

the bootstrap forecast while the smearing and bootstrap approaches provide the smallest

RMSE losses. Regarding MAE, Guerrero’s bias-corrected forecast is also the worst per-

former. Naive, smearing, and bootstrap forecasts seem to be equivalent. Regarding MDE,

the naive forecast delivers the smallest losses but, when the ACE function is considered, the

naive forecast does not provide as much efficiency and interval coverage as the other three

methods. The bootstrap approach delivers between 20 and 38% improvement in ACE over

the naive forecast.
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Näıve Guerrero Smearing Bootstrap Guer./Boot.

T = 100
P = 100 RMSEU

1-step 2.3527 2.3980 2.3069 2.3082 1.039
2-step 2.6584 2.7013 2.6149 2.6162 1.033
3-step 2.7334 2.7624 2.6861 2.6859 1.028

RMSEL

1-step 1.6873 1.7083 1.5974 1.5985 1.069
2-step 1.7635 1.7722 1.6607 1.6616 1.067
3-step 1.7703 1.7620 1.6591 1.6598 1.062

Näıve Guerrero Smearing Bootstrap Nve./Boot.

T = 100
P = 100 MAEU

1-step 1.5946 1.7181 1.6274 1.6264 0.980
2-step 1.7896 1.9736 1.8509 1.8544 0.965
3-step 1.8387 2.0367 1.9099 1.9141 0.960

MAEL

1-step 1.1129 1.1971 1.0972 1.0963 1.015
2-step 1.1680 1.2754 1.1440 1.1445 1.020
3-step 1.1766 1.2830 1.1441 1.1463 1.026

Näıve Guerrero Smearing Bootstrap Nve./Boot.

T = 100
P = 100 MDE

1-step 1.4521 1.5891 1.4817 1.4821 0.980
2-step 1.5892 1.8007 1.6525 1.6573 0.959
3-step 1.6204 1.8536 1.6954 1.7030 0.951

Näıve Guerrero Smearing Bootstrap Boot./Nve.

T = 100
P = 100 ACE

1-step 0.4039 0.5118 0.4820 0.4860 1.203
2-step 0.3799 0.5360 0.4979 0.5037 1.326
3-step 0.3742 0.5493 0.5076 0.5153 1.377

Table 1.5: RMSE, MAE and MDE losses and ACE. Mid-persistence VAR(1)
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1.4.4 Center is Normal and Range is Exponential (λ) distributed

We deviate from bivariate normality of the center/log-range system by introducing

only skewness in the log-range. We assume that the conditional density of the center is

normal and that of the range is exponentially distributed, i.e. exp(λ = 1). We estimate

the same mid-persistence VAR(1) with variance-covariance matrix of the error term Ω =

(2 0.92| 0.92 1.69)′ and an estimation sample of T = 100. The average losses are calculated

over an out-of-sample period of 100 observations, i.e. P = 100. In Table 1.6, we report

the values of the RMSE, MAE, MDE, and ACE functions. Regarding RMSE, Guerrero’s

correction ignores the skewness and the bias-corrected forecast as well as the naive forecast

generate the largest losses. The smearing and bootstrap approaches provide the smallest

RMSE losses. Regarding MAE, Guerrero’s bias-corrected forecast is the worst performer.

Naive, smearing, and bootstrap forecasts seem to be equivalent. Regarding MDE, the

naive forecast delivers the smallest losses but, when the ACE function is considered, the

naive forecast does not provide as much efficiency and interval coverage as the other three

methods. The bootstrap approach delivers between 22 and 43% improvement in ACE over

the naive forecast.

26



Näıve Guerrero Smearing Bootstrap Guer./Boot.

T = 100
P = 100 RMSEU

1-step 2.7333 2.7649 2.6777 2.6756 1.033
2-step 3.0916 3.1110 3.0369 3.0323 1.026
3-step 3.1861 3.1929 3.1311 3.1248 1.022

RMSEL

1-step 1.9832 1.9954 1.8848 1.8836 1.059
2-step 2.0745 2.0599 1.9587 1.9546 1.054
3-step 2.0811 2.0477 1.9599 1.9537 1.048

Näıve Guerrero Smearing Bootstrap Nve./Boot.

T = 100
P = 100 MAEU

1-step 1.8624 1.9811 1.8929 1.8915 0.985
2-step 2.0878 2.2579 2.1457 2.1447 0.973
3-step 2.1495 2.3292 2.2161 2.2138 0.971

MAEL

1-step 1.3214 1.3995 1.3019 1.3008 1.016
2-step 1.3844 1.4724 1.3519 1.3484 1.027
3-step 1.3942 1.4699 1.3491 1.3442 1.037

Näıve Guerrero Smearing Bootstrap Nve./Boot.

T = 100
P = 100 MDE

1-step 1.7032 1.8400 1.7323 1.7316 0.984
2-step 1.8608 2.0677 1.9231 1.9230 0.968
3-step 1.8998 2.1235 1.9727 1.9727 0.963

Näıve Guerrero Smearing Bootstrap Boot./Nve.

T = 100
P = 100 ACE

1-step 0.3508 0.4569 0.4269 0.4294 1.224
2-step 0.3284 0.4843 0.4423 0.4469 1.361
3-step 0.3221 0.5004 0.4539 0.4600 1.428

Table 1.6: RMSE, MAE and MDE losses and ACE. Mid-persistence VAR(1)
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1.4.5 Summary

1. When the departure from bivariate normality of the center/log-range system

is large, we recommend implementing a bootstrap forecast or a smearing forecast if the

loss function of the forecaster is RMSE. If log-range is normal or approximately normal,

the Guerrero’s biased-corrected forecast is also equivalent to the bootstrap forecast. If the

overall system is closely bivariate normal, it should be noted that the naive forecast can be

a good performer when the estimation sample is small.

2. If the loss function of the forecaster is MAE, the Guerrero’s biased-corrected

forecast should not be implemented; the naive, smearing, and bootstrap forecasts are pre-

ferred.

3. If the loss function of the forecaster is MDE, the naive forecast performs well.

4. If the loss function is ACE, a bootstrap forecast provides a large coverage of

the realized interval with coverage rates between 40 % and 52%.

1.5 Empirical Application

We collect the daily intervals of low/high prices (in $) of the SP500 index and of

the Google (GOOG) stock from January 2, 2009 to January 25, 2017 for a total of 2030 daily

observations. The center time series is non-stationary and we work with the first differences

of the center. In Table 1.7, we provide the descriptive statistics of the first-differenced

center, range, and log-range. For the SP500, the first-differenced center shows fat tails with

a coefficient of kurtosis of 6.29 and it is slightly skewed to the left. The range is skewed with

a long right tail but the log-range is almost symmetric and has a kurtosis of about 3. For
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GOOG, the first-differenced center is skewed to the right and very fat-tailed with a kurtosis

of 35.81. The range is also heavily skewed to the right and the log-range, though slightly

skewed to the right, has a kurtosis of about 3. We can appreciate these characteristics in

Figure 1.1 where we plot the first-differenced center and range of the daily intervals and

their unconditional bivariate density function. In both cases, SP500 and GOOG, we are

dealing with a fat-tail density for the first-differenced center, more pronounced in GOOG

than in the SP500 index, and a log-range that seems to be normally distributed. These

characteristics are similar to those in the simulation case presented in section 4.2.

SP500 Index

D(Center) Range log-Range

Mean 0.68 17.53 2.73

Standard Error 0.25 0.22 0.01

Median 1.30 15.13 2.72

Mode -0.92 9.26 2.23

Standard Deviation 11.48 10.08 0.52

Sample Variance 131.69 101.66 0.27

Kurtosis 6.29 11.34 2.90

Skewness -0.55 2.11 0.16

Minimum -86.40 3.68 1.30

Maximum 58.27 101.79 4.62

GOOG stock

D(Center) Range log-Range

Mean 0.33 7.46 1.85

Standard Error 0.13 0.11 0.01

Median 0.15 6.19 1.82

Mode -0.94 5.38 1.95

Standard Deviation 6.04 4.92 0.55

Sample Variance 36.47 24.17 0.30

Kurtosis 35.81 15.47 3.18

Skewness 2.06 2.68 0.33

Minimum -36.67 1.09 0.09

Maximum 86.90 54.00 3.99

Table 1.7: Descriptive Statistics for first-differenced center, range, and log-range of daily
intervals (Jan.2, 2009-Jan.25, 2017)
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• Time Series and Density plots

1

Figure 1.1: SP500 and GOOG. Time series plots of first-differenced center and range and
bivariate density

We proceed with the modeling of the bivariate system first-differenced center/log-

range from which we will construct the point forecasts. We split the total sample into an

estimation sample from January 2, 2009 to December 31, 2015 with 1762 observations, and

an evaluation sample from January 4, 2016 to January 25, 2017 with 268 observations. In

Figure 1.2, we present the autocorrelograms of the first-differenced center and the range.

For both, the SP500 and GOOG, the profiles of the ACF and PACF are very similar. The

first-differenced center has only a mild autocorrelation of order one of about 0.2-0.3, which

may be induced by a bid-ask effect. This is in agreement with what we observed when we

model the more traditional end-of-the-day return. The ACF and PACF of the log-range

present the profile of an autoregressive process with strong memory. An AR(6) for the

SP500 index and an AR(8) for GOOG seem to be appropriate to capture these dynamics.
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This mimics the autocorrelation that we observe in squared (end-of-the-day) returns when

modelling a conditional variance, which is not very surprising because range or log-range

are good proxies for volatility. The SIC selects a VAR(6) for the SP500 Index and a VAR(5)

for GOOG. Conservatively, we proceed to estimate a VAR(6) for the SP500 and a VAR(8)

for GOOG. The estimation results are presented in Table 1.8.
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SP500 Index. VAR(6) for first-differenced center and log-range system

D(Center) log-Range

Coeff. estimate SE (robust) t-statistic Coeff. estimate SE (robust) t-statistic

Constant -0.9344 2.0444 -0.4571 0.0759 0.0784 9.4694
D-C(-1) 0.3404 0.0305 11.1607 -0.0112 0.0010 -11.2000
D-C(-2) -0.1530 0.0321 -4.7664 -0.0027 0.0010 -2.7000
D-C(-3) 0.0314 0.0408 0.7696 -0.0030 0.0010 -3.0000
D-C(-4) -0.0551 0.0297 -1.8552 -0.0022 0.0009 -2.4444
D-C(-5) -0.0209 0.0301 -0.6944 0.0010 0.0010 1.0000
D-C(-6) -0.0011 0.0305 -0.0361 -0.0009 0.0009 -1.0000
log-R(-1) -0.5030 0.6925 -0.7264 0.0852 0.0265 3.2151
log-R(-2) 0.1281 0.6207 0.2064 0.1845 0.0258 7.1512
log-R(-3) -0.1556 0.6141 -0.2534 0.1539 0.0228 6.7500
log-R(-4) 0.9157 0.6925 1.3223 0.0760 0.0253 3.0040
log-R(-5) -0.2561 0.5895 -0.4344 0.1086 0.0252 4.3095
log-R(-6) 0.4266 0.5911 0.7217 0.1227 0.0229 5.3581

Adj. R-squared 0.1086 0.3975

GOOG. VAR(8) for first-differenced center and log-range system

D(Center) log-Range

Coeff. estimate SE (robust) t-statistic Coeff. estimate SE (robust) t-statistic

Constant 0.0465 0.6253 0.0744 0.2345 0.0427 5.4918
D-C(-1) 0.1807 0.0330 5.4825 -0.0019 0.0019 -0.9938
D-C(-2) -0.0391 0.0266 -1.4718 -0.0010 0.0018 -0.5683
D-C(-3) -0.0022 0.0439 -0.0496 -0.0001 0.0016 -0.0714
D-C(-4) -0.0060 0.0347 -0.1740 -0.0001 0.0015 -0.0951
D-C(-5) -0.0481 0.0226 -2.1304 0.0008 0.0016 0.4752
D-C(-6) 0.0240 0.0274 0.8750 0.0011 0.0017 0.6839
D-C(-7) -0.0109 0.0227 -0.4789 0.0011 0.0017 0.6257
D-C(-8) -0.0241 0.0259 -0.9289 0.0011 0.0017 0.6719
log-R(-1) 0.0001 0.4121 0.0002 0.3306 0.0262 12.5943
log-R(-2) -0.1060 0.3291 -0.3220 0.0781 0.0250 3.1249
log-R(-3) 0.4226 0.4521 0.9345 0.1182 0.0264 4.4768
log-R(-4) 0.0565 0.3521 0.1606 0.0705 0.0257 2.7453
log-R(-5) 0.0148 0.3324 0.0444 0.1011 0.0235 4.2955
log-R(-6) -0.1495 0.4707 -0.3176 0.0265 0.0265 1.0023
log-R(-7) -0.2280 0.3365 -0.6775 0.0486 0.0243 2.0039
log-R(-8) 0.1448 0.3117 0.4645 0.0945 0.0221 4.2689

Adj. R-squared 0.0275 0.4616

Table 1.8: SP500 and GOOG. Estimation of VAR for first-differenced center and log-range
system (Jan.2, 2009-Dec. 31, 2016)

As expected, the first-differenced center equation does not have much predictive

power. Only its own past (one or two lags) first-differenced centers are statistically signifi-

cant at the conventional significance levels. There is not dynamic effect of past log-ranges
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• ACF/PACF plots

2
Figure 1.2: SP500 and GOOG. Autocorrelograms of first-differenced center and log-range
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on center and the overall in-sample R-squared are 0.11 for the SP500 Index and 0.03 for

GOOG. On the other hand, the goodness-of-fit in the log-range equation is much higher

with R-squared of 0.40 for the SP500 and 0.46 for GOOG. In the case of SP500 Index, the

first-differenced center Granger-causes the log-range in such a way that past first-differenced

centers are negatively correlated with current log-ranges. i.e. positive and large changes in

centers today will predict smaller ranges tomorrow. In both cases, SP500 and GOOG, the

most relevant aspect is the strong and statistically significant autoregressive nature of the

log-range as we have already observed in the ACF/PACF. The residuals corresponding to

these systems are all clear of any autocorrelation. The residuals from the first-differenced

center equations remain leptokurtic and the residuals from the log-range equations remain

basically symmetric around zero with a sample kurtosis of about 3. With these characteris-

tics, the joint density of first-differenced center and log-range will not be bivariate normal.

Formally, we test for bivariate normality by implementing the Generalized Auto-

ContouR (G-ACR) (in-sample) tests based on the Probability Integral Transforms (PIT)

of the joint density under the null hypothesis of bivariate normality (González-Rivera and

Sun, 2015). In Table 1.9, we report the result of the t-statistics (tk,α) that canvas from the

1% to 99% PIT autocontours for k = 1, 2, ...5 lags. The null hypothesis is strongly rejected

at the 5% significance level for mostly all but the 10%, 90% and 95% autocontours in the

case of the SP500 index and the 5% , 90% and 95% autocontours in the case of GOOG. The

aggregated test Ck also reinforce the strong rejection of bivariate normality. In Figure 1.3,

we plot just some of the autocontours of the PITs (∆Centert, log-ranget−1) and (∆Centert,

log-ranget−2) for SP500 and GOOG. Under the correct null, the distribution of the PITS
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should be uniformly distributed within these autocontour squares. For GOOG we observe

a much less uniform distribution of the PITs than for the SP500 index.

Over the evaluation period, January 4, 2016 to January 25, 2017 (268 observa-

tions), we assess the performance of the point forecasts of center and range for h = 1, 2, 3

days ahead. In Table 1.10, we report the values of RMSE, MAE and MDE losses associated

with several forecasts of the center and range as well as the ACE measure. For both, SP500

and GOOG, we observe similar behavior. There are no differences across methods regarding

the forecast of the center because the center equation is the same across methods and it

does not need any transformation. In terms of RMSE, it is only for the range that the

naive forecast is the worst performer, as expected, and the bias-corrected, smearing, and

bootstrap forecasts are very much equivalent on delivering the same RMSE loss. Recall

that the log-range is almost normal, so the Guerrero bias-correction is exact. However, in

terms of MAE, the naive forecast is the best for the SP500 system and it is equivalent to

the bias-corrected, smearing, and bootstrap forecasts for the GOOG system. In terms of

MDE, there are not major differences across methods. In terms of ACE, we observe some

minor differences. The bias-corrected, smearing, and bootstrap forecasts offer, on average,

slightly more coverage of the realized intervals than the naive forecast. The coverage rates

are large for h = 1, 52% (SP500) and 54% (GOOG) and they decrease with the forecasting

horizon, i.e. for h = 2, 39% (SP500) and 38% (GOOG), and for h = 3, 34% (SP500) and

31% (GOOG). In Figures 1.4 and 1.5, we plot the time series of the one-day-ahead forecast

intervals (smearing approach) compared to the realized intervals. With a few exceptions,

we observe that the overlap between forecast and realized intervals is substantial.
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SP500 Index

t-statistics (tk,α)

α lag k

1 2 3 4 5

0.01 -2.55 -1.44 -2.99 -2.10 -2.76
0.05 -2.41 -0.62 -3.15 -1.55 -1.74
0.1 -1.60 0.31 -1.26 -0.20 -0.20
0.2 1.42 2.65 1.77 2.71 3.01
0.3 2.82 3.87 2.81 3.34 4.35
0.4 3.34 3.40 3.52 3.57 3.99
0.5 3.85 3.34 3.75 3.66 4.10
0.6 3.97 3.89 4.06 4.04 4.42
0.7 4.19 4.07 4.43 4.39 4.34
0.8 2.69 2.77 3.10 2.84 3.04
0.9 0.76 0.70 0.97 1.08 1.08
0.95 0.21 0.36 0.51 0.51 0.74
0.99 -3.64 -3.48 -3.31 -3.14 -2.97

C-statistic (Ck) 60.34 49.86 65.21 52.87 62.69

GOOG

t-statistics (tk,α)

α lag k

1 2 3 4 5

0.01 -2.76 -2.76 -2.10 -3.42 -1.87
0.05 -2.02 -0.33 -1.17 -1.26 -1.44
0.1 2.74 3.73 2.23 2.77 2.44
0.2 7.08 6.48 5.84 6.79 6.33
0.3 8.53 8.06 7.76 8.57 7.95
0.4 8.70 7.84 7.71 7.98 8.18
0.5 7.30 6.89 6.56 6.69 6.99
0.6 6.61 6.17 6.05 5.89 6.31
0.7 5.44 5.43 5.42 5.49 5.25
0.8 4.04 3.94 4.02 4.06 3.83
0.9 1.14 1.02 1.19 1.18 1.00
0.95 -0.66 -0.66 -0.35 -0.36 -0.52
0.99 -3.65 -3.48 -3.32 -3.15 -2.98

C-statistic (Ck) 152.06 121.20 112.77 135.82 119.98

Ck aggregates all 13 autocontours for a given lag k; its
5% critical value is 22.36

Table 1.9: Generalized-AutoContouR (G-ACR) tests (González-Rivera and Sun, 2015) for
SP500 and GOOG
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• GACR plots

3

Figure 1.3: SP500 and GOOG. G-ACR specification tests for bivariate normality of first-
differenced center and log-range. PITs autocontours
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SP500

1-step RMSER RMSEC MAEC MAER MDE ACE

Näıve 9.0925 12.7157 9.5614 6.2643 10.5232 0.5010
Guerrero 8.9864 12.7157 9.5614 6.4007 10.5606 0.5153
Smearing 8.9872 12.7157 9.5614 6.4052 10.5618 0.5155
Bootstrap 9.0070 12.7181 9.5767 6.4060 10.5656 0.5156

2-step RMSER RMSEC MAEC MAER MDE ACE

Näıve 9.2584 20.0343 14.4127 6.3505 15.2939 0.3760
Guerrero 9.0845 20.0343 14.4127 6.4578 15.2953 0.3904
Smearing 9.0847 20.0343 14.4127 6.4632 15.2961 0.3907
Bootstrap 9.0910 20.0119 14.4044 6.4564 15.2984 0.3890

3-step RMSER RMSEC MAEC MAER MDE ACE

Näıve 9.6236 24.7139 17.5703 6.6207 18.3425 0.3267
Guerrero 9.4354 24.7139 17.5703 6.7845 18.3592 0.3379
Smearing 9.4360 24.7139 17.5703 6.7918 18.3604 0.3381
Bootstrap 9.4291 24.6802 17.5748 6.7334 18.3546 0.3348

GOOG

1-step RMSER RMSEC MAEC MAER MDE ACE

Näıve 5.5337 7.8902 5.7694 3.6162 6.3013 0.5256
Guerrero 5.3989 7.8902 5.7694 3.5985 6.3076 0.5375
Smearing 5.3963 7.8902 5.7694 3.6006 6.3084 0.5379
Bootstrap 5.3977 7.9077 5.7797 3.5948 6.3167 0.5366

2-step RMSER RMSEC MAEC MAER MDE ACE

Näıve 5.7015 12.4717 8.9958 3.6068 9.4745 0.3651
Guerrero 5.5134 12.4717 8.9958 3.6171 9.4632 0.3777
Smearing 5.5093 12.4717 8.9958 3.6203 9.4633 0.3781
Bootstrap 5.5305 12.4986 9.0219 3.6114 9.4871 0.3759

3-step RMSER RMSEC MAEC MAER MDE ACE

Näıve 5.8619 15.8074 11.3515 3.7513 11.8010 0.2996
Guerrero 5.6739 15.8074 11.3515 3.7594 11.8110 0.3094
Smearing 5.6700 15.8074 11.3515 3.7641 11.8118 0.3097
Bootstrap 5.6933 15.8138 11.3669 3.7386 11.8209 0.3073

Table 1.10: SP500 and GOOG. Loss functions and ACE measure for center/range point
forecasts. January 4, 2016 to January 25, 2017 (268 observations)
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• Forecast intervals plots (without center)

6

Figure 1.4: SP500. Daily one-step-ahead interval forecasts from January 4, 2016 to January
25, 2017
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• Forecast intervals plots (without center)

7

Figure 1.5: GOOG. Daily one-step-ahead interval forecasts from January 4, 2016 to January
25, 2017
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Summarizing our findings:

1. The center and log-range are not bivariate normal. The center comes from

a fat-tail density though the log-range is distributed close to normal. The log-range has

strong memory though the first-differenced center has almost none. Features shared by the

end-of-the-day returns and their volatility.

2. The center is Granger-causing the range with negative correlation; this is similar

to the leverage effect in conditional volatility models.

3. The bias-corrected forecast works well because of the normality of the log-range

but, if this is not the case, the smearing and bootstrap forecasts will be preferred. We find

that there is substantial overlap between forecast and realized intervals up to 54%.

1.6 Conclusions

We have generated point forecast for an interval-valued time series. We started

by estimating a Gaussian VAR(p) model for the center/log-range system because we avoid

imposing the positive constraint in the range and the estimation is straightforward and de-

livers QMLE results. We have transformed the point forecasts to the center/range system

by exploring and comparing several bias-corrected methods . We have shown the com-

monalities and differences between modeling the daily low/high price interval of the SP500

Index and GOOG stock and the more standard approach in financial econometrics of mod-

eling the end-of-the-day return and its volatility process. The predictability of the interval

is higher than the predictability of the end-of-the day return. We have found that, on

average, one-step-ahead interval forecasts covered more than 50% of the realized intervals.
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Chapter 2

Prediction Regions for

Interval-valued Time Series

2.1 Introduction

Most of the econometric analysis of interval-valued data has focused on model

estimation and inference, and though it is possible to construct point forecasts based on

a given model or algorithm (e.g., chapter 1), the question of constructing probabilistic

forecasts for interval data has not been addressed yet. This is the main question that we

aim to analyze in this chapter. There are several routes to construct a probabilistic forecast

for the lower/upper bounds system or for the center/range system, which involve some

trade-offs between estimation and prediction decisions.

