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Abstract

Let f(y|z, z) (resp. f(y|z) ) be the conditional density of Y given (X, Z) (resp. X). We construct
a class of smoothed empirical-likelihood-based tests for the conditional independence hypothesis:
Pr[f(Y|X,Z) = f(Y|X)] = 1. We show that the test statistics are asymptotically normal under the
null hypothesis and derive their asymptotic distributions under a sequence of local alternatives. The
tests are shown to possess a weak optimality property in large samples. Simulation results suggest
that the tests behave well in finite samples. Applications to some economic and financial time series
indicate that our tests reveal some interesting nonlinear causal relations which the traditional linear
Granger causality test fails to detect.

Key words: (B-mizing, Conditional independence, Empirical likelihood, Exchange rates, Granger causal-
ity, Local bootstrap, Money and income, Nonlinear dependence, Nonparametric regression, Stock returns,
U-statistics.
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1 Introduction

In this paper, we investigate a class of nonparametric tests of conditional independence. Let X, Y and
Z be random variables. As in Su and White (2002, 2003), we write

Y LZ|X (1.1)

to denote that Y is independent of Z given X, i.e., Pr[f(Y|X,Z) = f(Y|X)] = 1, where f(y|x,2) is the
conditional density! of Y given (X, Z) and f(y|x) is that of Y given X.

There are many nonparametric tests of independence or serial independence in the literature?, starting
with Hoeffding (1948), and followed by those based on empirical distribution functions such as Blum et al.
(1961), Skaug and Tjostheim (1993) and Delgado (1996), those based on smoothing methods like Robinson
(1991), Skaug and Tjostheim (1996), Zheng (1997) and Hong and White (2000), and other approaches,
such as that of Brock et al. (1987). Nevertheless, there are still relatively few nonparametric tests for
conditional independence of continuous variables.® Linton and Gozalo (1997) propose two nonparametric
tests of conditional independence for i.i.d. variables based on a generalization of the empirical distribution
function. Since the asymptotic null distributions of their test statistics are complicated functionals of
a Gaussian process and depend on the underlying distributions, i.e., neither test is distribution free, a
bootstrap procedure is needed for calculating the critical values. This hinders its potential application;
to date no applications have appeared that we are aware of. Fernandes and Flores (1999) employ a
generalized entropy measure to test conditional independence but the asymptotic normal null distribution
relies heavily on the choice of suitable weighting functions. Simulation results indicate that their test
has poor size properties and low or no power against Granger causality in variance. Recently, Su and
White (2002) have proposed a test for conditional independence based on a weighted version of Hellinger
distance between the two conditional densities f(y|x,z) and f(y|x), and they show that the asymptotic
null distribution of their test statistic is normal. Although their test is easy to implement, it has some
limitations in that it uses the same bandwidth sequence in estimating all required joint and marginal
densities nonparametrically, and such a procedure is less than satisfactory when the dimension of (XY, Z)
is above three. More recently, Su and White (2003) have proposed a new test for conditional independence
which is based upon the properties of the conditional characteristic functions. The latter test is shown to
have better finite sample performance than Su and White (2002) for all processes they examine except
for certain GARCH-type processes. Further it has yet to be shown whether it is optimal in some sense.

In this paper, we propose a new class of tests for conditional independence based on the nonparametric
likelihood ratio. The motivation is as follows. First, the equality of two conditional distributions can
be expressed in terms of an infinite sequence of conditional moment restrictions. Second, there are
many powerful tests available in the literature to test for conditional moment restrictions. Third, the
Neyman Pearson lemma tells us that the likelihood ratio tests or their asymptotic equivalents possess
certain optimality properties. In a series of papers, Owen (1988, 1990, 1991) studies the use of inference
based on the nonparametric likelihood ratio, which is particularly useful when testing hypotheses that
can be expressed as moment restrictions. Kitamura (2001) investigates the asymptotic efficiency of
moment restriction tests for a finite number of unconditional moments in terms of large deviations and
demonstrates the optimality of empirical likelihood for testing such unconditional moment restrictions.
Tripathi and Kitamura (2002) extend the empirical likelihood paradigm to handle the testing of a finite

IWe assume throughout that the joint distribution of (X,Y, Z) admits a joint density, f(z,y, z), say.

2For an excellent survey, see Tjostheim (1996).

3For categorical data there are also numerous tests of independence and conditional independence, see Rosenbaum
(1984), Agresti (1990) and Yao and Tritchler (1993), among others.



number of conditional moment restrictions. They show that their test possesses an optimality property
in large samples and behaves well in small samples. As yet, it remains unknown whether one can extend
the application of empirical likelihood to test for an infinite collection of conditional moment restrictions,
and if so, whether the test continues to possess some optimality property and behaves reasonably well in
finite samples. We examine these issues in this paper.

As a motivating example, suppose that {U;,t = 1, ..., n} is a random sample in R? and we want to
test the null hypothesis F [U;] = 0. Owen’s empirical likelihood ratio testing procedure goes as follows.
First, maximize the log likelihood under the null hypothesis of a discrete distribution that has support
on the data and satisfies the moment condition; i.e., obtain the restricted empirical log likelihood

EL" = { max Zlogpt | pr >0, Zpt =1, Ztht = 0}~
t=1 t=1 t=1

P15 Pn

Next, obtain the unrestricted empirical log likelihood

EL“{ max 3 logpr | pi 20, Zptl}.
t=1 t=1

P15 Pn

Finally, construct the empirical (log) likelihood ratio ELR = 2{ EL"—FEL"}, and reject the null hypothesis

if ELR is large. Owen demonstrates that under the null, FLR 4, x5 When conditional moment
restrictions are used, Tripathi and Kitamura (2002) demonstrate that the above procedure fails and we
need to use a smoothed version of the empirical likelihood.

The contributions of this paper lie primarily in three directions. First, we show that a smoothed version
of the empirical likelihood can be used to test hypotheses that can be expressed in terms of an infinite
collection of conditional moment restrictions, indexed by a nuisance parameter, 7, say. Corresponding
to each 7, one can construct a smoothed empirical likelihood ratio, SELR(7), say. Then one obtains a
test statistic by integrating 7 out of a weighted version of SELR(7). After being appropriately centered
and rescaled, the resulting test statistic is shown to be asymptotically distributed as N(0,1). Second, we
study the asymptotic distribution of the test statistic under a sequence of local alternatives and show
that our test is weakly optimal in that it attains maximum average local power with respect to a certain
space of functions for the local alternatives. Third, unlike most work in the empirical likelihood literature,
including that of Tripathi and Kitamura (2002), our tests allow for data dependence and thus is applicable
to time series data. This generalization is due to the use of certain kernel weights in the formation of the
empirical likelihood function.

Our paper offers a convenient approach to testing distributional hypotheses via an infinite collection of
conditional moment restrictions. It further extends the applicability of the method of empirical likelihood.
A variety of interesting and important hypotheses other than conditional independence in economics
and finance, including conditional goodness-of-fit, conditional homogeneity, conditional quantiles and
conditional symmetry, can also be studied using our approach.* These tests are naturally suited to
helping answer such questions as “Are the distributions of assets, consumption or income implied by
a particular dynamic macroeconomic model close to the actual distributions in the data?” “Is there
any significant difference in wage distributions between, say, blacks and whites conditional on their

4For a different approach, see Inoue (1998) who builds on ideas from Bierens (1990) and de Jong (1996) and proposes a
unified approach for consistent testing of linear restrictions on the conditional distribution function of a time series. As in
Bierens (1990) and de Jong (1996), the asymptotic null distribution is not standard and the proposed test is conservative
for small and moderate sample sizes.



characteristics such as age, education and experience?” or “Does the stock market react symmetrically
to positive and negative shocks after taking into account the influence of all fundamentals?”

It is well known that distributional Granger non-causality [Granger (1980)] is a particular case of
conditional independence [see Florens and Mouchart (1982), and Florens and Fougere (1996)]. Our tests
can be directly applied to test for Granger non-causality with no need to specify a particular linear or
nonlinear model.> Further, using the same techniques as in Su and White (2002), it is easy to show
that our tests can be applied to the situation where not all variables of interest are continuously valued.
In particular, our tests apply to situations where limited dependent variables or discrete conditioning
variables are involved. Also, it is common in econometrics that a conditional independence test would
naturally be conducted using estimated residuals or other estimated random variables, which are a func-
tion of the observed data and some parameter estimators. Although for brevity we do not prove this
here, it is highly plausible that our tests easily extend to handle these cases as well, analogous to the
results of Su and White (2002).

The remainder of this paper is organized as follows. In Section 2, we treat a simple version of our
tests based on cdf’s in order to lay out the basic framework for our nonparametric tests for conditional
independence when there is no parameter estimation and all random variables are continuously valued.
We study the asymptotic distribution of the test statistic under both the null hypothesis and a sequence of
local alternatives in Section 3, and we discuss a version of our tests based on smoother moment conditions
that has better power properties in Section 4. In Section 5, we study the optimality of our tests in terms
of average local power. We examine the finite sample performance of our smoother-moment-conditions-
based test via Monte Carlo simulation in Section 6, and we apply it to some economic and financial time
series data in Section 7. Final remarks are contained in Section 8. All technical details are relegated to
Appendices A through C.

2 Test Statistic Based On The CDFs

In this paper, we are interested in the question of whether Y and Z are independent conditional on X,
where X, Y and Z are vectors of dimension dy, ds and ds, respectively. The data consist of n identically
distributed but weakly dependent observations (X, Yz, Zt), t = 1,...,n. For notational simplicity, we
assume that do = 1 throughout the paper; the generalization to generic ds is trivial theoretically.

The joint density (resp. cumulative distribution function) of (X3, Y;, Z;) is denoted by f (resp.
F). Below we make reference to several marginal densities of f(x,y,2) which we denote simply using
the list of their arguments — for example f(z,y) = [ f(z,y,2)dz, f(z,z) = [ f(z,y,2)dy and f(z) =
[ f(x,y, z)dydz, where [ denotes integration on the full range of the argument of integration. This
notation is compact, and, we hope, sufficiently unambiguous.

Further, let f(:|") denote the conditional density of one random vector given another. We assume that
flylx, z) is smooth in (x, z). The null of interest is that conditional on X, the random vectors Y and Z
are independent, i.e.,

Ho: Prlf(Y|X,2) = f(Y]X)] = 1.

The alternative hypothesis is that f(y|z,2z) # f(y|z) over a non-trival volume of the support of the joint

5In the same spirit, Baek and Brock (1992) propose a nonparametric test for causality based on the so called correlation
integral, an estimator of spatial probabilities across time. Hiemstra and Jones (1994) generalize their approach to allow for
data dependence and apply the test to aggregate daily stock prices and trading volume data, revealing significant nonlinear
causal relations between them.



density f, i.e.,
Hy: Pr[f(Y|X,Z) = f(Y]X)] < 1
Let 1(*) be an indicator function, F(7|z,2) = F[I(Y < 7)|X = 2,Z = 2] and F(7|z) = E[1(Y <
7)|X = z]. One way to test Hy is to test the equivalent hypothesis

H): PrlF(7|X,Z)=F(r|X)]=1for all T € R.

In Section 4, we consider another approach based on a related condition involving the characteristic
function. We treat H|, first because of its intuitive appeal. Proceeding, fix a point 7 € R and for the
moment consider testing the hypothesis

Hy(r): Pr[F(7|X,Z)=F(7|X)] =

First we ignore data dependence, the smoothness of the conditional density f(y|z,z) and the fact
that F(r|x) is unknown. Let vy, and v(x z), denote the counting measures on {Y;,t = 1,..,n} and
{(Xt,Z¢),t = 1,..,n}, respectively. Consider the n + 1 sets of probability measures P}(}szyz):(xhzt) =
{PY|<X,Z>— x.z) K vva i [dPyxz)=x.z) = L [IY < 7) = F(rIX0)ldPy(x.2)=(x,.2) = 0}
for t = 1,...,n, and 79(;?2) = {Pix.z) < vx.zm ¢ [dPx.z) = 1}. Let py.(x,.z,) be the Radon-

Nikodym derivative of Py|(x,2)=(x,,z,) € P}(ZRX 2)=(X1, 7)) with respect to vy,,, evaluated at (Yy; Xy, Zy),

t, s =1,...,n. Similarly, let p(x, z,) denote the Radon-Nikodym derivative of P x, z) € P((;? 2) with respect
to v(x,z)n, evaluated at (Xy, Zy), t = 1,...,n. Define pyv,.x,,2,) = Pvi|x,,2,)P(x.,z,)- LThe conventional
empirical likelihood under the i.i.d. assumptlon is simply the multinominal likelihood II}". lp(yt X0, Z) =
1Py, X,,2,)P(X,,2,) maximized over the Radon-Nikodym derivatives of Py|(x,z)=(x,,z,) € PY|(X,Z):(Xt,Zt)

and Px z) € P((;? 7y which, unfortunately, does not yield any meaningful results. This problem is analo-
gous to the failure of likelihood-based function estimation described in Hastie and Tibshirani (1986). The
remedy they suggest is to maximize the expected log likelihood instead; see also Tripathi and Kitamura
(2002). We apply this idea to our problem and consider maximizing the empirical analog of

E{log f(X,Y, Z)} = E{E[log f(Y|X, Z)|(X, 2)]} + E{log f(X, Z)}

subject to piv,ix,,z) = 0, Pxz) = 0, Douey PvaXeZ) = by Dopey P(X0,ze) = 1, and Y00 [1(Ys <
T) — F(7|Xs)|pev,|x,,2z,) = 0. Here, we restrict the empirical analog of the conditional distribution
F(7| Xy, Z;) to be the same as a smoothed version of F(7|X¢), i.e., > o) F(7|Xs)pv,|x,,2,)- Alternatively,
one can use F(7|X;) instead.
Since F(7|z) is unknown, we estimate it nonparametrically. For a kernel function L, and bandwidth
ha, we define”
L, (u) = hy“ L(u/hg).

We estimate F(r|z) = E[1(Y < 7)|X = z] by the standard Nadaraya-Watson (NW) kernel regression
estimator,

_ i L= X)1(Y < 7)
Zt 1Lh2( Xt) .

SIn an early version of this paper, we use F(7|Xt) in place of Y.7_; F(7|Xs)p(v,|x;,z,)- Using the former requires
correcting more bias terms for the resulting test statistic than using the latter.

"For simplicity only, we take the multivariate kernel functions L and K below to be a product of the univariate kernel
functions [ and k, respectively. To keep the notation simple, we do not explicitly indicate the dependence of the bandwidth

By, (rl2) = (2.1)

parameters on the sample size n. We also adopt the same notational convention for kernels L and K as for density f,
namely, to indicate which kernel by the list of its arguments or by specifying the dimension of its arguments.



The exact conditions on the choice of the kernel L and bandwidth hy are specified in Assumption A2 in
the next section.
Thus, the maximization problem we are interested in is:

n n n

-1 -1
max n wys log pry, +n logp 2.2
oot o B ;; ts 108 (v, |X,,2.) ; S D(X,,Z:) (2.2)
n n
st.opyixez) = 0, pix,,z) >0, ZP(YS\Xt,Zt) =1, Zp(Xt,Zt) =1, and
| t=1

n

> [

s=1

T) = Fny (11X9)]pv 1 x0,20) = 0, (2.3)

IN

where wyy = Kp, (Xy — Xo, Z4 — Z3)) 2"y Ky (Xy — Xoy Zo — Z4), Kp, (u) = by ““T) K (u/hy). The
wj,s are kernel weights familiar from the nonparametric regression literature, and are mathematically
quite tractable. Note that we use different kernels and bandwidth sequences in (2.1) and (2.2). Intuitively
speaking, using higher order kernel in (2.1) helps to reduce the bias in estimating F'(7|x), whereas a second
order positive kernel is needed in (2.2) to keep the estimators py,|(x,,z,) nonnegative almost surely when
the sample size n goes to co. For future use, we denote Fy, (7|z,z) = b Ky (v — Xy, 2 — Z)1(Y; <
7)) >y Kn, (x — Xy, 2 — Z;) as the kernel estimator of F(7|z, z).

To solve the above maximization problem, let us first rewrite it using joint probabilities. This will
greatly simplify the treatment later on. Thus define p;s = p(x, z,)P(v.|x,,z,) to be the probability mass
placed at (Yy; X¢, Z¢) by the joint distribution Px, z,)Pv.|x,,z,)- Since > »_; wys = 1 for each ¢, after
dropping the inessential factor n~! in (2.2), we can rewrite the maximization problem as

n n n

max 3> wnslogpe, sbops 20, 3D pe=1 3 (1%, < 7) = Fua(r1X)] 1 = 0.

s, t, s =1,.
{pes 5 t=1 s=1 t=1 s=1 s=1
(2.4)

(2.4) is solved by maximizing the Lagrangian £ = Y7 > wislogps — u(> iy Son 1 pes — 1) —
A Y < 7) - ﬁhQ (11 Xs)]pts, where p is the Lagrange multiplier for the second constraint
and {\; € R, t =1,...,n} the set of multipliers for the third constraint.®
It is easy to verify that the solution to this problem is given by Dis = wis/[n + Aigs(7)], where
Gs(7) = 1(Y, < 7) — Fj, (7] X,) and each )\, solves

n -~
n+ \eGs(7)

s=1
Hence we can rewrite the restricted [i.e. under Hy(7)] smoothed empirical likelihood (SEL) as
n n n n w
SEL"(r) = slogpis = log § ———— 5.
(7)= 22D wogpis = 33w loa {1t

The use of the weights, {wys, t, s = 1, ..., n}, makes the empirical likelihood a smooth function of the
data; analyzing such a procedure does not require any extra effort even if the data are weakly dependent.

8Both p and the \'s are functions of 7. For notational simplicity, we frequently suppress their dependence on 7.



Next we look at the unrestricted problem. For this we solve

n n n n

max Zzwtb log prs, st ps 20, Y > pis = 1.

s, s =1, ...,
{prs; b t=1 s—1 t=1 s—1

This can also be solved by the Lagrange multiplier technique to give the solution p;s = wys/n, and we
can write the unrestricted SEL as
Wts }
e

An analog of the parametric likelihood ratio test statistic would then be

n n

SEL'(r) = 37w logF = 373w log {

t=1 s=1 t=1 s=1

n n
2SEL"(r) — SEL"(r)] =23 3wy, log {1 ARG )} (2.6)
t=1 s=1
where \; solves (2.5). Heuristically speaking, SEL"“(7) — SEL"(7) will be small if Hy(7) holds and large
otherwise. Therefore, it seems sensible to base the test for Ho(7) upon (2.6). Nevertheless, for technical
reason, we follow Tripathi and Kitamura (2002) and use a modified version of (2.6) for our test because
we now restrict ourselves to a situation where we are interested in the behavior of F(7|X, Z) — F(7|X)
only on a certain fixed subset? (9, sayA) of the support of (X, Z). Moreover, to facilitate our analysis of

optimality, we use a weight function, V', in the following definition of the smoothed empirical likelihood
ratio (SELR),

SELR(r —2ZIt (X, Zis 7 Zwtélog{l—i—/\tg;()},
t=1 s=1

where I, = 1{(Xy, Z;) € S}, V(Xy, Z;7) = nt S wis[gs(7)]?, and each A solves (2.5). One rejects
Hy(7) for large values of SELR(T).

Finally, note that our real interest is to test for Hy, or equivalently, Hj. To do so, we integrate 7 out
of a weighted version of SELR(7). Specifically, our test statistic has the form

ISELR, = / SELR()dG(7) =2 / LV(Xi, Zii7) Y wislog {1 + ’\th(T)} dG(r), (2.7)
t=1

where dG(7) = g(7)d7 is a probability measure with full support on R.
Before proceeding further, we introduce two density estimates for future use:

f}n x, Z ZKhl Xtvz - Zt)?

fhg Z Lh2

Note that we have used different kernels and bandwidths in estimating f(z, z) and f(x), paralleling the
case for estimating F(7|z, z) and F(7|x).

9Note that S plays the similar role as the fixed trimming set used in Su and White (2002). Technically, it lets us avoid
the usual edge effects associated with kernel estimators.



3 The Asymptotic Distribution of the Test Statistic

In this section we focus on the case for which our conditional independence test is based on continuously
valued random variables.

3.1 Asymptotic null distribution

We work with the dependence notion of S—mixing. See Appendix A for its definition and other technical
material. Our assumptions are as follows.

