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Abstract

An open iris-loaded waveguide structure is considered for laser acceleration

of highly relativistic particle in vacuum. Complete characterization of eigen-

modes are given in analytical form for the structure. In particular acceleration

performance of the dominant TM mode is evaluated in detail. Transparent

scaling laws are derived, and through which significant advantages over other

vacuum laser acceleration schemes are demonstrated. The entire parameter

space is searched and it is found that below the laser damage threshold of

the structure an acceleration gradient around 1 GV/m can be obtained over

a phase slippage length of 10s of cm with TWs laser in the wavelength range

from 1 to 10 µm.
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The Open Iris-Loaded waveguide Structure (OILS) considered in this paper is made of

a series of equally spaced thin screens each having a circular aperture. It differs from the

usual iris-loaded linac structure in the following aspects: first of all it does not have side

walls thus called an open structure; secondly all its characteristic dimensions, i.e., radius

of the aperture (a) and separation between the adjacent apertures (L), are much larger

than laser wavelength (λ). As a result, the eigenmodes are determined dominantly by

diffraction. Recently, Pantell [1] presented a calculation of the longitudinal field component

in the structure using the numerical method of Fox-Li [2,3] and discussed the possibility of

laser acceleration. But, soon after that Pantell [4] claimed that an additional fast axial phase

oscillation absent from the Fox-Li’s original calculations [2,3] was found and thus concluded

that the structure is not suitable for laser acceleration.

However Pantell’s conclusion is incorrect, as will be shown later through rigorous analysis.

The numerical method of Fox-Li is not an appropriate approach for the acceleration problem

under study. To demonstrate net energy gain for a test particle, the longitudinal electric

field everywhere along the particle trajectory needs to be calculated. The kernel of the

Fresnel integral used in Fox-Li’s method becomes increasingly fast oscillatory for the field

at locations close to the diffracting aperture, making it extremely cumbersome to calculate

the integral and the method prone to various sources of numerical and systematic errors.

To avoid the numerical difficulties fully analytical approach is taken in this paper.

It is found that OILS offers significant advantages over other vacuum laser acceleration

schemes [5–9]. First of all, it provides effective guiding for the acceleration field, leading

to longer interaction length and higher energy gain per stage. Here the interaction length

is limited by either diffraction length or phase velocity slippage length or group velocity

slippage length, whichever shorter. Secondly, it supports eigenmode with a higher ratio

of acceleration to surface fields, thus it is desirable for ameliorating power damage to the

structure. And finally, it has a larger transverse dimension along the beam passage, thus it

is favorable for reducing such deteriorating effects as radiative energy loss and wakefields.

Starting from source free Maxwell Equations in vacuum, we seek TM mode with three
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nonvanishing components: Ez,Er,Hϕ. Other types of modes can be obtained following es-

sentially the same procedures. For open waveguide without side walls to match boundary

condition it is convenient to solve first for the radial component Er and then express Ez and

Hϕ in terms of Er. Taking the time dependence as exp(−iωt) and assuming all field compo-

nents are independent of ϕ, it is shown that Er(r, z) satisfies the following wave equation

∂2Er

∂r2
+

1

r

∂Er

∂r
− 1

r2
Er +

∂2Er

∂z2
+ k2Er = 0 , (1)

where k = ω/c. Under the conditions L À λ and a À λ, the wave equation can be further

reduced to a parabolic equation

∂2Ψ

∂r2
+

1

r

∂Ψ

∂r
− 1

r2
Ψ + 2ik

∂Ψ

∂z
= 0 , (2)

where Ψ(r, z) is an envelope slowly varying in z, defined by Er(r, z) = Ψ(r, z) exp(ikz). Eq.(2)

is identified with that of azimuthal mode number m = 1, and its solution may be labeled

as Ψ1n(r, z) or TM1n, where n is the radial mode index. Notice that the terminology for the

mode index adopted here follows from that of Vainshtein [10], which is defined according

to the solution for the transverse component of the mode and therefore different from the

usual definitions for closed cylindrical waveguides.

Our goal is to solve Eq.(2) for the eigenmodes of an iris-loaded waveguide. This problem

is shown to be equivalent to finding the eigenmodes of a Fabry-Perot optical resonator with

two circular plane mirrors of radius a, separated by a distance L [2]. Under appropriate

boundary condition on the mirrors and with the special technique of Wiener-Hopf, Vainshtein

[10] obtained analytical solution of the eigenmodes to all orders for such a resonator. Once

the eigenmode is obtained for the resonator in the form of a standing wave, it is straight-

forward to convert it to a traveling wave eigenmode for the equivalent waveguide. With all

spatio-temporal dependence explicitly included, the solution for TM1n mode reads

Ez = EaJ0(krr) exp[i(kzz− ωt)] , (3)

Er = −i(kz/kr)EaJ1(krr) exp[i(kzz− ωt)] , (4)
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Hϕ = Er/ZTM , (5)

kr =
ν1n

a [1 + η(1 + i)/M]
, kz = k− k2

r/2k , (6)

where M =
√

8πN, N is the Fresnel number defined by N = a2/λL, η = −ζ(1/2)/
√
π ≈ 0.824,

ζ(z) is Riemann’s Zeta function, ZTM = (kz/k)Z0, ZTM is the impedance of TM wave, Z0 is

the vacuum impedance, ν1n is the nth zero of Bessel function satisfying J1(ν1n) = 0, and Ea is

peak acceleration gradient. As a result of slowly varying envelope approximation, the modes

are characterized by |kz| ∼ k and |kr| ¿ k. Vainshtein’s solution is asymptotically more

accurate for N > 1 [3,10], which happens to be the regime favorable for laser acceleration.