In this chapter, we contribute to the literature by approximating a probabilistic

forecast for interval-valued time series. We offer alternative approaches to construct bi-

44



variate forecast regions of the center and the range (or lower and upper bounds) of the

interval. We will start with a dynamic model for the center/log-range system. We specify a

VAR system to be estimated by quasi-maximum likelihood (QML), maximizing a bivariate

Gaussian density, that guarantees the consistency of the estimators.1 We estimate only the

center/log-range system, construct prediction regions for this system, and based on these

estimates, construct prediction regions for the center/range system and for the upper/lower

bounds system. We implement analytical and numerical approaches to move a prediction

region for the center/log-range system to prediction regions for the other systems. If the

center/log-range system is bivariate normally distributed, we obtain analytical forecast el-

lipsoids with a desired probability coverage. Furthermore, as proposed by Lutkephol (1991),

we could also construct forecast regions by using Bonferroni rectangles, which are simpler

and rather popular among practitioners. However, the center and/or the log-range are often

not normally distributed and the joint system will not be bivariate normal. In these cases,

we obtain forecasts of the center/log-range system using the bootstrap procedure proposed

by Fresoli et al. (2015) for VAR models, which does not require any specific assumption

on the forecast error distribution. After obtaining bootstrap replicates of future values of

the center/log-range system, we construct forecast regions as ellipsoids, Bonferroni rectan-

gles, or using the Tukey peeling. Implementing either analytical or bootstrap methods, the

prediction regions constructed for the center/log-range system can be directly transformed

into prediction regions for the center/range system. For instance, consider a normal ellipse

with (1− α)% probability coverage. The boundary of this ellipse is the (1− α)% bivariate

1Tu and Wang (2016) used the estimator of Yao and Zhao (2013) that relies on kernel estimates of the
likelihood. This estimator is computationally more demanding than QML and depends on the choice of
tuning parameters. Their empirical results suggest that both estimators are very similar and, consequently,
we focus on the QML estimator.
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quantile. Its boundary points (center, log-range) can be transformed into another bound-

ary of points (center, exp(log-range)) of a prediction region for the center/range system.

The new region will not preserve the shape of an ellipse but it will have the same coverage

because the exponential function is a monotonic transformation. An important advantage

of our approach is that, by focusing on prediction regions rather than on point forecasts,

we avoid the biases that are associated with the exp-transformation of the point forecasts

of log-transformed variables, for which a bias correction is necessary to obtain the condi-

tional mean of the variable of interest2; see, for example, Granger and Newbold (1976) and

Guerrero (1993).

We compare the performance of the prediction regions considered in this chapter

according to several metrics. The most basic required property is coverage so that regions

are reliable when the empirical coverage is close to the nominal coverage. Beyond coverage,

the literature on evaluating multivariate prediction regions is rather thin. To our knowledge,

there is one additional metric that brings the volume of the region to interact with its

coverage (Golestaneh et al., 2017). In this chapter, we also contribute to this literature

by introducing several new measures that account for (i) the location of out-of-the-region

points with respect to a central point of the region, (ii) the tightness of the intervals that

result from projecting the two-dimensional region into one-dimensional intervals, and (iii)

the distance of the also projected out-of-the-region points to the projected one-dimensional

2For point forecasts of Gaussian VAR models, Ariño and Franses (2000) and Bardsen and Lutkepohl
(2011) give explicit expressions for the optimal point forecasts of the levels when both variables are log-
transformed. Furthermore, Bardsen and Lutkepohl (2011) show that, despite its theoretical advantages,
optimal point forecasts are inferior to naive forecasts if specification and estimation uncertainty are taken
into account. Hence, they conclude that, in practice when the interest is a point forecast, using the expo-
nential of the log-forecasts is preferable to using the optimal forecasts; see also Mayr and Ulbricht (2015)
for an empirical application to forecasting GDP. Finally, it is important to point out that the optimal
transformations are not designed to obtain density forecasts.
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interval. These new measures bring a notion of risk associated with the prediction region.

In addition, we also provide a description of the distribution of the out-of-the-region points

around the region to measure whether the region is probability-centered.

For the three systems (center/log-range, center/range, and upper/lower bounds),

we perform several Monte Carlo simulations to assess the out-of-sample performance of the

prediction regions constructed with analytical and bootstrap methods. We evaluate bivari-

ate Gaussian and non-Gaussian center/log-range systems and their implied distributions

for the center/range and upper/lower bounds systems. We note that even for Gaussian

systems, bootstrap methods to construct ellipsoids and Bonferroni rectangles deliver the

best performance, mainly when the estimation sample is small and estimation uncertainty

is most relevant. For non-Gaussian systems, the performance depends on whether the joint

distribution of the center/log-range system is symmetric or not. If symmetry is present,

bootstrap ellipsoids and their transformations are recommended. For asymmetric non-

Gaussian systems, bootstrap Bonferroni rectangles are preferred.

Using the analytical and bootstrap procedures described above, we construct fore-

cast regions for a time series of daily low/high return intervals of the SP500 index. These

intervals are more informative than just a daily one-point measurement (end-of-day return)

as they encompass all returns during the day. There are commonalities between the analysis

of return intervals and the standard analysis of end-of-the-day returns and their volatility.

The center of the return interval has large kurtosis and does not have any autocorrelation.

The log-range, which is close to be normally distributed, is a proxy for volatility as pro-

posed by Parkinson (1980) and Alizadeh et al. (2002). It shows a strong autocorrelation
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as that of an autoregressive process, which is similar to the patterns found in ARCH and

stochastic volatility processes. We also find that there is Granger-causality from the center

of the interval to the log-range such that positive and large changes in the center will predict

narrower ranges, which is similar to the so-called leverage effect. However, an important

difference pertains to the construction of the forecasts. In standard ARCH and stochastic

volatility processes, the forecast of the return is mostly zero and together with a forecast of

the conditional volatility and some conditional distribution of the return, it is possible to

generate a density forecast of future returns. In the interval approach, we forecast jointly

the future low/high return interval and construct prediction regions of the center and range

of the interval at any desired horizon that do not require parametric distributional assump-

tions. Overall, the main advantage of the interval approach is that allows for the modeling

of the joint conditional density of the return level and the return volatility, which in our

sample are contemporaneous and negatively correlated, and consequently allows for the

construction of bivariate density forecasts. We develop a new trading strategy by extending

the strategy by He et al. (2010) for point forecasts of high/low prices to account for the

density forecasts of high/low returns. We found this strategy profitable in the out-of-sample

evaluation environment.

The organization of the chapter is as follows. In section 2, we establish notation by

describing the VAR model for the center/log-range system, its estimation and construction

of point forecasts. In section 3, we present analytical prediction regions for a Gaussian

center/log-range system and how they translate into those for the center/range and up-

per/lower bounds systems. In section 4, we introduce bootstrap procedures to deal with
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prediction regions for non-Gaussian center/log-range systems and their implications for

those regions in the center/range and upper/lower bounds systems. In section 5, we pro-

pose several new metrics to evaluate the performance of the different prediction regions. In

section 6, we report Monte Carlo simulations to compare the performance of the proposed

procedures to construct forecast regions. In section 7, we model the SP500 low/high return

interval and construct several prediction regions for the interval, based on which we develop

a trading strategy. We conclude in section 8.

2.2 The Center/Log-Range System

Even if the final goal is to obtain probabilistic forecasts of the center/range or

lower/upper bounds systems, we start by estimating a dynamic model for the center/log-

range system that is not subject to any restriction as we are log-transforming the range.

We consider a linear bivariate VAR(p) for the center/log-range system from which we will

construct a probabilistic forecast for (Ct, logRt). Let us call yc,t ≡ Ct and yr,t ≡ logRt.

The bivariate VAR(p) is given by

yc,t = α1 +

p∑
i=1

β
(i)
11 yc,t−i +

p∑
i=1

β
(i)
12 yr,t−i + εc,t (2.1)

yr,t = α2 +

p∑
i=1

β
(i)
21 yc,t−i +

p∑
i=1

β
(i)
22 yr,t−i + εr,t (2.2)

where the components of the error vector (εc,t, εr,t)
′ are white noise processes, possibly

contemporaneous correlated, with covariance matrix Ω. The estimation of the parame-

ters of the VAR(p) model proceeds by LS, which is consistent under mild assumptions.
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The LS estimator is a full information ML estimator when the errors have a bivariate

normal distribution. Otherwise, if the errors are non-normal, a QML estimator based

on maximizing the Gaussian likelihood will be equivalent to a LS estimator. Let θ ≡

(α1, α2, β
(1)
11 , ..., β

(p)
11 , β

(1)
12 , ..., β

(p)
12 , β

(1)
21 , ..., β

(p)
21 , β

(1)
22 , ..., β

(p)
22 ) be the parameter vector to esti-

mate. Following White (1982), the asymptotic distribution of the Gaussian QML estimator

is
√
T (θ̂ − θ) d→ N(0, A−1BA−1) where matrix A is the (minus) expectation of the Hessian

and matrix B is the expectation of the outer product of the score of a Gaussian log-likelihood

function. The QML environment will be the most common estimation approach given that

bivariate normality of (εc,t, εr,t)
′ is difficult to entertain. To guarantee bivariate normality of

the system, the conditional densities as well as the marginal densities must also be normal

density functions. For financial data, there is evidence that the log-range yr,t (as a proxy

for volatility) is near-normal (Alizadeh et al., 2002). However, the center yc,t is less likely

to be normally distributed because the prevalence of fat tails, at least in financial data at

a relative high frequency, e.g. daily financial returns. In the empirical section, we will test

the assumption of bivariate normality as a starting step to construct density forecasts of

the full system.

Given an information set available at time T , if the loss function is quadratic,

the optimal h-step-ahead point forecasts of the system (yc,t, yr,t) are the conditional means

denoted by yc,T+h|T and yr,T+h|T . Since the VAR(p) model is always invertible, the condi-

tional mean is a linear function of the observations. Therefore, point forecasts of the center
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and log-range are given by

yc,T+h|T = α1 +

p∑
i=1

β
(i)
11 yc,T+h−i|T +

p∑
i=1

β
(i)
12 yr,T+h−i|T (2.3)

yr,T+h|T = α2 +

p∑
i=1

β
(i)
21 yc,T+h−i|T +

p∑
i=1

β
(i)
22 yr,T+h−i|T (2.4)

where yc,T+h−i|T = yc,T+h−i and yr,T+h−i|T = yr,T+h−i for i ≥ h. The corresponding fore-

cast error vector is (ec,T+h|T , er,T+h|T ) = (yc,T+h−yc,T+h|T , yr,T+h−yr,T+h|T ) with variance-

covariance matrix Wh = Ω +
∑h−1

i=1 ΨiΩΨ
′
i where matrices Ψi come from the MA(∞) repre-

sentation of the VAR(p) model. In practice, we plug in consistent estimates, i.e. θ̂, Ω̂, and

Ψ̂i, in the VAR(p) to obtain the estimated h-step-ahead point forecasts and their estimated

variance-covariance matrices that are denoted by ŷc,T+h|T , ŷr,T+h|T , and Ŵh respectively.

If the center/log-range system is bivariate normal, then pointwise bivariate density

forecasts can be obtained as follows,

yc,T+h

yr,T+h

→ N
(ŷc,T+h|T

ŷr,T+h|T

 ,
Ŵh,11 Ŵh,12

Ŵh,21 Ŵh,22

) (2.5)

Note that the variance-covariance matrices of the forecast densities in (2.5) do not incor-

porate parameter uncertainty, which will be negligible when the sample size T is large

relative to the number of estimated parameters. When the center/log-range system is

non-Gaussian, we can obtain bootstrap pointwise forecast densities by implementing the

bootstrap procedure proposed by Fresoli, Ruiz, and Pascual (2015), which will be described

in the forthcoming section 4. The bootstrap forecast densities incorporate parameter un-
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certainty without relying on any specific forecast error distribution. Even in the Gaussian

case, if the estimation sample is not very large, the effect of parameter uncertainty on the

forecast may not vanished, and so the use of bootstrap forecast densities may be desired.

2.3 Gaussian Center/Log-Range System

2.3.1 Prediction regions for the center/log-range system

Using the forecast densities in (2.5), we can construct pointwise h-step-ahead fore-

cast regions. The 100×(1−α)% h-step-ahead forecast ellipsoid for YT+h ≡ (yc,T+h, yr,T+h)′

is given by

NET+h =
[
YT+h|(YT+h − ŶT+h|T )′Ŵ−1

h [YT+h − ŶT+h|T ]
]
≤ q1−α, (2.6)

where q1−α is the (1− α) quantile of the chi-square distribution with 2 degrees of freedom.

The ellipse is a countour of the bivariate normal center/log-range system with 100×(1−α)%

coverage.

A straightforward and easy to construct h-step-ahead forecast region is a Bonfer-

roni rectangle with (at least) 100×(1−α)% coverage. This rectangle will have the following

sides

[
bc,α/4, bc,1−α/4

]
≡
[
ŷc,T+h|T − zα/4

√
Ŵh,11, ŷc,T+h|T + zα/4

√
Ŵh,11

]
(2.7)

[
br,α/4, br,1−α/4

]
≡
[
ŷr,T+h|T − zα/4

√
Ŵh,22, ŷr,T+h|T + zα/4

√
Ŵh,22

]
, (2.8)
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where zα/4 is the α/4-quantile of the standard normal distribution. Given the bivariate

normality of the system (2.5), the marginal probability density functions of yc,T+h and

yr,T+h are also normal.

To include the contemporaneous linear correlation between the center and log-

range, we modify the Bonferroni rectangles as in Fresoli et al. (2015). The corners of the

modified rectangle are

[bc,α/4, br,α/4 + p21,hbc,α/4], [bc,α/4, br,1−α/4 + p21,hbc,α/4], (2.9)

[bc,1−α/4, br,α/4 + p21,hbc,1−α/4], [bc,1−α/4, br,1−α/4 + p21,hbc,1−α/4]

where p21,h = Ŵh,21/Ŵh,11. The area of the modified Bonferroni rectangle is the same as

that of the Bonferroni rectangle. However, the theoretical coverage rate may be slightly dif-

ferent depending on the quantiles associated with the modified terms, e.g., br,α/4+p21,hbc,α/4,

which in turn depend on the magnitude and sign of p21,h. Simulations results will provide

some information on the coverage rate of the modified Bonferroni rectangle. To illustrate the

shapes of the three forecast regions described above, in Figure 2.1 we plot the 1-step-ahead

95% ellipse, Bonferroni rectangle and modified Bonferroni rectangle for the center/log-range

system generated by a VAR(4) model with parameter values as reported in Table 1 and

Gaussian errors with contemporaneous correlations of -0.24. The forecast regions have been

obtained after estimating the parameters based on T=1000 observations so that the param-

eter estimation uncertainty is negligible. In Figure 2.1, we also plot 1000 realizations of

YT+1. We observe that both the ellipse and the modified Bonferroni rectangle are able to

capture the negative correlation between the center and the log-range while the Bonferroni
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rectangle cannot inform about this correlation. Note that the Bonferroni rectangle has large

empty areas without any realization of YT+1.

Figure 2.1: 95% prediction regions for the center/log-range system obtained from a simu-
lated VAR(4) model with Gaussian errors and T = 1000.

2.3.2 Prediction regions for center/range and lower/upper systems

Moving from the center/log-range system to the center/range system or to the

lower/upper bounds system, we can implement either analytical or numerical methods to

construct prediction regions for the center/range system or for the lower/upper bounds
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system. Under bivariate normality of center/log-range, the bivariate density of the cen-

ter/range system is

f(yc,T+h, RT+h) =
1

2π

√
|Ŵh|

1

RT+h
exp[−1

2
(YT+h − ŶT+h|T )′Ŵ−1

h (YT+h − ŶT+h|T )]. (2.10)

Since the center of the interval yc ≡ (yu + yl)/2 and the range R ≡ (yu − yl) are

linear combinations of the upper and lower bounds, it is easy to see that that the conditional

bivariate density of the upper/lower bounds is also given by (2.10).

We construct analytical contours for the center/range and lower/upper bounds

system by horizontally cutting the bivariate density (2.10) at a value determined by the

nominal coverage 100 × (1 − α)% that we wish to obtain. Such a value is obtained by

numerical simulation. Based on the same simulated system described above, in Figure 2.2

we illustrate the shape of the forecast regions for the center/range system obtained using

the analytical density in (2.10) by plotting the 95% forecast region and 1000 realizations of

(CT+1, RT+1). We observe that, as expected, the region is not an ellipse.

As an illustration of the shapes of the regions for the lower/upper bounds system,

in Figure 2.3 we plot the 95% forecast regions based on (2.10) and a close-up detail of the

central area of the region. In Figure 2.4, we plot close-ups of the extreme areas of the

regions.

For the center/range system, we also construct numerical contours based on the

100×(1−α)% normal ellipse (2.6) of the center/log-range system by transforming the points

(center, log-range) sitting on the boundary of (2.6) to points (center, exp(log-range)). The
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Figure 2.2: 95% prediction regions for the center/range system obtained by transforming
the regions obtained for the center/log-range system as well as the analytical contour based
on (2.10). Normal ellipse refers to the transformed normal ellipse T-NE and Bootstrap
ellipse refers to the transformed bootstrap ellipse T-BE, which are identical.
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new shapes will not be ellipsoids but they will maintain the coverage, and have the advantage

of delivering strictly positive values for the range3.

The 100× (1− α)% transformed normal ellipse (T-NE) is given by

T-NET+h =
{[

(yc,T+h, exp[logRT+h])′] (2.11)

such that (YT+h − ŶT+h|T )′Ŵ−1
h (YT+h − ŶT+h|T

)
= q1−α

}

In Figure 2.2, we illustrate the shape of the transformed ellipse using the same simulated

example previously described. The transformed shape is similar to the analytical although

are not identical.

Similarly, we transform the Bonferroni and modified Bonferroni rectangles by tak-

ing the exponential transformation of the log-range intervals (2.8) and the range terms in

(2.9) respectively.

Transformed Bonferroni rectangle:

[
ŷc,T+h|T − zα/4

√
Ŵh,11, ŷc,T+h|T + zα/4

√
Ŵh,11

]
(2.12)

[
exp(ŷr,T+h|T − zα/4

√
Ŵh,22), exp(ŷr,T+h|T + zα/4

√
Ŵh,22)

]

Transformed modified Bonferroni rectangle:

[bc,α/4, exp(br,α/4 + p21,hbc,α/4)], [bc,α/4, exp(br,1−α/4 + p21,hbc,α/4)], (2.13)

[bc,1−α/4, exp(br,α/4 + p21,hbc,1−α/4)], [bc,1−α/4, exp(br,1−α/4 + p21,hbc,1−α/4)]

3This approach cannot be implemented to find prediction regions for the lower/upper bounds system
because there is not a monotonic transformation from the boundary points of the center/log-range region to
the boundary points of the lower/upper bounds region.
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In Figure 2.2, we illustrate the shapes of the transformed Bonferroni rectangles.

Observe that while the transformed modified Bonferroni rectangle also shows the correlation

between center and range, the transformed Bonferroni rectangle does not and some portions

of the area are empty.

2.4 Non-Gaussian Center/Log-Range System

2.4.1 Prediction regions for the center/log-range system

Following Fresoli et al. (2015), we implement the following bootstrap procedure

to obtain bootstrap forecasts of the center/log-range system:

Step 1. Estimate the parameters of the VAR(p) model in (2.1)-(2.2) by LS and

obtain the residual vector ε̂t = (ε̂c,t, ε̂r,t)
′. Center the residuals, i.e. ε̂t − ε̄t where ε̄t =

1
T−p

∑T
t=p+1 ε̂t. Rescale the residuals using the factor [ T−p

T−p−d ]1/2, where d is the number

of parameters to estimate. Denote the empirical distribution of the centered and rescaled

residuals as F̂ε̂.

Step 2. Using the parameter estimates obtained in Step 1, generate in sample

bootstrap series {y∗(b)c,1 , ..., y
∗(b)
c,T } and {y∗(b)r,1 , ..., y

∗(b)
r,T }, for t = 1, ..., T , as follows,

y
∗(b)
c,t = α̂1 +

p∑
i=1

β̂
(i)
11 y
∗(b)
c,t−i +

p∑
i=1

β̂
(i)
12 y
∗(b)
r,t−i + ε

∗(b)
c,t

y
∗(b)
r,t = α̂2 +

p∑
i=1

β̂
(i)
21 y
∗(b)
c,t−i +

p∑
i=1

β̂
(i)
22 y
∗(b)
r,t−i + ε

∗(b)
r,t ,

where (ε∗c,t, ε
∗
r,t)
′ are random pairwise extractions with replacement from F̂ε̂ and, for t =
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1, ..., p, y
∗(b)
c,t = yc,t and y

∗(b)
r,t = yr,t.

4 Using y
∗(b)
c,t , y

∗(b)
r,t , estimate the VAR(p) parameters

α̂∗(b) =

α̂
∗(b)
1

α̂
∗(b)
2

 and β̂∗(b) =

β̂
∗(i)(b)
11 β̂

∗(i)(b)
12

β̂
∗(i)(b)
21 β̂

∗(i)(b)
22


i=1,...,,p

.

Step 3. Construct bootstrap h-step-head future values of the vector (yc,T+h, yr,T+h)′

as follows,

ŷ
∗(b)
c,T+h|T = α̂

∗(b)
1 +

p∑
i=1

β̂
∗(i)(b)
11 ŷ

∗(b)
c,T+h−i|T +

p∑
i=1

β̂
∗(i)(b)
12 ŷ

∗(b)
r,T+h−i|T + ε

∗(b)
c,T+h

ŷ
∗(b)
r,T+h|T = α̂

∗(b)
2 +

p∑
i=1

β̂
∗(i)(b)
21 ŷ

∗(b)
c,T+h−i|T +

p∑
i=1

β̂
∗(i)(b)
22 ŷ

∗(b)
r,T+h−i|T + ε

∗(b)
r,T+h,

where ŷ
∗(b)
c,T+h−i|T = yc,T+h−i, and ŷ

∗(b)
r,T+h−i|T = yr,T+h−i for i ≥ h, and (ε

∗(b)
c,T+h, ε

∗(b)
r,T+h)′ are

pairwise random draws with replacement from F̂ε̂. Notice that, in order to obtain forecasts

conditional on the available data set, the last p values of the original data are fixed in this

step.

Step 4. Repeat steps 2 and 3 B times.

We obtain B bootstrap replicates of the vector Y
∗(b)
T+h|T = (ŷ

∗(b)
c,T+h|T , ŷ

∗(b)
r,T+h|T )′; see

Fresoli, Ruiz, and Pascual (2015) for the asymptotic validity of the bootstrap procedure.

The bootstrap replicates obtained through the procedure proposed by Fresoli et

al.(2015) can be used to obtain the following pointwise bootstrap ellipsoid with 100×(1−α)%

coverage

BET+h =
[
YT+h|[YT+h − Ȳ ∗T+h|T ]′SY ∗(h)−1[YT+h − Ȳ ∗T+h|T ]

]
≤ q∗1−α, (2.14)

4Alternatively, we can use the permutation bootstrap initially proposed by LePage and Podgorski (1996),
which is expected to have a better performance in the presence of heavy-tailed errors; see Cavaliere et al.
(in press) for an application to non-causal time series.
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where Ȳ ∗T+h|T is the sample mean of the B bootstrap replicates Y
∗(b)
T+h|T , SY ∗(h) is the

corresponding sample covariance matrix and q∗1−α is the (1 − α) quantile of the empirical

distribution of the quadratic form [Y
∗(b)
T+h − Ȳ ∗T+h|T ]′SY ∗(h)−1[Y

∗(b)
T+h − Ȳ ∗T+h|T ].

Pointwise bootstrap prediction regions for the center/log-range system can also

be constructed as Bonferroni rectangles with at least 100 × (1 − α)% coverage with the

following corners

[q∗c,α/4, q
∗
r,α/4], [q∗c,α/4, q

∗
r,1−α/4], [q∗c,1−α/4, q

∗
r,α/4], [q∗c,1−α/4, q

∗
r,1−α/4] (2.15)

where q∗c,α/4 and q∗r,α/4 are the α/4 quantiles from the respective marginal bootstrap distri-

butions of the center and the log-range.

If we wish to correct for the contemporaneous correlation between the center and

the log-range, we construct a pointwise bootstrap modified Bonferroni rectangle with the

following corners

[q∗c,α/4, q
∗
r,α/4 + pB21,hq

∗
c,α/4], [q∗c,α/4, q

∗
r,1−α/4 + pB21,hq

∗
c,α/4], (2.16)

[q∗c,1−α/4, q
∗
r,α/4 + pB21,hq

∗
c,1−α/4], [q∗c,1−α/4, q

∗
r,1−α/4 + pB21,hq

∗
c,1−α/4]

where pB21,h = SY ∗(h)21/SY ∗(h)11.