Assumption A1 (Stochastic Process)

() {W; = (X],Y/,Z}) € Ratitds = RI ¢ > 0} is a strictly stationary absolutely regular process
with mixing coefficients 3,, that satisfy 3, = O(p™) for some 0 < p < 1.

(i) Wy = (X],Y/,Z})" has a joint distribution F' and joint density f such that f € W9(r), i.e.,
f has continuous partial derivatives up to order » > 2 which are bounded and integrable on R?. f
satisfies a Lipschitz condition: |f(w 4+ uw) — f(w)| < D(w)||u|| where D has finite (2+n)th moment

for some n > 0 and ||| is the usual Euclidean norm. Furthermore, ( iI)lfS f(z,z) = b > 0, where
x,z)eS*

S¢={ueRU+ ; ||y —v|| < e for some v € S} for some small positive e.

(ii7) The joint probability density function (p.d.f.) fi,, .., of (Wo, Wy,,..., W) (1 < j < 5) is uni-
formly bounded.

(tv) The function defined by F(7|z) is (r 4+ 1) times partially continuously differentiable with respect
to x for each 7 € R and the partial derivatives up to the (r + 1)th are bounded on S§f = §¢ N R4,
Furthermore, |F(7|z') — F(r|z)| < a(7) ||z’ — z||, where Ja*(1)dG(T) < .

Assumption A2 (Kernel and bandwidth)

(i) The kernel K is a product kernel of k : K (u1, .., ud, +d5) = H2T%k(u;), where k : R — R is twice
continuously differentiable pdf that is symmetric about the origin and has compact support [-1,1].

(i1) The kernel L is a product kernel of I : L(uy,..,uq,) = 1% I(u;), where | : R — R is r times
continuously differentiable and satisfies

Jpu'l(w)du =6, (i=0,1,...,r—1),

Co = Jpul(u)du < oo, [ u?l(u)?du < oo,and

l(u) = O((1 + |u|"+1+9)~1) for some & > 0,
where 9;; is the Kronecker’s delta.

(#77) The bandwidth sequences hy = O(n~/®1) and hy = O(n~'/%2) are such that §; > 2(d; + d3),
max{261 (dl — 2)/(251 +dy +d3), 51d1/(d1 +d3)} < by < b1 rnax{l, 4/d1 +d3)}, (dl +d3)/61 +d1/52 <1
and (dy +ds)//261 + 2r /b3 > 1.

Assumption A3 (Weight function)
Suppose dG(7) = g(7)dr. The weight function g(*) is uniformly bounded, integrable and nonnegative
everywhere on its support R.

Remarks.

Assumption A1(4) requires that {W;} be a stationary absolutely regular process with geometric decay
rate. This is standard for application of a central limit theorem for U-statistics for weakly dependent
data [e.g., Fan and Li (1999a)]. This condition is not stringent because it is weaker than ¢—mixing



and many well-known processes are absolutely regular with geometric decay rate.'® For example, linear
stationary ARMA processes satisfy this condition provided the innovation process {e;} satisfies certain
conditions (e.g. one sufficient condition is that {e;} has absolutely continuous distribution with respect
to the Lebesgue measure). Moreover, under certain conditions, a large class of processes implied by
numerous nonlinear models such as bilinear models, NLAR models and ARCH models satisfy absolute
regularity with geometric decay rate [see Fan and Li (1999b)]. Assumptions A1(i7)-(iv) are primarily
smoothness conditions, some of which can be relaxed at the cost of additional technicalities.

Assumption A2(i) requires that the kernel K be of second order and compactly supported, whereas
Assumption A2(ii) requires that the kernel L be of r-th order. The compact support of K can be
relaxed with some additional technicalities. Assumption A2(ii7) specifies conditions on the choice of
bandwidth sequences. Under the assumptions made on the bandwidth sequences, we have in par-
ticular that nhf(dﬁda)/(lnn)?’ — 00, nhi T pd oo, nh;(d1+d3)/2hgl_2 — 00, h;(d1+d3)/2h§’" — 0,
hgdﬁds)mh;(dﬁdf‘)/z — 0, and nhgdﬁd:‘)h?' — 0. When the dimension of (Xy, Z;) is low, e.g., d; +d3 < 4,
r = 2 will suffice for well chosen 6; and 65.

We will construct a test statistic that is asymptotically normally distributed. To state the first main
result, we define the following notation:

V(z,z7) = B{1(Y <7) - F(r|X,2)|X =2,Z = 2} = F(r|z,2)[1 — F(7|x, 2)],

V(wyr) = B{[L(Y < 7) = F(7|X)]’|X = 2} = F(r|2)[1 - F(r|2)],

V(zg,z;m, )= cov(l(Y <7), (Y <7) | X =2,Z =2)=F(r ANT'|z,2) — F(7|z,2) F(7'|z, 2),

B=Cy(htds) [0 V(x,z7)d(x, 2)dG(T),
where

Ci = [k(u)*du and 7 A 7/ = min(7, 7').

For simplicity, we will often omit the integration ranges when there is no confusion.

Further, define

0? =203t [ [ [V2(z, 27,7 )dG(T)dG(")d(x, 2),
where

Cs= [[[k(u+ U)k(u)du]2 dv.

For any given univariate kernel satisfying Assumption A2(i), the C/s can be calculated explicitly. If
we use the Gaussian kernel! for k(*), i.e., k(u) = ¢(u), the standard normal density function, the C/s can
be obtained as follows: € = 1/(2y/7), and C3 = 1/(2v/27). If we use the Epanechnikov kernel instead,
ie., k(u) = 0.75(1 — u?)1(|u|] < 1), then C; = 0.6, and C5 = 0.4338.

A

Further, let B, = >0 I Y| [[wisgs(7)]2dG(T), V(x, z 7,7 = ﬁhl (AT |z, z)—ﬁhl (1], z)ﬁhl (|

~ 2
2,2), 6 = 2 Gyt S [ [ V(X Zis7, )] i (X, Z0)dG(r)dG(), and

~

T, = Wt (ISELR, — B,}/5.
We can now state our first result.
Theorem 3.1 Under Assumptions A1 — A3, T, 4, N(0,1) under Hy.

The proof of this theorem relies on the use of some preliminary results in Tenreiro (1997). Tenreiro uses
U-statistic theory to study the asymptotics for the integrated squared error of kernel density estimators

107t is well known that the ¢—mixing condition is highly restrictive; for example, an ARMA process is never ¢—mixing
but generally geometrically absolutely regular. See Harel and Puri (1996).

11While the Gaussian kernel does not have compact support, it can be approximated arbitrarily well by kernels that
satisfy all the conditions in Assumption A2(i). See Ahn (1997, p.13).



[see also Tenreiro (1995) and Gourieroux and Tenreiro (2001)], and his result can be adapted to our
framework. A size-a test for Hy can be obtained by comparing fn with the one-sided critical value z,
from the standard normal distribution, i.e., zg.91 = 2.327, z9.05 = 1.645 and 24,19 = 1.282, and we reject
the null when fn > Za.

When we have at most three conditioning variables, i.e., d;+ds < 3, let B,hl = (O, (di+ds) -1 Z f I;
XV (X, Z;7) fr (X¢, Z4)dG(7), and

~

Tnl h(d1+da)/2{ISELR h (d1+d3)B }/0.
We have the following corollary.
Corollary 3.2 Under Assumptions Al — A3, if di + ds < 3, then fn,1 4, N(0,1) under Hy.

When dy +d3 > 3, Bn,l is only a consistent estimator of By = C’fdﬁds) I JsV(z,z1)d(z, 2)dG(T).
The latter is the leading bias term for ISELR,, to be corrected. In both cases, dispensing with smaller
order terms, one can show that the global power of the above test is a monotone function of @, =
h§d1+d3)/ 2{] SELR,, — hl_(d1+d3)B1}. Thus in principle one can take @, as an objective function and
choose bandwidths (hq, he) to maximize it.

3.2 Limiting behavior under local alternatives

We now derive the asymptotic power function of Tn under a sequence of local alternatives that approach
the null hypothesis as n — oo. To generate the local alternatives, we follow the approach of Su and White
(2002) namely, the local alternatives are defined by a sequence of densities fI"!(z,y, ) such that, for
il (z,y) = [ fMl(z,y,2)dz, fM(z,2) = [ f"(2,y,2)dy, and fI(z) = [ fI"l(z,y, z)dydz, we have

1 (2, y, 2) — F(2,, 2)]|o0 = o<n-1/2h;<dl+d2>/4>.

Let a,, — 0 as n — oo. Let E,, denote expectation under the probability law associated with fI"). Define
Fil(r)z,2) = E,[1(Y < 7)|X = 2,Z = 2] and F"(7|z) = E,[1(Y < 7)|X = z]. Given our setup, the
local alternative can be specified as'?

Hi(an) : sup {|[ FU (7], 2) = FU)(r[2) = anA(,27)| : (2,2) € RDF2 7 € R} = o(an),  (3.1)
where A(x, z; 7) satisfies
5= // A*(z, z;7)dF (2, 2)dG(T) < 00
5

The following proposition shows that our test can distinguish local alternatives Hy(«,) at rate o, =
n~1/ 2hy (ditds)/% hile maintaining a constant level of asymptotic power.

Proposition 3.3 Under Assumptions A1-A3, suppose that o, = n_l/Qh;(d1+d3)/4 in Hi( ay). Then,
Pr(T, > zo|Hi(ay)) = 1 — ®(zo — 6/0).

When d; + ds < 3, a similar result holds for fn,l.

12A1ternativel}:, one can specify local alternatives in terms of densities as done in Su and White (2002): fil(ylz, 2) =
f[n] (y‘ib)[l + anA(z, Y, Z) + o(an)An(zv Y, Z)} Then A(zv 25 7_) = lim f H(y + T)A(zv Y, Z)f[n] (y‘m)dy in (31)
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Corollary 3.4 Under Assumptions A1-A3, suppose that o, = n’l/zh;(d1+d3)/4 in Hy(aw,). If dy +ds <
3, then Pr(T, n1 > ZolHi(an)) = 1 —@(24 — 6/0).

The above proposition and corollary say that our test statistics, fn and fml, have nontrivial power
against Hi(ay,) with «, = n_l/zhf(dl+d2)/4 whenever 6 > 0. The rate a,, = n_l/zhf(dl+d2)/4 is slower
than the parametric rate n='/2, as hy — 0, but is usually faster than n~/%. For example, when d; =
ds = 1, one can choose hy oc n=Y/6, hy oc n=/5, and have n=Y/2hy (194 o n=5/12 which converges to
zero faster than n=1/3. The rate a,, could be made even closer to n~1/2 1/2,
In practice, we need to choose h; and ho to balance the level and power in finite samples and data-driven

methods will be desirable in choosing the h}s in simulation and empirical applications.

but is always slower than n~

4 Smoother Moment Conditions

In this section we extend our testing procedure to permit a smoother family of moment conditions.

4.1 Choice of conditional moment restrictions

Above, we considered a testing procedure based on an empirical analogue of the infinite sequence of
expected log likelihood ratios SELR(7), built upon the infinite sequence of conditional moment restric-
tions F(7|z,2) = F(7|x), indexed by the nuisance parameter'® 7. This choice for the conditional moment
restrictions is intuitive but typically delivers poor power in finite samples because of the discrete nature
of the indicator functions used in forming the sample analogue of these conditions; see (2.3) and (2.4).
Motivated by the equivalence of conditional distributions and conditional characteristic functions, we
now follow Su and White (2003) [see also Bierens (1982)] and consider a smoother class of conditional
moment conditions. For this, we define H(y) = [ e™ "YdGo(u), the characteristic function of a well-chosen
probability measure dGo(u). Let

Y(u;z, 2) = Elexp(iv'Y)| X =2, Z = 2] — Elexp(iv/Y)| X = z].

Then [(u;z, 2)e’™ “dGo(u) = E[H(Y +7)|X =2,Z = 2] — E[H(Y +7)|X = 2] = m(x, 2;7) — m(z; 7).
Under a mild assumption (see Assumption A4 below), the null hypothesis can be expressed as

Hy:Prim(X,Z;7)=m(X;7)]=1for all T € R.

Therefore we can formulate a variant of our preceding test statistic based upon

ISELRn = 22/1,5 Xt,Zt, Zwtf’ log{l + /\tgs( )}dG(T), (41)

where gs(1) = H(Ys + 7) — m(Xg;7), m(z;7) = Y0 Liy (2 — X)H(Ys + 7)/ 20 Ly (v — X5),
V(Xy, Zy;7) =0t D00 wis[gs(7)]%, and each Ay = Ay(7) solves

n

ZM =0, t=1,..n. (4.2)
s=1 n+ )\th(T)

13Strictly speaking,  and z are also nuisance parameters.
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Further, let B, = S LY [Twesgs(7)]?dG(7) and
T, = h\“+ /2 [SELR, — B,}/5,
where 52 = 2n~1(Cy(d1+ds) Sy ff‘N/Q(Xt, Zy,T,7') ﬁ;l(Xtv Z)dG(7)dG(7") and

{N/(x7 nr, ) = S K, (@ ; Xeo,2—Z)HY, +7)H(Y, +7)
23:1 Khl (x — X37 z — Zé)
S K= Xz = Z)H(Y, 4 1) S Kl = X2 = Z)H(Y,+7)
S K (v — Xs,2— Zs) S K (x— X,z — Z4) :

Assumption A4 (Fourier transform )

dG,(u) = go(u)du is such that go(u) has full support on R, is bounded, even, integrable and everywhere
positive, and is chosen such that its corresponding characteristic function H is real-valued.

Further we need to replace Assumption Al(iv) by:
Assumption A1l(iv*) The function m(z;7) is (r + 1) times partially continuously differentiable with
respect to x for each 7 € R and the partial derivatives up to the (r+ 1)th order are bounded on
S¢ = SeNR™. Furthermore, |m(z';7) — m(z;7)| < a(7) ||z’ — ||, where [a?(7)dG(T) < .

Theorem 4.1 Under Assumptions A1(i) — (iii), Al(iv*), and A2—A4, T, % N(0,1) under Hy.

In the case when d; + d3 < 3, define

P, ir) = o=t K@ = Xo 2 = Z)HP (Vs +7) [zs_l K (v = Xo,2 = Z)H(Y, +7)]°
3 <y ZZ:I Khl(x—XSVZ*ZS) Z:’Zl Kh1(x7X5727Z5) )

B,1 = Cy(@tds)y =1 Z/It"}(XtaZt;T)/fhl(Xth)dG(T)? and
P

Tpq = BBF9/2GETR, — by @+ B, 11 /5.
We have the following result.

Corollary 4.2 Under Assumptions A1(i) — (iii), Al(iv*), and A2—A4, if dy + d3 < 3, Tn,l 4, N(0,1)
under Hy.

Our simulations are conducted by using this specific test statistic, fn,l, because we mainly consider
the cases di + d3 < 3 and when d; + d3 = 4, we also find that using B,, ; as a bias correction term has
better small sample performance than using B,,.

4.2 Limited dependent variables and discrete conditioning variables

As mentioned in the introduction, our tests are also applicable to situations in which not all variables in
(X,Y, Z) are continuously valued. For example, when Y is discretely valued, our testing procedure can
be modified easily to accommodate this case by replacing the integration by summation over possible
values of Y. This is more than a superficial change, as it allows the applications of our test to any
situations involving limited dependent variables. For example, Y may be a discrete response, or a
more complicated censored or truncated version of a continuous (latent) variable. Also, one can allow
a mixture of continuous and discrete conditioning variables. The modification can be done by following
the approach in Racine and Li (2000).

12



4.3 Testing for independence

It is possible to extend our procedure to the case where d; = 0, i.e., testing for independence between Y
and Z. In this case, the null hypothesis reduces to

Hy : Pr[f(Y|2) = f(V)] = L.

The alternative is that f(y|z) # f(y) over a significant range of the support of the joint density f(y, 2).
One can modify our previous procedure by replacing ﬁhQ (T]Xs) in (2.4) by m(t) =n 130 1Y, < 7)
or m(Xs;7) in (4.1) by m(r) =n~' Y7, H(Y; +7) and making corresponding changes. For brevity, we
don’t repeat the argument.

4.4 The bootstrap and subsampling

One can develop suitable versions of bootstrap or subsampling methods that may improve the small
sample performance of our tests. It is routine to justify that subsampling works in our context (Politis
et al. 1999). Simulation results suggest that subsampling produces correct critical values but results in
significant loss of power despite its high computational cost. Our focus here is thus on the bootstrap.

The basic problem for the bootstrap is how to impose the null hypothesis in the resampling scheme.
Simple resampling from the empirical joint distribution of W; = (X},Y{, Z{)" will not impose the null
restriction. Paparoditis and Politis (2000, PP hereafter) propose a local bootstrap procedure for non-
parametric kernel estimators under general dependence conditions. We essentially do the same thing here
except that our conditioning variables are not necessarily lagged dependent variables. Let P};ZlX be the
empirical distribution of (Y, Z) conditional on X. PX‘X and PZ1* are analogously defined. Our pro-
posal consists of drawing resamples { X/, Y, Z;}1 ,, where X; = X, from the conditional distribution
]B,iftz‘lxt in which we impose the null hypothesis of independence of Y; and Z; conditional on X;. That
is,

j_:%/tZdXt _ jiv)}L/dXt . jtv)"Zt\Xt’

where ﬁ?‘lx‘ and JBnZ 1% denote the bootstrap conditional distributions of Y; and Z;, respectively. We
explain only the procedure for computing BY1X gince P2 is constructed in the same manner. As
in PP, the local bootstrap procedure proposed here is based on the simple idea of obtaining bootstrap
replicates of the sequence of observed pairs { Xy, Y}, by resampling the observation Y; given X; and
using a simple and consistent estimator of the conditional distribution function F(Y;|X:). In particular,
for t = 1,...,n, denote by (X;, Y;*) the bootstrap replicates of the pair (X¢,Y;), where

Y- Py () x), (4.3)
and for any set A C R, Py ol X (‘| X+) is a version of the empirical conditional distribution given by

o1 b(Xe = XO)1(Ys € 4)
Zgzl K:b(Xt - Xs) '
where (') = b~% k(" /b) with x being a symmetric and square integrable density on R% and satisfying
Assumption A4 in PP, and b > 0 is called the resampling bandwidth satisfying Assumption A3 in PP.
Note that by (4.3) the distribution of Y;* varies with the index ¢ and that conditionally on the observed
sequence { Xy, Y; }7, , the bootstrap replicates (X¢, Y;*) and (X, Y) are independent for ¢ # s. Thus for

BYIX (4]x,) = 2= (4.4)
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every index ¢, Y;* is a random variable taking values in the set {Y; ...,Y,,} with probability mass function
given by

P(Y; =Yl Xy) = kp(Xe = X)) Y kn(Xy = X,), s =1,...,n.
r=1

Similarly, one can obtain the bootstrap replicates (Xy, Z;) for ¢t = 1,...,n and hence {(X¢, Y, Z;) ;.
Repeating this procedure B times, we obtain B bootstrap resamples and with each sample we compute
the test statistic T, in analogous fashion to fn (or Tn). The level « critical values ¢, are computed as
an approximate solution to

Pr*[T) > ¢,] = a,

where Pr* denotes probability conditional on the sample. The consistency of this procedure can be
established in exactly the same way as in PP. See PP for the reason why the above procedure “works”.

5 Weak Asymptotic Optimality Property of the ISELR Test

As noted in the introduction, there exist a number of alternative conditional-moment-based tests for
conditional independence. Su and White (2003) use a property of conditional characteristic functions
to show that their test is consistent and behaves well in finite samples. This section identifies an asymp-
totically optimal test among a class of conditional moment restrictions that are formulated in terms
of conditional distributions. The asymptotic optimality is weak in the sense that we are able to treat
only a restricted class of local alternatives. Nevertheless, this is the first non-trivial result available for
asymptotic optimality for testing distributional hypotheses in terms of local average power.