To evaluate the performance of OILS for acceleration, let’s introduce a complex quantity:

α ≡ αr + iαi = ik2
r/2k, and from Eq.(6) we have

αr =
4ν2

1nη(M + η)

L
[
(M + η)2 + η2

]2 , (7)

αi =
2ν2

1nM(M + 2η)

L
[
(M + η)2 + η2

]2 . (8)

The {z, t} dependence for all field components becomes

{Ez,Er,Hϕ} ∼ ei[(k−αi)z−ωt]−αrz , (9)

and power flow through the waveguide is simply

P(z) = P0e
−2αrz , (10)

P0 =
πa2|kz/kr|2E2

a

Re(ZTM)

∫ 1

0
|J1(kraρ)|2ρdρ . (11)

As seen from Eqs.(9,10), the mode is characterized by a phase velocity, vp = ω/(k − αi),

larger than c, and a power attenuation due to diffraction loss at the apertures. However, for

sufficiently large N both phase slippage per cell, φc = αiL, and fractional power loss per cell,

αc = 2αrL, can be made as small as desired, as seen from Eqs.(7,8). Let’s define a phase
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slippage length, Ls = π/αi, over which an acceleration phase slippage of π is experienced by

a highly relativistic particle (v ≈ c) moving along the z-axis. The energy gain of the test

particle traversing a slippage length can be calculated as

∆Ws = eEa

∫ Ls

0
sin(αiz)e

−αrzdz = eEaLsTs , (12)

where Ts is a reduction factor due to a full π phase slippage and the attenuation of the

acceleration field over a slippage length, given by

Ts =
1 + e−(αr/αi)π

π[1 + (αr/αi)
2]
. (13)

Two other figures of merit, the shunt impedance per unit length ZL and the Q factor, are

given here for comparison with traditional microwave acceleration structures

ZL =
|Ez(r = 0, z)|2
−dP/dz

=
E2

a

2αrP0

, (14)

Q =
ωU

−dP/dz
=

π

λαr(vg/c)
≈ π

λαr

, (15)

where U is the field energy per unit length given by U = P/vg, and vg is the group velocity

very close to c. Another important concern for high gradient acceleration by a waveguide is

the surface field on the structure which is limited by laser damage threshold. For OILS, we

define an edge field by Ee = |Er(r = a, z = 0)|.

Before going to the exploration of OILS performance using the general formulas just

derived, it is instructive to look at more transparent weak diffraction limit and scaling laws

for several important performance parameters. We will consider the dominant radial mode

with n = 1 and ν11 = 3.832. Keeping only the leading term while taking the limit N À 1,

we have

Ea

Ee

−→
√

N(λ/a)√
πη |J0(ν11)|

≈ 1.7
√

N(λ/a) , (16)

Ie
Iav
−→ (ν11η)

2

4πN
≈ 0.79/N , (17)
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αs −→ 1− e−η
√

2π/N ≈ 1− e−2.1/
√

N , (18)

Ls −→
4π2a2

ν2
11λ

≈ 2.7 a2/λ = 2.7 N L , (19)

∆Ws[MeV] −→ 2.9
√

N a[mm] Ee[GV/m] , (20)

Iav[PW/cm2] −→ 1.7× 10−4NE2
e[GV/m] , (21)

where Ie is the laser intensity at the aperture edge, Iav is the laser intensity averaged over the

waveguide cross section at z = 0, thus the required laser power is determined by P0 = πa2Iav,

and αs is the fractional power loss per slippage length. Also we have Ts → 2/π, and with

definition Γ = k− αi, the phase and group velocity of the TM11 mode

vp =
ω

Γ
≈ c

1− 1
2

(
ν11λ
2πa

)2 , (22)

vg =
dω

dΓ
≈ c

1 + 1
2

(
ν11λ
2πa

)2 . (23)

Given Eq.(22) a critical energy can be defined by γc = 2πa/ν11λ. A particle is considered

highly relativistic if its Lorentz factor satisfies γ À γc, and under this condition Eqs.(19,20)

are expected to hold in good accuracy.

The most important characteristics of OILS as a potentially attractive structure for laser

acceleration is revealed by Eq.(16). It is shown that the ratio of acceleration to edge (surface)

field is enhanced from the usual scaling for all near field accelerations [9,11], λ/a, by a large

factor,
√

N. As a result, substantial acceleration gradient can be obtained on the axis, even

though the boundary is hundreds of wavelengths away. To understand this attractive and

unique scaling it is instructive to look at the transverse profiles of the eigenmode.