Note that neither the bootstrap ellipsoid nor the Bonferroni rectangles need to

be probability-centered when the joint distribution of the center/log-range system is not

normal; see, for example Beran (1993) for the desirable properties of multivariate forecast

regions. In this case, these regions will be only approximations to the true shape of the
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bootstrap forecasts. Alternatively, probability-centered forecast regions can be constructed

using the convex hull peeling method of Tukey (1975); see Green (1985) for a description.5

The Tukey peeling method consists of constructing a series of convex prediction polygons.

Given a data cloud, the first layer of the Tukey convex hull is the convex polygon formed

by the boundary of the data. It continues by peeling the first layer off and finding the

second layer for the remaining data. This process is repeated until no convex polygon can

be constructed anymore. In our case, we have a two-dimensional bootstrap data cloud

Y
∗(b)
T+h|T = (ŷ

∗(b)
c,T+h|T , ŷ

∗(b)
r,T+h|T )′. We construct layers of convex polygons and we choose the

polygon that provides the closest coverage to the desired nominal coverage rate. This is the

Tukey nonparametric region. The bootstrap forecast regions for the center/log-range system

can obviously be also constructed even if the errors are normal. As an illustration, Figure

2.1 we plot the 95% bootstrap ellipse and the Bonferroni and modified Bonferroni rectangles

when the data is generated by the same data generating process described in the previous

section. These regions are based on B=4000 bootstrap replicates. Given the large sample

size T = 1000 to estimate the parameters, the uncertainty due to parameter estimation

is negligible. Consequently, the normal and bootstrap ellipses have identical shapes. The

Tukey hull follows very closely the ellipses. The bootstrap Bonferroni rectangles are also

very similar to their normal counterparts.

5One can also construct prediction regions using the High Density Regions proposed by Hyndman (1996)
based on kernel estimates of the joint bootstrap empirical density or using the Monge-Kantorovich distance
as proposed by Chernozhukov et al. (2017).
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2.4.2 Prediction regions for center/range and lower/upper systems

As in the previous section, we can construct prediction regions for the center/range

system based on the bootstrap 100×(1−α)% ellipsoid (2.14) of the center/log-range system.

By transforming the points (center, log-range) sitting on the boundary of (2.14) to points

(center, exp(log-range)), we obtain the 100×(1−α)% transformed bootstrap ellipse (T-BE)

T-BET+h =
{[

(yc,T+h, exp[logRT+h])′] (2.17)

such that (YT+h − Ȳ ∗T+h|T )′SY ∗(h)−1(YT+h − Ȳ ∗T+h|T ) = q∗1−α
}

Similarly, we obtain the transformed bootstrap Bonferroni rectangle for the cen-

ter/range system with corners

[q∗c,α/4, exp(q∗r,α/4)], [q∗c,α/4, exp(q∗r,1−α/4)], (2.18)

[q∗c,1−α/4, exp(q∗r,α/4)], [q∗c,1−α/4, exp(q∗r,1−α/4)]

and the transformed bootstrap modified Bonferroni rectangle with corners

[q∗c,α/4, exp(q∗r,α/4 + pB21,hq
∗
c,α/4)], [q∗c,α/4, exp(q∗r,1−α/4 + pB21,hq

∗
c,α/4)], (2.19)

[q∗c,1−α/4, exp(q∗r,α/4 + pB21,hq
∗
c,1−α/4)], [q∗c,1−α/4, exp(q∗r,1−α/4 + pB21,hq

∗
c,1−α/4)]

where pB21,h is defined as in (4.3).
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We also construct the Tukey nonparametric region for the data cloud of bootstrap

realizations of center and range (ŷ
∗(b)
c,T+h|T , exp(ŷ

∗(b)
r,T+h|T ))′. In Figure 2.2, we plot these

regions for the same simulated system considered above.

Finally, for the lower/upper bounds system, we calculate first the bootstrap upper

and lower bounds based on the bootstrap realizations of the center and range as follows

y
∗(b)
u,T+h = ŷ

∗(b)
c,T+h|T +

1

2
exp(ŷ

∗(b)
r,T+h|T ) (2.20)

y
∗(b)
l,T+h = ŷ

∗(b)
c,T+h|T −

1

2
exp(ŷ

∗(b)
r,T+h|T ) (2.21)

and construct a bootstrap ellipsoid for the upper and lower bounds as

BEULT+h =
[
Y UL
T+h| [Y UL

T+h − Ȳ UL∗
T+h|T ]′SULY ∗ (h)−1[Y UL

T+h − Ȳ UL∗
T+h|T ] ≤ qUL∗1−α

]
(2.22)

where Y UL
T+h = (yu,T+h, yl,T+h)′ and Ȳ UL∗

T+h|T and SULY ∗ (h) represents the mean vector and

variance covariance matrix, respectively, of the bootstrap upper/lower bound realizations.

Finally, a Tukey nonparametric region can be constructed for the data cloud of

bootstrap realizations of upper and lower bounds (y
∗(b)
u,T+h, y

∗(b)
l,T+h))′. Note that for this

system, we do not construct Bonferroni rectangles because they may contain unfeasible

subregions of points where the lower bound is greater than the upper bound.

In Figures 2.1-2.4, we illustrate the shapes of the different prediction regions. We

run a single simulation to construct the one-step-ahead 95%-probability forecast regions

based on the estimation of a VAR(4) model (T = 1000) for the center/log-range system

whose errors follow a bivariate normal distribution with contemporaneous correlation of

65



-0.24. For the bootstrap procedures, we use B = 4000. In Figure 2.1, we plot seven regions

for the center/log-range system. As expected, the Normal ellipse and the bootstrap ellipse

have identical shapes. The Tukey convex hull follows very closely the ellipses. The modified

Bonferroni rectangles are able to capture the negative correlation between center and log-

range. In Figure 2.2, we plot the seven regions for the center/range system. As expected,

the transformed Normal ellipse and the transformed bootstrap ellipse have identical shapes.

The Tukey convex hull and the analytical contour based on (2.10) follow very closely the

transformed ellipses. In Figures 2.3 and 2.4, we plot the 95% bootstrap forecast ellipsoid

and the Tukey region for the upper/lower bounds system. The analytical contour based on

(2.10) and the Tukey convex hull are very close to each other. However, for this particular

realization, the bootstrap ellipsoid is somehow different mainly in the center and upper

right corner of the distribution of the lower/upper bounds system.

2.5 Evaluation of the Prediction Regions

We present several criteria to evaluate the prediction regions. As in the case of

loss functions, it is only the objective of the forecaster that will define which criterium is

the most appropriate.

At the most basic level, the forecaster will aim for reliability, that is, those pre-

diction regions that provide the closest coverage to the nominal coverage rate. In an out-

of-sample environment, for a regions with 100 × (1 − α)% nominal coverage, the average
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coverage rate is defined as

C(1−α) =
1

N

N∑
t=1

I
(1−α)
t (2.23)

where N is the number of out-of-sample forecasts and I
(1−α)
t is an indicator variable that

is equal to 1 if the observed outcome falls within the prediction region and 0 otherwise.

Following Golestaneh et al. (2017), we combine reliability with sharpness, a pref-

erence for regions with smaller area or volume, and they propose the following average

coverage-volume score for regions with 100× (1− α)% nominal coverage

CV(1−α) =
∣∣ 1

N

N∑
t=1

[
I

(1−α)
t − (1− α)

]
×
[
V

(1−α)
t

] 1
p
∣∣ (2.24)

where V
(1−α)
t is the volume of the prediction region with nominal coverage rate (1− α) at

time t, and p is the dimension of the outcome variable, which in our case is p = 2. The

forecaster would prefer a lower score as he is aiming for regions with high reliability and

small area.

Another aspect to the evaluation of forecast regions is to consider the observations

outside of the 100 × (1 − α)% region and to assess how far they are from a central point

within the prediction region. We propose the following average outlier distance

O(1−α) =
1

G

N∑
t=1

[
1− I(1−α)

t

]
×D(yt,Mt) (2.25)

where G is the number of observations outside the region, D is a distance measure (e.g.

Euclidean distance) of each outside-the-region outcome yt from Mt, which is a central point
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in the region. We choose Mt to be the median of the realizations generated at each time

t according to the methods explained in Section 4. However, defining the median for a

multi-dimensional dataset (2-dimensional in our case) is not as straighforward as it is for a

one-dimensional dataset. To obtain Mt, we implement the definition of median in a multi-

dimensional setting introduced by Zuo (2003), known as ‘projection depth median’, and

programmed in the Matlab package (Liu and Zuo, 2015). A brief description follows.

With a one-dimensional dataset, Z = {Zi}, i = 1, ...n, a robust measurement of

the outlyingness of a point z (a scalar) relative to Z is the outlying function

o1(z, Z) =
|z −Med(Z)|
MAD(Z)

where Med is the median of data set Z and MAD(Z) = Med{|Zi −Med(Z)|, i = 1, ..., n}.

When z and Z are p-dimensional (p > 1), the above outlying function is applied by

projecting z and Z into a one-dimensional space, i.e., o1(uT z, uTZ), where u ∈ S and

S = {v ∈ Rp : ‖v‖ = 1} is a set of unit vectors in the p-dimensional space. The projec-

tion depth of point z with respect to Z is defined as PD(z, Z) = (1 + O(z, Z))−1, where

O(z, Z) ≡ sup
u∈S

o1(uT z, uTZ). Under some mild conditions (Zuo, 2013), there exists a

unique single point (z∗ ∈ Rp, not necessarily from Z) that maximizes PD(z, Z) for a data

set Z. This z∗ is defined as the ‘projection depth median’ of Z.

The 100 × α% outside-the-region observations can be considered ‘risk’ that the

forecaster has to bear and, in this sense, he would like to minimize O(1−α). For two regions

with similar coverage, the forecaster will choose that with a lower average outlier dispersion.
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We also evaluate the prediction region by the sharpness or tightness of the intervals

that result from projecting the two-dimensional region into one-dimensional intervals. We

draw a large number of directions, which are given by the lines drawn from the zero origin

of the unit circle to any point in its boundary. For each direction, we find the two bounding

tangent lines to the prediction region that are perpendicular to that direction. We calculate

the length of the projected interval bounded by the tangent lines. See Figure 2.5 (top panel)

for a graphical representation. Denote di ∈ Υ as the ith direction in Υ, where Υ is the set

of all directions, and let D be the number of directions. At time t, the average projection

length over all directions is

Pt =
1

D

D∑
i=1

(udi − ldi),

where udi is the upper bound and ldi the lower bound of the projected interval in the

ith direction. Then, over the prediction sample, the average length of the projected

intervals associated with the (1− α)% prediction region is

P(1−α) =
1

N

N∑
t=1

Pt (2.26)

The forecaster would prefer prediction regions that deliver tight projected intervals.

We now consider the realized data points over the prediction period in conjunction

with the projected intervals. For each direction, we also project each point into that direc-

tion and measure whether the point falls into or outside of the projected interval (see Figure

2.5, top panel) . An indicator function I will assign the value 0 if the point falls inside and
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Figure 2.5: Projected interval and projected outliers (top panel). Outlier distribution
around a region (bottom panel)
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1 if the point falls outside of the projected interval. At time t, over all D directions, we

calculate the average distance of the projected outliers to the projected interval as

OPt =
1

D

D∑
i=1

[(ldi − xdi)I(xdi < ldi) + (xdi − udi)I(xdi > udi)]

where xdi is the coordinate of the data point projected on the ith direction. Then, over the

prediction sample, the average distance of the projected outliers associated with the

100× (1− α)% prediction region is

OP(1−α) =
1

N

N∑
t=1

OPt (2.27)

The forecaster prefers prediction regions with projected outliers close to the projected in-

tervals.

We expect that when the length of the projected interval is large, the distance of

the projected outliers to the interval will be smaller. To take into account this a trade-off,

we propose a combined criterium POPt = Pt×OPt so that, over the prediction sample, the

average trade-off associated with the 100× (1− α)% prediction region is

POP(1−α) =
1

N

N∑
t=1

POPt (2.28)

A smaller POP(1−α) would be preferred by the forecaster.

Finally, we assess whether the prediction region is probability-centered. We check

whether the points outside of the prediction region are evenly distributed around the region.

At time t, we consider a cloud of data points and calculate the median Mt as in Zuo (2003).
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We also consider a number of directions D that pass through Mt. We define Hu(di,Mt) as

the half-plane above the line generated by the direction di and Hl(di,Mt) as the half-plane

below the same line. See Figure 2.5 (bottom panel) for a graphical representation. For a

given direction di and the 100 × (1 − α)% prediction region R, we consider the number of

points outside of the region, i.e., x ∈ Rc, which are either in Hu(di,Mt) or in Hl(di,Mt),

that is

Cu(di,Mt)) = {#x|(x ∈ Rc) ∩ (x ∈ Hu(di,Mt))}

Cl(di,Mt) = {#x|(x ∈ Rc) ∩ (x ∈ Hl(di,Mt))}

where Cu(di) and Cl(di) are functions providing the number of of outlier points falling in

the upper half-plane or lower half-plane respectively. If the outliers are evenly distributed

around the 100 × (1 − α)% prediction region, we expect the following statistic S(1−α)(Mt)

to be close to zero

S(1−α)(Mt) =
1

D

D∑
i=1

|Cu(di,Mt))− Cl(di,Mt)| (2.29)

Though S(1−α)(Mt) will not be feasible with real data (we will have only one realized

observation at time t that could be in or out of the prediction region), in a simulated

environment, we will be able to assess the probability-centered property of each prediction

region.
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2.6 Monte Carlo Simulations

We perform extensive Monte Carlo simulations to assess the performance of the

prediction regions constructed with the analytical and semiparametric methods explained

in sections 3 and 4. The regions are evaluated according to the seven criteria described in

section 5.

We generate a small sample of T = 200 observations and a large sample of T = 1000

observations (estimation samples) from a VAR(4) for the center/log-range system (1.1)-(1.2)

with parameter values reported in Table 2.1. We consider four cases regarding distributional

assumptions from which the errors are drawn: (1) center and log-range errors are both

normally distributed; (2) center errors are Student-t with 5 degrees of freedom and log-range

errors are normally distributed; (3) center errors are Student-t with 5 degrees of freedom

and range errors are exponentially (λ) distributed; and (4) center errors are normal and

range errors exponentially (λ) distributed. Note that the distributional assumptions are on

the marginal densities of the errors of each equation. It is only in case (1) that the bivariate

density of the center and log-range is normal; in the rest of the cases, we do not know the

exact bivariate densities.6

6For the system to have the desired marginal density functions and the stated correlation structure, we
have generated bivariate errors from a Gaussian copula and re-transform the PITs of the corresponding
univariate normal variates according to the desired density, e.g. Student-t, to obtain the new error variates,
which need to be adjusted to have the desired mean and variance.
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Center equation log-Range equation

Constant -0.9344 0.0759
C(-1) 0.3404 -0.0112
C(-2) -0.1530 -0.0027
C(-3) 0.0314 -0.0030
C(-4) -0.0551 -0.0022
log-R(-1) -0.5030 0.0852
log-R(-2) 0.1281 0.1845
log-R(-3) -0.1556 0.1539
log-R(-4) 0.9157 0.0760

Variance-covariance matrix of the errors:

Ω =

[
σ2

1 σ12

σ12 σ2
2

]
=

[
111.24 −1.02
−1.02 0.16

]
Contemporaneous correlation between the center and log-range errors = -0.24.

Table 2.1: Monte Carlo simulations. VAR(4) parameter values for the center/log-range
system

We consider 1- and 3-step-ahead prediction regions with 95% nominal coverage.7

We calculate the empirical coverage by simulating 1000 future values of the required vector

at time T , i.e. center/log-range, center/range, and upper/lower bounds, at the forecast

horizon, and calculating the proportion of these values that falls within the constructed

prediction regions. The number of Monte Carlo replications is 500, the number of bootstrap

samples is B = 2000, and the number of directions to calculate the average length of the

projected intervals and outliers is D = 100.

2.6.1 Center and Log-Range are Normally distributed

The errors of the center equation of the VAR(4) are drawn from a normal density

as well as the errors of the log-range equation. In Tables 2.2-2.3, we report the evaluation of

the prediction regions for the three systems (center/log-range, center/range and upper/lower

7The results for h = 3 are provided in the Supplementary Material, Tables S1-S4.
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bounds) for forecast horizon h = 1 with estimation samples T = 1000 and T = 200. Note

that we only estimate the VAR(4) once for the center/log-range, construct prediction regions

for this system, and based on these estimates, we proceed to construct prediction regions

for the other two systems.

Given the bivariate normality of the center/log-range system, the prediction re-

gions based on the normal ellipse (2.6) and on the analytical methods (2.10) would be exact

if parameter estimation were not a concern. For a large estimation sample T = 1000 (Table

2.2), all regions, except for the Tukey convex hull, are very reliable with empirical coverage

C95 of mostly 95%. Bootstrap ellipse and bootstrap Bonferroni rectangles, which account

for parameter uncertainty, deliver the closest value to 95% in the three systems. Bonferroni

rectangles have the largest areas compared to the normal ellipse and to the regions based

on analytical methods, but because they provide good coverage, they enjoy one of the low-

est average coverage-volume scores CV95. The larger area of the Bonferroni rectangles is

somehow compensated by a lower average outlier distance O95, though this metric is very

similar for all prediction regions considered across the three systems. The tightest regions

i.e., those projecting tight one-dimensional intervals measured by POP95, correspond to the

normal ellipse, bootstrap ellipsoids, and those regions based on exact analytical expressions.

These are also the regions with outliers more evenly distributed around their boundaries.

For small estimation sample T = 200 (Table 2.3), the bootstrap regions provide a

clear advantage with respect to the other regions. In small samples, parameter uncertainty

plays a more important role than in large samples. Boostrap methods are designed to take

into account estimation uncertainty. Across systems, bootstrap ellipsoids and bootstrap
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Bonferroni rectangles are still very reliable with empirical coverage close to 95%. They also

enjoy the smallest score CV95. The tightest regions, i.e small POP95, are provided by the

bootstrap ellipsoid and its transformed regions followed by the Tukey region.

Considering the overall performance assessed by the metrics C, CV , and POP , for

large estimation samples, normal ellipses, bootstrap ellipsoids, and those regions based on

analytical methods are the best performers, and as expected, better than the Tukey convex

hull. Bonferroni rectangles, though providing good coverage, tend to be conservative in

area, which in turn provides some advantages regarding the lower dispersion of the outliers.

For small samples, the bootstrap ellipsoid is the best performer. These conclusions hold

regardless of whether h = 1 or h = 3.
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Large Estimation Sample T = 1000 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (2.6) 0.9469 8.7059 0.0645 18.8891 25.8596 0.0275 0.7090 0.0089
Bonferroni rectangle (2.7)-(2.8) 0.9484 9.1321 0.0646 18.3628 24.9220 0.0375 0.9309 0.0088
Modified Bonferroni rectangle (2.9) 0.9516 9.1321 0.0655 18.5670 24.9306 0.0372 0.9255 0.0095
BE: Bootstrap ellipsoid (2.14) 0.9493 8.7842 0.0801 19.0161 26.0994 0.0262 0.6773 0.0087
Bootstrap Bonferroni rectangle (2.15) 0.9493 9.2184 0.0819 18.4758 25.1222 0.0373 0.9293 0.0096
Modified Bootstrap Bonferroni rectangle (2.16) 0.9521 9.2184 0.0848 18.6347 25.1309 0.0371 0.9240 0.0104
Tukey convex hull 0.9414 8.6389 0.1028 18.5770 26.1263 0.0283 0.7265 0.0107

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (2.10) 0.9470 9.8933 0.0782 18.7056 26.2543 0.0263 0.6885 0.0161
T-NE: T-Normal ellipse (2.3.2) 0.9469 10.1606 0.0756 18.9612 25.9781 0.0280 0.7259 0.0089
T-Bonferroni rectangle (2.12) 0.9484 10.7382 0.0758 18.4471 25.4849 0.0349 0.8849 0.0088
T-Modified Bonferroni rectangle (2.13) 0.9513 10.9309 0.0788 18.5675 25.5757 0.0343 0.8742 0.0101
T-BE: T-Bootstrap ellipsoid (2.4.2) 0.9493 10.2637 0.0940 19.0892 28.8440 0.0267 0.7346 0.0087
T-Bootstrap Bonferroni rectangle (2.4.2) 0.9493 10.8482 0.0966 18.5638 25.6943 0.0347 0.8832 0.0096
T-Modified Bootstrap Bonferroni rectangle (2.19) 0.9519 11.0436 0.1036 18.6581 25.7867 0.0342 0.8722 0.0109
Tukey convex hull 0.9411 10.2071 0.1237 18.6050 26.2517 0.0287 0.7406 0.0119

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (2.10) 0.9470 9.8763 0.0781 26.3045 46.5574 0.0463 2.1514 0.0095
Bootstrap ellipsoid (2.22) 0.9488 10.4679 0.1010 24.3205 47.3650 0.0414 1.9393 0.0126
Tukey convex hull 0.9411 10.1884 0.1232 26.1956 46.5761 0.0506 2.3167 0.0114

Table 2.2: Evaluation of the h-step ahead 95% prediction regions from a GAUSSIAN
center/log-range system (h = 1); 500 Monte Carlo simulations from a VAR(4). In the
first column, the numbers in parenthesis e.g., (x.x) are the corresponding equations in the
text.
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Small Estimation Sample T = 200 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (2.6) 0.9323 8.5326 0.1687 18.4343 25.4321 0.0369 0.9220 0.0208
Bonferroni rectangle (2.7)-(2.8) 0.9352 8.9625 0.1559 18.0943 24.5124 0.0490 1.1831 0.0198
Modified Bonferroni rectangle (2.9) 0.9378 8.9625 0.1421 18.1143 24.5209 0.0488 1.1768 0.0201
BE: Bootstrap ellipsoid (2.14) 0.9465 8.9272 0.1302 19.0901 26.6052 0.0276 0.7146 0.0172
Bootstrap Bonferroni rectangle (2.15) 0.9455 9.3834 0.1384 18.4711 25.6546 0.0408 1.0206 0.0181
Modified Bootstrap Bonferroni rectangle (2.16) 0.9480 9.3834 0.1320 18.4979 25.6636 0.0406 1.0152 0.0178
Tukey convex hull 0.9334 8.7457 0.1775 18.3070 26.8745 0.0310 0.8045 0.0222

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (2.10) 0.9327 9.7378 0.1927 18.4312 25.8139 0.0356 0.9029 0.0247
T-NE: T-Normal ellipse (2.3.2) 0.9323 9.9933 0.1971 18.5044 25.5514 0.0376 0.9434 0.0209
T-Bonferroni rectangle (2.12) 0.9352 10.5726 0.1836 18.1739 25.0743 0.0457 1.1273 0.0199
T-Modified Bonferroni rectangle (2.13) 0.9373 10.7899 0.1750 18.1043 25.1757 0.0450 1.1140 0.0208
T-BE: T-Bootstrap ellipsoid (2.4.2) 0.9465 10.4975 0.1528 19.1640 26.7346 0.0281 0.7324 0.0173
T-Bootstrap Bonferroni rectangle (2.4.2) 0.9455 11.1567 0.1645 18.5525 26.2772 0.0378 0.9673 0.0181
T-Modified Bootstrap Bonferroni rectangle (2.19) 0.9472 11.3987 0.1633 18.4061 26.3916 0.0371 0.9548 0.0187
Tukey convex hull 0.9338 10.4532 0.2114 18.3920 27.0735 0.0311 0.8151 0.0224

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (2.10) 0.9327 9.7528 0.1931 25.9290 45.7581 0.0629 2.8261 0.0198
Bootstrap ellipsoid (2.22) 0.9470 10.7473 0.1919 25.1246 48.4270 0.0429 2.0190 0.0180
Tukey convex hull 0.9338 10.4590 0.2118 25.8989 48.0060 0.0550 2.5477 0.0220

Table 2.3: Evaluation of the h-step ahead 95% prediction regions from a GAUSSIAN
center/log-range system (h = 1); 500 Monte Carlo simulations from a VAR(4). In the
first column, the numbers in parenthesis e.g., (x.x) are the corresponding equations in the
text.
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2.6.2 Student-t(5) Center and Normal Log-Range

In Tables 2.4-2.5, we report the performance of the different predictions regions

when the errors of the center equation of the VAR(4) are leptokurtic and the errors of the

log-range equation are normal. Thus, the bivariate system center/log-range is not normally

distributed but symmetric. Consequently, the normal ellipse, Bonferroni rectangles, and

their corresponding transformed regions tend to undercover with empirical coverage rates

of about 94% in large samples, and about 93% in small samples because they do not consider

the fat tails of the errors in the center equation. The bootstrap regions, which are robust to

distributional assumptions and capture estimation uncertainty, are better performers with

coverage rates close to 95% in large and small samples. They also provide the smallest score

CV95 and, according to S95, tend to have a more evenly distribution of outliers around the

regions. For small samples, the performance of bootstrap regions is even more striking with

the bootstrap ellipsoid being the best region in terms of C95, CV95, and S95.These results

hold for both horizons h = 1 or h = 3.