Following the approach of Su and White (2003), one can consider a sequence of test statistics that are
based upon T'(a) = L S0 [[Fy, (7] Xs, Za) — By, (7| X.)]2a(X., Z:)dG(7), indexed by the weight function,
a. Here Fy, (7|x,z) and Fp,(7|z) are nonparametric kernel density estimators of F'(7|z,z) and F(7|x),
respectively. They are based upon the univariate kernels k and [ and bandwidth sequences b; and bs,
respectively. Note that we could have allowed a to depend on the integrand 7, but this would make the
analysis terribly complicated. The test statistics are based upon

(d1+ds3)/2 —1;—(d1+d3) —17—d1 —17.—d;
nb I'(a) —n~"b Bll —n"'b B12 —n"'b Blg
n(a) 1 { ( ) 1 = 1 2 }7 (51)

01

where
By = O\ d) [ [V (2, 2;7) a(, 2) d(v,2)dG(T),
Bio = 22021 [ [V(z,z;7) [f(,2)/f(2)] a(z, 2) d(z, 2)dG(T),
Biz=CiM [ [V(wy7) [f(@,2)/ f(2)] a(z, 2)d(, 2)dG(7),
0% = 2030 Fds) [ [ [V2(2,2;7,7")a%(x, 2)d(z, 2)dG(1T)dG ("), and
Since n(ca) = n(a) for any ¢ # 0, without loss of generality, we assume that [¢a*(z,z)d(z,z) = 1.

Now let
[s | A2(x, z;7) f(, 2)a(z, 2)dG(T)d(z, 2)

M(a,A) = .
\/203<d1+da> o [ [ V2(x, 27, 7)a2(x, 2)dG(r)dG(')d(x, 2)

(5.2)

Under H; (n_l/zbf(d1+d3)/4> it follows that
n(a) 5 N(M(a, A),1).

14



The asymptotic power of the test with critical value ¢, is thus given by
m(a,A) =1—®(cqu — M(a,A)). (5.3)

Comparing (5.3) and Theorem 3.1, we can see that our ISELR test is asymptotically equivalent to the
n(a) test with the weighting function

arserr(r,2) = 1{(z,2) € S}||S|| 72,

where ||.S]| is the Lebesgue measure of S. We shall demonstrate that this choice of weighting function,
which is implicitly achieved by our ISELR test, is optimal in a certain sense.

If A were known, it would be easy to derive the optimal weighting function that maximizes (5.2)
and thus (5.3). For this, an application of the Cauchy-Schwarz inequality to (5.2) shows that (5.3) is
maximized by choosing a weighting function that is proportional to

A} @,z 7) f(2,2)dG(T)
aa(,2) = [ [V3(z,z;7,7)dG(T)dG(T")

(5.4)

The notation aa (z, z) indicates that the optimal choice of a depends on A. This result is not useful since
A is unknown in practice. It is also clear from (5.4) that there is no uniformly (in A) optimal test. This
resembles the multi-parameter optimal testing problem considered in the seminal paper of Wald (1943).

In a parametric framework, Wald shows that the likelihood ratio test, and their asymptotic equivalents,
for a hypothesis about finite dimensional parameters is optimal in terms of an average power criterion.
Loosely put, he considers a weighted average of the power function where uniform weights are given along
each probability contour of the distribution of the MLE estimator. Similarly, Andrews and Ploberger
(1994) consider optimal inference in a nonstandard testing problem. They derive a test that is optimal
with respect to a Wald-type average power criterion. Their optimal test performs well in finite samples,
indicating the practical relevance of Wald’s approach.

Our testing problem is a nonparametric analogue of Andrews and Ploberger’s (1994). In their case,
the parameter of interest in the sequence of local alternatives is of finite dimension (h in their notation),
whereas the parameter of interest in our local alternatives is an unknown function (i.e., A(x, z,7) in the
above notation). A natural extension of Wald’s approach is to consider a probability measure on an
appropriate space of functions and let the measure mimic the distribution of the estimator'* ﬁbl (T]z, 2),
either explicitly or implicitly. Therefore, we propose to use a probability measure that approximates the
asymptotic distribution of the sample path of ﬁbl (1]z, 2).

Let {2, F,P} be a probability space. Let ﬁ(x,z,T) =A((z,2),7;w) : S x R x 2 — R be a random
function,'® i.e., for arbitrary and fixed (x,z,7), A((x,2),7; *) is a measurable mapping of {{, F} into
{R, B} where B is the Borel sigma-field on R and for fixed w, A(, ;w) is a function. Next let A(z, z,7) =
FY2(2, ) VY2(x, 2 7) 87 Y2 (2, 2)0(x, 2), where B(z, 2) = JV(x,2;7)dG(7) and for v = (z,z) € Ré1Hds,
Y(v) =TT 01/ Y ki(vi/y; — 2)dU;(2), k; are arbitrarily cyclical univariate kernel functions on R with
period 1/7;, and the U; are mutually independent Brownian motions on [0, 1/+,] starting at the origin such
that E[U;(1/7,)]? < oo for each i. Let I; be the diameter!® of S restricted in the direction of v;. We further
require 0 < 1/; < I;.This implies that the joint distribution of the bivariate vector ([ f(1(v))dv, ¥ (vo))

141t is unnecessary to mimic the distribution of ﬁbz (T|x) because this has no impact on the power function.

15 Alternatively, a random function can be defined by specifying a certain measure on a certain function space whose
elements are functions on S x R. See, for example, Gihman and Skorohod (1974, p.44).

6Without loss of generality, one can assume S = [—e, €]%1 193 where e is a positive real number. In this case, I; = 2e for
each 3.
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does not depend on the location vy € S. Other properties of A, such as its Gaussianity, are not important
in our argument below. Moreover, our optimality result does not depend on the choice of v; and ;.

We are now ready to define our average power concept. Let ) be the probability measure induced
by A on continuous functions defined on S x R. Using the definition of ﬁ, rewrite the random variable
M(a,A) as

M(a,A) = Yd(z, 2), (5.5)

1 2
—— [ a(z, )Y (x, 2
s [ o
where we have imposed the restriction [ a*(x,z)d(x, z) = 1. Let F, be the cdf of M(a, A). The average
asymptotic power of the test is the following functional of a :

7(a) = / 7(a, A)dQ(A) = /O 00[1 — ®(cq — m)]Fy(dm). (5.6)

Observe that the integrand in (5.6) is strictly increasing in m. So if there exists a smooth, bounded,
square integrable function a* : S — Ry such that [¢[a*(z,2)]?d(z,z) = 1 and for all a the cdf F,-
first order stochastically dominates Fy, then a* maximizes 7(a). The following proposition delivers the
desired result.

Proposition 5.1 Let a*=1{(z,z)c S}||S||~'/2, where ||S|| is the Lebesgue measure of S. Then

a* = arg aergf()g )ﬁ(a), where Cy(S ) is the space of continuously bounded functions on S'.

This result shows that the ISELR test attains the maximum average local power when the sequence
of alternatives are restricted to the space of functions generated by A. An alternative way of achieving
this optimality is to use a(x,z) = 1{(z, 2) € S} in (5.1).

We emphasize that such optimality is weak compared to the asymptotic optimality result in the
GMM framework; see Sowell (1996). Like the discussion in Section 4.1, if we replace the conditional-
distribution-based moment conditions with their corresponding characteristic-function-based conditions,
we would expect that the resulting test in Theorem 4.1 or Corollary 4.2 is optimal with respect to different

sequences of local alternatives which are restricted on the space of functions generated by ﬁ*(x, 2,T) =
P22, )V 2 (2, 27) 37V 2 (2, 2)1(2, 2), where V*(z, 2;7) = var(H(Y +7)|X = 2, Z = 2).

6 Monte Carlo Results

In this section we report the results of some Monte Carlo simulation experiments designed to examine
the finite sample performance of our nonparametric conditional independence test based on ISELR,,.
Our simulation covers three cases. We set d; = dy = d3 = 1 in the first case, dy = 2 and dy = d3 = 1
in the second case, and d; = 3 and d; = d3 = 1 in the third case. For each DGP under study, we
standardize the data {(X{,Y/,Z})’, t =1,...n} before implementing our test so that each variable has
mean zero and variance one. Further, we let the compact set S expand slowly as the sample size n grows:
S = {u = (z,2): |u;| <0.9vInn, i=1,...d, + dg} .

We use the following data generating processes (DGPs) for the first case:

DGP1: Wy = (e1,4,€2,4,€3,¢), where {e14, €24, €34} are t.i.d. N(0, I3).

For DGP2 through DGP7, W; = (Y;_1,Y;, Z;—1)', where Z; = 0.5Z;_1 4+ €24, and

DGP2: Y; =0.5Y;_1 + €143

DGP3: Y;g = 0.5)/;5_1 + Oth_l + S
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DGP4: Y; = 0.5Y;_1 + aZ2 | + €145

DGP5: Y, =aY;_ 1721 + €1,t;

DGP6: Y; = 0.5Y;_1 + (0.3 4 0.50) Z;_1€1,4;

DGPT: Y; = Vhie1 s, he = 0.01 +0.5Y;2 ;| + 0.5aZ2 ;; and

DGP8: W, = (Y;-1,Y:, Zy—1)', where YV, = \/hie1,, Zy = \/hoseay, hay = 0.01 + 0.1hy ;g +
0.4Y2, +aZ? |, hay = 0.0140.9ha 1 +0.05Z% |, where {e14, €24} are i.i.d. N(0,I5) in DGPs 2-8 and
a = 0.5 in DGPs 3-8.

DGP1 and DGP2 allow us to examine the level of the test. DGPs 3-8 cover a variety of linear
and nonlinear time series processes commonly used in time series analysis. Of these, DGPs 3-5 (resp.
DGPs 6-8) are alternatives that allow us to study the power properties of our test for Granger-causality
in the mean (resp. variance). DGP3 studies Granger linear causality in the mean whereas DGPs 4-5
study Granger nonlinear causality in the mean. In DGPs 6-8, {Z;} Granger-causes {Y;} only through
the variance. A conditional mean-based Granger causality test, linear or nonlinear, may fail to detect
such causality. Note that DGP7 is an ARCH-type specification and DGP8 specifies a bivariate GARCH
process. Consequently, the study of such processes indicates whether our test may be applicable to
financial time series, where these processes are commonly thought to apply. These DGPs are identical to
those used in Su and White (2002) and Su and White (2003).

We follow Corollary 4.2 and use a fourth order kernel in estimating f(z) and m(z;7): l(u) = (3 —
u?)p(u)/2, where (u) is the p.d.f. of the standard normal distribution. To save on computation, we
avoid using the double integration routine in Matlab. Instead we choose both the second order kernel'”
k() and weighting functions g(-) and go( ) to be standard normal density functions and work out explicit
expressions for the variance estimator, 52. The bias correction estimator Bn 1 also has a s1mp1e analytical
expression which does not involve numerical integration. Hence only one numerical integration'® is needed
in each repetition to calculate ISELR,,.

In principle, we can choose the two bandwidth sequences, h; and ho, to maximize the global power
associated with our test. Nevertheless, this approach does not work well in our simulations in that we find
the resulting level of our test to be inflated. Instead, we find it useful to choose bandwidths of the form
hy = 0.85n71/6 and hy = en~1/%, where ¢ varies over a compact set on the real line. In some preliminary
simulations, we find that the averages of ¢ chosen by leave-one-out least squares cross validation for the
marginal density f(z) range between 0.7 to 1.8 across different DGPs.

For DGPs 1 and 2, we first conduct 1000 repetitions for each sample size and each value of ¢ under
study. Specifically, we choose n to be 100, 200 and 500 with ¢ = [0.5 1 2 2.5], which includes the range of
the averages of our cross-validated values for c. Table 1 reports the empirical rejection frequency of our
tests Tn,l as a function of ¢ for the sample sizes under investigation. For notational convenience, we shall
denote Tn,l by SEL, in Tables 1-4. From the table it appears that the level of SEL,, is well behaved
over a large range of values for c. The test is undersized for small values of c. When ¢ increases, the level
increases as well. This is true across all samples and for both the 5% and 10% tests. Further, as sample
size increases, the level of the test tends to decrease for fixed value of c.

We now compare our test with some previous tests proposed by Linton and Gozalo (1997) and by Su
and White (2002, 2003). Linton and Gozalo (1997) base their nonparametric tests of conditional indepen-
dence on the functional A, (w) ={n 23" 1(W; <w)H{n >3 (X <2)}—{n 13, 1(X; <z)
x1(Y; < y)H{n 'YL, 1 (Xt S x)1(Z; < 2)}, where w = (2/,y',2")’. Specifically, thelr test statis-

17Other kernels have been tried and qualitatively similar results were obtained.
183ee Tripathi and kitamura (2002) for other practical considerations in implementing a smoothed empirical likelihood
ratio based test.
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tics are of the Cramer von-Mises and Kolmogorov-Smirnov types: CM,, = n~! Sy A2(Wy), KS, =
maxi<¢<n |An(Wi)|. The asymptotic null distribution of both test statistics is non-standard so that a local
bootstrap procedure is needed to obtain the critical values.!”To implement the tests, we set the num-
ber of bootstrap resamples to be 100, use the product kernel of k as before, and choose the bandwidth
parameter, b, for the local bootstrap procedure to be b,, = n=1/%.

Su and White (2002) base a test for conditional independence on the Hellinger distance between the
two conditional densities f(y|z, z) and f(y|z). They use the same bandwidth sequence h in estimating all
the required densities, namely, f(z,vy, ), f(x,y), f(z,2), and f(z). Let ﬁl(x,y,z), ﬁl(x,y), ﬁl(x,z), and

fn() denote the estimates. Further, define 'y = s [1 - \/fh(Xt, Y) Fu (X, Z0) ) fn (X0, Y, Zt)fh(Xt)]

x a(Xt, Yy, Zi), where a is a weighting function that is compactly supported. Their test statistic, HFEL,,
is based on the functional T'; and is asymptotically distributed as N(0,1) under the null. Su and White
(2002) conduct simulations for a variety of bandwidth sequences: h = n~'/¢ where § = 8, 8.5 and 9.
Nevertheless, we only report here the case § = 8.5 because the resulting level and power tend to behave
better than the other two cases.

Su and White’s (2003) test is based upon a property of the conditional characteristic function. Let
My, (z, z; 7) and My, (z; 7) be nonparametric kernel estimates for m(x, z;7) = E[H(Y + 7)|X =2, Z = 2]
and m(z;7) = E[H(Y 4+ 7)|X = z] with bandwidth sequences b; and by, respectively. Define I'y =
L [, (X, Zys 7) — Mg, (X3 7)|?1,dG(7). Their test statistic, CHF,, is based on the functional
Iy, and is also asymptotically distributed as N(0,1) under the null. We choose the bandwidth sequences
b1 and b2 according to Su and White (2003).

Table 2 reports the empirical rejection frequency of the five tests, namely, CM,,, KS,,, HEL,,CHF,
and SEL,, for nominal sizes 5% and 10%. In obtaining T,M, we use hy = 0.85n"Y/6 and hy = 2.4n~1/5.
Given the computational burden of our experiments, for all tests there are 1000 Monte Carlo replications
in the experiments for n = 100, 200 and 500, and 500 repetitions for n = 1000 when the null is true. The
number of repetitions is 250 when the null is false.

From Table 2, we see that all five tests have reasonably good size properties for all sample sizes under
investigation except that the level of our test Tn,l tends to decrease as the sample size increases.?’ Even
so, we can tell that our test behaves better than or as well as all previous tests in terms of power. From
the preceding section, we know that both CHF,, and SEL,, are partially asymptotically optimal with
respect to alternatives generated by the same random functions, and it is thus interesting that one test
behaves better than the other in finite samples. CHF,, exhibits significantly greater empirical power in
detecting conditional dependence (Granger-causality) implied by DGPs 3 through 6 than HEL,, but it is
the other way around for DGPs 7 and 8. CM,, and K S,, are dominated by CH F,, in all DGPs but DGP
3 and by HEL, in DGPs 4 and 6-8. We emphasize that Su and White’s HF'L,, test has as great power
as our test in detecting Granger-causality in GARCH-type processes, but this does not necessarily hold
for cases other than d; = dy = d3 = 1 because of the disadvantage of using the same bandwidth sequence
h in estimating all required densities in their approach.?!

To see how the above tests are sensitive to the pseudo-true parameter « that controls the degree of
conditional dependence in DGPs 3-8, we choose 40 different o's , equally spaced values on the compact

9The setup of Linton and Gozalo (1997) is for i.i.d. data. One can replace their bootstrap procedure by a local bootstrap
(see Section 4.4) to account for data dependence. See Paparoditis and Politis (2000) for more about the local bootstrap.

20This suggests that a larger coefficient ¢ can be used for the bandwidth hy = en=1/5 for larger n. For example, a small
number of simulations indicate that when n = 2000, ¢ = 3 can be used. In our applications, however, we conservatively set
c=2.5.

21The choice of bandwidth for these other cases becomes an extremely difficult task for the test of Su and White (2002).
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interval [0 0.7], in all the above DGPs. For each value of «, we conduct 2000 repetitions and calculate
the empirical rejection frequency for the tests CM,,, KS,,, HEL,,,CHF,, and SEL,.

Figure 1 displays the results for the above six sets of DGPs, with cases (a) through (f) corresponding
to DGPs 3-8 when « varies over [0 0.7]. Also reported in Figure 1 is the empirical power function for
the conventional linear Granger causality test. In the graphs, Lin stands for the linear causality test,
and CM, KS, Hel, Chf and Sel stand for the tests CM,,, KS,, HEL,,CHF, and SEL,, respectively.
When the processes are truly linear, one expects the linear Granger test to be most powerful. This is
verified in Figure 1 (a). Except for this case, one can see that the linear Causality test performs worst.
From Figure 1, we also see that SEL,, outperforms all the other tests for DGPs 4-7. Like the linear
Granger causality test, both C'M,, and K S,, have little power in detecting conditional dependence for
GARCH-type processes.

In the second case (d1 =2, da = ds = 1), we use the following DGP’s in our study:

DGPY1’: Wy = (e1,4,€2,,€3,¢)’, where both {e1+} and {€24,€3,} are i.i.d. N(0, I5).

For DGP2’ through DGP7’, W, = ((Y;=1,Yi—2),Y:, Z4—1)’, where Z; = 0.5Z;_1 + €24, and

DGP2: Y; = 0.5Y;_1 +0.25Y;_2 + €1 4;

DGP3’: Yy = 0.5Y;1 +0.25Y; 2o + aZi—1 +€1,1;

DGP4’: Y; = 0.5Y;_1 + 0.25Y;—2 + aZ? | + €14

DGP5: Yy =aY;_1Z;1 +0.25Y o5 +€14;

DGP6": V; = 0.5Y;_1 + 0.25Y;_2 + (0.3 + 0.5aZ;—_1)e1 45

DGPT: Y; = Ve 1, he = 0.01 +0.5Y,2 | + 0.25Y,2 5 + 0.5aZ? ;; where a = 0.5, {e1,4,€2¢} is i.i.d.
N(0,I).

DGP8’: same as DGP8.

Since the implementation of H F'L,, becomes difficult here because of the previously mentioned bandwidth
selection problem, we only study the finite sample behavior of the tests CM,,, KS,,, CHF,, and SEL,.
We use the same kernel and weighting functions and number of bootstrap resamples as in the first
case. The only difference is that now we choose the bandwidth sequences differently. Specifically, we
set hy = n~ Y75 and hy = 1.8n /6 for the test?2 SEL,, and b, = n~/6 for the CM,, and K S,, tests.
Sample sizes n = 100, 200, 500 and 1000 are studied. When the null is true, there are 1000 Monte Carlo
replications in the experiments for n = 100, 200 and 500, and 500 repetitions for n = 1000. The number
of repetitions is 250 when the null is false.

Table 3 reports the empirical size and power properties of the four tests. As in the first case, the
sizes are reasonably well behaved for all tests and our test dominates all others in terms of power. The
CHF, test dominates CM, and K S, for all nonlinear DGPs under investigation. As the dimension
of the conditioning variable increases, one might expect that the power of the tests would be adversely
affected. Table 3 suggests this conjecture is valid for small sample sizes but the effect of dimensionality
is not severe. For both SEL,, and CHF,,, the power is 1 or close to 1 for all DGPs under study when n
is 500 for the 10% test, whereas for the tests CM,, and K S,, the power is less than 1 for GARCH-type
processes even with n = 1000.

To see how the above tests are sensitive to the pseudo-true parameter « that controls the degree of
conditional dependence in DGPs 3-8, we choose 40 different o's , equally spaced values on the compact
interval [0 0.7], in all the above DGPs. For each value of a, we conduct 2000 repetitions and calculate the
empirical rejection frequency for the tests CM,,, KS,, CHF, and SEL,. Figure 2 displays the results

22For hy = n~ /75 we find through preliminary simulations that ho = en~1/6 works reasonally well for ¢ € [1 2]. Like

the first case, the test is undersized for smaller values of ¢ and oversized for larger values of c.
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for the above six sets of DGPs, with cases (a) through (f) corresponding to DGPs 3-8 when « varies over
[0 0.7]. As before, also reported in Figure 2 is the empirical power function for the conventional linear
Granger causality test. In the graphs, Lin stands for the linear causality test, and CM, KS, Chf, and Sel
stand for the tests CM,,, KS,, CHF, and SEL,, respectively. The results are largely same as the case
where d; = 1.