The transverse profiles for Ez and Er, given by Eqs.(3,4), are determined by J0(krr) and

J1(krr) respectively and dependent only on the Fresnel number N. The relative amplitude

of the profiles for N = 250 case are shown in Fig.1 as functions of r/a. The larger the N, the
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smaller the edge field, the smaller the portion of the field to be clipped off by the apertures,

the smaller the diffraction loss and phase slippage. Notice that according to Eq.(16) the con-

dition |Er(r = a)| > |Ez(r = 0)| always holds, indicating the field is dominantly transverse.

It is seen clearly from Fig.1 and also revealed by Eq.(17) that the field energy is concentrated

in the vacuum region away from the boundary, quite different from the schemes [9,11] where

the dominant transverse field component is peaked at the boundary.

Due to the difference between the wave impedance ZTM and the vacuum impedance Z0,

the transverse electric and magnetic force do not cancel to the order of 1/γ2 for highly

relativistic particle, instead a small but finite ratio of momentum transfer rate remains as

∆P⊥/∆P‖ ≈ (ν2
11/8π) (λ/a) (r/a) for a particle near the axis.

With the parameter definitions and general formulas given, we are now ready to evaluate

OILS performance. It is noted that there are only four independent parameters and they

are chosen for convenience to be {λ, Ee, a/λ, N}. We are interested in only a few discrete

wavelengths where bright sources are available, in particular at 1 and 10 µm. The maximum

tolerable edge field Ee is determined by laser damage threshold, which can often be set at a

constant value given laser wavelength and material of the structure. It can be inferred from

the experimental data [12,13] that 10 GV/m seems to be a reasonable upper limit for Ee

at λ = 1µm. Thus we are left with only two independent parameters {a/λ, N} to vary, all

dependent parameters can therefore be conveniently visualized in contour plots.

Shown in Fig.2-4 are the peak acceleration gradient, energy gain per slippage length,

and the required laser power, respectively, for {λ = 1µm,Ee = 10GV/m}. Four examples

including {λ = 10µm,Ee = 5GV/m} cases with more complete listing of performance pa-

rameters are given in Table I. All these results can be readily scaled to other parameter

regime of interest using the scaling laws derived.

Up to now, we have not specified the properties of the screens required for making the

iris-loaded structure, the only assumption on the boundary condition that matters for the

diffraction calculation requires the part of the wave intercepted by the screen be considered

lost. In this regard, the screen could be either totally absorbing or totally reflecting as long
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as the reflected portion of the wave is directed out of the waveguide.

The wave-particle interaction has to be terminated before the particle slips out of the

accelerating phase. The simplest way to do this would be to deflect the particle out of the

field region. For phase slippage length 10s of cm long this is certainly doable if the energy

of the particle is not too high to cause severe radiative loss of energy. For extremely rela-

tivistic particle where trajectory deflection is no longer acceptable, other effective methods

of termination have to be considered or invented.

In conclusion, I have presented a systematic evaluation of laser acceleration with OILS

assuming well established eigenmode. Analysis of planar and rectangular structures can be

carried out parallel to what’s done here. The scaling laws derived from the powerful analyt-

ical approach of Vainshtein have both revealed the simplicity of the acceleration mechanism

and uncovered somewhat surprisingly favorable characteristics of such a diffraction domi-

nated structure. However I have not touched upon such critical issues as wakefield, beam

loading, and ways to couple laser power in and out of the structure without significantly de-

grading acceleration performance. I do want to point out in passing that the axicon scheme

used to generate radially polarized laser beam for the inverse Cherenkov laser acceleration

experiment [14] appears to be an interesting candidate for OILS mode injection. Further

investigation on this and other critical issues will be presented in a forthcoming paper. This

work was supported by DOE under contract No. DE-AC03-76SF00098.
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FIG. 1. |J0(krr)| and |J1(krr)| vs. r/a at N = 250.

FIG. 2. Ea vs. {N, a/λ} at {λ = 1µm,Ee = 10GV/m}.
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FIG. 3. ∆Ws vs. {N, a/λ} at {λ = 1µm,Ee = 10GV/m}.

FIG. 4. P0 vs. {N, a/λ} at {λ = 1µm,Ee = 10GV/m}.
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TABLES

TABLE I. Example Cases of Acceleration Parameters.

CASES IA IB IIA IIB

λ(µm) 1 1 10 10

a(mm) 0.5 0.25 1 0.5

L(mm) 1 0.125 2 1

N 250 500 50 25

Ea(GV/m) 0.54 1.5 0.6 0.84

∆Ws(MeV) 227 161 100 35

Ls(cm) 69 17 28 7.2

P0(TW) 34 17 7.1 0.92

Iav(PW/cm2) 4.3 8.6 0.23 0.12

Ie(TW/cm2) 13 13 3.3 3.3

φc(degree) 0.26 0.13 1.3 2.5

αc(%) 0.019 0.0067 0.2 0.56

αs(%) 12 8.8 25 33

Q(106) 33 12 0.62 0.11

ZL(MΩ/m) 0.045 0.25 0.049 0.14

Ts 0.62 0.62 0.59 0.58

Ee(GV/m) 10 10 5 5
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