The Tukey regions, which do not require any distributional assumption, are in-

between the bootstrap regions and the regions based on normality. Note that the Tukey

regions have a superior advantage according to POP95. Sacrificing a bit of coverage, the

Tukey region provides the tightest one-dimensional projections across systems, estimation

samples, and forecast horizons.
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Large Estimation Sample T = 1000 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (2.6) 0.9412 8.6797 0.0890 22.6435 28.0054 0.1126 3.1971 0.0088
Bonferroni rectangle (2.7)-(2.8) 0.9398 9.1163 0.1026 21.9114 24.8483 0.1269 3.1407 0.0090
Modified Bonferroni rectangle (2.9) 0.9429 9.1163 0.0850 22.3330 24.8572 0.1266 3.1360 0.0100
BE: Bootstrap ellipsoid (2.14) 0.9488 8.9704 0.0760 23.7767 26.6225 0.1029 2.7149 0.0079
Bootstrap Bonferroni rectangle (2.15) 0.9492 9.6376 0.0850 21.5902 27.3796 0.0984 2.6631 0.0092
Modified Bootstrap Bonferroni rectangle (2.16) 0.9523 9.6376 0.0854 22.0367 27.3895 0.0982 2.6586 0.0100
Tukey convex hull 0.9413 8.8669 0.1045 21.0923 29.6214 0.0785 2.2802 0.0106

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (2.10) 0.9411 9.9212 0.1058 22.5047 26.1741 0.1090 2.8408 0.0143
T-NE: T-Normal ellipse (2.3.2) 0.9412 10.1810 0.1048 22.7112 28.3778 0.1129 3.1091 0.0087
T-Bonferroni rectangle (2.12) 0.9398 10.7807 0.1219 21.9890 25.4332 0.1215 3.0773 0.0090
T-Modified Bonferroni rectangle (2.13) 0.9426 10.9858 0.1053 22.3062 25.5306 0.1206 3.0676 0.0109
T-BE: T-Bootstrap ellipsoid (2.4.2) 0.9488 10.5704 0.0897 23.8431 34.9965 0.1027 3.1692 0.0079
T-Bootstrap Bonferroni rectangle (2.4.2) 0.9492 11.4053 0.1009 21.6829 27.9724 0.0944 2.6087 0.0091
T-Modified Bootstrap Bonferroni rectangle (2.19) 0.9518 11.6538 0.1043 21.9587 28.0838 0.0937 2.5993 0.0109
Tukey convex hull 0.9416 10.5931 0.1239 21.1648 29.8935 0.0776 2.2727 0.0123

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (2.10) 0.9411 9.8875 0.1053 31.6801 46.4097 0.1959 9.0588 0.0090
Bootstrap ellipsoid (2.22) 0.9486 10.9656 0.1034 30.8649 49.3236 0.1642 8.0201 0.0112
Tukey convex hull 0.9416 10.5863 0.1236 29.8004 53.1740 0.1386 7.2162 0.0106

Table 2.4: Evaluation of the h-step ahead 95% prediction regions from a system with
center STUDENT-t(5) distributed and NORMAL log-range (h = 1); 500 Monte
Carlo simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x)
are the corresponding equations in the text.
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Small Estimation Sample T = 200 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9280 8.5034 0.1946 21.5578 25.3124 0.1243 3.0850 0.0198
Bonferroni rectangle (3.2)-(3.3) 0.9281 8.9418 0.2017 20.9695 24.4282 0.1400 3.3598 0.0200
Modified Bonferroni rectangle (3.4) 0.9309 8.9418 0.1841 21.1982 24.4369 0.1398 3.3548 0.0200
BE: Bootstrap ellipsoid (4.1) 0.9465 9.1088 0.1302 23.8342 27.0845 0.1018 2.6898 0.0151
Bootstrap Bonferroni rectangle (4.2) 0.9444 9.7872 0.1448 21.5150 27.8271 0.1044 2.8057 0.0176
Modified Bootstrap Bonferroni rectangle (4.3) 0.9471 9.7872 0.1376 21.7377 27.8371 0.1042 2.8013 0.0174
Tukey convex hull 0.9339 8.9892 0.1761 20.7920 30.3991 0.0836 2.4223 0.0213

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9280 9.6810 0.2227 21.5371 25.7212 0.1207 3.0448 0.0233
T-NE: T-Normal ellipse (3.6) 0.9280 9.9215 0.2269 21.6251 30.6254 0.1244 3.4822 0.0199
T-Bonferroni rectangle (3.7) 0.9281 10.5185 0.2370 21.0455 24.9815 0.1344 3.2963 0.0199
T-Modified Bonferroni rectangle (3.8) 0.9303 10.7436 0.2278 21.1401 25.0872 0.1333 3.2845 0.0209
T-BE: T-Bootstrap ellipsoid (4.4) 0.9465 10.6969 0.1525 23.9020 36.2004 0.1017 3.1213 0.0150
T-Bootstrap Bonferroni rectangle (4.5) 0.9444 11.6073 0.1712 21.5993 28.4407 0.0999 2.7454 0.0174
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9461 11.9048 0.1724 21.5778 28.5761 0.0991 2.7347 0.0181
Tukey convex hull 0.9343 10.7344 0.2128 20.8409 30.6042 0.0839 2.4434 0.0218

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9280 9.6699 0.2229 30.3216 45.5948 0.2173 9.7108 0.0178
Bootstrap ellipsoid (4.9) 0.9464 11.1371 0.1877 31.5378 50.2535 0.1626 7.9359 0.0153
Tukey convex hull 0.9343 10.7409 0.2131 29.3517 54.4157 0.1498 7.7539 0.0196

Table 2.5: Evaluation of the h-step ahead 95% prediction regions from a system with
center STUDENT-t(5) distributed and NORMAL log-range (h = 1); 500 Monte
Carlo simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x)
are the corresponding equations in the text.
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2.6.3 Student-t(5) Center and Exponential Range

In Tables 2.6-2.7, we report the performance of the different predicitons regions

when the errors of the center equation of the VAR(4) are drawn from a Student-t with 5

degrees of freedom and the errors of the log-range equation are those resulting from assuming

that the range itself is exponentially distributed. The exponential errors introduce some

asymmetry that is not fully corrected when they are transformed into errors of the log-range

equation. The resulting bivariate system center/log-range is not normally distributed as it

exhibits leptokurtosis and asymmetry.

For small and large samples, the bootstrap regions (ellipsoids and Bonferroni rect-

angles) provide the best coverage C95 with empirical rates very close to 95%, followed by

the Tukey region that covers around 94% of the events. The same regions have the small-

est scores CV95 and the smallest POP95. As in the previous case, the Tukey region has a

clear advantage over the other regions when we are interested in the smallest POP95. It is

interesting to note that the boostrap Bonferroni rectangles are able to distribute outliers

more evenly around their perimeters than any other prediction regions. These results hold

for the two horizons considered h = 1 and h = 3.
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Large Estimation Sample T = 1000 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9368 8.7108 0.1201 21.1329 27.9739 0.1133 3.2150 0.0280
Bonferroni rectangle (3.2)-(3.3) 0.9341 9.1404 0.1482 20.7347 24.8541 0.1273 3.1531 0.0298
Modified Bonferroni rectangle (3.4) 0.9357 9.1404 0.1375 20.8467 24.8628 0.1271 3.1475 0.0280
BE: Bootstrap ellipsoid (4.1) 0.9492 9.3037 0.0779 22.1716 32.8760 0.0937 2.9613 0.0233
Bootstrap Bonferroni rectangle (4.2) 0.9502 9.7724 0.0905 22.0051 27.3986 0.0988 2.6772 0.0099
Modified Bootstrap Bonferroni rectangle (4.3) 0.9524 9.7724 0.0920 22.4823 27.4082 0.0986 2.6727 0.0108
Tukey convex hull 0.9428 9.0187 0.1055 21.4827 29.6579 0.0790 2.3001 0.0122

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9433 9.9723 0.0914 22.5306 26.1769 0.1083 2.8242 0.0186
T-NE: T-Normal ellipse (3.6) 0.9368 10.2383 0.1419 21.0668 30.7229 0.1121 3.4644 0.0289
T-Bonferroni rectangle (3.7) 0.9341 10.8315 0.1767 20.6600 25.4505 0.1212 3.0713 0.0309
T-Modified Bonferroni rectangle (3.8) 0.9337 11.0282 0.1877 20.3441 25.5449 0.1205 3.0672 0.0312
T-BE: T-Bootstrap ellipsoid (4.4) 0.9492 11.0252 0.0923 22.0965 32.9957 0.0930 2.8497 0.0240
T-Bootstrap Bonferroni rectangle (4.5) 0.9502 10.1569 0.0941 21.9978 27.5380 0.0976 2.6566 0.0100
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9545 10.3666 0.0996 23.1236 27.6214 0.0970 2.6486 0.0109
Tukey convex hull 0.9425 9.4339 0.1060 21.2823 29.9939 0.0763 2.2415 0.0117

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9433 9.9574 0.0911 31.8056 46.4025 0.1954 9.0708 0.0105
Bootstrap ellipsoid (4.9) 0.9498 9.4454 0.0911 35.2534 46.7651 0.1925 8.9307 0.0074
Tukey convex hull 0.9425 9.4304 0.1056 30.0265 53.4562 0.1364 7.1413 0.0099

Table 2.6: Evaluation of the h-step ahead 95% prediction regions from a system with center
STUDENT-t(5) distributed and EXPONENTIAL range (h = 1); 500 Monte Carlo
simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x) are
the corresponding equations in the text.

83



Small Estimation Sample T = 200 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9261 8.5167 0.2056 20.6548 25.3141 0.1247 3.0939 0.0310
Bonferroni rectangle (3.2)-(3.3) 0.9251 8.9470 0.2239 20.4164 24.4319 0.1404 3.3677 0.0322
Modified Bonferroni rectangle (3.4) 0.9256 8.9470 0.2220 20.3442 24.4403 0.1401 3.3622 0.0321
BE: Bootstrap ellipsoid (4.1) 0.9465 9.3814 0.1325 22.2371 27.8365 0.0945 2.5540 0.0242
Bootstrap Bonferroni rectangle (4.2) 0.9462 9.9340 0.1571 22.2250 27.8960 0.1042 2.8043 0.0183
Modified Bootstrap Bonferroni rectangle (4.3) 0.9481 9.9340 0.1491 22.4270 27.9057 0.1040 2.7995 0.0178
Tukey convex hull 0.9354 9.0890 0.1825 21.4695 30.1396 0.0856 2.4598 0.0222

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9316 9.6907 0.1955 21.7117 25.7230 0.1197 3.0188 0.0232
T-NE: T-Normal ellipse (3.6) 0.9261 9.9385 0.2419 20.5949 28.0041 0.1237 3.2429 0.0318
T-Bonferroni rectangle (3.7) 0.9251 10.5207 0.2657 20.3489 24.9834 0.1339 3.2846 0.0332
T-Modified Bonferroni rectangle (3.8) 0.9236 10.7321 0.2891 19.9189 25.0827 0.1332 3.2787 0.0352
T-BE: T-Bootstrap ellipsoid (4.4) 0.9465 11.0513 0.1571 22.1626 34.6414 0.0937 2.7120 0.0247
T-Bootstrap Bonferroni rectangle (4.5) 0.9462 10.4326 0.1637 22.2054 28.0685 0.1026 2.7783 0.0184
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9493 10.6796 0.1551 22.6885 28.1671 0.1019 2.7678 0.0174
Tukey convex hull 0.9356 9.6360 0.1871 21.1415 30.5515 0.0826 2.4063 0.0227

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9316 9.6745 0.1953 30.6485 45.6115 0.2165 9.6754 0.0181
Bootstrap ellipsoid (4.9) 0.9488 9.7179 0.1664 36.3154 47.9860 0.1862 8.7110 0.0134
Tukey convex hull 0.9356 9.6336 0.1873 29.8330 54.4258 0.1477 7.6642 0.0194

Table 2.7: Evaluation of the h-step ahead 95% prediction regions from a system with center
STUDENT-t(5) distributed and EXPONENTIAL range (h = 1); 500 Monte Carlo
simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x) in
the first column are the corresponding equations in the text.
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2.6.4 Normal Center and Exponential Range

In Tables 2.8-2.9, we report the performance of the different predictions regions

when the errors of the center equation of the VAR(4) are drawn from a normal distribution

and the errors of the log-range equation are those resulting from assuming that the range

itself is exponentially distributed. The resulting bivariate system center/log-range is not

normally distributed as asymmetry is introduced through the log-range equation.

For large samples, all regions have an empirical coverage C95 between 94 and

95% with the bootstrap ellipoid and the bootstrap Bonferroni rectangle being very close

to 95%. It is interesting to note that the normal ellipse in the center/log-range system

and its analytically derived regions for the center/range and upper/lower systems provide

a very competitive coverage of almost 95% and the smallest scores CV95. The bootstrap

ellipsoid and its transformed regions come as the next best performer with some advantage

regarding the POP95 criterium. In small samples, the boostrap methods provide the best

coverage with an empirical rate of almost 95%. The bootstrap ellipsoid delivers the best

performance when considering CV95 and POP95. The normal ellipse and its analytically

derived formulas tend to undercover with rates around 93%. We obtain similar results for

h = 1 and h = 3.
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Large Estimation Sample T = 1000 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9435 8.7270 0.0781 17.5784 25.8654 0.0278 0.7161 0.0299
Bonferroni rectangle (3.2)-(3.3) 0.9426 9.1588 0.0872 17.4485 24.9354 0.0376 0.9352 0.0304
Modified Bonferroni rectangle (3.4) 0.9445 9.1588 0.0830 17.4346 24.9442 0.0373 0.9282 0.0283
BE: Bootstrap ellipsoid (4.1) 0.9489 8.9423 0.0747 17.5336 26.5065 0.0237 0.6226 0.0281
Bootstrap Bonferroni rectangle (4.2) 0.9506 9.3471 0.0837 18.7679 25.1703 0.0372 0.9274 0.0099
Modified Bootstrap Bonferroni rectangle (4.3) 0.9521 9.3471 0.0877 18.9354 25.1792 0.0369 0.9216 0.0114
Tukey convex hull 0.9427 8.7490 0.1003 18.7555 26.1170 0.0284 0.7289 0.0120

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9501 9.9939 0.0690 18.6000 26.2658 0.0252 0.6607 0.0186
T-NE: T-Normal ellipse (3.6) 0.9435 10.2792 0.0925 17.4961 28.6147 0.0271 0.7610 0.0304
T-Bonferroni rectangle (3.7) 0.9426 10.8600 0.1040 17.3532 25.5328 0.0341 0.8679 0.0311
T-Modified Bonferroni rectangle (3.8) 0.9426 11.0572 0.1134 17.0028 25.6268 0.0338 0.8619 0.0311
T-BE: T-Bootstrap ellipsoid (4.4) 0.9489 10.5592 0.0886 17.4463 29.2689 0.0231 0.6586 0.0285
T-Bootstrap Bonferroni rectangle (4.5) 0.9506 9.7196 0.0871 18.7588 25.3102 0.0362 0.9074 0.0100
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9541 9.8967 0.0932 19.3375 25.3842 0.0357 0.8981 0.0111
Tukey convex hull 0.9422 9.1509 0.1053 18.6275 26.3466 0.0270 0.6995 0.0118

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9501 9.9568 0.0687 26.2449 46.5699 0.0459 2.1299 0.0107
Bootstrap ellipsoid (4.9) 0.9498 9.2576 0.0893 28.2307 45.8963 0.0513 2.3358 0.0090
Tukey convex hull 0.9422 9.1278 0.1048 26.2808 46.8771 0.0480 2.2145 0.0107

Table 2.8: Evaluation of the h-step ahead 95% prediction regions from a system with center
NORMALLY distributed and EXPONENTIAL range (h = 1); 500 Monte Carlo
simulations from a VAR(4). In the first column, the numbers in parenthesis e.g., (x.x) are
the corresponding equations in the text.
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Small Estimation Sample T = 200 EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

NE: Normal ellipse (3.1) 0.9316 8.5318 0.1691 17.7070 25.4302 0.0373 0.9311 0.0327
Bonferroni rectangle (3.2)-(3.3) 0.9322 8.9649 0.1732 17.6845 24.5118 0.0494 1.1909 0.0332
Modified Bonferroni rectangle (3.4) 0.9329 8.9649 0.1708 17.5768 24.5204 0.0491 1.1835 0.0328
BE: Bootstrap ellipsoid (4.1) 0.9470 9.0687 0.1279 17.7878 27.0149 0.0253 0.6623 0.0280
Bootstrap Bonferroni rectangle (4.2) 0.9473 9.5201 0.1538 19.0599 25.7098 0.0409 1.0245 0.0190
Modified Bootstrap Bonferroni rectangle (4.3) 0.9490 9.5201 0.1457 19.0867 25.7188 0.0407 1.0184 0.0185
Tukey convex hull 0.9362 8.8415 0.1775 18.7765 26.8598 0.0311 0.8061 0.0231

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9368 9.7262 0.1603 18.4753 25.8099 0.0345 0.8731 0.0238
T-NE: T-Normal ellipse (3.6) 0.9316 9.9864 0.1991 17.6350 25.5484 0.0367 0.9196 0.0334
T-Bonferroni rectangle (3.7) 0.9322 10.5660 0.2060 17.6041 25.0697 0.0453 1.1154 0.0341
T-Modified Bonferroni rectangle (3.8) 0.9308 10.7842 0.2258 17.2095 25.1711 0.0448 1.1076 0.0360
T-BE: T-Bootstrap ellipsoid (4.4) 0.9470 10.6754 0.1508 17.7025 27.1477 0.0248 0.6518 0.0284
T-Bootstrap Bonferroni rectangle (4.5) 0.9473 10.0196 0.1607 19.0394 25.8880 0.0397 0.9992 0.0191
T-Modified Bootstrap Bonferroni rectangle (4.6) 0.9501 10.2369 0.1506 19.2279 25.9780 0.0391 0.9879 0.0182
Tukey convex hull 0.9353 9.3801 0.1893 18.5592 27.0879 0.0300 0.7844 0.0235

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95 S95

Analytical method (3.5) 0.9368 9.7297 0.1604 26.0705 45.7636 0.0625 2.8067 0.0200
Bootstrap ellipsoid (4.9) 0.9488 9.5331 0.1753 29.0966 47.0634 0.0520 2.3831 0.0168
Tukey convex hull 0.9353 9.3782 0.1894 26.1874 48.1843 0.0535 2.4796 0.0214

Table 2.9: Evaluation of the h-step ahead 95% prediction regions from a system with center
NORMALLY distributed and EXPONENTIAL range (h = 1); 500 Monte Carlo
simulations from a VAR(4). The numbers in parenthesis e.g., (x.x) in the first column are
the corresponding equations in the text.
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In summary, considering the three systems (center/log-range, center/range, and

upper/lower) and assessing the overall performance of the prediction regions by the sum-

mary metrics C95, CV95, and POP95, we conclude the following:

1. If the center/log-range system is bivariate normal (case 6.1) or approximately

normal (case 6.4) and the estimation sample is large, the prediction regions based on the

normal ellipse (2.6) and on the analytical methods (2.10) are the best performers. However,

with a small estimation sample, we recommend implementing a bootstrap ellipsoid (2.14)

and its transformed regions (2.4.2), and (2.22).

2. If the center/log-range system is not bivariate normal but the joint distribution

is symmetric (case 6.2) and the estimation sample is large, any of the bootstrap regions

(ellipsoids and Bonferroni rectangles) (2.14, (2.15), and (2.16), their transformed (2.4.2),

(2.4.2), (2.19), as well as (2.22) are the best performers. In small samples, a bootstrap

ellipsoid (2.14) and its transformed regions (2.4.2), as well as (2.22) are preferred.

3. If the center/log-range system is not bivariate normal and the joint distribu-

tion is leptokurtic and asymmetric (case 6.3), for large and small samples, we recommend

implementing the bootstrap Bonferroni rectangles (2.15), and (2.16) and their transformed

(2.4.2), (2.19), as well as (2.22).

2.7 Prediction Regions for SP500 Low/High Return Interval

We collect the daily intervals of low/high prices of the SP500 index from January

2, 2009 to April 20, 2018 for a total of 2341 observations. Since prices are non-stationary,

we construct the daily interval of low/high returns by calculating the daily minimum and

88



maximum returns with respect to the closing price of the previous day. In this way, we

will model stationary intervals. In the Appendix B Table B1, we provide the descriptive

statistics of the center, range and log-range of the low/high return intervals. The center

average is zero with a standard deviation of 0.64. The center exhibits fat tails with a

coefficient of kurtosis of 7 and it is slightly skewed to the left. The range has a mean of

1.15 and a larger standard deviation, 0.83, than the center, it is positively skewed, and

it is negatively correlated with the center with a coefficient of correlation of -0.12. The

log-transformation of the range corrects the asymmetry and large kurtosis of the range so

that log-range is only slightly skewed to the right and has a coefficient of kurtosis of about

3. The coefficient of correlation of center and log-range is about -0.10. The Q-statistics

for the center indicate no autocorrelation while those for the range and log-range indicate

high autocorrelation. In Figure 2.6, we plot the time series of the center and the range as

well as their unconditional bivariate density function. The heavy tails in the center and the

almost normality of the log-range are similar distributional characteristics to those of the

simulation case in section 6.2 (Student-t(5) center and normal log-range).

We proceed with the modeling of the bivariate system of center/log-range. We split

the total sample into an estimation sample from January 2, 2009 to December 31, 2016 (2014

observations) and a prediction/evaluation sample from January 1, 2017 to April 20, 2018

(327 observations). The autocorrelograms of the center seem to indicate no autocorrelation

in contrast to those of the log-range that exhibit a profile of an AR(6) with strong memory

(see Figure B1 in the Appendix B). These features mimic the autocorrelation that we

observe in the end-of-the day returns and in their squared returns when modeling the
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Figure 2.6: Time series plots of center (top panel), range (middle panel) and unconditional
bivariate density (bottom panel) of SP500 low/high return interval from January 2, 2009
to April 20, 2018.
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conditional variance, which is not very surprising because range or log-range are good proxies

for volatility. The SIC also selects a VAR(6) and we proceed with the VAR estimation. The

results are presented in Table B2 of the Appendix B. As expected, all the regressors (lagged

center and lagged log-range) in the equation for the center are not statistically significant

and we re-estimate a restricted VAR where the center equation has only a constant. On the

contrary, the equation for the log-range present interesting dynamics. The center Granger-

causes the log-range such that the lagged centers are negatively correlated with the current

log-range, i.e. positive and large changes in the center return today will predict a narrower

range tomorrow. This is similar to a leverage effect in a conditional variance equation.