In the third case (d1 =3, da = ds = 1), we use the following DGP’s in our study:

DGP1”: Wy = (e1,4,€2,¢,€3,) s where {e1 4} is t.i.d. N(0,I3) and {ea¢,e3+} is i.i.d. N(0, I2).

For DGP2” through DGP7”, Wy = ((Yi—1,Yi—2,Y:—3),Ys, Zi—1)’, where Z; = 0.5Z;_1 + €24, and

DGP2": Y; = 0.5Y;_1 + 0.25Y;_o + 0.125Y;_35 + €1 ¢;

DGP3": Y; =0.5Y;_1 + 0.25Y;_o + 0.125Y; 3 + aZ;—1 + €143

DGP4”: Y; = 0.5Y;_1 + 0.25Y; 5 + 0.125Y;_3 + aZ? | + €1.4;

DGP5": Y, = aY; 12,1 + 0.25Y;_o + 0.125Y;_3 + €1 4;

DGP6”: Y; = 0.5Y;—1 + 0.25Y;_2 + 0.125Y;_35 + (0.3 + aZs—1)e1 45

DGP7T: Y; = Vluers, by = 0.01 +0.5Y2, + 0.25Y,2, + 0.125Y;2 5 + aZ2 ;; where a = 0.5 and
{e1,4,€2,4} 18 t.i.d. N(0, I2).

DGP8”: same as DGPS.

We use the same kernel and weighting functions as in the first case. The only difference is that we
choose the bandwidth sequences differently and only consider sample sizes®®> n = 200, 500 and 1000.
Specifically, we set hy = n=3, hy = 1.4n~7 for SEL,, and b,, = n~/7 for the CM,, and K S, tests. The
number of repetitions is set as in the above two cases.

Table 4 reports the empirical size and power behavior of our tests. As we can see, the results are
similar to the second case above. The test SEL,, outperforms all other tests significantly and the CHF,,
test dominates the CM,, and K.S,, tests for all nonlinear DGPs in terms of empirical power. The curse
of dimensionality also exerts its expected effect.

7 Applications to Economic and Financial Time Series

Although many studies conducted during the 1980s and 1990s report that economic and financial time se-
ries such as exchange rates and stock prices exhibit nonlinear dependence [e.g., Hsieh (1989, 1991); Sheedy
(1998)], researchers often neglect this when they test for Granger causal relationships. As documented
by Hiemstra and Jones (1994), all previous studies of Granger causal relationship rely exclusively on
the traditional linear Granger causality test, which unfortunately has little power in detecting nonlinear
relationships.

In this section, we first study the dynamic linkage between pairwise daily exchange rates across four
industrialized countries by using both our new empirical likelihood test for conditional independence
Tn’l and the traditional linear Granger causality test.?* Then with the same technique, we study the
dynamic linkage between three US stock market price indices (Dow Jones 65 components, Nasdaq, and
S&P 500) and the trading volume in the New York Stock Exchange (NYSE), Nasdaq, and NYSE markets,

23We don’t consider the n < 200 case because we need to estimate nonparametrically a 4-dimensional density (d; +d3 =

4) and this cannot be done with desirable accuracy with less than 200 observations. Also, when the dimension of the
conditioning variables increases, the feasible range for the bandwidth sequences become narrower. For example, if we set

h1 = nfé , then ho = cnf% works reasonably well for ¢ € [1,1.6] for the sample sizes under investigation. When c is smaller
than 1, the level degenerates to 0 at a rapid speed. When c is above 1.6, the level inflates fast too.

24For either test, we only consider two variables at a time, thus omitting possible influences from other variables lurking
in the background.
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respectively. We then revisit the Granger causal link between exchange rates and stock prices in some
developed countries. Finally we use our tool to investigate the relationship between money supply, output,
and prices in macroeconomics.

7.1 Application 1: exchange rates

Over the last two decades much research has focused on the nonlinear dependence exhibited by foreign
exchange rates, but there is not much research that examines nonlinear Granger causal links between
intra-market exchange rates. One exception is Hong (2001) who proposes a test for volatility spillover
and applies it to study the volatility spillover between two weekly nominal U.S. dollar exchange rates—
Deutschemark and Japanese Yen. He finds a change in past Deutschemark volatility Granger-causes a
change in current Japanese Yen volatility but a change in past Japanese Yen volatility does not Granger-
cause a change in current Deutschemark volatility.

In this application, we apply our nonparametric test to data for the daily exchange rates for four
industrialized countries, namely, Canada, France, Italy, and the UK and, compare it with the conventional
linear test for Granger causality. The data are obtained from Datastream with the sample period from
January 2nd, 1995 to December 17th, 2002 with 2077 observations total. The exchange rates are the
local currency against the US dollar. Nevertheless, due to national holidays or certain other reasons,
some observations for exchange rates in Datastream are missing but entered with the realizations from
previous trading days. Moreover, different nations have different national holidays and thus different
missing observations. Because we do causality tests with exchange rates from pairwise countries, if the
observation for one country is missing, we also delete that for the other country of the pair. Following
the literature, we let E; stand for the natural logarithm of exchange rates multiplied by 100.

Since both the linear Granger causality test and our nonparametric test require that all time series
involved be stationary and we are interested in the relation between the changes in the exchange rates,
we first employ the augmented Dickey-Fuller test to check for stationarity for exchange rates (E;) for all
four countries under investigation. The test results indicate that there is a unit root in all level series but
not in the first differenced series. Therefore, both Granger causality tests will be conducted on the first
differenced data, which we denote as AE}; in the following text. Next, since the appropriate formulation
of a linear Granger causality analysis may need to incorporate an error correction term into the test if the
underlying variables (pairwise E; here) are cointegrated, we employ Johansen’s likelihood ratio method
to examine whether or not exchange rates for pairwise countries are cointegrated. The conclusion is that
there is no cointegration between any pair of exchange rates. Consequently, no error correction terms
need to be included in the linear Granger causality test.

7.1.1 Linear Granger causality test results

Let DX be the first differenced exchange rate in Country X and DY the first differenced exchange rate
in Country Y. The time series {DX;} does not (linearly) Granger cause the time series {DY;} if the null
hypothesis

HO,L:ﬁ1 ::ﬁLI =0 (71)

holds in
DY, =ag+a1DY; 1+ ...+ OzLyDY;g_Ly +6,DXy_ 1+ "'ﬁLwDXt—Lz + €4, (7.2)

where €;-i.i.d.(0,02) under Ho . An F—statistic can be constructed to check whether the null Hy r, is
true or not.
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Nevertheless, in order to make a direct comparison with our nonparametric test for nonlinear Granger
causality in the next subsection, we focus on the test for a variant®® of Hy 1, :

Hip:B=0 (7.3)

in
DY =ao+a1DYy 1+ ... +ap, DYy, + DXy i+ &, i =1,..., L. (7.4)

The results of linear Granger causality tests between pairwise exchange rates are given in Panel A of
Table 5, where we choose L, to be 1, 2 or 3. When it is 1, we also choose L, to be 1 so that we only
check whether DX;_; should enter (7.4) or not. This corresponds to the first row for each country in
Panel A. When L, is 2, we choose L, to be 2. In this case, we check whether DX;_; or DX;_» (but
not both) should enter (7.4) or not, which corresponds to the second and third rows for each country in
Panel A. The case for L, = 3 is done analogously, corresponding to the fourth to sixth rows.

To summarize the results in Panel A of Table 5, we focus on the 5% test only. First, the test reveals
only two Granger causal links. One is from the exchange rate of Canada to that of Italy and the other is
from the exchange rate of France to that of the UK. Secondly, there is no bidirectional causal link that
is detected by the linear Granger causality test.?6 The findings here are intriguing, and they motivate us
to ask whether there are some causal links that the linear causality test fails to detect and others that
cannot be detected by our nonparametric test for nonlinear Granger causality.

7.1.2 Nonlinear Granger causality test results

To implement our test, we set all smoothing parameters according to those used in the simulations done
for Tables 2-4. The null of interest is now

Hont : Pr[f(DYi|DYi 1, ... DYio,; DXy, DXi_1,) = f(DY|DYi_1, .., DY,_p,)] = 1. (7.5)

Due to the “curse of dimensionality”, we must choose L, to be small. Specifically, we study the cases
in which L, =1, 2 and 3, respectively. Further, for each test we only include one lagged DX; in the

conditioning set. So we actually test a variant®” of Ho n, :

H; ny : Pr[f(DY|DY 1, ... DY,_1,; DX,—s,) = f(DY,|DY,_1,... DY;_p,)] =1, i =1, ..., Lp.  (7.6)

When L, is 1, we also choose L, to be 1 so that we only check whether DX;_; should enter (7.6) or
not. This corresponds to the first row for each country in Panel B of Table 5. When L, is 2, we choose
L, to be 2. In this case, we check whether DX;_; or DX;_o (but not both) should enter (7.6) or not,
which corresponds to the second and third rows for each country in Panel B of Table 5. The case for
L, = 3 is done analogously, corresponding to the fourth to sixth rows.

The results in Panel B of Table 5 are interesting. First, unlike the case for the linear Granger causality
test, our nonparametric test reveals causal links between all 6 pairs of exchange rates at the 5% significance
level. Second, most of the causal links are bidirectional. The only exception is that the French exchange

25Clearly, the null HS,L is nested in the null Hy . The rejection of HS,NL indicates the rejection of Ho nr but not the
other way around.

26We also conduct the linear Granger causality test for the null (7.1). Applying either the Bayesian information criterion
(BIC) or the Akaike information criterion (AIC) to choose the numbers of lags, we find that the exchange rate in Italy is
led by that in Canada and there is no other causal link at the 5% significance level.

27The null HS,NL is nested in the null Hy n,. The rejection of HS,NL indicates the rejection of Hg n 7 but not the other
way around. In this sense, our test is conservative.
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rate is led by the Italian rate but not the other way around. Third, most of the causal links are robust
in that they don’t vanish at two- to three-day lag. This suggests that at a one- to three-day lags, the
exchange rates across the four countries interact strongly with each other. One obvious reason for the
failure of the linear Granger causality test in detecting such causal linkages is that exchange rates exhibit
unambiguously nonlinear dependence across markets. The volatility spillover between exchange rates [see
Hong (2001) and the reference therein] is a special case of such nonlinear dependence.

To facilitate further comparison between the linear and nonlinear test results, we use boldfaced num-
bers in Panel A of Table 5 to denote the causal relations which are revealed by the linear Granger
causality test but not by our nonparametric test at the 5% significance level. Similarly, the boldfaced
numbers in Panel B of Table 5 denote the causal relations which are revealed by our nonparametric test
but not by the linear Granger causality test at the 5% significance level. From Table 5, one can see that
our nonparametric test can reveal 22 additional causal relations at various lags for all pairs of exchange
rates under consideration besides those revealed by the linear causality test, strong evidence in favor of
nonlinear dependence between exchange rates. Also, as expected, one can tell from Table 5 that our
nonparametric test cannot reveal all linear causal relations. Specifically, it fails to detect two causal
relations indicated by the linear causality test.?8

7.2 Application 2: stock prices and trading volume

There are several explanations for the presence of a bidirectional Granger causal relation between stock
prices and trading volume. For brevity, we only mention two of them. The first one is the sequential
information arrival model [e.g., Copeland (1976)] in which new information flows into the market and
is disseminated to investors one at a time. This pattern of information arrival produces a sequence
of momentary equilibria consisting of various stock price-volume combinations before a final, complete
information equilibrium is achieved. Due to the sequential information flow, lagged trading volume could
have predictive power for current absolute stock returns and lagged absolute stock returns could have
predictive power for current trading volume. The other is the noise trader model [ e.g., DeLong (1990)]
that reconciles the difference between the short- and long-run autocorrelation properties of aggregate
stock returns. Aggregate stock returns are positively autocorrelated in the short run, but negatively
autocorrelated in the long run. Since noise traders do not trade on the basis of economic fundamentals,
they impart a transitory mispricing component to stock prices in the short run. The temporary component
disappears in the long run, producing mean reversion in stock returns. A positive causal relation from
volume to stock returns is consistent with the assumption made in these models that the trading strategies
pursued by noise traders cause stock prices to move. A positive causal relation from stock returns to
volume is consistent with the positive-feedback trading strategies of noise traders, for which the decision
to trade is conditioned on past stock price movements.

Gallant et al. (1992) argue that more can be learned about the stock market by studying the joint
dynamics of stock prices and trading volume than by focusing on the univariate dynamics of stock returns.
Using daily data for the Dow Jones price index for the periods 1915-1990, Hiemstra and Jones (1994)
study the dynamic relation between stock prices and trading volume and find significant bidirectional

280ne explanation is that although the nonparametric test has power against all causal relations, linear or nonlinear,
causality in the conditional mean or in the conditional variance, it may have low power in some particular direction. If
there exists some linear causal relation that is weak, the nonparametric test may fail to detect whereas the linear Granger
causality test can pick it up easily. On the other hand, even though the latter test has high power against linear casual
relations, it has little or no power against some nonlinear causal relations, which explains why it can’t detect some causal
relations revealed by the nonparametric test.
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nonlinear causality between them. Here we reinvestigate this issue using the latest daily data for the U.S.
three major stock market price indices and trading volume. The data are obtained from Yahoo Finance
with the sample period from January 2nd, 1995 to January 10th, 2003. After excluding weekends and
holidays, the total numbers of observations are 2022 for the Dow Jones 65 composite and Nasdaq series
and 2021 for the S&P 500 series. Following the literature, we let P; and V; stand for the natural logarithm
of stock price indices and volumes multiplied by 100, respectively.

We first employ the augmented Dickey-Fuller test to check for stationarity of {P;} and {V;}. The test
results indicate that there is a unit root in all level series but not in the first differenced series. Therefore,
both Granger causality tests will be conducted on the first differenced data, which we denote as AP,
and AV, in the following text. Next, Johansen’s likelihood ratio cointegration tests suggest there is no
cointegration between P, and V; for all three cases. Consequently, no error correction term needs to be
included in the linear Granger causality test. We focus on the causal links between stock returns (AP;)
and percentage volume changes (AV;). 2

7.2.1 Linear Granger causality test results

We first let AP, and AV; play the roles of DX; and DY; in (7.4) and test the null that stock price
does not Granger cause trading volume linearly. Then we reverse their roles to test the null that trading
volume does not linearly Granger cause stock price. The results of the linear causality test between
stock prices and volumes are given in Panel A of Table 6. At all levels of L, we find causal links from
stock prices to trading volumes for the Nasdaq and S&P 500 data but not for the Dow Jones at the 5%
significance level. Unambiguously, no causality from trading volume to stock price is revealed by the
linear causality test.3°

7.2.2 Nonlinear Granger causality test results

We first let AP, and AV; play the roles of DX; and DY; in (7.6) and test the null that stock price does
not Granger cause trading volume. Then we reverse their roles to test the null that trading volume does
not Granger cause stock price. The results for our nonparametric test are reported in Panel B of Table
6. From Panel B, we find that stock prices lead trading volumes for all three datasets and this is true at
all lags of our study. Further, our nonparametric test reveals bidirectional causal relations between stock
prices and trading volumes at the one day lag only for the Nasdaq and S&P 500 data, in strong contrast
with the results of Hiemstra and Jones (1994) who find bidirectional causal relations for the Dow Jones
stock price and trading volume up to a 7-day lag. So like the linear Granger causality test results, our
nonparametric test results lend little support to the two theories articulated above.

To facilitate the comparison between the linear and nonlinear test results, we use boldfaced numbers
in Panel A of Table 6 to denote the causal relations which are revealed by the linear Granger causality
test but not by our nonparametric test at the 5% significance level. Similarly, the boldfaced numbers
in Panel B of Table 6 denote the causal relations which are revealed by our nonparametric test but not

29 Alternatively, one can follow Gallant et al. (1992) and Hiemstra and Jones (1994) and remove systematic day-of-
the-week and month-of-the year calendar effects from stock returns (AFP:) and percentage volume changes (AV;) before
conducting the causality tests. Similar results are found with this approach.

30 As is done for the case of exchange rates, we also conduct the linear Granger causality test for the null (7.1) by using
the BIC and AIC to choose the numbers of lags, Lz and L, the maxima of which are set to be 10. Accoding to the BIC,
only one linear causal relation is found at the 5% significance level. That is, the S&P 500 stock price index tends to lead
the NYSE volume. According to the AIC, all the three stock price indices tend to lead the corresponding trading volumes
at the 5% significance level. No other causal links are found.
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by the linear Granger causality test at the 5% significance level. From Panel A, one can see that our
nonparametric test detects all causal relations revealed by the linear causality test. From Panel B, one
can see that our nonparametric test can reveal 12 extra causal relations at various lags between stock
prices and trading volumes besides those revealed by the linear causality test, strong evidence in favor
of the nonlinear dependence between the two variables. One obvious reason for the failure of the linear
Granger causality test in detecting such causal links is that trading volumes may only have nonlinear
predictive power for stock returns.

7.3 Application 3: stock prices and exchange rates

A number of hypotheses support the existence of a causal relation between stock prices and exchange
rates. The goods market approach [e.g., Aggarwal (1981)] suggests that changes in exchange rates
affect the competitiveness of a multinational firm directly (and that of the domestic firms indirectly),
which in turn influence the firm’s earnings or its cost of funds and hence its stock prices. The portfolio
balance approach [e.g., Kang and Stulz (1997)] stresses the role of capital account transaction. Like all
commodities, exchange rates are determined by market mechanisms, i.e., the market demand and supply
conditions. A growing domestic stock market would attract capital flows from foreign investors, which
may cause an increase in the demand for a country’s currency. As a result, rising (declining) stock prices
would lead to an appreciation (depreciation) in domestic currency.

Although such theories suggest causal relations between stock prices and exchange rates, existing
evidence indicates a weak link between them on a micro level. On a macro level, however, the evidence is
mixed. Ma and Kao (1990) find that a currency appreciation negatively affects the domestic stock market
for an export-dominant country and positively affects the domestic stock market for an import-dominant
country, which seems to be consistent with the goods market theory. Ajayi and Mougoue (1996) find
evidence in favor of a dynamic effect of stock prices on exchange rates for eight industrialized countries
and Kanas (2002) finds stock return volatility is a significant determinant of exchange rate volatility for
the US, the UK and Japan, both lending support to the portfolio balance approach.

Here, we reinvestigate the dynamic linkage between stock prices and exchange rates using daily data
for six industrialized countries, namely, Canada, France, Germany, Italy, Japan and the UK. The data
are obtained from Datastream with the sample period from December 18th, 1992 to December 17th, 2002
with 2608 observations total. The exchange rates are the local currency against the US dollar. The stock
market indices consist of the principal market index for each country, namely, S&P/TSX Composite for
Canada, CAC 40 for France, DAX 100 for Germany, BCI Global for Italy, Nikkei 225 for Japan, and
FTSE 100 for the UK. Nevertheless, due to national holidays or certain other reasons, some observations
for stock prices and exchange rates in Datastream are missing but entered with the realizations from
previous trading days. We delete these, and this results in varying number of observations for each
country, ranging from 2361 for Japan to 2423 for Canada. As before, we let S; and FE; stand for the
natural logarithms of stock prices and exchange rates multiplied by 100, respectively; and both Granger
causality tests will be conducted on the first differenced data, AS; and AE; .

The test results for linear Granger causality between stock prices and exchange rates are given in
Panel A of Table 7. To summarize the results, we focus on the case of 5% significance level only. First
of all, linear causal links between stock prices and exchange rates are revealed in all countries but the
UK. In Japan, it is unidirectional from exchange rate to stock price whereas in other countries, it is
bidirectional. Secondly, the magnitudes of the F-statistics show that the causal effect from exchange
rates to stock prices is much greater than that from stock prices to exchange rates in all countries but
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Canada. Thirdly, when exchange rate causes stock price, it is only a one day effect in all countries but
Canada. In comparison, when stock price causes exchange rate, its effect lasts for at least three days in
most cases. In short, the linear Granger causality test results indicate that significant causal relations
between exchange rates and stock prices exist although there does not exist a universal causal direction.

The nonlinear Granger causality test results are reported in Panel B of Table 7. They suggests that
a bidirectional causal relation between exchange rate and stock price exists for all countries but the UK.
In the UK, the stock price Granger causes the exchange rate but not the other way around. To compare
with the results in Panel A of Table 7, we can find that our nonparametric test complements the linear
causality test. There are 17 causal links that are revealed by the nonparametric test only and another 5
revealed by the linear Granger causality test only. The comparison reveals that in modeling the dynamics
of exchange rate (resp. stock price) in Canada, France, Germany and Italy, both linear and nonlinear
terms for stock price (resp. exchange rate) should appear.

In short, our empirical results show the causal structure is more complex than that implied by either
the goods market approach or the portfolio approach alone. A variety of mechanisms are at work. On the
one hand, the stock market consistently Granger causes the foreign exchange market in all six countries,
which indicates that the focus should be on stabilizing the stock market by means of domestic policy
measures. On the other hand, the exchange market has unambiguous impact on the stock market in
all countries but the UK, so that the policy-makers in these countries should well be cautious in their
implementation of exchange rate policies, since they have significant ramifications for the stock markets.

7.4 Application 4: money, income, and prices

There has been a long debate in macroeconomics regarding the role of money in an economy particularly
in the determination of income and prices. Monetarists claim that money plays an active role and leads
to changes in income and prices. In other words, changes in income and prices in an economy are
mainly caused by changes in money stocks. Hence, the direction of causation runs from money to income
and prices without any feedback, i.e., unidirectional causation. Keynesians, on the other hand, argue
that money does not play an active role in changing income and prices. In fact, changes in income cause
changes in money stocks via demand for money implying that the direction of causation runs from income
to money without any feedback. Similarly, changes in prices are mainly caused by structural factors.

The empirical race took an interesting turn with the famous tests of Sims (1972). Specifically, he
developed a test for linear Granger causality and applied it to the U.S. data to examine the causal
relationship between money and income, finding the evidence of unidirectional causality from money to
income as claimed by the Monetarists. However, his results were not supported by subsequent studies,
which indicates that the empirical evidence regarding causal relations between money and the other two
variables, income and price, remain inconclusive. Here we re-examine the Granger causal relationships
using a longer horizon of U.S. data.

Seasonally adjusted monthly data for monetary aggregates M1 and M2, disposable personal income
(DPI), real disposable personal income (RDPI), industrial output (IP), consumer price index (CPI) and
producer price index (PPI) are obtained from the Federal Reserve Bank of St. Louis with a sample period
from January, 1959 to June, 2003. The total number of observations is 534. As in Friedman and Kuttner
(1992, 1993), Swanson (1998), and Black et al. (2000), the analysis below uses log-differences of all
the series. Dickey-Fuller tests suggest that the transformed series are stationary. Johansen cointegration
tests indicate there are three cointegrating pairs, namely, M1 and DPI, M1 and RDPI, and M2 and DPI
for the log level data.
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Panel A of Table 8 reports the linear Granger causality test results. Two results stand out. First,
there is strong evidence of unidirectional causality from the three income variables, DPI, RDPI and IP,
to money if M1 is employed as the monetary aggregate. When M2 is employed, however, there is weak
evidence of the feedback from money to income. Second, the causal links between money and prices are
weak. In particular, if M1 is used, the left part of panel A indicates there is no linkage between the two
variables at all. In sum, the linear test lends more support to the Keynesian camp than to the Monetarist
camp.

Panel B of Table 8 reports the nonparametric Granger causality test results. They show strong
evidence of bidirectional causality between money and income, and between money and prices when
M1 is employed. When M2 is used instead, some causal links vanish but others survive. We thus
conclude that monetary aggregates still provide predictive information for income and prices, which is
largely consistent with the findings of Swanson (1998) who uses a rolling window approach to study the
predictive power of monetary aggregates on output.

8 Concluding Remarks

We construct a class of empirical-likelihood-based tests for the null of conditional independence and
extend the applicability of empirical likelihood from testing a finite number of moment or conditional
moment restrictions to testing an infinite collection of conditional moment restrictions. Writing the
null hypothesis in terms of conditional-distribution-based moment restrictions and employing the idea
of “smoothed” empirical likelihood, we construct an intuitively appealing test statistic and show that it
is asymptotically normal under the null. We also derive its asymptotic distribution under a sequence
of local alternatives. Although this test statistic has intuitive appeal, it delivers poor power in small
samples because of the discrete nature of the indicator functions used in forming the sample analogue of
the moment restrictions. Thus we build on Su and White (2003) and consider a class of smoother moment
conditions to construct a new empirical-likelihood-based test. We show that in large samples both tests
are weakly optimal in that they attain maximum average local power with respect to different spaces of
functions for the local alternatives. Simulations suggest that the smoother-moment-conditions-based test
outperforms all previous tests in small samples. We apply this latter test to some economic and financial
time series and find that the test reveals some interesting nonlinear Granger causal relations that the
traditional linear Granger causality test fails to detect.
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Appendix

A Some Useful Definitions, Lemmas and Theorems

In this appendix, we introduce some useful definitions, lemmas and some theorems which are used in the
proofs of the main theorems and propositions in the text.

Definition A.1 Let {U;, t > 0} be a d—dimensional strictly stationary stochastic process, and let F!
denote the sigma algebra generated by (Us, ...,U;) for s <t. The process is called f—mizing or absolutely
reqular, if as m — oo,

= supE P(A|F ) —P(A
B = sup AES;lim{l (AlF2) = P(A)[}

The following Lemma is due to Yoshihara (1976); see also Li (1999).

Lemma A.2 Let {U, t > 0} be a d—dimensional stochastic process satisfying Assumption A.1(i) in
the text. Let h(vi,...,vx) be a Borel measurable function on R*® such that for some § > 0 and given j,
M = max { [gra |2 (v1, ... vk)|1+5dF(v1,.. ’uk S Jgra |01, oy o) FHAF D (vy, o 0)dF P (v)41, 0 vk) }
exists. Then Ude h(vi, .oy vi)dF (v1, .y v) — [ Jara B( vl,...,vk)dF(l)(vl,...,vj)dF(z)(ij,...,vk)} <
AMY (A48 g/ AF8) yhere m = ij1—iy, F, F(l) and F?) are distributions of random vectors (Uy, , ..., Uy, ),
Vi = Uiy, ..., Usy) and Vo = Uy, .., Usy), respectively; and iy < iz < ... < iy.

The next lemma is due to Yoshihara (1989).

Lemma A.3 Let h be defined as above; then E|E[h(Vi, Va)|[Vi] — Evs h(Vi, Va)| < AMV/(14+8) g8/ (140)
where Ev,h(V1,Va) = H(V1) with H(vy) = Elh(vy, V3)].

Now, let h,(-,-), n = 1,2, ..., be Borel measurable functions on R? x R%. Suppose E[h,,(Upv)] = 0
and Ay, (u,v) = hy(v,u) for all (u,v) € R? x R Define H,, = n~ Zl<z<]<n[h”(U“ U;) — Eh,(U;, Uj)],
a degenerate U —statistic of order 2. Let p > 0 and let {Uy, t > 0} be an i.i.d. sequence where Uy is an
independent copy of Uy. Further, define

wnlp) = max{ wax | (U3, U0) ||hn<Uo,ﬁo>||p} ,
1<i<n

o) = mae g |G U Ul 11Gon . T

wn(p) = ||Gno(Uo, Uo)||ps _
zo(p) = max max {||Gn;(Us, Uo)llp, [1Gnj(Uo, Ui)llps 1|Gnj(Uo, Uo)llp}

0<i<n 1<5<n
where Gy (u,v) = Elhy(U;, w)hn(Uo,v)], and || - ||, = {E| - |p}1/7’.

Theorem A.4 (Tenreiro 1997). Given the above notation, suppose there exists 6o > 0, vy < 1/2,
and vy, > 0 such that (i) u,(4 + 60) = O(n0); (i1) va(2) = o(1); (iii) wnu(2 + 80/2) = o(n'/?); (iv)
2, (2)n™ = O(1); and (v) Elhy,(Uo, Up))? = 26% + o(1). Then H,, < N(0,5%).

Lemma A.5 Under Assumptions A1-A2,

(i) sup sup |Fy,(rle,z) = F(rla,2)| = Op(p, ),
TER (z,2)€S

(ii) sup sup | Fy, (7|2) = F(7]2)| = Op(tiz,,),
TER €S,

where Sy = SNARY, g, = n~ V207 D2/ + 12 and poy, = n=2hy /> Inn + b,
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Proof. The proof is a modification of the proof of Lemma B.3 in Newey (1994). m

Remark. For part (i) of the above lemma, Boente and Fraiman (1991) prove a slightly different result:
sup sup ‘ﬁhl (7|, 2) — F(T|$,Z)) = O, <7f1/2izl_(‘7l1+d?'+€)/2(lnn)2 + h%) , where € is an arbitrarily
TER (z,2)€S
small positive number. The above lemma continues to hold if we replace the compact set S by its

e-extension: S¢ = {u € R+ ¢ ||y — v|| < € for some v € S}.

Lemma A.6 Under Assumptions A1-A2 and Hy,

(i) sup sup |I; >0 wesgs(T)] = Op (11y,)
TR 1<t<n

(it) sup sup |L[V(Xy, Zo;7) = V(Xy, Zoi7) ’— (H1n) 5
TE€R 1<t<n

where i, = n_l/th(d1+d3)/2\/ln n.

Proof. Denote K;s = Ky, (X — X, Z¢ — Zs), Ky y,s = Kn, (x — Xs,2 — Zs), Lts = Lp, (Xt — Xs),

Lys= = L, (x — X5), f1e = [(X¢, Z4), J/C\lt = ﬁzl(Xth) and f/;t = J};m (Xt).
(i) Under Hy, write sup sup |t Y 0 wisgs(7)] < sup sup |t Y o wis [1(Ys < 7) — F(7|Xs, Zs)]|
TER 1<t<n TER 1<t<n
+ sup sup |y >0 wis [ (11Xs) — ﬁh2(T|X5)” = A1, + Asy,. By Newey (1994, Lemma B.1), sup
T7ER 1<t<n 1<t<n
I, ‘fu - Efu) = O, (u,) and sug 1s<u;<> In =M, >0 Ky [L(Ys < 7) — F(7|X,, Z,)]| = Op (1,,) - There-
TE t<n

fore, A1, = O, (1,,) by Tripathi and Kitamura (2002, Lemma C.4). Noting that Y ., ws = 1, Ag,, <

sup sup | Fi, (7]z) — F(T|l‘)) = Op(g,) = 0p (14,,) by Assumption A.2(iii). The desired result follows.

TER €S
~ ~ —~ 2
(ii) Recall that V(Xy, Zii7) = Ji'n ' S, Ko [1(Y5 <7)-F, (7‘|Xs):| . So under Hy, by the
triangle inequality, we have

sup sup It[\A/(Xt,Zt;T) - V(Xt,Zt;T)]‘
TER 1<t<n
< sup sup Itfl_tlnfl ZKts[l(Ys <7) = F(1| X4, Z))? =V (X, Zi; 7)
TER 1<t<n o
+sup sup |20 f5 0" ZKts (Y < 7) — F(7| X, Z5)] [F(T|Xs) — B, (T|XS)}
T7€R 1<t<n
~ ~ 2
+ sup sup Itfftln—lths [F(rIX0)| = P (71X,)] '
T7ER 1<t<n o—1
= gl,n + 52,11 + 53,11'
First,
€, < sup sup |fl 1ZK<I 0.s[L(Ys £ 7) = F(7]X,, Z,)] = V(w, 2;7)]
TER (z,2)€S
< sup sup /K u,0)[Uy < 7) = F(rlz, 2)]*f(y; 2, 2)/ f (2, 2)dydudv (1 + Op (11,,,)) = V (2, 2;7)
TER (z,2)€S
= O;D (,ul,n) )
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where 1, ,, is defined in Lemma A.5. Now, for large enough n, take € = hy. Since K has compact support
on [-1,1]%1%4 by Assumption A2(i), we have, by Assumption A2(iii),

52 n S 2S1lp sup
TER z€S§

F(r|z) = Fiu (rl2)| = Op (12.0) = 0 (1,); and

53 n S Sup sup

Firle) = B ()| = Oy (12.)") = 0p (11,
~€R 1656 2 p N p m)

where S§ = 5S¢ NR% and p,,, is defined in Lemma A.5. This completes the proof. m

B Proof Theorem 3.1

In this appendix, C'is a generic constant which may vary from case to case. Denote W; = (X}, Y, 2),
flt = f(Xtazt)7 flt = fhl(Xtazt)7 f2t = f(Xt)7 f2t = fhz(Xt)a K = Khl(Xt - X37Zt - ZS)7 Lis =
Lh2 (Xt - Xs); K(;c,z),t = Kh1 (x - Xt,Z - Zt); Lw,t = th (x - Xt)v and Tn(Wt;x;_ZvT) = K(w,z),t[l(Y; <
7) — F(7|X4, Z)]. The bar notation denotes an i.i.d. process. For example, {W,, ¢ > 0} is an 4.i.d.
sequence having the same marginal distributions as {W;, t > 0}. See Lemma B.3 for details.

Lemma B.1 Let Assumptions A1 — A3 hold. Then, under Hy,
ISELR,, = B\n + ﬁn + Op(hl—(dl-i-ds)/Z)7

where Bn = ;L:I Iths lwtsgs( )sz(T)7 (J/fld ﬁn = t IIt Zs 1 Jj= 1J;£sfwtsgs )thEJ(T)dG(T)

Proof. From (2.5), we have

N Wisls( MGs(T) | [Negs(r)/n)?
0 = antgs Z“’“’gs { 7 +1+)\t§5(7)/n}
7”1t( )

= EZwts/g\s(T) —ﬁ‘?(Xt,Zta T) A +

where ,
= wts/g\s(T)[)\t/g\S(T)]
ri(7) = — .
14(7) ; n+ A\ gs(T)
Consequently (recall Ay = A\¢(7)),
I V(Xt, Zs;T) =nl; Zwtsgs + Iy r14(7). (B.1)

Eq. (2.5) also implies

s )\ s )
Z IZtJr )t\fgs (1) Z wesg (7

s=1
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Hence, as n + A\:gs(7) > 0 (because prs > 0, wys > 0 and Drs = wis/[n + Aegs(7))]),

- Wes[AeGs (T 2
3 [Aegs(7)]

su max |71¢\T < su max q. T)| su max —
p max (7)) < sup max [§,(7)] sup )

reR 1<t<n 7eR 1<s<n reR 1<t<n

s=

n
Z wtsﬁs (7—))\1&
s=1

= sup max |gs(7)] ilelg max,

reR 1<s<n
n
< C > wisgs (7))
< Coup o, )] sup e, )

Thus by Lemma A.6 (i),

1 —
Sup. max ¢l ()] OP(“H)TEIE 1?%Xn|)\t(7—) |

and

~

I V(Xe, Zi; T)M(T) = Op(nay) + Op(py) | Ae (7))

Consequently,

_ _ 2
Sup ggggnfm(f) = Op(np,,) and Sup g%}dm(ﬂl = Op(npy,)-

Now by a second order Taylor expansion, with probability approaching 1 as n — oo (w.p.a.1), we can

write . <1+ @ > . { A@;(T) 1 [A@;(T)r +ﬁts(7)}7 (B.2)

2

where the remainder term |17, (7)| < C [IAgs(7)/n|* = Op(12) uniformly in ¢, s and 7 because sup, cp
maxi<s,t<n |Ags(7)/n| <1 for large enough n.
Using (2.7), (B.1), and (B.2), a little algebra shows that w.p.a.l,

n

ISELR, = Y I / PAACGRUEGED I DI / wesGs (T)wi; g (T)dG(T)
t=1 s=1

t=1 s=1j=1,j#s

—ny " / L (1)dG(T) +2) I / > iV (Xe, Zis 1), (7)dG (7).
t=1 t=1 s=1

Noting that n=2 Y"1 | [ Lir?,(7)dG(T) < nsup,cp maxi<si<n [7"1,5(7)/71]2 =0y (npy) = op(hl_(d1+d3)/2),
nd S, o S50y 0 (X1, 24 77 (F)AGT) < 150D, s o [VCXe, s 7)) = Oyl =

op(hl_(lerda)/ %) by Assumption A2(iii), the conclusion of the lemma follows. m

Lemma B.2 Let Assumptions A1 — A3 hold. Then h§d1+d3)/2f€" 4, N(0,0?) under Hy.

Proof. Under Hy, write

Bo=n?3 LF2Y Y / Ky K135 (1)3; (1)dG(r) = Ry + Ruo + 2R3, (B3)
t=1

s=1j=1,j#s

where

n n

Roi=n2Y"LY Y i / ro(We; Xo, Zy, 7)rn(Wy; Xy, Z4, 7)dG(T),

t=1 s=1j=1,j#s
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Rua=n~ ZItZ > FiKuKy [IP(1X0) = Buu(riX)] [F(71X) = B (1) dG(r), and

= s=1j=1,j#s
Rys=n" thZ > T, [ <) = Frix)) [Fe16) = BiarlX)] d6(r).
t=1 s=1j=1,j#s
It suffices to show
WO R, L N(0,0%), (B.4)
h§d1+d3)/23n72 = 0p(1), and (B.5)
P\t R o= 0, (1). (B.6)

Let

_12 Z // Pl (@, 2)rn(Wes 2, 2, 7)rn(Wes ., 2, 7)dF (2, 2)dG(T). (B.7)

s=11t=1,t#s

By Lemma B.3, hgdﬁd:ﬂ /an,l = hgd1+d3)/2§n71 +0,(1); and by Lemma B.4, hgd1+d3)/2§n71 4, N(0,02).
Thus (B.4) follows. Next, write

Ryo = i:lt/{zwts [Fh2(T|X 7'|X } dG(r

s=1
2

,thzwt;,/ {th (7| Xs) — F(7|Xs } G(7)

= Rn,2 R n- (BS)

Let € = hy and IS = 1{(X,, Z) € 5. Since Y20, [ I [ Fra (7] X,) —F(7'|Xs)r dG(r) = O,(hy™)
(see Tenreiro (1997) and Su and White (2003) in a similar context), we have, w.p.a.l, h§d1+d3)/2§n <
O~ thy (BHd)/2 s e [th (7| Xs) — (T|XS)]2dG(T) -0, (n—lhﬁdl*d”/zh;dl) = 0,(1) by As-
sumption A2(iii). By Lemma B.6, h1d1+d3)/2]§n,2 = 0,(1). So (B.5) holds. Finally, (B.6) holds by Lemma
B.7. The proof is complete. m

Lemma B.3 Let Assumptions A1— A3 hold. Then h{"***? R, = B{" /2R, | +0,(1), where R,
and R,1 are defined by (B.83) and (B.7), respectively.