Another relevant aspect is the strong and statistically significant autoregressive nature of

log-range in agreement with the ACF/PACF profiles. The goodness of fit for the log-range

equation is high with an adjusted R-squared of 52%. The residuals corresponding to this

system are all clear of any autocorrelation. The center residuals and log-range residuals are

contemporaneous negatively correlated with a correlation coefficient of -0.17. The residuals

from the center equation have the same characteristics as the center, that is, are leptukortic

with a sample kurtosis of 7 and slightly skewed to the left. The residuals from the log-range

equation remain almost symmetric around zero and they have a sample kurtosis of 3. With

these characteristics, the conditional joint density of the center and log-range cannot be

bivariate normal.

Formally, we test for conditional bivariate normality by implementing the Gener-

alized AutoContouR (G-ACR) (in-sample) tests based on the Probability Integral Trans-

formations (PIT) of the joint density under the null hypothesis of bivariate normality
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(González-Rivera and Sun, 2015). In Table B3 of the Appendix B, we report the results

of the t-statistics (tk,α) that canvas the density from the 1% to the 99% PIT autocontours

for lags k = 1, 2, ...5. The null hypothesis is strongly rejected at the 5% significance level

for mostly all but the 10%, 90% and 95% autocontours. The portmanteau test Ck also

reinforces the strong rejection of bivariate normality. In Figure B2 of the Appendix B, we

plot the autocontours of the contemporaneous PITs (centert, log-ranget|centert). Under the

correct null hypothesis, the distribution of the PITs should be uniformly distributed within

these autocontour squares. It is obvious that this is not the case.

We evaluate the out-of-sample performance of the one-step-ahead 95% prediction

regions from January 1, 2017 to April 20, 2018 (327 observations). The results are reported

in Tables 2.10. For the system center/log-range, the bootstrap Bonferroni rectangles (2.15)

and (2.16) offer the best coverage C95 with empirical rates of mostly 95% and they are

the most reliable with the lowest average coverage-volume scores CV95. Together with the

Tukey convex hull, they also provide the lowest average outlier distance O95. Both rectangles

(2.15) and (2.16) also provide the tightest projected one-dimensional regions measured by

POP95. For the system center/range, we find that the transformed modified bootstrap

Bonferroni rectangle (2.19) is the best performer according to most metrics C95, CV95 and

POP95. For the system upper/lower bounds, the Tukey convex hull offers the best coverage

and the lowest scores for O95 and POP95. As expected, the analytic methods (2.10) are

not reliable as they tend to undercover. On the contrary, the bootstrap ellipsoid (2.14)

and its transformed region (2.4.2), and (2.22) tend to overcover. All these results are very

consistent with the Monte Carlo findings of the previous section.
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SP500 Low/High Returns EVALUATION CRITERIA

CENTER/log-RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95

NE: Normal ellipse (3.1) 0.9541 2.2238 0.0094 1.6077 2.4307 0.0038 0.0093
Bonferroni rectangle (3.2)-(3.3) 0.9450 2.3134 0.0114 1.4657 2.8953 0.0020 0.0058
Modified Bonferroni rectangle (3.4) 0.9480 2.3134 0.0043 1.4534 2.9125 0.0015 0.0045
BE: Bootstrap ellipsoid (4.1) 0.9602 2.3616 0.0252 1.6859 2.5819 0.0027 0.0070
Bootstrap Bonferroni rectangle (4.2) 0.9480 2.4732 0.0040 1.3783 3.1022 0.0009 0.0027
Modified Bootstrap Bonferroni (4.3) 0.9511 2.4732 0.0031 1.3631 3.1222 0.0005 0.0015
Tukey convex hull 0.9450 2.1422 0.0103 1.3317 2.5003 0.0020 0.0049

CENTER/RANGE system C95 V 1/2 CV95 O95 P95 OP95 POP95

Analytical method (3.5) 0.9358 1.8135 0.0319 1.5232 2.2083 0.0085 0.0188
T-NE: T-Normal ellipse (3.6) 0.9541 1.8879 0.0024 1.7135 2.2555 0.0055 0.0125
T-Bonferroni rectangle (3.7) 0.9450 1.9778 0.0180 1.4464 2.5824 0.0039 0.0100
T-Modified Bonferroni rectangle (3.8) 0.9480 1.9904 0.0131 1.4425 2.6327 0.0030 0.0078
T-BE: T-Bootstrap ellipsoid (4.4) 0.9602 2.0147 0.0080 1.8537 2.4211 0.0042 0.0103
T-Bootstrap Bonferroni rectangle (4.5) 0.9480 2.1867 0.0127 1.3101 2.8656 0.0026 0.0074
T-Modified Bootstrap Bonferroni (4.6) 0.9511 2.2146 0.0021 1.2391 2.9464 0.0012 0.0036
Tukey convex hull 0.9450 2.0480 0.0252 1.2361 2.4935 0.0035 0.0088

UPPER/LOWER system C95 V 1/2 CV95 O95 P95 OP95 POP95

Analytical method (3.5) 0.9358 1.8112 0.0321 1.6816 3.1735 0.0083 0.0265
Bootstrap ellipsoid (4.9) 0.9602 2.2105 0.0214 1.6737 3.5801 0.0047 0.0170
Tukey convex hull 0.9450 2.0481 0.0253 1.3109 3.6115 0.0027 0.0099

Table 2.10: SP500 Low/High Returns. Evaluation of the one-step ahead 95% prediction
regions (Jan.1, 2017-April 20, 2018). In the first column, the numbers in parenthesis e.g.,
(x.x) are the corresponding equations in the text.
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In Figures 2.7 and 2.8, we plot the one-step ahead 95% prediction regions for the

center/log-range and center/range systems respectively. We choose six random dates over

the prediction sample (March 15, May 11, August 30, December 8, 2017 and February 22,

April 6, 2018). In all six dates, the one-step-ahead realized values of the (center, log-range)

and (center, range) fall within the regions; only the realized values on December 8, 2017 and

April 6, 2018 are slightly more extreme and they fall towards the boundaries of the prediction

regions. For the center/log-range system, the normal ellipse and the bootstrap ellipse are

very similar but in the center/range system, the bootstrap ellipse tends to be wider adapting

to the kurtosis of the center and the asymmetry of the range. The differences among the

Bonferroni rectangles are more obvious in the center/range system. In the center/log-range

system, the Tukey convex hull has a cone shape over all the six dates though the shape

becomes more irregular in the center/range system.
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Figure 2.7: One-step-ahead 95% prediction regions for the center/log-range system of the
SP500 return intervals corresponding to different dates of the out-of-sample period.
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Figure 2.8: One-step-ahead 95% prediction regions for the center/range system of the SP500
return intervals corresponding to different dates of the out-of-sample period.
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2.8 A Trading Strategy

We develop a trading strategy based on the prediction regions for the SP500 daily

high and low returns. We extend the strategy proposed in He et al. (2010, thereafter HKW)

for point forecasts of crude oil high/low prices to account for the probabilistic distribution

forecasts of high and low returns. Denote Ot as the opening return at day t, calculated

using the opening price at day t with respect to the closing price at day t − 1. Consider

the following ratio s =
|Ot−L̂t+h|
|Ût+h−Ot| , where L̂t+h and Ût+h are the low and the high return

forecasts respectively. If the magnitude of Ût+h −Ot is larger than that of Ot − L̂t+h, then

the return is more likely to go up than down in the next h days. And if this is observed

for several days, it is reasonable to believe that the market is forming an upward trend.

Therefore, a “buy alert signal” should be generated (see HKW). Similar argument can be

applied to the “sell alert signal”. Unlike HKW where the comparison of
∣∣∣Ût+h −Ot∣∣∣ and∣∣∣Ot − L̂t+h∣∣∣ is based on the point forecasts Ût+h and L̂t+h, we compare the probability

of
∣∣∣Ût+h −Ot∣∣∣ > ∣∣∣Ot − L̂t+h∣∣∣ with the probability of

∣∣∣Ût+h −Ot∣∣∣ < ∣∣∣Ot − L̂t+h∣∣∣, which is

equivalent to comparing the probabilities of s < 1 (buy signal) and s > 1 (sell signal). In

Figure 2.9, we illustrate the trading strategy. Notice that s is the absolute value of the

slope of any line that connects point A ≡ (Ot, Ot) and any other point below the 45 degree

line. The ellipse represents the h-step ahead prediction region of the high and low returns.

The slope of line AB is equal to one and it is perpendicular to the 45 degree line. Hence,

the area under the 45 degree line can be divided by the line AB into two areas: s > 1 to

the left of line AB, and s < 1 to the right of line AB. Therefore, counting the bootstrap

realizations in the two subareas of the prediction region, we can estimate the probability of
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s < 1 with that of s > 1 for a given (1−α)% confidence region. Then, the trading strategy

consists of the following steps:

• At day t, plot Figure 1 based on Ot and the h-step ahead prediction region of high

and low returns. Within the prediction region, if the number of bootstrap realizations

(obtained as in 3.4 and 3.5) on the right hand side of the line AB is larger than that

on the left hand side of the line AB, a “buy alert signal” is generated.

• Buy the asset on day t + m − 1 using the closing price on that day if the “buy alert

signal” is observed for m consecutive days beginning with day t.

• After buying the asset, on any other day d, watch for the“sell alert signal”, that is,

the number of bootstrap realizations on the left hand side of the line AB should be

larger than that on the right hand side of the line AB within the prediction region.

• Sell the asset on day d + m − 1 using the closing price on that day if the “sell alert

signal” is observed for m consecutive days beginning with day d. Otherwise, hold the

asset.

We evaluate this trading strategy by considering the forecasts of the SP500 high/low

returns for the out-of-sample period (Jan. 1, 2017 to Apr. 20, 2018, 327 observations). We

consider the bootstrap ellipse (BEULT+h) and the Tukey Convex Hull (THUL
T+h) prediction

regions with a 95% nominal coverage rate. For the implementation, the choice of m should

not be too small because it will introduce substantial noise in trading but it should not

be too large either because we could miss profitable trades. We consider m = 1, 2, 3, 4

and h = 1, 2, 3. We apply a transaction cost of 0.1%, and we annualize the profit/loss for
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Figure 2.9: Buy and sell signals from trading strategy.
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each trade because each trade will have a different holding period.The annualized return is

calculated as AR = (
Ct+j−Ct

Ct
− 0.001)(365

j ) where Ct and Ct+j (j > 0) are the closing prices

for the buying and selling days respectively. The investor can buy the asset again before the

previous bought asset is sold. At the end of the evaluation period, if there are still assets

that have not been sold, these assets will not be considered when calculating the profits.

In Table 2.11, we report the averaged annualized returns, the max and min annu-

alized returns, and the percentage of trade with positive returns for all cases. HKW is the

trading strategy in He et al. (2010) based on the point forecasts of the high and low returns

obtained by the bootstrap algorithm applied to our estimated model. For all cases but two,

the averaged annualized returns are positive. The choice of m is very relevant because the

gap between the max and min annualized returns narrows as m increases for all h. A large

m means that the investor is looking for a stronger signal and, though she may miss some

trades with extreme positive returns, she will also avoids those extreme negative returns

that can be catastrophic. There is also a monotonic positive relation between m and the

percentage of trades with positive returns. For average annualized returns, the performance

of BE is better than that of TH in most cases, and the performance of BE or TH is better

than HKW in particular when m = 4.
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m=1 m=2 m=3 m=4

HKW BE TH HKW BE TH HKW BE TH HKW BE TH

h=1

Averaged annualized returns 26.16% 33.12% 33.14% -5.71% 10.89% 5.94% 43.49% 42.52% 38.04% 38.76% 40.25% 40.25%
max annualized returns 853.58% 853.58% 853.58% 239.83% 239.83% 239.83% 155.24% 155.24% 155.24% 85.18% 85.18% 85.18%
min annualized returns -3760.12% -3760.12% -3760.12% -1621.35% -1621.35% -1621.35% -116.43% -116.43% -116.43% 4.64% 4.64% 4.64%

% of trades with positive returns 61.04% 61.54% 61.54% 78.26% 81.48% 80.77% 75.00% 75.00% 75.00% 100% 100% 100%

h=2

Averaged annualized returns 29.86% 30.39% 29.15% 2.02% -1.53% 0.79% 45.44% 48.10% 44.43% 38.76% 38.76% 38.76%
max annualized returns 853.58% 853.58% 853.58% 239.83% 239.83% 239.83% 155.24% 155.24% 129.53% 85.18% 85.18% 85.18%
min annualized returns -3760.12% -3760.12% -3760.12% -1621.35% -1621.35% -1621.35% -116.43% -116.43% -116.43% 4.64% 4.64% 4.64%

% of trades with positive returns 61.54% 62.82% 61.25% 76.00% 76.00% 76.00% 75.00% 71.43% 71.43% 100% 100% 100%

h=3

Averaged annualized returns 29.92% 11.48% 3.37% 4.55% 9.53% 3.22% 42.37% 20.67% 17.26% 43.01% 63.75% 61.42%
max annualized returns 853.58% 853.58% 853.58% 239.83% 239.83% 239.83% 175.56% 175.56% 175.56% 85.18% 102.78% 102.78%
min annualized returns -3760.12% -3760.12% -3760.12% -1621.35% -1621.35% -1621.35% -116.43% -116.43% -116.43% 20.14% 26.47% 26.47%

% of trades with positive returns 62.67% 58.97% 57.69% 80.77% 78.57% 77.78% 88.89% 71.43% 57.14% 100% 100% 100%

Table 2.11: Trading strategy comparison. SP500 average annualized returns over the out-
of-sample period Jan. 1, 2017 to April 20, 2018.

2.9 Conclusion

The interest in interval data arises because interval measurements offer a more

complete description of a data set. In time series, each time realization has joint information

on the level and the dispersion of the process under study. However, statistical analysis of

interval-valued data requires that the natural order of the interval is preserved. Though

there are several works that consider the problem of estimation with constraints, we are

not aware of any work that considers the construction of forecasts for interval-valued data

satisfying the natural constraint in each period of time, i.e. lower bound is not larger than

the upper bound, or equivalently, the range of the interval must be strictly positive. Our

contribution lies on approximating a probabilistic forecast of an interval-valued time series

by offering alternative approaches to construct bivariate prediction regions of the center

and the range, or the lower and upper bounds, of the interval.

To overcome the positive constraint of the range, we have estimated a Gaussian

bivariate system for the center/log-range system, which also delivers QML properties for our
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estimators. However, the interest of the researcher is not the prediction of the center/log-

range but the center/range or upper/lower bounds of the interval. By implementing either

analytical or bootstrap methods we have directly transformed the prediction regions for the

center/log-range system into those for the center/range and upper/lower bounds systems.

It is important to remark that we do not focus on point forecast purposely. By focusing on

prediction regions rather than on point forecasts, we avoid the biases that are associated

with the exp-transformation of the point forecasts of log-transformed variable. In this

case, bias-correction techniques are necessary if one’s interest is the conditional mean of

the future variable. A prediction region for the center/log-range does not need any bias

correction when we transform it to a prediction region of the center/range system because

the quantile is preserved under a monotonic transformation like the exp-transformation.

However, these transformed prediction regions can have very irregular shapes even in the

most straightforward scenario of bivariate normality of the center/log-range system. If a

central point forecast is of interest, the researcher can always calculate the centroid of the

region.

Beyond the standard coverage rate, we have proposed several new metrics to eval-

uate the performance of different prediction regions. We have introduced a notion of risk to

the evaluation of the regions by considering the location of the out-of-the-region outcomes

with respect to some central point in the region. The researcher would like to minimize risk

once the empirical coverage of the region is close to the nominal coverage. We have consid-

ered Gaussian and non-Gaussian systems and our recommendation leans towards bootstrap

methods, even for Gaussian systems. Bootstrap ellipsoids and their transformed are best
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when the joint distribution of the center/log-range system is symmetric. If it is not, then

bootstrap Bonferroni rectangles will be preferred.

We have analyzed the time series of the daily low/high return interval of the SP500

index. We modeled and predicted the joint conditional density of the return level and the

return volatility. We showed that the construction of several prediction regions of the center

and range of the return interval do not require strong parametric distributional assumptions.

We also developed a trading strategy based on the constructed prediction regions for SP500

high and low daily returns, and showed its profitability.
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Chapter 3

A Truncated Mixture Transition

Model for Interval-valued Time

Series

3.1 Introduction

Interval data refers to data sets where the observation is an interval in contrast

to a single point. Intervals arise in a variety of situations. There are instances when the

data is directly collected in interval format. A standard example is survey design that

avoids asking participants about private or sensitive information, e.g. income, and the

answer is provided in interval format, e.g. [$50K, $100K]. In these cases, interval data is

the only data format available to the researchers. In other instances, intervals arise as a

result of aggregating data. The data may be collected at the individual level, e.g., gas
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prices in a gas station, but the research question deals with a larger unit, e.g., gas prices

at the county level. Rather than providing an average of gas station prices, aggregating

the data in interval format for each county is more informative because it preserves the

internal price variation of each county. Financial data, e.g., tick-by-tick stock transaction

data recorded at the ultra-high frequency, generally collapses to a lower frequency single

point, e.g. the daily closing price. Aggregating the data into intervals, e.g. daily max/min

price interval, is more useful because it provides information on both the price level and

the daily price volatility. A similar example is the interval of daily low/high temperature

that provides relevant information for decision making. Finally, intervals can also arise

because there is uncertainty on the measurement of the variable of interest. Regardless of

the data generation mechanism of intervals, we define an interval-valued time series (ITS)

as a collection of interval data observed over time.

The literature on modeling interval data and ITS can be divided into two categories

depending on the data representation: the center/range system (e.g. center and range are

respectively the midpoint and the distance between the upper and lower bounds.) or the

upper/lower bound system. In the center/range system, the interval constraint is that the

range cannot be smaller than zero. Lima Neto and de Carvalho (2010) propose modeling

center and range separately while imposing non-negative constraints on the parameters of

the range equation, which are unnecessarily too restrictive and complicate the estimation of

the system. Tu and Wang (2016) overcome this restriction by log-transforming the range.

However, it requires bias correction for the conditional mean and can fail when zero is

present in range data. In the upper/lower bound system, an equivalent interval constraint
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is that the upper bound cannot be smaller than the lower bound. González-Rivera and Lin

(2013) propose a constrained regression model (GL) that preserves this natural order of the

interval. They assume that the bivariate errors of the system of bounds follow a bivariate

truncated normal distribution, where the truncation encloses the constraint that the upper

bound is not smaller than the lower bound. However, this assumption is restrictive as the

consistency of the estimators heavily depends on it.

The previous literature explores a variety of ways to preserve the interval con-

straint, and mainly focuses on modeling the conditional mean of ITS. To the best of our

knowledge, none of the existing work has considered modeling the potential conditional

heteroskedasticity in ITS, a feature that has been widely recognized in point-valued time

series (PTS). One exception is that GL may produce conditional heteroskedasticity as a

byproduct. In addition, many PTS exhibit non-Gaussian features that may also appear in

ITS, such as flat streches, burst of activities, outliers and changepoints (see e.g., Le et.al.

1996, Wong and Li 2000), opening a door for models capable of generating more flexible

predictive densities, an issue that has not been addressed in the current ITS literature. By

contrast, there is a vast amount of literature on modeling conditional heteroskedasticity

and non-Gaussian behaviors for PTS. Particularly, Le et. al. (1996) propose a Mixture

Transition Distribution (MTD) model for the univariate PTS that seeks to account for the

non-Gaussian features. Their idea is to specify the conditional distribution for the variable

of interest as a mixture distribution, where each component contains only one lag from

the information set. The fact that MTD is able to handle conditional heteroskedasticity

is noted and discussed by Berchtold and Raftery (2002). MTD is generalized by Wong
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and Li (2000) under the name of Mixture Autoregressive (MAR) model to entertain more

flexibility by allowing each component to depend on the full information set. Hassan and

Lii (2006) extend MTD for the marked point process under a bivariate setting.

In this chapter, we propose a model for ITS in the upper/lower bound system in

the spirit of the MTD model. We specify the joint distribution of the upper bound (xt)

and lower bound (yt) conditional on the information set as a mixture of truncated bivariate

normal distribution, where for each component the bivariate normal distribution is trun-

cated at xt ≥ yt. The information set enters the conditional distribution as a linear function

through the pseudo location parameter of the truncated bivariate normal distribution for

each component.1 The model comes with several benefits. First, it can preserve the natural

order of ITS, that is, the upper bound not smaller than the lower bound. Second, it can

capture conditional heteroskedasticity without modeling it explicitly, as the dynamics enter

the covariance matrix via the truncation and the mixture framework. Third, the mixture

distribution that the model based on provides great flexibility to approximate the underlying

true conditional distribution, and hence can improve the quality of density forecast.

It is well known that the maximum likelihood estimator (MLE) does not have a

closed-form solution for mixture models resulting from the complexity of the likelihood.

In the literature, EM algorithm is a standard device to find the MLE for mixture models

due to its simplicity and monotonicity in the likelihood (see e.g. Hamilton 1990, Le et.

al. 1996, Hassan and Lii 2006). However, such a standard EM algorithm fails in our

model as no closed-form solution can be obtained in the M step. This is caused by the

1The pseudo location parameter of a truncated bivariate normal distribution can be interpreted as the
location parameter of the bivariate normal distribution (before the truncation). It is called pseudo because
it no longer represents the mean (location) of the truncated distribution after the truncation is imposed.
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normalizing factor in the truncated normal distribution, which possesses a complex form

after taking the derivative. To overcome this problem, we propose a new EM algorithm.2

The innovation is made by constructing a high level pseudo complete data generating process

that brings in more latent variables than the standard EM algorithm. Specifically, at each

time the observation is generated in four steps. First, a membership variable (latent) is

generated from a multinomial distribution that suggests which component the observation

truly comes from. Second, conditional on the observation coming from the component

indicated in the previous step, a variable (latent) is obtained from a geometric distribution

that indicates the number of invalid observations (xt < yt) before the occurrence of a valid

observation (xt ≥ yt). Third, generate the corresponding number of invalid observations

(latent) independently from the area of the bivariate normal distribution where xt < yt.

Fourth, draw one observation from the area of the bivariate normal distribution where

xt ≥ yt, and treat it as the valid observation. The Monte Carlo simulations indicate that

the new EM algorithm performs well with the finite sample. We show that the MLE is

consistent under some regular assumptions. We apply the model to IBM daily stock return

ITS and show that it outperforms the competing models.

The organization of the chapter is as follows. In Section 2, we introduce the

truncated mixture transition model and discuss its properties. In Section 3, we propose the

new EM algorithm. In Section 4, we show the consistency of the MLE. In Section 5, we

perform the Monte Carlo simulations. In Section 6, we apply our model to IBM daily stock

return ITS. We conclude in Section 7.

2The new EM algorithm can be applied generally to data sets with any kinds of truncation either in the
time series setting or for cross-sectional probability clustering.
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3.2 The Truncated Mixture Transition Model

3.2.1 Definition

Let xt be the upper bound, and yt be the lower bound of the interval observed at

time t. The interval time series data has the following format

{ (xt, yt), t = 1, . . . T }

where by construction xt > yt, and we denote Yt = (xt, yt)
′ hereafter. We say that

Yt is generated by a truncated mixture transition (TMT (P,Q)) model if its conditional

density function given the past information set can be written as

f(Yt|F t−1) =
P∑
j=1

αjfj(Yt|Y t−1
t−Q) (3.1)

P∑
j=1

αj = 1, αj > 0, j = 1, . . . , P

where P is the number of components and is assumed to be fixed, and Q is the

number of lags in each component.3 F t−1 is the information set up to time t − 1, and

Y t−1
t−Q = (Yt−Q, Yt−Q+1, ..., Yt−1). fj(Yt|Y t−1

t−Q) is a truncated bivariate normal probability

density function truncated at xt > yt. That is, for each component, the upper bound is not

smaller than the lower bound. The truncated density has the following form (see e.g. Nath

3The analysis in this chapter can be modified to accommodate the case where Q is allowed to be compo-
nent specific.
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1972)

fj(Yt|Y t−1
t−Q) =

1

2π|Σj |Ft,j
exp[−1

2
(Yt − µt,j)′Σ−1

j (Yt − µt,j)] (3.2)

where µt,j = Cj + Bj,1Yt−1 + ... + Bj,QYt−Q, Cj (2 × 1) is a constant vector, Bj,r

(2 × 2) (r = 1, ..., Q) is a matrix, Σj (2 × 2) is a positive semi-definite matrix, and |A| is

the determinant of matrix A. (3.2) differs from a bivariate normal distribution in the extra

normalization term: Ft,j = 1−Φ(
−w′µt,j√
w′Σjw

), which represents the cumulative distribution of

the truncated area (xt ≥ yt). Φ is the standard normal cumulative distribution function,

and w = (1,−1)′.