Proof. Let F(z,z) denote the empirical distribution function of the random sample {X;, A
Then we can write

h(d1+d3)/2 {Rn 1 En 1}

h(d1+d3 /2 —12 Z //rn W@, 2, T)rn(Wy; , 2 T)fh (x,2)dG(T)d [ (z,2) — F(x,z)}

s=1t=1,t#s

= zn,l + £n,2 + An,?n

where ﬁ’ﬂ,l = h§d1+d3)/2n*2 Zj#t,j;és,t;és { ijTn(Ws; va ijT)Tn(Wt;va Zj77)ﬁ:12(va ZJ)dG(T)
_fS fT.,L(WS;CL‘,Z,T)’I“.,L(Wt;]),Z,T)fh_lz(l‘,Z)dG(T)dF(]},Z)}
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is the summation of the centered terms with j # s, j # ¢, and t # s;
Ao =20\ Hd)/ 2 -2~ ito [ Lera(Wes X, Zoy 7)rn (W Xo, Zs, ) 2 (X, Zs)dG(7)
is the summatlon of the terms for j = s or j =t¢; and
An,g = h(dﬁd:5 12p-2 O Lists fsfrn W@, 2, T)rn(Wys , 2 T)fh (7,2)dG(7)dF (z, 2)
is the summation of the centering terms for A.,L72
Dispensing with the simplest term first, we have *Kn,g =2n1 {h§d1+da)/21§§i)l} =n"10,(1) = 0p(1)
by Lemma B.4. It is difficult to show that the other two terms are Emall. Our strategy is to use Lemmas
A.2—A 3 repeatedly and show asymptotically negligibility in that A,, ; = o,(1), for i = 1 and 2.
Wiite A, = 20T 20250 [ L (W X, Zay )1 (W X, Z, 7) %X, Z5)dG(r){1 +
1)} = An2{1+0p(1)}; so it suffices to show A, 2 = 0,(1). For s # t, by Assumptions Al(u) (iii), one

can show that uniformly (recall that the bar notation means i.i.d. sequence and E[r,,(Wy; X5, Zs, 7)| X5, Zs] =

0)
E [/IsTn(Ws;stZ377—)T7L(Wt;X37Zs)f2(X37Zs)dG(7—):| = O(hl_(dl+d3))v and (B.Q)

B { / Lo (W o X o Zo 7 )in (W Xos Z2) f‘z(YS,Z)dG(T)] _o. (B.10)

To bound D,, = E(A,2), let m = [Blogn] (the integer part of Blogn), where B is a large positive
constant so that n3%/ 179 = 5(1) for some § > 0 by Assumption A.1(i).3! We consider two different
cases for D,, : (a) |s —t| > m and (b) |s — t| < m. We use D,, , and D, ; to denote these two cases. For
case (a), we use Lemma A.2 to obtain

Dya = 20202 B ([ L (W X, Z, (Wi X, Z6) f72( X, Z5)dG(7)]

< Cn-2p@ta)/2 [ (h;(d1+d3))(1+2§)/(1+§) ﬁi{m&)}

) (hl—Z(dl-i-da)ﬂ%(l-i-é)) —0 (nﬁ%(ué)) = o).
For case (b),
Dn,b = thd1+d3)/2n,2 Z|s—t|§m E [f Isrn(Ws; X, Zs, T)Tn(Wt; X, Zs)fi2 (XS7 Zs)dG(T)]
< Chgfh+d3)/2n—2nmh;(d1+da) -0 (n_lhIQ(lerd?’)) 0 (mh?(d1+d3)/2) _ 0(1)'
In consequence, F(A, 2) = o(1). Next, we want to show
En = E(An 2)2
= h(d1+d3 - Z Z E{//Itlr" Wt17Xt17Zt17 )rn(Wtzath? Ztl’ )fiz(XtUZtl)
t1F#to t3F£ty
XItS’F" (VV,g3 ; Xt3, Ztg, T )T7L(Wt4 ; th, Ztg, T/)f—Z(th y Ztg)dG(’T)dG(Tl)}
= o(l).

We consider two cases: (a) for each i € {1,2,3,4},|t; —t;| > m for all j # i; and (b) all the other
remaining cases. We will use E, s to denote these cases (s = a,b). Using Lemma A.2 three times (e.g.,
the first time is to separate (t1,ts)-indexed random variables from (t3,t4)-indexed random variables),

31For example, for fixed § > 0, if p < 1/2.71828 in Assumption A.1(i), B = 5(1 + §)/8 would suffice.
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(B.10), Assumptions A1(ii)-(iii), and A3, we have:

E"ha < hgdl+d3)n74 Z Z E{/Itlrn(Wh;Yh771517T)rn(Wt2;Yt177t17T)fz(ytlvitl)dG(T)}
t17#to taFty

xE {/It3rn(Wt3;7t377t3vTI)TTL(W%;Y%:?%?Tl)f_2(7t377t3)dG(7J)}
_ (2+46)/(1+6) B (1+26)/(1+0) 2
+Chgd1+d3) (h1 (d1+d3)) ﬂfr{(1+§) n Ch§d1+d3) {(hl (d1+d3)) ﬁi{(vré)}

- % (hl—S(dl-&-dg)ﬁé/(l-i-é)) —0 (nzﬁfy{(l-&-&)) — o(1).

m

For all the other remaining cases, there exists at least one ¢ € {1,2,3,4}, such that [t; —t;| < m for
some j # 4. The number of such terms is of the order O(n®m). For t; # t, and t3 # t4, one can bound
E| f f Itlrn(th ; Xh ) Ztl ’ T)Tn(Wtz ; th ) Zt1 ’ T)f_z(th ) Ztl)It:irn(WtS; Xt3 ) Zts? 7—,) Tn(Wm ; th? Zts? T,)
X (X4, Z4,)AG(T)dG ()| by Chy 2P F%) 3¢ (11 1o} N {ts, 4} # {t1,t2} and by Chy > 7%) otherwise.
Consequently, E, , < Chi®+43),—4 (n3mh1_2(d1+d3) + n2h1—3(d1+d3)) =0 (n’lmhf(lerda) + n’th_z(lerdB))

=o(1). In sum, E(A,2)? = o(1), and by the Chebyshev inequality, we have A, » = 0p(1).
Now, we want to show A, 1 = 0,(1). Write

Apy = BOFRpm2 N7 {/Ijrn(Ws;Xj,Zj,r)rn(wt;Xj,Zj,r)f—2(Xj,Zj)dG(r)
—//Tn(Ws;.TL‘,Z,T)Tn(Wt;]},Z,T)fiz(l’,Z)dG(T)dF(JI,Z)}{l+0p(1)}
S
= A, i{l+0,(1)},

and decompose A,, ; as
e / Lira(Wa; X5, Ziy 7)rn(Was X5, Zi, 7)) 23X, Z)dG(T)
J#L,jFs t#s
B [ / Imws;xj,Zmrn(Wt;Xj,Zm))f-?(Xj,Zj>dG<T>|Ws,Wt} )
A e SR 0 [ / Ijrnwvs;xj,Zj,ﬂrn(Wt;Xj,Zm))f2<Xj,zj>dG<T>|Ws,Wt]
J#t,jF# s, t#s
- / / ru(Wes 2,2, 7Y (Wes 2, 2, 7)) £~ (2, 2)dF (2, 2)dG(r)}

1 2
= Al +ATL

)
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It suffices to show each term in the last expression is 0,(1). By the triangle inequality, Lemma A.3,
Assumptions A1(ii)-(iii) and A3,

2
E)A;j
< h§d1+d3)/2n_2 Z E|E |:/ Ijrn(Ws;XjaZj7T)rn(Wt;Xj7ZjaT)f_2(Xj7Zj)dG(T”WS?Wt
j#t)j#sﬂf#é’
—/ /rn(Ws;x,z,T)rn(Wt;x,z,T) dG(T)fo(x,z)dF(ac,zN
S
<

Oh§d1+dg)/2n—2 <n3 <h1—(d1+da)>2§/(1+6) /o) 4 n2m>

- o (nh;3(d1+d3)/2ﬁ%(1+5) + mhgd1+d3)/2) = o(1),
implying AS? )1 = 0p(1) by the Markov inequality. Let >, , denote > ., ., ., Further, denote
Sstj = /Ijrn(WS;Xj,Zj,T)rn(Wt;Xj,Zj,T)f*Q(Xj,Zj)dG(T)

-E [/ Lirn(Ws; X5, Zi, 1) (Wes X5, Zi, 1) f2(X5, Z7)dG(T)|[ W, Wi |

Then AL} = p{" 7%/ 2n=25" S, with B(AY)

n,l

) = 0 because E(Ss;+ ;) = 0 by the law of iterated
expectation. We shall show

2
Fn =F (Agzl,)l) = hgdl+d3)n_4 Z Z E{Stl,tz,t35t4,t5,te} = 0(1)

t1#ta,ts taFts,te

We consider four different cases: (a) for each ¢ € {1,2,3,4,5,6}, |t; — t;| > m for all j # i; (b) for
exactly four different 4’s, |t; — t;| > m for all j # 4; (c¢) for exactly three different i's, |t; — t;| > m
for all j # i;(d) all the other remaining cases. We will use F), s to denote these cases (s = a,b,¢,d).
For each case, one can use Lemma A.2 to show F), ; = o(1). For example, for case (a), noticing that
E(Stlth,tg) = E(Sm,tg,,t()-) = 0, we have

468/(1+96)
|El,a| < Chgd1+d3)n_4n6 (h;(d1+d3))

= o <n2hf3(d1+da)ﬁf,{(l+5)> —0 (n4ﬂf,{(1+§)> — o(1).

30/0+9)

For case (d), the number of terms in the summation is of order O(n*m?), and each term can be bounded
by C’hl_l(dﬁd:‘) for some finite positive constant C' if there are at least (6 —¢ ) distinct elements in {¢1,
tz, t37 t47 t5, tﬁ}, where 1 = 2, 3 and 4. So

Fn,d

h§d1+d3)n740 (n3m3h;2(d1+d3) + n3h1*3(d1+d3) + n2h;4(dl+d3))

- 0 (n—lmSh;(lerds) +n_1h;2(d1+d3) +n_zh;3(d1+d3))

= o(1) by Assumption A2(iii).

In sum, F,, = o(1) and thus AS)I = 0p(1) by the Chebyshev inequality. The conclusion thus follows. m
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Lemma B.4 Let Assumptions Al — A3 hold. Then hgdﬁds)/zﬁn,l 4 N(0,0?%), where Eml 18 defined by

(B.7).
Proof.
h(d1+da)/2ﬁ3n
= d1+d3)/2 —12 Z // ra(Wss, 2, T)rn (Wi 2, 2, 7) f 2 (0, 2)dF (2, 2)dG (1) {1 + 0,(1)}
s=11t=1,t#s
= 20" D {H (W, W) — E[H,(We, W)} + 207" Y E[H, (W, W)] ¢ {1+ 0,(1)}
1<s<t<n 1<s<t<n
= {Sn1+ Sn2t {1 +0,(1)},
where

HH(W&Wt):hgdﬂrds)/?//r(Ws;x,z,r)r(Wt;x,z,T)ffz(:c,Z)dF(%Z)dG(T)-
s

We now verify the conditions in Theorem A.4 hold for S, 1 with h,(u,v) in the theorem replaced by
H, (u,v). First, by construction, H,(w,v) = H,(v,w), and EH,(Wy,v) =0

E|H, (W, W) |p
hY d1+da)/2// //Kh1 — w2 —2)[L(ye < 7) — F(T|2t, 20)| K, (7 — Xo, 2 — Z)
x[1(Yo < 7) — F(r|Xo, Zo)lf 2 (2, 2)dF (z, 2)dG (7) P for (wo, wy)dwoduw,
< C’hp(dﬁd3 /2h (da-+ds)(p—1) /Rd » | K (u1) K (u1 4 ug) [Pduydus
1 3

Rd1+d3

0 (h§d1+ 4)(1-2/2) ) by Assumptions A1(ii)-(iii), A2(i) and A3,

so we have ||H, (W, Wo)||, < C(h{**T%))(1/p=1/2) Let W, be an independent copy of Wy; one can show
by similar argument that ||H, (Wo, Wo)||, < C(h{**t%)(1/P=1/2) Consequently, one obtains u,(p) <
C(R§r+)(1/P=1/2) for some C' > 0.

Now we show v, (p) < C(h$17%)1/P By Assumptions A1(ii)-(iii), A2(i) and A3, we have

GnO(wt7 ’u)())
E[Hn(WO, wt)Hn(W()v "UJ())]

= wrep( [ f / [ Wosa 2oy w2, Wi 7w 2.7
XdF(z,z)dF(2',2")dG(1)dG(T )}

< / / / K(u+u)K@ K@+ + (wy — wo) /ha)dududii
Rd1+d3 Rd1+d3 Rd1+dg

< 0 K =) )

50 ||Gno(Wi, Wo)||, < C(h§* )1/, Similarly, one can show ||Gyo(Wo, Wo)||, < C(R$T)1/P and thus
v, (p) < C(h$T43)1/P. By the same argument, we have: wy(p) = [|Gro(Wo, Wo)l|, < C and z,(p) <
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C(h{**%). For some fixed 8y > 0, take v, = (2+60)(d1 +d3)/ [(8 + 260)81] < (2+80)/(8+260) € (0,1/2)
and v, € (0, v,] . Then it is easy to see that Conditions (i)- (iv) of Theorem A.4 are satisfied. Finally,
B[H,(Wo, Wo)?]
= hclll"'daE{/// / rn(Wosz, 2, T)rn(Wos 2.2, 7)1 (Wos 2/, 2/, 7 )rn (W 2, 2/, 77)
XdF (z,2)dF(x', 2 )dG(T)dG(T")}
= dﬁd%)///V? x,z;7,7)d(x, 2)dG(T)dG(T") + o(1),

where C3 and V(z,z;7,7’) are defined in the main text (Section 3.1). It follows that S, 1 <, N(0,0?),
where 02 = 2C’§d1+d3) [ [ JsV3(x, z,7,7")d(x, 2)dG(1)dG(7'). And by Lemma B.5, S, 2 = o(1). Conse-
quently, hgdﬁds)/zR,M LA N(0,0?%). m

Lemma B.5 Let Assumptions A1 — A3 hold. Then under Ho, Sno =2n"">2 o, E[H,(Ws, W;)] =
o(1).

Proof. Let m be defined as in the proof of Lemma B.3. We consider two different cases for S, : (a)
t—s>mand (b) 0 <t—s < m. We use Sy, 2, and Sy 2 to denote these two cases. For case (a),
we use Lemma A.2 and the bound u,(p) < C’(hgdﬁdf‘))l/pfl/2 with p = 1 + 6 (see Theorem A.4 for

1/(14+8)—1/2

the definition of u,(p)) to obtain S, 2, = 2n~! Y oetom BH (Wi, W) < Cn~1n? (hgdﬁda‘))
Ba+e) — (nhf(dﬁd:*)/zﬁi{(l*é)) = o(1). For case (b), using the bound u,(1) < Ch{"T4)/2 e
have Sp, 2 = n~! Zsftgm EH,(W;, W) < C'n_1nmhgdl+df‘)/2 =0 (mhgdﬁd:‘)m) = 0o(1). The proof is
complete. m
Lemma B.6 Let Assumptions Al — A3 and the null hypothesis hold. Then h(1d1+d3)/2ﬁn72 = 0p(1), where
R, 5 is defined in (B.8).

Proof. Let e;(1) = 1(Y; < 1) — F(7|X:) and Ms(7) = F(7]|X:) — F(7|Xs). We can write

h§d1+d3)/2§

n,

di1+d. _
e A > Lo Fri2 Fon Fous Ktota Koty Lyt Lyt { [0 (7) + Mige, (7))

to,t1,t2,t3,ta

X [5154 (T) + Mt4t3 (7)]}dG(7—)
= {hgdl+d3)/2n_4 Z Itofl;ffillfi;KtotlKtotsLtltthsmgtz (T)‘SM (T)dG(T)

to,t1,t2,t3,t4

+h(ld1+d3)/2n_4 Z Itofl;(?fi}f{t;}KtotlKt0t3Lt1t2Lt3t4Mt2t1 (T)Mtaxts(T)dG(T)

to,t1,t2,t3,t4

+2h (d1+da /2 4 Z /Itofltontlf2t3KtothtotaLt1t2Lt3t4Et2( )My, (7)dG(T }{1+0p D}

to,t1,t2,t3,ta

= {Gu +Gna+ Gz} {1 +o0,(1)}.

Noting that Gp1 + Gra2 + Gp3 is nonnegative, it suffices to show that F [G,;] = o(1), i =1, 2, and 3. To
1 o 1 e
show EGr,1 = E[Gn1] = o(1), we let St(o,)tl,tg,tg,t4 = B[ Lty frid faor, Faus Ktots Koty Liyty Ly, €0, (T)er, (7)
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dG(7)] and consider three different cases for EG), 1: (a) for each ¢ € {0,1,2,3,4}, |t; — t;| > m for all
J # 1; (b) for exactly three different ¢'s, |t; —¢;| > m for all j # 4; (¢) all the other remaining cases. We use
EG,, 15 to denote these cases (s = a,b,c). For case (a), noting that E(e.(7)|X¢, Z;) = 0 under the null,

_ 46/(146)
we can apply Lemma A.2 immediately to get EGy, 14 < C’hgdl+da)/2n’4n5 (hl (d1+d3)> 3o/0+9)
=o0 (nhf4(d1+d3)ﬁf,{(1+6)> =o0 <n3ﬂf,{(1+5)> = o(1). For case (b), if either ¢2 or t4 is among the three ele-
ments that lie at least at m-distance from all the other elements, one can bound the term St(ol ?t Lo ts by @S 1D

case (a). Otherwise, bound the term by C. Consequently, EG,, 1, = O <n3ﬁ6/(1+5) + h(1d1+d3)/2n*4n4m> =

m
o(1). For case (c), the total number of terms in the summation is of order O(n3m?) and one can readily
obtain

EGn,lc
h(1d1+d3)/2n740 (n3m2 + anhl—(dl-‘rdB) + n3h1—2(d1+da) + n2h1—2(d1+da)h2—d1 + nh1—2(d1+d3)h2—2d1>
= ol).

2 Lol e
Next, let St(o,)tl,t27t3,t4 =F [f Ito f1t§f2t11f2t;Ktot1KtOtSLt1t2 Lt3t4 Mt2t1 (T)Mt4t3 (’T)dG(’T)] . By Assump-
tion A1 and dominated convergence arguments, for t; # to and t3 # t4, this term is bounded by Ch3" if

{tl,tz} N {tg,t4} 7é {tl,tg} and tl 7é to 7é t3; by Chg_dl if {tl,tg} n {tg,t4} = {tl,tz} and tl 7é to 7é t3;
by Chl_(lerda)h%’" if {t1,t2} N{ts,ta} # {t1,t2} and either ¢; or ¢3 (but not both) equals ¢9. The other
cases are of smaller orders after summation. Consequently,

B [Guz] = BT 20710 (w337 + 003~ 4 ntny T R) = o(1).
Similarly, one can show that E [G,3] = o(1), and the proof is complete. m

Lemma B.7 Let Assumptions Al — A3 hold. Then, h§d1+d3)/2Rn73 = 0,(1), where R,, 3 is defined in
(B.6).

Proof. Using the notation introduced before, we can write

- h§d1+d3)/2R 7
hgdl+d3)/2n_3 Z ItlE;}E;;Kt1t2Kt1t3Lt3t4gt2 (T)[‘SM (T) + Mt4t3 (T)]dG(T)
t1,ta,t3,ta;taF#ts
dy+d — _ _
{p{THd)/2y =5 Z I f1 Forh K0, Kyt Lyt 64, (T)e, (1)dG(7)
t1,t2,t3,ta ta#l3
FRATE 2N Lo, 122 Foos Kt Kat Litgta€, (7) Mo,y (T)AG(T)} {1 + 0,(1)}

t1,to,t3,tastaFts

= {lm +Ina} {1 +0p(1)}.

Let 7}(11;2%“ (r) = It1fﬂff;ﬁ;KtthKtltBLtmEtQ (T)et, (1) and consider three different cases for EI, 1 =
E[I,1] : (a) for each i € {1,2,3,4}, |t; —t;| > m for all j # ¢; (b) for exactly two different ¢’s, |t; —t;| > m
for all j # ¢; (¢) all the other remaining cases. We use EI, 15 to denote these cases (s = a,b, c). For case

hgd1+d3)/2 _3 4 (h;(d1+d3))36/(1+6) 5%(1+5)

(a), we apply Lemma A.2 immediately to get El, 1, < C n_°n

=0 (nhfg(d1+d3)ﬁi{(l+5)) =o0 (n3ﬂf,{(1+§)) = o(1). For case (b), if either t5 or t4 is among the two
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elements that lie at least at m-distance from all the other elements, one can bound the term ﬂ(ll)t oitsts (T) @S
in case (a). Otherwise, bound the term by C. Consequently, EG1, = O (n?’ﬂ%(Hé) +h d1+d3)/2n_3n3m)

= 0(1). For case (c), the total number of terms in the summation is of order n?m? and one can readily

obtain El, 1. = h§d1+d3)/2n’30 (n2m2 + nzmhl_(lerdB) + nzhf(lerda)h:,_dl) =0(1). So EI,,1 = o(1).
Next, we want to show EI, 2 = E[I,1]* = o(1). By the Jensen inequality,

di1+d _
Elo <h{"®)p=6 %7 3 / T tots M T 04 (1) dG(T).

ty1, to,t3,tajta#ts ts te,lr,tssteF£tr

We consider three different cases for EI, o : (a) for at least five ¢'s in {1,2,3,4,6,7,8}, [t; —t;| > m
for all j # 4;(b) for exactly four different ¢'s, [t; — t;| > m for all j # z,( ) all the other remain-
ing cases. We use EI, 25 to denote these cases (s = a,b,c). For case (a), we apply Lemma A.2

_ 66/(146) _
immediately to get El, 2, < Ch{" %) p=6,8 (h1 <d1+ds>> gla+e) _ (nz S ds) 5%<1+6>>

=0 (n5ﬁ§/ 1+5)) = o(1). For case (b), the number of terms in the summation is of order O(n°m?).
If either to, t4, tg, or tg, is among the four elements that lie at least at m-distance from all the
other elements, one can bound the term Tt(11712,t37t4 (1) as in case (a). Otherwise, bound the term

by Ch_(d1+d3) Consequently, EI, o, = O <n5ﬂé/(1+5) +h d1+d3)n’6n5m3hf(dl+d3)> = o(1). For case
(c), the total number of terms in the summation is of order O(n*m?*) and one can readily obtain
El, o = h1d1+d3) 50 (n4m +ntm3hy d1+dr‘)) = 0(1). Thus I,;; = 0,(1) by the Chebyshev inequality.

Similarly, one can show that E[l,2] = O (n3ﬂf,{(1+5) + hgdﬁds)/zn%n?’mhg) = 0(1) and E[I,5)? =

(@) <n ﬂf,{(l'HS) +h d1+dr‘)n76n7mh27’> = o(1), implying I,,2 = 0,(1) by the Chebyshev inequality. The
proof is complete. m
Putting Lemmas B.1-B.7 together, we have proved Theorem 3.1 in the main text.

C Proof of Lemmas, Propositions and Corollaries

Proof of Corollary 3.2. It suffices to show that h(dﬁdr3 <Bn — Bn 1) = 0p(1) when dy +ds < 3.
Under the null,

Bn = Z?:l It 2Z§:1df W, .s/g\s )] dG( )
= 2 A 1Itf1t S K2 LY F(1|X,, Zs)]?dG(7)

-

+2n2h M S LY KR [ (LY, < 7)- <T|Xs,zs>] |[F(rIX,) = Fhu(71X,)| dG(7)
— n = n 2

2 O S LF S K2 [F (71X, = B (r1X0)] dG()

= Bn,l + Bn,2 + Bn,3-
Suppose Assumptions A1-A2 hold and d; +d3 < 3; then by Lemma A.5, one can show that h§d1+da)/2B ,

_ h;(d1+d3)/205d1+da) ffs V(x, 2,7)d(z, 2)dG(T)+O, (hff(dﬁda)/? +n—1/2h;(d1+d3)m) _ hgd1+d3)/2

B+ op(1); and By, 3 = O, (nh;(lerdB)h;dl) = 0p(1). The result then follows by the Cauchy-Schwarz
inequality. m

s S
<

Proof of Proposition 3.3. The analysis is similar to the proof of Theorem 3.1, now keeping the
additional terms in the expansion of h§d1+da)/ *ISELTR,, that were not present under the null, among
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which only one term is asymptotically non-negligible under Hi(av,) :

n n 2
RN L / {anh;<dl+d3>ms [P (| X, Zs) — F<T|Xs>]} dG(r)
t=1 s=1

Wty / N2 (X, Zy; 7)AG(r) {1 + 0,(1)}

/S/A2(x,z;7')dG(7')dF(x,z) +o0,(1),

where the second line follows from dominated convergence arguments. Consequently,
Pr(T,, > zo|Hi(an)) = 1 — (24 —6/0)). W

Proof of Corollary 3.4. This follows from Corollary 3.2 and Proposition 3.3. =

Proof of Theorem 4.1. Note that the characteristic function H is uniformly bounded on its
support, and the proof is analogous to that of Theorem 3.1. The main difference is that we need the
following results in place of Lemma A.5:

sup sup |, (z,2,7) —m(z,2;7)| = O, (n’l/Qh;(d1+d3)/2\/lnn+ h%) , and
TER (z,2)€S

sup sup |mp, (z;7) —m(z;7)| = O, (n’l/zh;dl/zvlnn + hg) )
TER z€S
The above uniform consistency results can be established in the exact same fashion as done in Lemma

A5 m
Proof of Corollary 4.2. The argument is identical to the proof of Corollary 3.2. m

Proof of Proposition 5.1. To find a*, fix m € R arbitrarily and consider solving the following
variational problem over all piecewise smooth, bounded, square integrable functions from S — R :

min F,(m) s.t. / a*(x, 2)d(z,2) = 1. (C.1)
a 5

For any (20, z0) € S, let F,(m|y(zo, 20)) be the conditional cdf of M (a, A) given ¥ (o, 20). Let fa(m|v(zo, 20))

denote the conditional p.d.f. corresponding to Fy(m|y(zo,20)). It is clear that F,(m) = Ey(aq,2) [ Fa(m]

Y(wo, 20))], where the symbol Ey 4, .,) indicates that the expectation is over ¢ (zo, 20). Furthermore,

OF,(m|y(z0,20) _ OE{ [ga(x, 2)¢(x, 2)*d(x, 2)|[¥(x0, 20) }

da(xg, zo) Oa(xo, 20)

= (z0, 20)* fa(m[Y (70, 20)).

This implies that

OF(m)

alro z0) Eoy(wo,20) [¥(@0, 20)? fa(m|t(x0, 20))] for all (zg, 20) € S.

Thus the Euler-Lagrange equation for the variational problem (C.1) is

By (wo,20) [1(20, 20)° fa(m|¥) (w0, 20))] = 2Aa* (w0, 20) for all (zg, 20) € S, (C.2)

where A is the Lagrange multiplier for the constraint in (C.1) and a* is the solution. To solve the
problem, we use a guess and verify approach. So suppose that a*(z,z)=1{(x,2) € S}||S||=*/2, which
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clearly satisfies the constraint in (C.1). As noted in the text regarding the nature of the random process 1,

the joint distribution of M(a*, A) =5 V2 (x, 2)d(xz, 2)/ {||S]| 20;}1+d3} and ¥ (xo, 29) does not depend

on (z9,20) € S. Therefore C' = Ey (4, 20) [¥(20, 20)? fa(m|(x0, 20))] does not depend on (z¢, z0) € S and
(C.2) is satisfied with a*(z, 2) = 1{(x, 2) € S}||S||~"/? and A = C||S]||*/?/2. That is, a*(z,2) = 1{(x, 2) €
S1||S||=1/? solves the variational problem. m

References

Aggarwal, R. (1981) Exchange Rates and Stock Prices: A Study of the U.S. Capital Markets under
Floating Exchange Rates, Akron Business and Economic Review 12, 7-12.

Agresti, A. (1990), Categorical Data Analysis, John Wiley, New York.

Ahn, H. (1997), Semiparametric Estimation of a Single-Index Model with Nonparametrically Gen-
erated Regressors, Econometric Theory 13, 3-31.

Ajayi, R. A. and M. Mougoue (1996), On the Dynamic Relation between Stock Prices and Exchange
Rates, Journal of Financial Research, 19, 193-207.

Andrews, D. W. K. and W. Ploberger (1994), Optimal Tests When a Nuisance Parameter Is Present
Only Under the Alternative, Econometrica 62, 1383-1414.

Baek, E., and W. Brock (1992), A General Test for Nonlinear Granger Causality: Bivariate model,
Discussion Paper, Iowa State University and University of Wisconsin, Madison.

Bierens H. J. (1982), Consistent Model Specification Test, Journal of Econometrics 20, 105-134.

Bierens, H. J. and W. Ploberger (1997) Asymptotic Theory of Integrated Conditional Moment Tests,
FEconometrica 65, 1129-1152.

Black, D. C., P. R. Corrigan, and M. R. Dowd (2000), New Dogs and Old Tricks: Do Money and
Interest Rates Still Provide Information Content for Forecasts of Output and Prices, International
Journal of Forecasting 16, 191-205.

Blum, J. R., J. Kiefer, and M. Rosenblatt (1961), Distribution Free Tests of Independence Based
on the Sample Distribution Function, Annals of Mathematical Statistics 32, 485-498.

Boning, W. B. and F. Sowell (1999), Optimality for the Integrated Conditional Moment Test, Econo-
metric Theory 15, 710-718.

Bosq, D. (1996), Nonparametric Statistics for Stochastic Processes, Springer-Verlag, New York.

Brock, W., Dechert, W. and Scheinkman, J. (1987), A Test for Independence Based on the Correla-
tion Dimension, Working Paper, University of Wisconsin, Madison.

Collomb, G. and W. Hardle (1986), Strong Uniform Convergence Rates in Robust Nonparametric
Time Series Analysis and Prediction: Kernel Regression Estimation from Dependent Observations,
Stochastic Processes and Their Applications 23, 77-89.

41



[15]

[16]

[17]

[18]

[19]

Copeland, T. (1976), A Model of Asset Trading under the Assumption of Sequential Information
Arrival, Journal of Finance 45, 379-395.

Delgado, M. (1996), Testing Serial Independence Using the Sample Distribution Function, Journal
of Time Series Analysis 17, 271-287.

DeLong, J., A. Shleifer, L. Summers, and B. Waldmann (1990), Positive Feedback Investment Strate-
gies and Destabilizing Speculation, Journal of Finance 31, 135-155.

Fan Y., and R. Gencay (1993), Hypothesis Testing Based on Modified Nonparametric Estimation of
an Affine Measure between Two Distributions, Journal of Nonparametric Statistics 2, 389-403.

Fan Y. and Q. Li (1999a), Central Limit Theorem for Degenerate U-statistics of Absolutely Regular
Processes with Applications to Model Specification Testing, Journal of Nonparametric Statistics 10,
245-271.

Fan Y. and Q. Li (1999b), Root-N-consistent Estimation of Partially Linear Time Series Models,
Journal of Nonparametric Statistics 11, 251-269.

Fernandes, M. (2000), Nonparametric Entropy-Based Tests of Independence between Stochastic
Processes, Discussion Paper, European University Instit.

Fernandes, M. and R. G. Flores (2000), Tests for Conditional Independence, Markovian Dynamics
and Noncausality, Discussion Paper, European University Instit.

Feuerverger, A. (1987), On Some ECF Procedures for Testing Independence, in Time Series and
Econometric Modelling, eds. 1. B. MacNeill and G. J. Umphrey, Boston Reidel, pp. 189-206.

Florens, J. P., and D. Fougere (1996), Noncausality in Continuous Time, Fconometrica 64, 1195-
1212.

Florens, J. P., and M. Mouchart (1982), A Note on Causality, Fconometrica 50, 583-591.

Friedman, B. M. and K. N. Kuttner (1992), Money, Income, Prices, and Interest Rates, American
FEconomic Review 82, 472-492.

Friedman, B. M. and K. N. Kuttner (1993), Another Look at the Evidence on Money-Income Causal-
ity, Journal of Econometrics 57, 189-203.

Gallant, R., P. Rossi, and G. Tauchen (1992), Stock Prices and Volume, Review of Financial Studies
5, 199-242.

Gihman, I. I. and A. V. Skorohod (1974), The Theory of Stochastic Processes. Springer-Verlag, New
York.

Gourieroux. C., and C. Tenreiro (2001), Local Power Properties of Kernel Based Goodness of Fit
Tests, Journal of Multivariate Analysis 78, 161-190.

Granger, C. W. J. (1980), Testing for Causality: A Personal Viewpoint, Journal of Economic Dy-
namics and Control 2, 329-352.

Gurtler, N. and N. Henze (2000), Goodness-of-fit Tests for the Cauchy Distribution Based on the
Empirical Characteristic Function, Annals of the Institute of Statistical Mathematics 52, 267-286.

42



[41]

[42]

[43]

[44]
[45]

[46]

[47]

[48]

[49]

[50]

Hardle, W. (1990), Applied Nonparametric Regression. Cambridge University Press. New York.

Hardle, W., and E. Mammen (1993), Comparing Nonparametric versus Parametric Regression Fits,
Annals of Statistics 21, 1926-1947.

Harel, M. and M. L. Puri (1996), Conditional U-statistics for Dependent Random Variables, Journal
of Multivariate Analysis 57, 84-100.

Hastie, T. and R. Tibshirani (1986), Generalized Additive Models, Statistical Science 1, 297-318.

Hiemstra, C., and J. D. Jones (1994), Testing for Linear and Nonlinear Granger Causality in the
Stock Price-Volume Relation, Journal of Finance 49, 1639-1664.

Hoeffding, W. (1948), A Non-parametric Test of Independence, Annals of Mathematical Statistics
58, 546-557.

Hong, Y. (2001), A Test for Volatility Spillover with Application to Exchange Rates, Journal of
Econometrics 103, 183-224.

Hong, Y. and H. White (2000), Asymptotic Distribution Theory for Nonparametric Entropy Mea-
sures of Serial Dependence, Discussion Paper, Department of Economics, Cornell University and
UCSD.

Hsieh, D. A. (1989), Testing for Nonlinear Dependence in Daily Foreign Exchange Rates. Journal
of Business 62, 339-368.

Hsieh, D. A. (1991), Chaos and Nonlinear Dynamics: Application to Financial Markets. Journal of
Finance 5, 1839-1877.

Inoue, A. (1998), A Conditional Goodness-of-fit Test for Time Series, Discussion Paper, Department
of Agricultural and Resource Economics, North Carolina State University.

Inoue, A. (2001), Testing for Distributional Change in Time Series, Econometric Theory 17, 156-187.

Kanas, A. (2002), Is Exchange Rate Volatility Influenced by Stock Return Volatility? Evidence from
the US, the UK and Japan, Applied Economics Letters 9, 501-503.

Kang, J. K. and R. M. Stulz (1997), Why is There a Home Bias? An Analysis of Foreign Portfolio
Equity Ownership in Japan, Journal of Financial Economics 46, 3-28.

Khashimov, S. A. (1992), Limiting Behavior of Generalized U-statistics of Weakly Dependent Sta-
tionary Processes, Theory of Probability and its Applications 37, 148-150.

Kitamura, Y. (2001), Asymptotic Optimality of Empirical Likelihood for Testing Moment Restric-
tions, Econometrica 69, 1661-1672.

Li, Q. (1999), Consistent Model Specification Tests for Time Series Econometric Models, Journal of
Econometrics 92, 101-147.

Liebscher, E. (1996), Strong Convergence of Sums of a—mixing Random Variables with Applications
to Density Estimation, Stochastic Process and their Applications 65, 69-80.

43



[51]

[52]

[53]

Linton, O. (2002), Edgeworth Approximations for Semiparametric Instrumental Variable Estimators
and Test Statistics, Journal of Econometrics 106, 325-368.

Linton, O. and P. Gozalo (1997), Conditional Independence Restrictions: Testing and Estimation,
Discussion Paper, Cowles Foundation for Research in Economics, Yale University.

Ma, C. K. and G. W. Kao (1990), On Exchange Rate Changes and Stock Price Reactions, Journal
of Business, Finance & Accounting 17, 441-449.

Newey, K. N. (1994), Kernel Estimation of Partial Means and a General Variance Estimator, Econo-
metric Theory 10, 233-253.

Owen, A. (1988), Empirical Likelihood Ratio Confidence Intervals for a Single Functional, Biometrika
75, 237-249.

Owen, A. (1990), Empirical Likelihood Ratio Confidence Regions, Annals of Statistics 18, 90-120.
Owen, A. (1991), Empirical Likelihood for Linear Models, Annals of Statistics 19, 1725-1747.

Pagan, A., and A. Ullah (1999), Nonparametric Econometrics. Cambridge University Press, Cam-
bridge.

Paparoditis, E. and D. N. Politis (2000), The Local Bootstrap for Kernel Estimators under General
Dependence Conditions, Annals of the Institute of Statistical Mathematics 52, 139-159.

Racine, J. and Q. Li (2000), Nonparametric Estimation of Conditional Distributions with Mixed
Categorical and Continuous Data, Discussion Paper, Dept. of Economics, Univ. of South Florida
and Texas A & M Univ.

Robinson, P. M. (1988), Root-N-consistent Semiparametric Regression, Econometrica 56, 931-954.

Robinson P. M. (1991), Consistent Nonparametric Entropy-based Testing, Review of Economic Stud-
ies 58, 437-453.

Rosenbaum, P. R. (1984), Testing the Conditional Independence and Monotonicity Assumptions of
Item Response Theory, Psychometrika 49, 425-435.

Sheedy, E. (1998), Correlation in Currency Markets: A Risk-Adjusted Perspective, Journal of Inter-
national Financial Markets, Institutions & Money 8, 59-82.

Sims, C. A. (1972), Money, Income, and Causality, American Economic Review 62, 540-552.

Skaug, H. J. and D. Tjostheim (1993), A Nonparametric Test of Serial Independence Based on the
Empirical Distribution Function, Biometrika 80, 591-602.

Skaug, H. J. and D. Tjostheim (1996), Measure of Distance between Densities with Application to
Testing for Serial Independence, In P. M. Robinson and M. Rosenblatt (eds.), Time Series Analysis
in Memory of E. J. Hannan, 363-377. Springer : New York.

Sowell, F. (1996), Optimal Tests for Parameter Instability in the Generalized Method of Moments
Framework, Econometrica 64, 1085-1107.

44



[69]

[70]

[71]

[72]

[73]

Stinchcombe, M. B., and H. White (1998), Consistent Specification Testing with Nuisance Parame-
ters Present Only under the Alternative, Fconometric Theory 14, 295-325.

Su, L., and H. White (2002), A Nonparametric Hellinger Metric Test for Conditional Independence,
Working Paper, Dept. of Economics, UCSD.

Su, L., and H. White (2003), A Characteristic-Function-Based Test for Conditional Independence,
Discussion Paper 2003-11, Dept. of Economics, UCSD.

Swanson, N. R. (1998), Money and Output Viewed Through a Rolling Window, Journal of Monetary
FEconomics 41, 455-473.

Tenreiro, C (1995), Theoremes Limites pour les Erreurs Quadratiques Integrees des Estimateurs a
Noyau de la Densite et de la Regression sous des Conditions de Dependance, C. R. Acad. Sci. Paris
320, 1535-1538.

Tenreiro, C (1997), Loi Asymptotique des Erreurs Quadratiques Integrees des Estimateurs a Noyau
de la Densite et de la Regression sous des Conditions de Dependance, Portugaliae Mathematica 54,
197-213.

Tjostheim, D (1996), Measures and Tests of Independence: a Survey, Statistics 28, 249-284.

Tripathi, G. and Y. Kitamura (2002), Testing Conditional Moment Restrictions, Discussion Paper,
Dept. of Economics, University of Wisconsin-Madison.

Wald, A. (1943), Tests of Statistical Hypotheses Concerning Several Parameters When the Number
of Observations Is Large, Transactions of the American Statistical Society 54, 426-482.

White, H. (2000), Asymptotic Theory for Econometricians. Academic Press, San Diego.

Yao, Q. and D. Tritchler (1993), An Exact Analysis of Conditional Independence in Several 2 x 2
Contingency Tables, Biometrics 49, 233-236.

Yoshihara, K (1976), Limiting Behavior of U-statistics for Stationary, Absolutely Regular Processes,
Z. Wahrsch. Verw. Gebiete 35, 237-252.

Yoshihara, K (1989), Limiting Behavior of Generalized Quadratic Forms Generated by Absolutely
Regular Processes, In Proceedings of the Fourth Prague Conference on Asymptotic Statistics, 539-
547.

Zheng, J. 7. (1997), A Consistent Specification Test of Independence, Nonparametric Statistics 7,
297-306.