3.2.2 Theoretical properties

Given the definition above, we can write down the conditional mean of Yt:

E(Yt|F t−1) =
P∑
j=1

αj(M
1
o,t,j + µt,j) (3.3)

where

M1
o,t,j =

Σjw√
w′Σjw

φ(
−w′µt,j√
w′Σjw

)

1− Φ(
−w′µt,j√
w′Σjw

)
(3.4)

φ is the standard normal density function. Unlike the normal density, where µt,j
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is the mean for component j, the additional term, M1
o,t,j , represents the mean shift after

the truncation (see Nath 1972 for moments of truncated normal distribution). As a result,

the conditional mean is no longer µt,j but a nonlinear function of F t−1. We also show

that the natural order of interval time series is preserved at the conditional mean level:

w′E(Yt|F t−1)) ≥ 0. The proof can be found in Appendix B.1.

A promising feature of TMT model is that it can produce a time-varying con-

ditional variance to capture conditional heteroskedasticity. To see this, the conditional

variance is given by:

V (Yt|F t−1) (3.5)

=E(YtY
′
t |F t−1)− E(Yt|F t−1)E(Yt|F t−1)′

=
P∑
j=1

αj(M
2
o,t,j + µt,j(M

1
o,t,j)

′ +M1
o,t,jµ

′
t,j + µt,jµ

′
t,j)

−(

P∑
j=1

αj(M
1
o,t,j + µt,j))(

P∑
j=1

αj(M
1
o,t,j + µt,j))

′

where

M2
o,t,j = Σj +

Σjww
′Σj

w′Σjw

−w′µt,j√
w′Σjw

φ(
−w′µt,j√
w′Σjw

)

1− Φ(
−w′µt,j√
w′Σjw

)
(3.6)
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3.3 Estimation

In this section, we discuss the estimation of the TMT model using maximum

likelihood (ML). The goal is to estimate the set of parameters Ψ = {αj , Aj , Σj |∀j} by

maximizing the likelihood:

L(Ψ) = 1
T−Q

T∑
t=Q+1

log[
P∑
j=1

αjfj(Yt|Y t−1
t−Q, Bj , Σj)] (3.7)

where Aj = (Cj , Bj,1, ..., Bj,Q). We first consider an unconditional version of (3.7),

where µt,j = µj doesn’t depend on the information set. The corresponding log-likelihood

function for Θ = {αj , µj , Σj |∀j} can be written as

L(Θ) =
1

T

T∑
t=1

log[
P∑
j=1

αjfj(Yt|µj , Σj)] (3.8)

Estimating Θ is easier than Ψ because the conditional distribution of Yt doesn’t

depend on the information set and can be viewed as if the data is drawn i.i.d. from the

mixture distribution. Therefore, we will first illustrate the ML estimation of (3.8) and then

(3.7).

Clearly, no closed-form solution can be obtained from maximizing (3.8). In fact,

the likelihood functions of mixture models are usually non-concave, and often have several

local maxima (see e.g. Redner and Walker 1984). Dempster et. al. (1977) propose the

expectation maximization (EM) algorithm, and it has been widely applied to find the ML
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estimators for mixture models due to its simplicity and monotonicity property (see Dempster

et. al. 1977), e.g., Hamilton (1990) uses EM algorithm to estimate the regime switching

model. The statistical properties of EM algorithm have been studied extensively in the

literature (see e.g. Wu 1983, Meng 1994, McLachlan and Krishnan 2007, and Balakrishnan,

et. al. 2017).

A review of the EM algorithm for normal mixture models in unconditional setting

(each fj(.) in (3.8) represents a normal distribution) can be found in Appendix B.2. Lee

and Scott (2010) apply the EM algorithm to a truncated normal mixture model with each

component truncated by a rectangle, e.g., s ≤ Yt ≤ k, where s and k are vectors with the

same dimension as Yt. Although our model has a different type of truncation (xt ≥ yt,

or w′Yt ≥ 0) , their arguments can be adapted to derive an EM algorithm. However,

this EM algorithm fails to have a closed-form solution in the M step, mainly due to the

truncation term ( φ(.)
1−Φ(.)) in the density (see Appendix B.3 for details). As a result, numerical

maximization is needed in M step (see e.g. Lange 1995), sacrificing the simplicity of the

EM algorithm. In the following, we propose a new EM algorithm that solves this problem.

3.3.1 A new EM algorithm for truncated normal mixture model (uncon-

ditional case)

The new EM algorithm begins by transforming the data generating process into

a missing data framework as follow. To obtain the observation Yt, a latent variable zt is

generated from a multinomial distribution, indicating which component the observation

truly comes from. Next, conditional on zt, another latent variable nt can be generated

from a geometric distribution. nt represents the number of invalid draws (xt < yt) from
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the respective component (a bivariate normal distribution) before a valid draw (xt ≥ yt)

arrives. The valid draw (the (nt + 1)th draw) is then treated as the tth observation (Yt).

In other words, only the valid draw can be observed while all the invalid draws (if any)

are latent. Denote Y A
t = {Yt,1, Yt,2, ..., Yt,nt , Yt,nt+1} as all the draws for time t. We now

formalize the above data generating process.

Let zt follow a multinomial distribution:

g(zt|Θ) =
P∏
j=1

α
ztj
j (3.9)

Given the role nt plays in the above pseudo complete data generating process, it

is natural to specify its distribution conditional on zt as a geometric distribution, a discrete

probability distribution that describes the number of failures before the first occurrence of

success.

q(nt|zt, Θ) =
P∏
j=1

[
(1− Fj)ntFj

]ztj
(3.10)

where Fj = 1 − Φ(
−w′µj√
w′Σjw

) is the cumulative distribution for the truncated area

(xt ≥ yt) for component j, and represents the probability of getting a valid draw from the

bivariate normal distribution. Then, the conditional density of Y A
t is specified as below
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h(Y A
t |zt, nt, Θ) =

P∏
j=1

[
fNj (Yt,nt+1)

Fj

nt∏
k=1

(
fNj (Yt,k)

1− Fj
)

]ztj
(3.11)

where fNj (.) is the bivariate normal density of component j. Next, the joint density

function of the pseudo complete data ({Y A
t , zt, nt}) can be constructed,

l(Y A
t , zt, nt|Θ) = g(zt|Θ)q(nt|zt, Θ)h(Y A

t |zt, nt, Θ)

=
P∏
j=1

[
αjf

N
j (Yt,nt+1)

nt∏
k=1

fNj (Yt,k)

]ztj
(3.12)

and we can write down the pseudo complete log-likelihood function.

LC(Θ) =
1

T

T∑
t=1

P∑
j=1

ztj [logαj + logfNj (Yt,nt+1) +

nt∑
k=1

logfNj (Yt,k)] (3.13)

E Step: the above likelihood (3.13) is replaced with its conditional expectation.

See Appendix B.4 for details.

Q(Θ|Θl)

=E(LC(Θ)|Y,Θl)

=
1

T

T∑
t=1

P∑
j=1

z̃tj [logαj + logfNj (Yt,nt+1) + ñt,j(

ˆ
logfNj (Yt,k)(

fN,lj (Yt,k)

1− F lj
)dYt,k)] (3.14)
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where fN,lj (.) and F lj are respectively fNj (.) and Fj conditional on Θl (the param-

eter set of the previous (lth) iteration). ñt,j = E(nt|ztj = 1, Y,Θl) =
1−F lj
F lj

, and

z̃tj = P (ztj = 1|Y,Θl)

=
P (ztj = 1, Yt|Θl)

P (Yt|Θl)

=
αljf

l
j(Yt)∑P

r=1 α
l
rf

l
r(Yt)

(3.15)

M Step: We can obtain a closed-form solution by maximizing Q(Θ|Θl). See Ap-

pendix B.5 for details.

αl+1
j =

∑T
t=1 z̃tj
N

(3.16)

µl+1
j =

∑T
t=1 z̃tj(Yt + ñt,j(M

1,l
d,j + µlj))∑T

t=1 z̃tj(1 + ñt,j)
(3.17)

Σl+1
j =

∑T
t=1 z̃tj [(Yt − µl+1

j )(Yt − µl+1
j )′ + ñt,jM

2
d′,j ]∑T

t=1 z̃tj(1 + ñt,j)
(3.18)

where M2
d′,j = M2,l

d,j+(µlj−µl+1
j )(M1,l

d,j)
′+(M1,l

d,j)(µ
l
j−µl+1

j )′+(µlj−µl+1
j )(µlj−µl+1

j )′.

M1,l
d,j and M2,l

d,j are respectively M1
d,j and M2

d,j conditional on Θl.

M1
d,j =

−Σjw√
w′Σjw

φ(
w′µj√
w′Σjw

)

1− Φ(
w′µj√
w′Σjw

)
(3.19)
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M2
d,j = Σj +

Σjww
′Σj

w′Σjw

w′µj√
w′Σjw

φ(
w′µj√
w′Σjw

)

1− Φ(
w′µj√
w′Σjw

)
(3.20)

It is interesting to notice that (3.17) and (3.18) are the first two moments of the pseudo

complete sample weighted by z. For example, the numerator in (3.17) not only includes

the observed valid draw (Yt) but also imputes the sum of the latent invalid draws at time

t with its conditional expectation that is feasible at the current iteration: ñt,j(M
1,l
d,j + µlj).

Similar pattern can also be observed in the denominator with 1+ñt,j being the total number

of draws at time t. Moreover, our EM algorithm includes the standard EM algorithm for

normal mixture models (Appendix) as a special case. To see this, suppose no truncation is

imposed, we have Fj = 1, and ñt,j = 0. Therefore, the E step and M step become the same

as in Appendix.

Finally, repeat E step and M step until convergence. Clearly, the new EM algo-

rithm provides a closed-form solution and is able to maintain the monotonicity property.

Furthermore, the constraints on parameters are satisfied by construction, e.g., Σl+1 is pos-

itive semi-definite,
∑P

j=1 α
l+1
j = 1, and αl+1

j > 0.

3.3.2 A new EM algorithm for truncated normal mixture model (condi-

tional case)

We now discuss the conditional case. The EM algorithm is applied to the likelihood

(3.7) to estimate Ψ = {αj , Aj , Σj |∀j ∈ P}. Similar to section 3.1, the pseudo complete log-

likelihood function can be constructed:
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LC(Ψ) =
1

T −Q
T∑

t=Q+1

P∑
j=1

ztj [logαj + logfNt,j(Yt,nt+1) +

nt∑
k=1

logfNt,j(Yt,k)] (3.21)

E Step: the conditional expectation of complete log-likelihood function can be

written as

Q(Ψ |Ψ l)

=E[LC(Ψ)|Y, Ψ l]

=
1

T −Q
T∑

t=Q+1

P∑
j=1

z̃tj [logαj + logfNt,j(Yt,nt+1) + ñt,j(

ˆ
logfNt,j(Yt,k)(

fN,lt,j (Yt,k)

1− F lt,j
)dYt,k)]

(3.22)

where z̃tj =
αljf

l
t,j(Yt)∑P

r=1 α
l
rf
l
t,r(Yt)

. ñt,j = E(nt|ztj = 1, Y, Ψ l) =
1−F lt,j
F lt,j

. fN,lt,j (.) and F lt,j are

respectively fNj (.) and Fj conditional on Ψ l and with µj replaced by µt,j = Cj +Bj,1Yt−1 +

...+Bj,QYt−Q.

M Step: maximizing Q(Ψ |Ψ l) gives the iterated rules for Ψ . See Appendix B.6 for

details.

120



αl+1
j =

∑T
t=Q+1 z̃tj

T − P (3.23)

Al+1
j = (X̄ ′j Ȳj + X̃ ′jM̃

1
d′,T̄,j)

′(X̄ ′jX̄j + X̃ ′jX̃j)
−1 (3.24)

Σl+1
j =

∑T
t=Q+1 z̃tj [(Yt −Al+1

j Xt−1)(Yt −Al+1
j Xt−1)′ + ñt,jM

2
d′,t,j ]∑T

t=P+1 z̃tj(1 + ñt,j)
(3.25)

where M̃1
d′,T̄,j

= (M̃1
d′,Q+1,j , ..., M̃

1
d′,T,j)

′, and M̃1
d′,t,j =

√
z̃tjñt,j(M

1
d,t,j + µlt,j).

M1
d,t,j is M1

d,j with µlj replaced by µlt,j = C lj + Bl
j,1Yt−1 + ... + Bl

j,QYt−Q, and M2
d′,t,j

is M2
d′,j with µlj and µl+1

j replaced by µlt,j and µl+1
t,j respectively. Furthermore, X̄j =√

z̃jτ
1+2Q
1 � X, and X = (τ1

T−Q, (Y
T−1
Q )′, ..., (Y T−Q

1 )′), where τ ba is a vector of ones with

dimension a× b. X̃j =

√
(z̃j � ñj)τ1+2Q

1 �X, z̃j = (z̃Q+1,j , ..., z̃T,j)
′, ñj = (ñQ+1,j , ...ñT,j)

′,

Ȳj =
√
z̃jτ2

1�(Y T
Q+1)′, and X ′t−1 = (1, Y ′t−1, ..., Y

′
t−Q). The operator � represents Hadamard

product.

The iterated rules for αj and Σj remain similar to these in Section 3.1 with only

minor changes. Note that Aj has an iterated rule that resembles the format of the maximum

likelihood estimates for a vector autoregressive model (V AR). When truncation is not in

presence, it becomes Al+1
j = (X̄ ′j Ȳj)

′(X̄ ′jX̄j)
−1. Therefore, (3.24) can be viewed as applying

V AR to the pseudo complete sample.

3.4 Asymptotic theory

In this section, we discuss the asymptotic properties of the ML estimator. The

following theorem shows that under some regular conditions, the MLE is consistent. We
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begin by imposing the following assumptions:

Assumption 1. {Yt} are generated from (3.1), and are strictly stationary and

ergodic.

Assumption 2. Ψ0 is the true parameter set, and Ψ0 is an interior point of Ξ,

where Ξ is a compact subset of {Ψ ∈ (0, 1)P−1 × R(5+4Q)P : Σj are positive definite ∀j}.

Assumption 3. E(‖Yt‖2) <∞, where ‖.‖ is the Euclidean norm.

These assumptions are fairly regular in the literature. It may be challenging to

verify Assumption 1 as the model is nonlinear. The necessary and sufficient conditions for

stationarity and ergodicity that are imposed on parameters remain for future research. No-

tice that for the Gaussian MTD and MAR models, the sufficient and necessary conditions

for first-order and second-order stationarity have been derived (see e.g., Le et. al. 1996,

Wong and Li 2000). Assumption 2 and Assumption 3 are sufficient to ensure the uniform

convergence of the likelihood function.

The following theorem establishes the strong consistency of ML estimator and the

proof can be found in Appendix B.7.

Theorem 1. Under Assumption 1,2 and 3, the maximum likelihood estimator

Ψ̂ = argmax
Ψ∈Ξ

L(Ψ) is strongly consistent, that is Ψ̂ → Ψ0 a.s.

3.5 Monte Carlo Simulation

In this section, we perform Monte Carlo simulation to evaluate the finite sample

performance of the proposed EM algorithm on the TMT model. Experiments are designed

for both unconditional and conditional cases.
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3.5.1 Unconditional case experiments

We consider two cases with the number of components being P = 2 (DGP 1) and

P = 3 (DGP 2). The data generating process is as follow. First, we set the parameters

according to the configurations in Table 3.1 and Table 3.2. Second, we calculate ηj for all j,

which represents the corresponding component weight for each component before the trun-

cation is imposed. The relationship between αj and ηj can be described as: αj =
ηjFj∑P
j=1 ηjFj

.

Third, a large enough sample is drawn from the bivariate normal mixture distribution (com-

ponent weight ηj). Finally, only the observations that satisfy the constraint xt ≥ yt are

kept.4

The initial values of parameters are estimated using K-means 5, from where the

EM algorithm iterates until convergence to find the MLE. 6 We consider two sample sizes

(T = 200 and T = 1000). The number of Monte Carlo replications is 100.

In Table 3.1 and Table 3.2, we report the means and standard errors of the esti-

mated parameters across replications. The biases of parameters are small in both DGPs.

As the sample size increases, the estimates get closer to the true values and the standard

errors become smaller. One should bear in mind that in all the DGPs, it is not necessary

to impose constraints on µ (e.g., w′µ ≥ 0) since µ is not the mean of the truncated normal

distribution.

4From these observations that satisfy the constraint, start collecting from the 101th observation (the
initial 100 observations are discarded, known as the burn-in period) until the desired sample size is reached.

5K-means provides bias estimates because it doesn’t account for the truncation. It treats the sample as if
it comes from a bivariate normal mixture distribution. Nevertheless, in our experiments, these initial values
are usually good enough for the EM algorithm to converge to the true parameters.

6The stopping criterium is set such that either 200 iterations are reached or the increase in log-likelihood
(3.8) is less than e−10.
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Two components α µ Σ

True
0.4

8
7

1 0.5
0.5 1

0.6
4
3

2 0.3
0.3 2

EM
0.3995

(0.0374)

7.9666
(0.1653)
7.0037

(0.1961)

1.0137 0.5303
(0.2103) (0.2237)
0.5303 1.0735

(0.2237) (0.3297)
(T=200)

0.6005
(0.0374)

3.9657
(0.3028)
2.9665

(0.2932)

2.0160 0.3161
(0.4444) (0.3399)
0.3161 1.9763

(0.3399) (0.4059)

EM
0.3997

(0.0180)

7.9961
(0.0730)
7.0083

(0.0754)

1.0002 0.4988
(0.1015) (0.0774)
0.4988 1.0136

(0.0774) (0.1138)
(T=1000)

0.6003
(0.0180)

3.9994
(0.1122)
3.0082

(0.1301)

1.9831 0.2975
(0.1873) (0.1224)
0.2975 1.9995

(0.1224) (0.1994)

Note: the numbers in parentheses are standard errors.

Table 3.1: Simulation results for DGP 1
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Three components α µ Σ

True

0.2
10
9

1 0.5
0.5 1

0.3
2
2

3 1
1 3

0.5
−4
−6

5 2
2 5

0.1971
(0.0280)

9.7305
(1.4018)
8.7987

(1.2179)

1.0930 0.5093
(0.4596) (0.2354)
0.5093 1.0291

(0.2354) (0.4231)
EM

(T=200)
0.2966

(0.0350)

2.2173
(1.5182)
2.1865

(1.3117)

2.9945 1.0580
(0.9741) (0.5984)
1.0580 2.9086

(0.5984) (1.1476)

0.5063
(0.0349)

−4.1199
(0.4724)
−5.9924
(0.3916)

5.2792 2.0684
(1.3622) (0.7550)
2.0684 4.8277

(0.7550) (0.9366)

0.1991
(0.0144)

10.0053
(0.1045)
9.0070

(0.1022)

0.9981 0.5074
(0.1107) (0.0882)
0.5074 1.0219

(0.0882) (0.1183)
EM

(T=1000)
0.3010

(0.0159)

2.0231
(0.2787)
2.0295

(0.2621)

2.9561 0.9945
(0.4035) (0.2765)
0.9945 3.0806

(0.2765) (0.5105)

0.4999
(0.0176)

−3.9821
(0.1661)
−5.9978
(0.1804)

4.9736 2.0095
(0.4139) (0.3685)
2.0095 4.9974

(0.3685) (0.5284)

Note: the numbers in parentheses are standard errors.

Table 3.2: Simulation results for DGP 2

To visualize the truncations on the mixture distribution, we plot in Figure 3.1 the

truncations for two component in DGP 1. For a better comparison, each component is

re-centered at the origin (shifted by µj) together with the truncation lines.
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Note: µj(i) is the ith element of µj .

Figure 3.1: Truncation of component density

In Figure 3.2(a), we plot the likelihood (3.8) for a one-time implementation of the

EM algorithm in DGP 1. It provides the evidence that monotonicity in likelihood holds

for the new EM algorithm. Moreover, the speed of convergence is fast with convergence

achieved in about 20 iterations.

0 20 40 60 80 100 120

-3425

-3420

-3415

-3410

-3405

-3400

-3395

-3390

-3385

-3380

-3375

(a) Unconditional experiment
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(b) Conditional experiment

Figure 3.2: Log-likelihood
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3.5.2 Conditional case experiments

Unlike the unconditional case where each observation is temporally independent,

the conditional case carries time dependence in each observation. Hence, the data generating

process is slightly different. First, we set the parameters as in Table 3.3. Second, at time t,

we calculate ηt,j for each j, where the subscript t comes from Ft,j as µj is now replaced with

µt,j . Notice that αj is fixed while ηt,j changes with time. Third, independent random draws

(e.g. 1000 draws) are made from the bivariate normal mixture distribution (component

weight ηt,j). Fourth, we keep the draws that satisfy the constraint xt ≥ yt, from which one

is selected randomly as the observation at time t. Repeat the above steps until a sample

with desired sample size is generated.7

In Table 3.3, we design three cases (DGP 3 and DGP 4 are TMT (2, 1), and DGP 5

is TMT (3, 1)). Specifically, DGP 3 considers two components with the constraint (xt ≥ yt)

binding for one but not the other. 8 DGP 4 focuses on the case where the constraint is

binding for both components. DGP 5 is a combination with the restriction not binding,

binding with low persistency, and binding with high persistency. To visualize the constraint,

we plot in Figure 3.3 the truncations for DGP 5. As the truncation is time varying, it cuts

the density at different locations after re-centering (shifted by µt,j for each t and each

j). The variation in truncations is smaller for the low persistency component because the

location of truncation is more likely to be dominated by the constant Cj .

7Similar to section 5.1, the first 100 observations are discarded.
8The constraint will not be binding if w′µt,j = w′(Cj+Bj,1Yt−1 + ...+Bj,QYt−Q) � 0. In our simulation,

we fix B and manipulate C to allow the restriction to be binding or not.
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DGP α C B Σ

3
NB 0.4

2
0

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

B 0.6
−2
−2

0.7 −0.1
−0.1 0.7

0.4 0.3
0.3 0.4

4
B 0.4

0
0

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

B 0.6
2
2

0.2 −0.1
−0.1 0.2

0.4 0.3
0.3 0.4

5

B 0.5
2
2

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

NB 0.3
2
0

0.3 −0.4
−0.4 0.3

0.4 0.3
0.3 0.4

B 0.2
−2
−2

0.2 −0.1
−0.1 0.2

0.4 0.3
0.3 0.4

Note: B and NB denote binding and not binding respectively.

Table 3.3: Data Generating Process (DGP 3 - DGP 5)

(a) Binding (high persistency) (b) Not Binding

(c) Binding (low persistency)

Figure 3.3: Truncations of DGP 5
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We initialize the EM algorithm by randomly choosing 50 points from the parameter

space.9 Each point runs EM algorithm separately. The one that achieves the highest

likelihood is chosen. We consider two sample sizes (T = 200 and T = 1000). The number

of Monte Carlo replications is 100.

We summarize the average results across replications from Table 3.4 to Table 3.6.

Standard errors are calculated over replications. In all cases, the EM algorithm performs

satisfactory in both small and large sample experiments. The standard error shrinks towards

zero as the sample size increases. Last but not least, we can see in Figure 3.2(b) that the

monotonicity of EM algorithm is preserved for the likelihood (3.7).

DGP 3 α C B Σ

True
0.4

2
0

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

0.6
−2
−2

0.7 −0.1
−0.1 0.7

0.4 0.3
0.3 0.4

EM
0.3964

(0.0319)

1.9385
(0.7890)
0.0510

(0.4026)

0.1054 −0.7978
(0.0801) (0.0383)
−0.7941 0.1185
(0.0632) (0.1738)

0.4177 0.3006
(0.2974) (0.0986)
0.3006 0.4096

(0.0986) (0.1867)
(T=200)

0.6036
(0.0319)

−1.9644
(0.4446)
−2.0041
(0.3235)

0.6939 −0.1061
(0.0644) (0.0766)
−0.1023 0.6891
(0.0730) (0.0595)

0.3957 0.2997
(0.0560) (0.0476)
0.2997 0.4015

(0.0476) (0.0661)

EM
0.3989

(0.0152)

2.0073
(0.0734)
0.0038

(0.0785)

0.0983 −0.8009
(0.0127) (0.0163)
−0.8016 0.0989
(0.0133) (0.0170)

0.3937 0.2931
(0.0253) (0.0230)
0.2931 0.3916

(0.0230) (0.0280)
(T=1000)

0.6011
(0.0152)

−2.0037
(0.0625)
−2.0038
(0.0615)

0.6995 −0.1023
(0.0099) (0.0141)
−0.1012 0.6985
(0.0102) (0.0144)

0.4011 0.3006
(0.0234) (0.0212)
0.3006 0.3987

(0.0212) (0.0261)

Note: the numbers in parentheses are standard errors.

Table 3.4: Simulation results for DGP 3

9Elements of α is uniformly selected from (0, 1) and sum up to one. Elements of B are uniformly selected
from (−1, 1). Elements of C and off-diagonal elements of L are uniformly selected from (−3, 3), where L
is the Cholesky decomposition lower triangle matrix of Σ = LL′. Diagonal elements of L are uniformly
selected from (0, 3). For DGP 9, 200 initial points are chosen to account for a higher dimensional parameter
space.
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DGP 4 α C B Σ

True
0.4

0
0

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

0.6
2
2

0.2 −0.1
−0.1 0.2

0.4 0.3
0.3 0.4

EM
0.3988

(0.0415)

−0.0130
(0.2122)
0.0219

(0.2326)

0.1034 −0.8003
(0.2689) (0.2610)
−0.7720 0.0607
(0.2643) (0.2704)

0.3748 0.2805
(0.0747) (0.0718)
0.2805 0.3878

(0.0718) (0.0945)
(T=200)

0.6012
(0.0415)

1.9462
(0.2226)
2.0131

(0.2178)

0.2349 −0.1332
(0.1950) (0.1854)
−0.0790 0.1753
(0.2044) (0.1960)

0.4023 0.2879
(0.0723) (0.0568)
0.2879 0.3944

(0.0568) (0.0728)

EM
0.4010

(0.0177)

−0.0088
(0.1269)
0.0208

(0.1076)

0.0967 −0.7971
(0.1268) (0.1127)
−0.8237 0.1233
(0.1111) (0.1003)

0.3978 0.2940
(0.0386) (0.0322)
0.2940 0.3983

(0.0322) (0.0462)
(T=1000)

0.5990
(0.0177)

1.9644
(0.1349)
2.0605

(0.1935)

0.2187 −0.1178
(0.0863) (0.0838)
−0.1280 0.2271
(0.1189) (0.1173)

0.4085 0.3002
(0.0353) (0.0306)
0.3002 0.4203

(0.0306) (0.0523)

Note: the numbers in parentheses are standard errors.

Table 3.5: Simulation results for DGP 4

130



DGP 5 α C B Σ

True

0.5
2
2

0.1 −0.8
−0.8 0.1

0.4 0.3
0.3 0.4

0.3
2
0

0.3 −0.4
−0.4 0.3

0.4 0.3
0.3 0.4

0.2
−2
−2

0.2 −0.1
−0.1 0.2

0.4 0.3
0.3 0.4

0.5078
(0.0427)

1.9985
(0.1535)
1.9867

(0.1433)

0.0978 −0.8027
(0.0551) (0.0687)
−0.7980 0.0972
(0.0515) (0.0642)

0.3910 0.2908
(0.0665) (0.0560)
0.2908 0.3911

(0.0560) (0.0594)
EM

(T=200)
0.2932

(0.0378)

2.0114
(0.1505)
0.0055

(0.1390)

0.2991 −0.3892
(0.0640) (0.0771)
−0.4047 0.3111
(0.0610) (0.0753)

0.3665 0.2736
(0.0887) (0.0746)
0.2736 0.3664

(0.0746) (0.0792)

0.1990
(0.0294)

−2.0138
(0.2691)
−1.8540
(0.4928)

0.2002 −0.1047
(0.0892) (0.1025)
−0.1382 0.2350
(0.1145) (0.1285)

0.3873 0.2917
(0.0944) (0.0820)
0.2917 0.4110

(0.0820) (0.1459)

0.5000
(0.0178)

2.0026
(0.0583)
1.9920

(0.0574)

0.0990 −0.8016
(0.0223) (0.0247)
−0.7969 0.0953
(0.0220) (0.0249)

0.3966 0.2995
(0.0272) (0.0228)
0.2995 0.3991

(0.0228) (0.0253)
EM

(T=1000)
0.3001

(0.0167)

1.9968
(0.0710)
−0.0054
(0.0707)

0.3008 −0.3987
(0.0273) (0.0304)
−0.3983 0.2990
(0.0263) (0.0308)

0.3907 0.2963
(0.0334) (0.0274)
0.2963 0.3986

(0.0274) (0.0334)

0.1999
(0.0115)

−1.9983
(0.0954)
−2.0139
(0.1007)

0.2003 −0.0987
(0.0298) (0.0437)
−0.0960 0.1996
(0.0310) (0.0427)

0.3886 0.2914
(0.0483) (0.0382)
0.2914 0.3906

(0.0382) (0.0493)

Note: the numbers in parentheses are standard errors.

Table 3.6: Simulation results for DGP 5

3.6 Empirical Application

We apply TMT to model the interval-valued IBM daily stock returns. The

high/low return is calculated as the percentage change of the highest/lowest daily price

with respect to the closing price of the previous day. For example, the high return at time t

is: rhigh,t = 100(Phigh,t−Pclose,t−1)/Pclose,t−1. The data is constructed as an interval-valued

time series with rhigh,t ≥ rlow,t. To visualize the data, we plot a sample from 2004/1/1 to

2018/4/1 (3584 observations) in Figure 3.4. We can see that the volatility for the high and
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low returns is high in some periods while remaining quiet in others, suggesting potentially

the presence of multiple regimes in the variance of the system.

0 500 1000 1500 2000 2500 3000 3500
-10

-5

0

5

10

15

High return

Low return

(a) Real data

Figure 3.4: Daily IBM High/Low Stock Returns (2004/1/1 to 2018/4/1)

We consider TMT model with up to seven components and four lags. That is,

P = {2, ..., 7}, and Q = {1, 2, 3, 4}, with total 28 specifications. 10 The best fitted model

selected by BIC is TMT (4, 2). The estimation results are reported in Table 3.7.11 It is

interesting to see that the fourth component has high volatility (big Σ) while only happens

with a small probability (small α). Figure 3.5 shows the truncations for each component

across time after re-centering (shifted by µt,j for each t and each j). The truncations vary

by component: the first and second components have truncations almost not binding while

for the last two components the truncations are binding.

10The case when only one component is involved ( TMT (1, Q) ) turns out to be the same as GL, which,
for a better comparison, will be discussed in the following separately.

11Standard errors are calculated using block bootstrap (Politis and White 2004)
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Component α C B1 B2 Σ

1
0.4184

(0.0428)

0.3916
(0.0535)
−0.2864
(0.0688)

0.0681 −0.1033
(0.0331) (0.0412)
−0.0683 0.0801
(0.0411) (0.0501)

−0.0276 0.0327
(0.0368) (0.0370)
−0.1285 0.1480
(0.0402) (0.0397)

0.1838 0.1600
(0.0230) (0.0195)
0.1600 0.1909

(0.0195) (0.0204)

2
0.3635

(0.0450)

0.3678
(0.0859)
−0.4786
(0.0886)

0.1758 −0.1563
(0.0781) (0.0829)
−0.0843 0.1641
(0.0819) (0.1001)

0.0152 −0.0857
(0.0442) (0.0587)
−0.2135 0.1674
(0.0531) (0.0856)

0.5367 0.5165
(0.0883) (0.0832)
0.5165 0.7006

(0.0832) (0.0840)

3
0.1323

(0.0508)

0.4125
(0.1946)
−0.1677
(0.1054)

0.6549 −0.5425
(0.1715) (0.1354)
−0.1510 0.1473
(0.0973) (0.0821)

0.1157 −0.2460
(0.1214) (0.0968)
0.1101 −0.2316

(0.0632) (0.0693)

0.3476 0.1228
(0.0819) (0.0606)
0.1228 0.1778

(0.0606) (0.0617)

4
0.0857

(0.0189)

0.1484
(0.3580)
−0.9836
(0.4077)

0.1015 −0.1265
(0.1948) (0.1856)
−0.1358 0.3614
(0.1980) (0.1778)

0.5265 −0.3146
(0.2271) (0.1736)
−0.0414 0.2858
(0.2525) (0.1805)

5.9263 5.4043
(0.8068) (0.7199)
5.4043 6.2028

(0.7199) (0.8251)

Note: the numbers in parentheses are standard errors.

Table 3.7: Estimation results of TMT (4, 2)

(a) First component (b) Second component

(c) Third component (d) Fourth component

Figure 3.5: Truncations for the fitted TMT (4, 2)
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We plot in Figure 3.6 the fitted conditional means (3.3) together with the realized

data. The persistency in the data seems to be well described. Figure 3.6 also shows the

fitted conditional variances and correlation coefficients (3.5) of the high/low returns. The

spikes in the fitted variances is aligned with the volatility clustering in the data. The

contemporaneous conditional correlations stay at a relatively high level most of the time

while drop toward zero during the volatile periods. It aligns with the observation that the

ranges (gaps between upper and lower bounds) tend to be larger in these periods. In Figure

3.7, we plot some fitted conditional densities to illustrate the flexibility of the truncated

normal mixture distribution.
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Figure 3.6: Fitted Conditional Mean, Variance and Correlation of Daily IBM High/Low
Stock Returns (2004/1/1 to 2018/4/1)
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Figure 3.7: Fitted Conditional Density Contours

Given that not all the parameters in Table 3.7 are significant, and to account for

the increase in parameters when the number of components grows larger, we also consider

a restricted version of the model, RTMT (P ), where the restriction is imposed such that

each component contains only one lag from the information set. For instance, µt,j = Cj +

Bj,jYt−j and Bj,r = 0 for r 6= j. We consider up to seven components (P = {1, ..., 7})

for RTMT . Finally, we compare the TMT and RTMT models with four other models.

The number of lags for these models is selected using BIC. The linear vector autoregressive

model serves as a benchmark. Two multivariate GARCH models are considered to account

for conditional heteroskedasticity in the data. See Bauwens et. al. (2006) for a review

of multivariate GARCH models. We also implement GL. Notice that, however, V AR

and V AR −MGARCH models cannot preserve the natural order of the ITS. A detailed

comparison of the six models is summarized in Table 3.8.
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Model for the mean Model for the variance Log-likelihood Number of parameters BIC

V AR(7) -8604 30 -17,454
V AR(7) MGARCH(1,1)-SBEKK -8175 35 -16,064
V AR(7) MGARCH(1,1)-DCC -8155 39 -15,991
GL(7) -8486 33 -17,243

RTMT (5) -6975 49 -14,352
TMT (4, 2) -6833 55 -14,117

Table 3.8: Evaluation of models

TMT achieves the highest BIC and likelihood while using the most parameters.

RTMT trades the likelihood and BIC for a smaller number of parameters. V AR uses the

smallest number of parameters and ends up having the smallest likelihood and BIC. After

accounting for time-varying conditional variance, the V AR−MGARCH models improve the

performance over V AR significantly, implying that the data is conditional heteroskedastic.

In terms of all criteria, GL lies in between V AR and V AR −MGARCH. This suggests

that although GL preserves the natural oder of the interval data, it has a limited ability

accommodating conditional heteroskedasticity.

3.7 Conclusions

We propose a truncated mixture transition model for the interval-valued time

series. The natural order of the data (upper bound greater than lower bound) is guaranteed

in our model using truncated normal distributions. The model enjoys great flexibility in

terms of both parameter and density specifications. However, the standard EM algorithm

to estimate mixture models fails since no closed-form solutions can be obtained in M step.

Therefore, a new EM algorithm is proposed, which brings the pseudo data generating process

to a higher level and encloses a closed-form solution in M step. We prove the consistency

of the maximum likelihood estimator. Simulation results show that the new EM algorithm
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performs well. Last but not least, we illustrate the performance of the model with an

application to the IBM daily high/low stock returns and it ourperforms other competing

models.
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Appendix A

Appendix for Chapter 1

A.1 Bias correction for the forecast of range (Guerrero, 1993)

A second order Taylor expansion of the log-range, i.e., yr,T+h, around ET (exp(yr,T+h))

yr,T+h ' log(ET (exp(yr,T+h))) +

+ 1
ET (exp(yr,T+h))(exp(yr,T+h)− ET (exp(yr,T+h))) +

− 1
2(ET (exp(yr,T+h)))2

(exp(yr,T+h)− ET (exp(yr,T+h)))2

Take conditional expectation,

ŷr,T+h|T ≡ ET (yr,T+h) ' log(ET (exp(yr,T+h)))

− 1

2(ET (exp(yr,T+h)))2
ET (exp(yr,T+h)− ET (exp(yr,T+h)))2
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By approximating the conditional variance of the log-range Wh,22 ≡ V arT (yr,T+h) by

Wh,22 '
1

(ET (exp(yr,T+h)))2
ET (exp(yr,T+h)− ET (exp(yr,T+h)))2

we can write ŷr,T+h|T ≡ ET (yr,T+h) ' log(ET (exp(yr,T+h)))− 1
2Wh,22. It follows that

y∗r,T+h ' exp(ŷr,T+h|T ) exp(
Wh,22

2
)

If the log-range is in fact normally distributed, the above expression is exact.

We take a Taylor’s expansion of the range, i.e. exp(yr,T+h), around the conditional mean

ET (yr,T+h), i.e.,

exp(yr,T+h) = exp(ET (yr,T+h)) + exp(ET (yr,T+h))[yr,T+h − ET (yr,T+h)] +

+
1

2
exp(ET (yr,T+h))[yr,T+h − ET (yr,T+h)]2 +

+
1

3!
exp(ET (yr,T+h))[yr,T+h − ET (yr,T+h)]3 +

+
1

4!
exp(ET (yr,T+h))[yr,T+h − ET (yr,T+h)]4 + ...

By taking conditional expectation and plugging in the conditional moments of a normal

variate, we have

ET [exp(yr,T+h)] = exp(ET (yr,T+h))[1 +
Wh,22

2
+

1

4!
3W 2

h,22 +
1

6!
15W 3

h,22 + · · · ]

= exp(ET (yr,T+h)) exp(
Wh,22

2
)

which is exactly the Guerrero’s bias-corrected forecast.

142



Appendix B

Appendix for Chapter 2

Tables and Figures: Modeling SP500 Daily Low/High Return Interval

SP500 Low/High Returns

Center Range log-Range

Mean -0.002 1.154 -0.060

Median 0.005 0.928 -0.075

Standard Deviation 0.642 0.826 0.631

Excess Kurtosis 4.021 8.781 -0.215

Skewness -0.337 2.295 0.154

Minimum -4.219 0.146 -1.925

Maximum 3.812 8.731 2.167

Correlation Coefficient (wrt center) 1 -0.122 -0.096

Q (10) (p value) 13.817 (0.18) 7103 (0) 7296 (0)
Q (15) (p value) 18.201 (0.25) 9500 (0) 9808 (0)
Q (20) (p value) 34.606 (0.02) 11569 (0) 12037 (0)

Table B.1: Descriptive Statistics for Center, Range and log-Range of Daily SP500 Low/High
Return Intervals (Jan.2, 2009-Apr.20, 2018)
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SP500 Low/High Return. Restricted VAR(6) for Center and log-Range System

Center log-Range

Coeff. estimate SE (robust) t-statistic Coeff. estimate SE (robust) t-statistic

Constant -0.0069 0.0148 -0.4662 -0.0013 0.0092 -0.1435
C(-1) -0.1739 0.0134 -12.9768
C(-2) -0.0900 0.0143 -6.3002
C(-3) -0.0594 0.0136 -4.3840
C(-4) -0.0363 0.0137 -2.6450
C(-5) 0.0130 0.0140 0.9326
C(-6) -0.0087 0.0142 -0.6100
log-R(-1) 0.1651 0.0226 7.2994
log-R(-2) 0.2172 0.0225 9.6581
log-R(-3) 0.1599 0.0226 7.0875
log-R(-4) 0.0922 0.0227 4.0583
log-R(-5) 0.0986 0.0233 4.2373
log-R(-6) 0.1080 0.0217 4.9768

Adj. R-squared 0 0.5229

SP500 Low/High Return. Restricted VAR(6) Residuals

Center log-Range

Mean 0.000 0.000

Median 0.008 -0.009

Standard Deviation 0.666 0.409

Excess Kurtosis 3.808 0.023

Skewness -0.294 0.149

Minimum -4.212 -1.274

Maximum 3.819 1.575

Correlation (Center/Log-range) -0.1689 -0.1689

Q (10) (p value) 14.232 (0.16) 17.081 (0.07)
Q (15) (p value) 19.400 (0.20) 20.626 (0.15)
Q (20) (p value) 34.380 (0.02) 28.846 (0.09)

Table B.2: Estimation of VAR for Center and log-Range System (Jan. 1, 2009-Dec. 31,
2016)
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SP500 Low/High Return. Tests on VAR(6) residuals

t-statistics (tk,α)

α lag k

1 2 3 4 5

0.01 3.94 3.32 3.52 3.73 3.72
0.05 3.54 2.48 3.09 2.74 2.29
0.1 -0.08 -1.37 -1.62 -2.12 -1.57
0.2 -3.62 -4.20 -3.95 -5.23 -4.72
0.3 -5.21 -6.12 -5.91 -5.81 -6.27
0.4 -5.75 -6.21 -6.43 -6.24 -6.26
0.5 -6.52 -6.34 -6.76 -6.74 -6.56
0.6 -6.29 -6.37 -6.43 -6.35 -6.57
0.7 -4.41 -4.72 -4.64 -4.63 -4.65
0.8 -3.34 -3.41 -3.56 -3.48 -3.55
0.9 -0.51 -0.67 -0.61 -0.71 -0.65
0.95 0.99 0.63 0.78 0.79 0.64
0.99 3.64 3.48 3.33 3.01 2.70

C-statistic (Ck) 114.60 107.23 118.33 118.34 108.55

Ck aggregates all 13 autocontours for a given lag k; its
5% critical value is 22.36

Table B.3: Generalized-AutoContouR (G-ACR) tests for conditional bivariate normality
(González-Rivera and Sun, 2015) for SP500 Low/High Return Intervals.
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Figure B.1: SP500 low/high return interval. Autocorrelograms of center and log-range.
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Appendix C

Appendix for Chapter 3

C.1 Proof of w′E(Yt|F t−1)) ≥ 0

It is sufficient to show that w′M1
o,t,j +w′µt,j ≥ 0 for all j. Thus, it suffices to prove

that

φ(
−w′µj√
w′Σjw

)

1− Φ(
−w′µj√
w′Σjw

)
≥ −w′µj√

w′Σjw

Let λ =
−w′µj√
w′Σjw

. When λ ≤ 0, the above inequality obviously holds.

When λ > 0, we know that 1−Φ(λ) = 1
2erfc(

λ√
2
), where erfc is the complementary

error function defined as erfc(z) = 2√
π

´∞
z exp(−t2)dt. Also, we have φ(λ) = 1√

2π
exp(−λ2

2 ).

The inequality becomes
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1√
2π
exp(−λ

2

2
) ≥ 1

2
erfc(

λ√
2

)λ

Using the property of erfc function: erfc(z) ≤ 2√
π
exp(−z2)

z+
√
z2+ 4

π

, when z > 0, we have

1√
π

exp(−λ2

2 )λ

λ√
2

+
√

λ2

2 + 4
π

≥ 1

2
erfc(

λ√
2

)λ

Hence, we found the upper bound of 1
2erfc(

λ√
2
)λ, and it suffices to show that

1√
2π
exp(−λ

2

2
) ≥ 1√

π

exp(−λ2

2 )λ

λ√
2

+
√

λ2

2 + 4
π

⇐⇒ 1 ≥ 1

1
2 +

√
1
4 + 2

πλ2

which obviously holds when λ > 0 .

C.2 The EM algorithm for normal mixture model (unconditional case)

This section reviews the EM algorithm when the component density fj(Yt|µj , Σj)

in (3.8) is a bivariate normal distribution. EM algorithm transforms the problem into

a missing data framework and constructs a pseudo complete data generating process. It

starts by assuming that each observation comes from one of the P components, and there

is a latent variable indicating which component the observation truly comes from. Let
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ztj ∈ {0, 1} be the indicator variable such that ztj = 1 if Yt is generated from component

j and 0 otherwise. The objective is to maximize the pseudo complete likelihood of {Y, z}.

Denote zt = {zt1, ..., ztP }. To construct the complete likelihood, the latent variable ztj is

specified to follow a multinomial distribution:

g(zt|Θ) =
P∏
j=1

α
ztj
j (C.1)

The conditional density of Yt on zt is

h(Yt|zt, Θ) =
P∏
j=1

[
fj(Yt|µj , Σj)

]ztj
(C.2)

The complete density function becomes

l(Yt, zt|Θ) = g(zt|Θ)h(Yt|zt, Θ)

=
P∏
j=1

[
αfj(Yt|µj , Σj)

]ztj
(C.3)

Therefore, the complete log-likelihood function for Θ can be written as

LC(Θ) =
1

T

T∑
t=1

P∑
j=1

ztjlogαj +
1

T

T∑
t=1

P∑
j=1

ztjlogfj(Yt|µj , Σj) (C.4)
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where T is the sample size. The EM algorithm begins by initializing the parameter

set, Θ0, followed by the E and M steps.

E Step: Because z is not observed, LC(Θ) is replaced with its conditional expec-

tation (Q(Θ|Θl)) conditional on the the observed data (Y ) and the parameter set from the

previous iteration (Θl).

Q(Θ|Θl) = E(LC(Θ)|Y,Θl) =
1

T

T∑
t=1

P∑
j=1

z̃tjlogαj +
1

T

T∑
t=1

P∑
j=1

z̃tjlogfj(Yt|µj , Σj) (C.5)

z̃tj ≡ E(ztj |Yt, Θl)

= P (ztj |Yt, Θl)

=
P (ztj , Yt, Θ

l)

P (Yt, Θl)

=
αljfj(Yt|µlj , Σl

j)∑P
k=1 α

l
kfk(Yt|µlj , Σl

j)
(C.6)

M Step: The updated parameter set is obtained by Θl+1 = argmax
Θ

Q(Θ|Θl):

αl+1
j =

∑T
t=1 z̃tj
T

(C.7)

µl+1
j =

∑T
t=1 z̃tjYt∑T
t=1 z̃tj

(C.8)

Σl+1
j =

∑T
t=1 z̃tj(Yt − µl+1

j )(Yt − µl+1
j )

′∑T
t=1 z̃tj

(C.9)
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Iterate E step and M step until convergence. Dempster et. al. (1977) pointed

out that the likelihood (3.8) is closely related to the feasible pseudo complete likelihood

(C.5): L(Θl) = Q(Θl|Θl) ≤ Q(Θl+1|Θl) ≤ L(Θl+1). Therefore, as Q(Θ|Θl) is maximized

in each iteration (which implies Q(Θl|Θl) ≤ Q(Θl+1|Θl)), the likelihood (3.8) increases

monotonically (L(Θl+1) ≥ L(Θl)).

C.3 The EM algorithm for truncated normal mixture model (unconditional

case)

Lee and Scott (2010) apply the EM algorithm to the multivariate truncated normal

mixture model with each component truncated by a rectangle, e.g., s ≤ Y ≤ k, where s

and k are vectors with the same dimension as Y . We adapt their arguments to derive the

EM algorithm as below:

E Step: Following the same steps as Appendix A.1, the expression for z̃tj is the

same as (C.6). However, fj(Yt|µlj , Σl
j) is now a truncated bivariate normal distribution.