45



Table 1: Empirical Rejection Frequency of the Test T, ; (d;=d,=d3=1)

5%

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8
n=100
c=0.5 0.009 0.016 0.788 0.844 0.596 0.892 0.420 0.244
c=1 0.022 0.014 0.872 0.888 0.716 0.956 0.504 0.392
c=2 0.049 0.055 0.928 0.960 0.812 0.996 0.792 0.532
c=2.5 0.071 0.099 0.964 0.992 0.820 0.996 0.800 0.600
n=200
c=0.5 0.014 0.011 0.996 0.996 0.936 1 0.78 0.544
c=1 0.015 0.015 1 1 0.98 0.996 0.86 0.668
c=2 0.04 0.033 0.996 1 0.968 1 0.944 0.828
c=2.5 0.043 0.06 1 1 0.98 1 0.968 0.844
n=500
c=0.5 0.008 0.002 1 1 1 1 1 0.98
c=1 0.022 0.014 1 1 1 1 1 0.996
c=2 0.022 0.016 1 1 1 1 1 1
c=2.5 0.038 0.048 1 1 1 1 1 1

10%

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8
n=100
c=0.5 0.021 0.026 0.856 0.892 0.644 0.928 0.524 0.316
c=1 0.034 0.028 0.908 0.904 0.78 0.976 0.628 0.476
c=2 0.077 0.09 0.952 0.96 0.86 0.996 0.844 0.604
c=2.5 0.11 0.15 0.972 0.992 0.86 1 0.868 0.7
n=200
c=0.5 0.025 0.017 1 1 0.964 1 0.856 0.644
c=1 0.025 0.023 1 1 0.984 1 0.912 0.756
c=2 0.066 0.067 0.996 1 0.988 1 0.968 0.884
c=2.5 0.073 0.107 1 1 0.992 1 0.988 0.896
n=500
c=0.5 0.012 0.006 1 1 1 1 1 0.992
c=1 0.032 0.026 1 1 1 1 1 0.996
c=2 0.06 0.032 1 1 1 1 1 1
c=2.5 0.07 0.09 1 1 1 1 1 1
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Table 2: Comparison of Tests for Causality (d,=d,=d3=1)

5%

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8
n=100
CM, 0.054 0.058 0.920 0.548 0.504 0.412 0.384 0.188
KS, 0.042 0.056 0.780 0.404 0.380 0.288 0.292 0.156
HEL, 0.072 0.055 0.412 0.658 0.454 0.920 0.728 0.560
CHF, 0.078 0.079 0.792 0.844 0.592 0.944 0.656 0.420
SEL, 0.078 0.066 0.952 0.948 0.852 1 0.832 0.564
n=200
CM, 0.045 0.056 0.992 0.748 0.788 0.680 0.476 0.360
KS, 0.067 0.053 0.952 0.552 0.660 0.532 0.336 0.284
HEL, 0.045 0.025 0.829 0.870 0.485 1 0.984 0.852
CHF, 0.063 0.062 0.940 0.968 0.848 1 0.864 0.604
SEL, 0.044 0.044 1 1 0.98 1 0.976 0.864
n=500
CM, 0.025 0.046 1 0.984 0.992 0.984 0.824 0.728
KS, 0.042 0.044 1 0.884 0.976 0.912 0.76 0.592
HEL, 0.034 0.03 0.994 0.997 0.909 1 1 1
CHF, 0.048 0.032 1 1 1 1 1 0.876
SEL, 0.048 0.038 1 1 1 1 1 1
n=1000
CM, 0.048 0.042 1 1 1 1 0.976 0.904
KS, 0.042 0.044 1 0.992 1 1 0.952 0.804
HEL, 0.052 0.026 1 1 1 1 1 1
CHF, 0.036 0.024 1 1 1 1 1 1
SEL, 0.012 0.036 1 1 1 1 1 1

47



Table 2: Comparison of Tests for Causality (d,=d,=d;=1, cont.)

10%

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGPS8
n=100
CM, 0.094 0.101 0.964 0.652 0.644 0.480 0.472 0.304
KS, 0.100 0.111 0.868 0.492 0.496 0.428 0.408 0.232
HEL, 0.106 0.085 0.468 0.718 0.529 0.928 0.772 0.636
CHF, 0.122 0.115 0.844 0.888 0.688 0.976 0.728 0.552
SEL, 0.117 0.109 0.972 0.968 0.916 1 0.892 0.648
n=200
CM, 0.095 0.100 1 0.856 0.904 0.752 0.592 0.508
KS, 0.096 0.089 0.988 0.676 0.756 0.676 0.484 0.404
HEL, 0.08 0.05 0.889 0.912 0.602 1 1 0.904
CHF, 0.100 0.101 0.960 0.988 0.908 1 0.924 0.708
SEL, 0.08 0.068 1 1 0.992 1 0.992 0.9
n=500
CM, 0.052 0.065 1 0.992 1 0.992 0.896 0.792
KS, 0.066 0.068 1 0.944 0.992 0.960 0.836 0.696
HEL, 0.075 0.055 0.996 0.997 0.951 0.998 1 1
CHF, 0.068 0.052 1 1 1 1 1 0.924
SEL, 0.08 0.068 1 1 1 1 1 1
n=1000
CM, 0.112 0.076 1 1 1 1 0.992 0.936
KS, 0.088 0.074 1 1 1 1 0.968 0.872
HEL, 0.078 0.070 1 1 1 1 1 1
CHF, 0.080 0.076 1 1 1 1 1 1
SEL, 0.042 0.06 1 1 1 1 1 1
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Table 3: Comparison of Tests for Causality (d=2, d,=d;=1)

5%

DGP1' DGP2' DGP3' DGP4' DGP5' DGP6' DGP7' DGP8'
n=100
CM, 0.029 0.040 0.684 0.368 0.204 0.608 0.248 0.344
KS, 0.032 0.045 0.440 0.304 0.108 0.512 0.200 0.312
CHF, 0.071 0.072 0.708 0.812 0.532 0.800 0.396 0.396
SEL, 0.067 0.053 0.924 0.92 0.788 0.968 0.504 0.496
n=200
CM, 0.053 0.028 0.964 0.656 0.352 0.872 0.336 0.432
KS, 0.040 0.025 0.792 0.480 0.196 0.780 0.292 0.388
CHF, 0.049 0.051 0.920 0.972 0.800 0.988 0.588 0.640
SEL, 0.044 0.036 1 1 0.984 1 0.772 0.84
n=500
CM, 0.068 0.028 1 0.936 0.692 0.992 0.632 0.764
KS, 0.056 0.04 0.996 0.784 0.456 0.988 0.552 0.656
CHF, 0.018 0.052 1 1 0.996 1 0.872 0.944
SEL, 0.024 0.064 1 1 1 1 1 0.996
n=1000
CM, 0.076 0.033 1 1 0.952 1 0.912 0.968
KS, 0.062 0.048 1 0.952 0.856 1 0.832 0.944
HEL, 0.014 0.076 1 1 1 1 1 1
CHF, 0.008 0.088 1 1 1 1 1 1

10%

DGP1' DGP2' DGP3' DGP4' DGP5' DGP6' DGP7' DGP8'
n=100
CM, 0.068 0.088 0.788 0.472 0.332 0.712 0.344 0.428
KS, 0.064 0.076 0.632 0.408 0.224 0.624 0.296 0.400
CHF, 0.106 0.114 0.756 0.880 0.624 0.892 0.524 0.504
SEL, 0.11 0.087 0.944 0.96 0.836 0.988 0.616 0.624
n=200
CM, 0.104 0.060 0.984 0.756 0.468 0.908 0.456 0.528
KS, 0.104 0.064 0.896 0.588 0.332 0.848 0.408 0.468
CHF, 0.084 0.105 0.956 0.992 0.872 1 0.716 0.792
SEL, 0.075 0.058 1 1 0.996 1 0.836 0.872
n=500
CM, 0.127 0.056 1 0.952 0.824 1 0.732 0.824
KS, 0.104 0.061 1 0.876 0.62 1 0.644 0.772
CHF, 0.042 0.082 1 1 0.998 1 0.904 0.968
SEL, 0.048 0.096 1 1 1 1 1 1
n=1000
CM, 0.112 0.066 1 1 0.992 1 0.964 0.984
KS, 0.092 0.065 1 0.992 0.924 1 0.920 0.960
CHF, 0.016 0.104 1 1 1 1 1 1
SEL, 0.048 0.132 1 1 1 1 1 1
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Table 4: Comparison of Tests for Causality (d=3, d,=d;=1)

5%

DGP1" DGP2" DGP3" DGP4" DGP5" DGP6&" DGP7" DGP8"
n=200
CM, 0.036 0.044 0.724 0.368 0.236 0.772 0.320 0.440
KS, 0.052 0.04 0.344 0.276 0.128 0.684 0.256 0.408
CHF, 0.039 0.021 0.872 0.960 0.612 0.904 0.408 0.480
SEL, 0.071 0.05 1 1 0.904 0.992 0.636 0.728
n=500
CM, 0.044 0.055 1.000 0.852 0.464 0.996 0.544 0.808
KS, 0.047 0.042 0.872 0.656 0.280 0.976 0.472 0.740
CHF, 0.044 0.020 1 1 0.964 1 0.792 0.884
SEL, 0.066 0.046 1 1 0.992 1 0.936 1
n=1000
CM, 0.056 0.032 1 0.976 0.804 1 0.776 0.960
KS, 0.078 0.016 1 0.864 0.576 1 0.752 0.944
CHF, 0.040 0.088 1 1 1 1 0.884 1
SEL, 0.074 0.082 1 1 1 1 1 1

10%

DGP1" DGP2" DGP3" DGP4" DGP5" DGP6&" DGP7" DGP8"
n=200
CM, 0.084 0.068 0.832 0.532 0.380 0.832 0.416 0.540
KS, 0.116 0.06 0.572 0.420 0.248 0.788 0.376 0.480
CHF, 0.061 0.042 0.888 0.976 0.696 0.952 0.492 0.636
SEL, 0.128 0.077 1 1 0.94 0.996 0.716 0.796
n=500
CM, 0.081 0.068 1.000 0.892 0.656 0.996 0.640 0.856
KS, 0.096 0.057 0.944 0.784 0.444 0.988 0.588 0.824
CHF, 0.074 0.038 1 1 0.976 1 0.816 0.960
SEL, 0.114 0.062 1 1 0.996 1 0.964 1
n=1000
CM, 0.08 0.072 1 0.992 0.888 1 0.846 0.976
KS, 0.112 0.044 1 0.920 0.704 1 0.800 0.966
CHF, 0.100 0.144 1 1 1 1 0.892 1
SEL, 0.114 0.102 1 1 1 1 1 1
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Table 5: Bivariate linear Granger causality test between exchange rates

Panel A: Linear Granger causality test Panel B: Nonlinear Granger causality test
Ho: Row doesn't cause column Canada France Italy UK Canada France Italy UK
Canada  L,=1, DX used - 2.65 7.36° 3.47° - 1.63° 2.88° -0.70
L,=2, DX, used - 2.65 7.56° 3.47° - 2.65° 3.65° 0.87
L,=2, DX., used . 0.22 2.77 0.66 - 0.63 1.52° 0.68
L,=3, DX, used - 2.59 7.56° 3.52° - 2.52° 4.43° 1.45°
L,=3, DX., used . 0.22 2.68 0.62 - 0.17 0.63 0.52
L,=3, DX.; used - 0.15 0.00 0.40 - 2.34° 2.05° 1.79°
France L,=1, DX, used 2.24 - 3.19° 0.00 0.00 - 0.49 0.74
L,=2, DX, used 2.37 . 3.57° 0.00 0.93 - -1.14 0.77
L,=2, DX, used 2.67 - 3.16° 3.88" 1.13 - 0.12 0.69
L,=3, DX, used 2.40 - 3.59° 0.00 1.68° - -4.44 2.01°
L,=3, DX., used 2.59 - 3.27° 3.89° 2.69° - -3.85 0.99
L,=3, DX used 0.00 - 0.06 2.16 3.05° - -4.95 -0.52
ltaly L,=1, DX, used 2.18 2.75° - 1.84 -0.26 3.77° - 2.27°
L,=2, DX, used 2.32 2.76° - 1.90 2.37° 1.07 - 1.55°
L,=2, DX,, used 0.16 0.52 - 0.17 1.84° 2.13° - -0.20
L,=3, DX, used 2.48 2.76° - 1.80 2.15° -2.33 - 2.91°
L,=3, DX., used 0.11 0.54 . 0.15 2.43° -2.49 - 1.45°
L,=3, DX.5 used 0.00 0.49 - 0.69 1.34° -3.06 - 0.45
UK L,=1, DX, used 0.48 0.20 0.16 - -0.47 0.59 0.98 -
L,=2, DX, used 0.50 0.19 0.12 - 1.51° 2.44° 2.41° -
L,=2, DX, used 0.64 0.45 0.18 - 0.64 0.83 0.63 -
L,=3, DX, used 0.51 0.21 0.10 - 1.85° 2.23° 2.25° -
L,=3, DX., used 0.62 0.46 0.16 - 0.72 -0.10 -1.07 -
L,=3, DX.3 used 0.00 0.70 1.12 - 0.55 -0.59 -1.62 -

The superscripts a, b and ¢ denote rejection of the noncausality hypothesis at 1%, 5% and 10% significance levels, respectively. The bold elements in Panel
A indicate the linear causal links that our nonlinear Granger causality test fails to detect at the 5% significance level and those in Panel B indicate the
nonlinear causal links where the linear Granger causality test fails at the 5% significance level.
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Table 6: Granger causality tests between stock prices and trading volumes

Panel A: Linear Granger causality test between AP and AV

Ho: AP doesn't cause AV Ho: AV doesn't cause AP
Dow Jones Nasdaq S&P 500 Dow Jones Nasdaq S&P 500
L,=1, DXy used 0.11 8.28° 8.63° 0.66 0.32 0.02
L,=2, DX, used 0 6.85 9.84° 0.65 0.15 0.04
L,=2, DX, used 1.22 3.63° 3.69° 0.1 0.11 0.03
L,=3, DX.s used 0.05 5.78" 10.82° 0.65 0.15 0.05
L,=3, DX., used 1.85 3.21° 4.88" 0.1 0.11 0.07
L,=3, DX.5 used 3.83° 0.02 6.49° 0.07 0 0.02

Panel B: Nonlinear Granger causality test between AP and AV

Ho: AP doesn't cause AV Ho: AV doesn't cause AP
Dow Jones Nasdaq S&P 500 Dow Jones Nasdaq S&P 500
L,=1, DXy used 18.38° 2.56° 8.17° 1.00 0.82 2.11°
L,=2, DX, used 7.08° 6.23° 7.31° -0.57 3.14° 0.36
L,=2, DX, used 6.70° 3.66° 5.75° -1.04 1.55° 1.39°
L,=3, DX, used 4.13° 1.70° 2.79° -2.82 -2.05 0.94
L,=3, DX, used 3.40° 3.36° 3.67° -2.80 113 042
L,=3, DX, used 5.86° 2.08° 3.01° 1.28 0.17 -0.40

The superscripts a, b and ¢ denote rejection of the noncausality hypothesis at 1%, 5% and 10% significance levels,
respectively. The bold elements in Panel A indicate the linear causal links that our nonlinear Granger causality test fails to
detect at the 5% significance level and those in Panel B indicate the nonlinear causal links where the linear Granger
causality test fails at the 5% significance level.
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Table 7: Granger causality test between exchange rates (AE) and stock prices (AS)

Panel A: Linear Granger causality test between (AE) and stock prices (AS)

Hy: AE doesn't cause AS Hy: AS doesn't cause AE
Canada France  Germany Italy Japan UK Canada France  Germany Italy Japan UK
L,=1, DX, used 0.07 20.96°  34.38°  14.82° 12,05 3.13° 2.73° 1.47 4.99° 0.76 1.57 0.58
L,=2, DX, used 0.08 20.35° 33.71° 14.63% 11.82° 2.87° 2.88° 1.81 5.68° 0.70 1.63 0.67
L,=2, DX, used 2.38 0.23 0.07 1.07 0.49 0.32 5.19° 0.87 1.43 2.09 2.90° 1.09
L,=3, DX, used 0.04 21.23° 34.02% 14.10° 12.20% 3.45 2.86 1.86 5.68° 0.68 1.63 0.70
L,=3, DX, used 2.32 0.16 0.05 0.99 0.51 0.44 5.20° 0.69 1.35 2.19 2.79° 1.11
L,=3, DX.5 used 4.27° 0.03 0.10 0.38 1.82 0.15 3.05° 7.02° 3.85° 4.06° 0.89 2.83°

Panel B: Nonlinear Granger causality test between (AE) and stock prices (AS)

Hy: AE doesn't cause AS Hy: AS doesn't cause AE
Canada France  Germany Italy Japan UK Canada France  Germany Italy Japan UK
L,=1, DXy used 1.29 2.53° 4.16° 0.44 1.65° -0.40 1.54° -1.20 1.15 -1.71 -0.47 0.64
L,=2, DX used 2.14° 3.14° 4.89° 2.91° 3.30° 0.34 1.71° -0.08 1.29° -0.92 1.51° 1.72°
L,=2, DX, used 1.14 1.82° 2.78° -0.25 1.56° 1.26 0.71 0.72 2.45° 1.58° 3.54° 2.31°
L,=3, DX, used 2.17° 4.29% 5.87° 1.65° 4.03% -0.06 1.98° 1.33° 2.43° 0.94 0.83 0.90
L,=3, DX, used 2.46° 0.70 1.66° -0.11 0.00 1.17 0.79 1.24 3.23° 1.12 3.29° 2.89°
L,=3, DX used 3.77° 0.83 1.95° 2.60° 0.41 1.01 1.77° 1.96° 2.08° 2.00° 1.58° 2.70°

The superscripts a, b and ¢ denote rejection of the noncausality hypothesis at 1%, 5% and 10% significance levels, respectively. The bold elements in Panel A
indicate the linear causal links that our nonlinear Granger causality test fails to detect at the 5% significance level and those in Panel B indicate the nonlinear
causal links where the linear Granger causality test fails at the 5% significance level.
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Table 8: Granger causality test between money, output and prices

Panel A: Linear Granger causality test between money, output and prices

Ho: DPI RDPI P CPI PPI DPI RDPI P CPI PPI
does not cause M1 does not cause M2
L,=1, DX, used 974 543" 010 0.22 118 | 11.71* 874 (.24 175  5.40°
L,=2, DX;, used 10.36°  6.99° 0.02 0.55 1.02 | 1161  9.30° 0.43 2.10 5.85"
L,=2, DX, used  0.03 0.34 2.16 0.01 2.41 0.02 0.10 6.70° 0.33 0.00
L,=3, DX, used 10.45% 7.74° 0.00 1.31 1.22 11.04® 9.39% 0.86 3.18° 6.40°
L,=3, DX, used  0.00 0.04 2.75° 0.06 2.27 0.02 0.02 7.69° 0.11 0.03
L,=3, DX, used 4.88°  7.35° 889" 118 0.43 0.55 173 453  3.78° 069
Ho M1 does not cause M2 does not cause
DPI RDPI P CPI PPI DPI RDPI P CPI PPI
L,=1, DX,y used  0.01 1.91 1.96 1.54 0.13 1.33 0.01 1.15 0.87 0.66
L,=2, DX;; used  0.08 1.21 1.88 2.28 0.06 1.91 0.22 1.25 1.67 1.06
L,=2, DX;, used  0.19 0.87 0.89 3.38° 0.14 2.55 0.16 3.62°  3.00° 0.35
L,=3, DX.; used  0.09 1.07 2.26 2.34 0.00 1.99 0.42 1.64 1.61 1.27
L,=3, DX;» used  0.22 0.56 0.86 3.87° 0.20 2.73 0.43 3.91°  3.69° 0.70
L,=3, DX,5 used  0.20 0.86 0.03 1.67 0.04 4.27° 067  452°  4.04° 0.02
Panel B: Nonlinear Granger causality test between money, output and prices
Ho: DPI RDPI P CPI PPI DPI RDPI IP CPI PPI
does not cause M1 does not cause M2
L,=1, DX, used 242° 324° 095 250" 1.82° | 512° 296" 236° 112  1.89°
L,=2, DX, used  1.17 1.88° 0.80 348 237° | 411  3.85° 1.28 1.49° 1.44°
L,=2, DX, used 1.37°  147° 217° 285" 123 | 348" 4.26° 008 157° 217°
L,=3, DX, used 024 082 050  2.84° 234" | 456" 624° 020 -0.16  0.07
L,=3, DX,, used  0.15 0.35 1.10 217° 028 | -067 1.32°  .035 0.17 0.74
L,=3, DX.s used  -0.58 -0.83 457 2897 1.03 0.08 0.36 -0.46 1.19 -0.15
Ho M1 does not cause M2 does not cause
DPI RDPI P CPI PPI DPI RDPI P CPI PPI
L,=1, DX, used 2.46° 244" 226"  1.83° 1.26 2.71° 227 0.55 1.07 1.92°
L,=2, DX;; used  1.26 1.29° 0.80 2.02°  4.64° 1.09 3.96° 0.20 234  4.52°
L,=2, DX, used 063  3.26° 033 575" 455" [ 109 457" 128 085  7.75°
L,=3, DX, used  0.11 2.96° 0.36 0.97 262° | 050 4.89°  -0.70 0.92 -0.85
L,=3, DX,, used -0.50  3.49° 133  331* 205 | 001 595 007 -028 053
L,=3, DX.s used  2.25° 4.32° 0.65 2.99° 0.55 3.18? 7.94° -1.20 0.29 0.10

The superscripts a, b and ¢ denote rejection of the noncausality hypothesis at 1%, 5% and 10% significance levels,
respectively. The bold elements in Panel A indicate the linear causal links that our nonlinear Granger causality test fails
to detect at the 5% significance level and those in Panel B indicate the nonlinear causal links where the linear Granger
causality test fails at the 5% significance level.
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Figure 1: Power Comparison for Linear and Nonlinear Causality Tests (dy = 1, n = 100, 5%)
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