M Step:

αl+1
j =

∑T
t=1 z̃tj
T

(C.10)

µl+1
j =

∑T
t=1 z̃tjYt∑T
t=1 z̃tj

− vj(µl+1
j , Σl+1

j ) (C.11)

Σl+1
j =

∑T
t=1 z̃tj(Yt − µl+1

j )(Yt − µl+1
j )

′∑T
t=1 z̃tj

+ Ij(µ
l+1
j , Σl+1

j ) (C.12)

where vj(µ
l+1
j , Σl+1

j ) and Ij(µ
l+1
j , Σl+1

j ) are nonlinear functions of µl+1
j and Σl+1

j .

Details are discussed in appendix A.3.1.
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C.3.1 Derivation of the EM algorithm

Let Y follows a truncated bivariate normal distribution:

f(Y ) =
1

2π|Σ|[1− Φ( −w
′µ√

w′Σw
)]
exp[−1

2
(Y − µ)′Σ−1(Y − µ)] (C.13)

Denote Y o = Y − µ, and its first and second moments are given as (Nath 1972):

M1
o = Σw√

w′Σw

φ( −w
′µ√

w′Σw
)

1−Φ( −w
′µ√

w′Σw
)

M2
o = Σ + Σww′Σ

w′Σw
−w′µ√
w′Σw

φ( −w
′µ√

w′Σw
)

1−Φ( −w
′µ√

w′Σw
)

In E step, we can write down the conditional expectation of the complete log-

likelihood function:

Q(Θ|Θl) = E(LC(Θ)|Y,Θl) =
1

T

T∑
t=1

P∑
j=1

z̃tj

[
logαj − log2π − 1

2
log|Σj |

− 1

2
(Yt − µj)′Σ−1

j (Yt − µj)− log(1− Φ(
−w′µj√
w′Σjw

))

]

where 1− Φ(
−w′µj√
w′Σjw

) = 1√
π

´∞
−w′µj√
2w′Σjw

exp(−t2)dt.

First, we take derivative of log(1− Φ(
−w′µj√
w′Σjw

)) with respect to µj
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∂

∂µj

[
log(1− Φ(

−w′µj√
w′Σjw

))

]
=

1

1− Φ(
−w′µj√
w′Σjw

)

{
1√
π

w√
2
√
w′Σjw

exp(−(
−w′µj√

2
√
w′Σjw

)2)

}

=
φ(

−w′µj√
w′Σjw

)

1− Φ(
−w′µj√
w′Σjw

)

w√
w′Σjw

=
ww′M1

o,j

w′Σjw

where M1
o,j is M1

o with µ = µj and Σ = Σj .

Next, take the derivative of Q(Θ|Θl) with respect to µj

∂

∂µj
[Q(Θ|Θl)] =

1

T

T∑
t=1

z̃tj

[
Σ−1
j Yt −Σ−1

j µj −
ww′M1

o,j

w′Σjw

]
= 0

We can get:

µj =

∑T
t=1 z̃tjYt∑T
t=1 z̃tj

-vj(µj ,Σj)

where vj(µj , Σj) =
Σjww

′M1
o,j

w′Σjw
.

Now, we take derivative of Q(Θ|Θl) with respect to Σj .

First, we can get
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w′M2
o,jw = w′Σjw + w′Σjw(

−w′µj√
w′Σjw

)[
φ(

−w′µj√
w′Σjw

)

1− Φ(
−w′µj√
w′Σjw

)
]

where M2
o,j is M2

o with µ = µj and Σ = Σj .

Next, take derivative of log(1− Φ(
−w′µj√
w′Σjw

)) with respect to Σj

∂

∂Σj
[log(1− Φ(

−w′µj√
w′Σjw

))] =
1

1− Φ(
−w′µj√
w′Σjw

)

{
1√
π

[
w′µj

2
√

2(w′Σjw)
3
2

ww′exp(−(
−w′µj√

2
√
w′Σjw

)2)]

}

=
1

2
(
−w′µj√
w′Σjw

)(
φ(

−w′µj√
w′Σjw

)

1− Φ(
−w′µj√
w′Σjw

)
)(
−ww′
w′Σjw

)

=
1

2

w′M2
o,jw − w′Σjw
w′Σjw

(
−ww′
w′Σjw

)

=
1

2
w[

1

w′Σjw
−

w′M2
o,jw

(w′Σjw)2
]w′

Then, we take the derivative of Q(Θ|Θl) with respect to Σj

∂

∂Σj
[Q(Θ|Θl)] =

1

T

T∑
t=1

z̃tj

{
−1

2
Σ−1
j +

1

2
Σ−1
j (Yt − µj)(Yt − µj)′Σ−1

j

−1

2
w[

1

w′Σjw
−

w′M2
o,jw

(w′Σjw)2
]w′
}

= 0

Some linear algebra properties were used: ∂log|A|
∂A = (A′)−1 and ∂x′A−1x

∂A = −A−1xx′A−1.

Finally, we can get:
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Σj =

∑T
t=1 z̃tj(Yt − µj)(Yt − µj)′∑T

t=1 z̃tj
+ Ij(µj , Σj)

where Ij(µj , Σj) = Σjw[ 1
w′Σjw

− w′M2
o,jw

(w′Σjw)2
]w′Σj .
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C.4 E step of the new EM algorithm

E[LC(Θ)|Y,Θl]

=Ez,n|Y,Θl{E[LC(Θ)|z, n, Y,Θl]}

=Ez,n|Y,Θl{E[
1

T

T∑
t=1

P∑
j=1

ztj(logαj + logfNj (Yt,nt+1) +

nt∑
k=1

logfNj (Yt,k))|z, n, Y,Θl]}

=Ez,n|Y,Θl{
1

T

T∑
t=1

P∑
j=1

ztj(logαj + logfNj (Yt,nt+1) + ntE[logfNj (Yt,k)|z, n, Y,Θl])}

=Ez|Y,Θl{
1

T

T∑
t=1

P∑
j=1

ztj(logαj + logfNj (Yt,nt+1) + E(nt|z, Y,Θl)E[logfNj (Yt,k)|z, n, Y,Θl])}

=Ez|Y,Θl{
1

T

T∑
t=1

P∑
j=1

ztj(logαj + logfNj (Yt,nt+1)+

(

∞∑
nt=0

nt

P∏
h=1

[(1− F lh)ntF lh]zth)(

ˆ
logfNj (Yt,k)

P∏
m=1

(
fN,lm (Yt,k)

1− F lm
)ztmdYt,k))}

=
1

T

T∑
t=1

P∑
j=1

Ez|Y,Θl{ztj(logαj + logfNj (Yt,nt+1)+

(

∞∑
nt=0

nt

P∏
h=1

[(1− F lh)ntF lh]zth)(

ˆ
logfNj (Yt,k)

P∏
m=1

(
fN,lm (Yt,k)

1− F lm
)ztmdYt,k))}

=
1

T

T∑
t=1

P∑
j=1

P (ztj |Y,Θl)[logαj + logfNj (Yt,nt+1)+

1− F lj
F lj

(

ˆ
logfNj (Yt,k)(

fN,lj (Yt,k)

1− F lj
)dYt,k)]

=
1

T

T∑
t=1

P∑
j=1

z̃tj [logαj + logfNj (Yt,nt+1) + ñt,j(

ˆ
logfNj (Yt,k)(

fN,lj (Yt,k)

1− F lj
)dYt,k)]

where Ez,n|Y,Θl(.) takes the joint expectation of z and n conditional on Y and Θl.

Law of iterated expectation E(Y |X) = E[E(Y |Z,X)|X] was used.
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C.5 M step of the new EM algorithm

To begin with, we derive the first two moments for Y coming from the invalid

truncation area (x < y), whose density of the has the following form:

f(Y, µ,Σ) =
1

2π
√
|Σ|[1− Φ( w′µ√

w′Σw
)]
exp[−1

2
(Y − µ)′Σ−1(Y − µ)] (C.14)

Let Y d = Y − µ. Then, the first and second moments of Y d =

xd
yd

 are:

M1
d = −Σw√

w′Σw

φ( w′µ√
w′Σw

)

1−Φ( w′µ√
w′Σw

)

M2
d = Σ + Σww′Σ

w′Σw
w′µ√
w′Σw

φ( w′µ√
w′Σw

)

1−Φ( w′µ√
w′Σw

)

• Take derivative of (3.14) with respect to µj .

∂Q(Θ|Θl)
∂µj

=
1

T

T∑
t=1

z̃tj [Σ
−1
j Yt −Σ−1

j µj + ñt,j

ˆ
(Σ−1

j Yt,k −Σ−1
j µj)(

fN,lj (Yt,k)

1− F lj
)dYt,k] = 0

⇒
T∑
t=1

z̃tjYt − µj
T∑
t=1

z̃tj +

T∑
t=1

z̃tjñt,j(M
1,l
d,j + µlj)− µj

T∑
t=1

z̃tjñt,j = 0

⇒µl+1
j =

∑T
t=1 z̃tj(Yt + ñt,j(M

1,l
d,j + µlj))∑T

t=1 z̃tj(1 + ñt,j)

where M1,l
d,j is M1

d with µ = µlj , Σ = Σl
j .

• Take derivative of (3.14) with respect to Σ−1
j .
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∂Q(Θ|Θl)
∂Σ−1

j

=
1

T

T∑
t=1

z̃tj [
1

2
Σj −

1

2
(Yt − µl+1

j )(Yt − µl+1
j )′+

ñt,j

ˆ
(
1

2
Σj −

1

2
(Yt,k − µl+1

j )(Yt,k − µl+1
j )′)(

fN,lj (Yt,k)

1− F lj
)dYt,k] = 0

⇒
T∑
t=1

z̃tjΣj −
T∑
t=1

z̃tj(Yt − µl+1
j )(Yt − µl+1

j )′ +
T∑
t=1

z̃tjñt,jΣj −
T∑
t=1

z̃tjñt,jM
2
d′,j = 0

⇒Σl+1
j =

∑T
t=1 z̃tj [(Yt − µl+1

j )(Yt − µl+1
j )′ + ñt,jM

2
d′,j ]∑T

t=1 z̃tj(1 + ñt,j)

where M2
d′,j = M2,l

d,j+(µlj−µl+1
j )(M1,l

d,j)
′+(M1,l

d,j)(µ
l
j−µl+1

j )′+(µlj−µl+1
j )(µlj−µl+1

j )′,

and M2,l
d,j is M2

d with µ = µlj , Σ = Σl
j .

C.6 M step of the new EM algorithm (conditional case)

The closed-form solution for αj and Σj can be easily derived similar to the un-

conditional case. Here we focus on Aj . Notice that maximizing Q(Ψ |Ψ l) is equivalent to

minimizing the following expression for the purpose of taking derivative with respect to Aj :

L(A) =
T∑

t=P+1

P∑
j=1

z̃tj [(Yt −AjXt−1)′Σ−1
j (Yt −AjXt−1) +

ñt,j

ˆ Tr

((Yt,k −AjXt−1)′Σ−1
j (Yt,k −AjXt−1))(

fN,lt,j (Yt,k)

1− F lt,j
)dYt,k]

=

P∑
j=1

{[vec(Ȳj)− (I2 ⊗ X̄j)vec(A
′
j)]
′(Σ−1

j ⊗ IT−Q)[vec(Ȳj)− (I2 ⊗ X̄j)vec(A
′
j)] +

ˆ
[vec(Ỹj)− (I2 ⊗ X̃j)vec(A

′
j)]
′(Σ−1

j ⊗ IT−Q)[vec(Ỹj)− (I2 ⊗ X̃j)vec(A
′
j)]f

l
j(Ỹj)dỸj}
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where Ỹj =
√

(z̃j � ñj)τ�Yk, and Yk = (YQ+1,k, ..., YT,k)
′. Take derivative of L(A)

with respect to vec(A′j):

∂L(A)

∂vec(A′j)

=− 2(I2 ⊗ X̄j)(Σ
−1
j ⊗ IT−Q)vec(Ȳj) + 2(I2 ⊗ X̄j)

′(Σ−1
j ⊗ IT−Q)(I2 ⊗ X̄j)vec(A

′
j)+

ˆ
[−2(I2 ⊗ X̃j)(Σ

−1
j ⊗ IT−Q)vec(Ỹj) + 2(I2 ⊗ X̃j)

′(Σ−1
j ⊗ IT−Q)(I2 ⊗ X̃j)vec(A

′
j)]f(Ỹj)dỸj

=− (I2 ⊗ X̄j)
′(Σ−1

j ⊗ IT−Q)vec(Ȳj) + (I2 ⊗ X̄j)
′(Σ−1

j ⊗ IT−Q)(I2 ⊗ X̄j)vec(A
′
j)−

(I2 ⊗ X̃j)
′(Σ−1

j ⊗ IT−Q)vec(M̃1
d′,T̄,j) + (I2 ⊗ X̃j)

′(Σ−1
j ⊗ IT−Q)(I2 ⊗ X̃j)vec(A

′
j)

=− [(Σ−1
j ⊗ X̃ ′j)vec(M̃1

d′,T̄,j) + (Σ−1
j ⊗ X̄ ′j)vec(Ȳj)] + [(Σ−1

j ⊗ X̄ ′jX̄j) + (Σ−1
j ⊗ X̃ ′jX̃j)]vec(A

′
j)

=− [vec(X̃ ′jM̃
1
d′,T̄,jΣ

−1
j ) + vec(X̄ ′j ȲjΣ

−1
j )] + [Σ−1

j ⊗ (X̄ ′jX̄j + X̃ ′jX̃j)]vec(A
′
j)

=− (Σ−1
j ⊗ I2)vec(X̃ ′jM̃

1
d′,T̄,j + X̄ ′j Ȳj) + [Σ−1

j ⊗ (X̄ ′jX̄j + X̃ ′jX̃j)]vec(A
′
j)

=0

Then, we can write down vec(A′j) as:

vec(A′j)

=[Σ−1
j ⊗ (X̄ ′jX̄j + X̃ ′jX̃j)]

−1(Σ−1
j ⊗ I2)vec(X̃ ′jM̃

1
d′,T̄,j + X̄ ′j Ȳj)

=(I2 ⊗ (X̄ ′jX̄j + X̃ ′jX̃j)
−1)vec(X̃ ′jM̃

1
d′,T̄,j + X̄ ′j Ȳj)

=vec[(X̄ ′jX̄j + X̃ ′jX̃j)
−1(X̃ ′jM̃

1
d′,T̄,j + X̄ ′j Ȳj)]
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Therefore, we have

Al+1
j = (X̃ ′jM̃

1
d′,T̄,j + X̄ ′j Ȳj)

′(X̄ ′jX̄j + X̃ ′jX̃j)
−1

C.7 Proof of Theorem 1

First, we introduce a lemma that shows the mixture truncated normal distribution

is identifiable.

Lemma 1. Let ν = (µ,Σ), and suppose that Λ = {F (Y, ν); ν ∈ R6, Y ∈ R2} is

the family of distributions whose density is given by

f(Y, ν) =
1

2π
√
|Σ|[1− Φ( −w

′µ√
w′Σw

)]
exp[−1

2
(Y − µ)′Σ−1(Y − µ)] (C.15)

Then ψγ(Y ) =
∑P

j=1 αjF (Y, νj), the class of finite mixtures of Λ, is identifiable.

γ = {αj , νj |∀j}, αj > 0, and
∑P

j=1 αj = 1. In other words, ψγ(Y ) = ψγ∗(Y ) ⇒ γ = γ∗.

Proof of Lemma 1:

We first define the exponential family.

If, for some σ−finite measure µ,

dF (Y, τ) = a(τ)b(Y )exp[τ ′h(Y )]dµ(Y ) (C.16)
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for Y ∈ Rn, τ(m× 1), and h(Y ) (m× 1), where a(τ) > 0, b(Y ) ≥ 0 and a, b, hj , for

j = 1, 2, . . . ,m are all measurable, then F is called an exponential family member.

Barndorff-Nielsen (1965) proves that the class ψ is identifiable if all of the following

hold: (a) F belongs to the exponential family, (b) µ is n-dimensional Lebesgue measure,

(c) functions hj , j = 1, 2, . . . ,m, are all continuous, and (d) the set {y : y = h(Y ), b(Y ) >

0, Y ∈ Rn} contains a nonempty open set.

First, we show that the distribution with density given by (C.15) belongs to ex-

ponential family as it can be written as:

dF (Y, τ)

dµ(Y )
=

1

2π
√
|Σ|[1− Φ( −w

′µ√
w′Σw

)]
exp[−1

2
(Y − µ)′Σ−1(Y − µ)]

= a(τ)b(Y )exp[τ ′h(Y )]

where µ is two-dimensional Lebesgue measure. τ =

(
Σ−1µ, −1

2vec(Σ
−1)

)
,

a(τ) =
{√
|Σ|[1−Φ( −w

′µ√
w′Σw

)]exp(1
2µ
′Σ−1µ)

}−1
, b(Y ) = 1

2π , and h(Y ) =

(
Y, vec(Y Y ′)

)′
.

The image of the mapping h: R2 → R6, for x ≥ y is the set Ω = {h(Y ), x ≥ y},

which contains an open set Ω′ = {h(Y ), x > y}. In addition, the map from τ to ν is unique.

Lemma 1 follows. 2

Now, we can proceed to prove Theorem 1. It is straightforward to see that L(Ψ)

is a measurable function of data for each Ψ ∈ Ξ, and continuous in Ψ . Therefore, it suffices

to show that (a) the log-likelihood follows a uniform strong law of large numbers: sup
Ψ∈Ξ

|

L(Ψ)−E[L(Ψ)] |→ 0 a.s. as T →∞; (b) the identification condition: E[L(Ψ)] ≤ E[L(Ψ0)],

and E[L(Ψ)] = E[L(Ψ0)] implies Ψ = Ψ0. (see Amemiya (1973, Lemma 3)).
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Let L(Ψ) = 1
T−P

∑
t l(Ψ). By Assumption 1 and continuity of l(Ψ), l(Ψ) is sta-

tionary and ergodic (see Krengel (1985, Proposition 4.3)), and hence E[L(Ψ)] = E[l(Ψ)].

To verify (a), it suffices to show that E[sup
Ψ∈Ξ

| l(Ψ) |] < ∞ (see Rao (1962) or Straumann

and Mikosch (2006 Theorem 2.7)). Kalliovirta et.al. (2016) prove the the above inequality

holds for the likelihood in their model one side at a time. We are going to adapt similar

similar procedures here. Specifically, we know that

l(Ψ) = log{
P∑
j=1

αj(2π)−1|Σj |−1/2

exp[−1

2
(Yt −AjXt−1)′Σ−1

j (Yt −AjXt−1)]/[
1

2
erfc(−w′AjXt−1/

√
2w′Σjw)]}

where w = (1,−1)′. Assumption 2 implies that, ∆ ≥ |Σj | ≥ δ, ∀j for some

δ > 0, and ∆ < ∞, and that w′Σjw ≥ γ, ∀j for some γ > 0. We also know that

exp[−1
2(Yt−AjXt−1)′Σ−1

j (Yt−AjXt−1)] ≤ 1. In addition, when−w′AjXt−1/
√

2w′Σjw ≤ 0,

erfc(−w′AjXt−1/
√

2w′Σjw) ≥ 1, and thus we can see that l(Ψ) ≤ log(π−1δ−1/2). When

−w′AjXt−1/
√

2w′Σjw > 0, we apply the inequality erfc(x) ≥ 1
2exp(−2x2) (see Chang et.

al. (2011, Theorem 2)), thus
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erfc(−w′AjXt−1/
√

2w′Σjw) ≥ 1

2
exp(−w′AjXt−1X

′
t−1A

′
jw/w

′Σjw)

≥ 1

2
exp[−1

γ
tr(Xt−1X

′
t−1A

′
jww

′Aj)]

≥ 1

2
exp[−1

γ
tr(Xt−1X

′
t−1)tr(A′jww

′Aj)]

≥ 1

2
exp[−κ

γ
X ′t−1Xt−1]

where the last inequality holds by compactness of Ξ (Assumption 2). That is,

tr(A′jww
′Aj) ≤ κ, ∀j for some 0 < κ <∞. Now, it can be seen that

l(Ψ) ≤ log{
P∑
j=1

αj(2π)−1δ−1/24exp[
κ

γ
X ′t−1Xt−1]}

= log(2π−1δ−1/2) +
κ

γ
X ′t−1Xt−1

Therefore, regardless of the value of −w′AjXt−1/
√

2w′Σjw, we have l(Ψ) ≤

log(2π−1δ−1/2) + κ
γX
′
t−1Xt−1.
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On the other hand, it can be seen that

(Yt −AjXt−1)′Σ−1
j (Yt −AjXt−1)

=tr[(Yt −AjXt−1)(Yt −AjXt−1)′Σ−1
j ]

≤tr[(Yt −AjXt−1)(Yt −AjXt−1)′]tr(Σ−1
j )

=(Yt −AjXt−1)′(Yt −AjXt−1)tr(Σ−1
j )

≤(1 + Y ′t Yt +X ′t−1Xt−1)ρ

where the first inequality holds because both (Yt − AjXt−1)(Yt − AjXt−1)′ and

Σ−1
j are positive semi-definite. The second last inequality is implied by Cauchy-Schwarz

inequality and Assumption 2 (tr(Σ−1
j ) ≤ ρ, ∀j for some 0 < ρ < ∞). Furthermore,

erfc(−w′AjXt−1/
√

2w′Σjw) ≤ 2, thus

l(Ψ) ≥ log{
P∑
j=1

αj(2π)−1∆−1/2exp[−1

2
(1 + Y ′t Yt +X ′t−1Xt−1)ρ]}

= G1 −
1

2
ρ(1 + Y ′t Yt +X ′t−1Xt−1)

for some finite G1. Overall, we have G1 − 1
2ρ(1 + Y ′t Yt + X ′t−1Xt−1) ≤ l(Ψ) ≤

log(2π−1δ−1/2) + κ
γX
′
t−1Xt−1, from which E[sup

Ψ∈Ξ
| l(Ψ) |] < ∞ holds because X ′t−1Xt−1 =

1 + Y ′t−1Yt−1 + ...+ Y ′t−QYt−Q, and E(Y ′t Yt) <∞ for all t by Assumption 3.
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Now, we verify (b). Let s(Y t−1
t−Q, Ψ0) be the stationary distribution of Y t−1

t−Q as ,

then

E[L(Ψ)]− E[L(Ψ0)]

=

¨
s(Y t−1

t−Q, Ψ0)[

P∑
j=1

αj,0fj(Yt|Y t−1
t−Q, Aj,0, Σj,0)]log

∑P
j=1 αjfj(Yt|Y t−1

t−Q, Aj , Σj)∑P
j=1 αj,0fj(Yt|Y t−1

t−Q, Aj,0, Σj,0)
dYtdY

t−1
t−Q

=

ˆ
s(Y t−1

t−Q, Ψ0){
ˆ

[
P∑
j=1

αj,0fj(Yt|Y t−1
t−Q, Aj,0, Σj,0)]log

∑P
j=1 αjfj(Yt|Y t−1

t−Q, Aj , Σj)∑P
j=1 αj,0fj(Yt|Y t−1

t−Q, Aj,0, Σj,0)
dYt}dY t−1

t−Q

where the inner integral is the negative Kullback-Leibler divergence between two

mixture densities:
∑P

j=1 αjfj(Yt|Y t−1
t−Q, Aj , Σj) and

∑P
j=1 αj,0fj(Yt|Y t−1

t−Q, Aj,0, Σj,0). There-

fore, E[L(Ψ)]− E[L(Ψ0)] ≤ 0 and the equality holds if and only if

P∑
j=1

αjfj(Yt|Y t−1
t−Q, Aj , Σj) =

P∑
j=1

αj,0fj(Yt|Y t−1
t−Q, Aj,0, Σj,0)

By the identification result from Lemma 1, we have that αj = αj,0, Σj = Σj,0 and

AjXt−1 = Aj,0Xt−1 for all j, where AjXt−1 = Aj,0Xt−1 implies either that Aj = Aj,0 or

that Xt−1 takes values only on a 2(Q− 1) dimensional hyperplane. The latter is impossible

as {Xt−1} takes values on H ⊂ R2Q, where H has positive Lebesque measure. Therefore,

αj = αj,0, Σj = Σj,0 and Aj = Aj,0 for all j.
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