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Abstract

Financial Markets with Delay

by

Seyyed Mostafa Mousavi

We propose two models to study different aspects of delay in financial markets. In

the first model, we discuss option pricing with delayed information. We study super

replication with delayed information in a discrete model and derive its continuous

limit. In the second model, we discuss systemic risk using a finite-player linear-

quadratic stochastic differential game with delay, where the evolution of log-monetary

reserves of banks is described by coupled diffusions driven by controls with delay in

their drifts, and banks are minimizing their finite-horizon objective functions.
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Chapter 1

Introduction

In various areas of financial mathematics, a universal assumption is that there does

not exist any type of delay. This is mainly because delay adds memory to the system,

and in other words, it makes the corresponding stochastic processes non-Markov.

As [28] mentions, one of building blocks in the theory of stochastic processes is the

Markov property. Therefore, it is difficult to study Non-Markov processes as we no

longer have access to the well-developed machinery of Markov stochastic processes.

On the other hand, delay is a common element in many natural systems, and

as a result, it is more realistic to consider it in our models. In this endeavor, we

study delay in financial markets in this dissertation. Different types of delay can be

considered in financial markets. For example, we can have delay in the our flow of

information, or we can have control with delay in the state of our system.

We propose two models to study delay in financial markets. In the first model,

we attempt to model delay in the flow of information in option pricing. A common

assumption is that a trader makes his decisions with full access to the prices of the

assets, but there is always a lag between the times of order decision and execution. we
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Introduction Chapter 1

start with the binomial model proposed by [10] and consider constant known periods

of delay in the information flow. Then, We take the worst case scenario approach

(i.e, super replication) to price and replicate contingent claims with convex payoff

functions. Also, we discuss the continuous time limit as the time-step and delay

length tend to zero. A very important consequence of our model is that it verifies the

intuition of traders that delayed information would exaggerate the volatility smile,

but it does not cause it.

In the second model, we propose a stochastic game model of inter-bank lending

and borrowing where banks can borrow from or lend to a central bank, but they need

to take responsibility for their past lending or borrowing. This model generalizes

the one in [6]. The evolution of the log-monetary reserves of N banks is described

by a system of coupled delayed stochastic differential equations. Each bank try to

minimize their finite time objective function by controlling the rate of borrowing or

lending. The banks are coupled through the average capitalization. We derive open-

loop and closed-loop Nash equilibria. Our results show that the delay reduces the

liquidity in the market. However, the central bank still acts as a clearing house.

The dissertation is organized as follows. In chapter 2, we discuss the first model,

that is option pricing with delayed information. In chapter 3, we present the model

of systemic risk and stochastic games with delay.
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Chapter 2

Option Pricing with Delayed

Information

2.1 Abstract

We propose a model to study the effects of delayed information on option pricing.

We first talk about the absence of arbitrage in our model,and then discuss super repli-

cation with delayed information in a binomial model, notably, we present a closed

form formula for the price of convex contingent claims. Also, we address the conver-

gence problem as the time-step and delay length tend to zero and introduce analogous

results in the continuous time framework. Finally, we explore how delayed informa-

tion exaggerates the volatility smile. This chapter is a joint work with Tomoyuki

Ichiba.
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2.2 Introduction

All participants in financial markets have access only to delayed information.

Delay adds more uncertainty to the market, and it is of great importance to study it. A

universal assumption in options pricing literature is that a trader makes his decisions

with full access to the prices of the assets (i.e, no delayed information). However, in

practice, there is a lag between when the order is decided and its execution time. In

particular, there are two important types of delays in financial markets. First is the

delay in order execution, that is, the order would be executed with some delay after

the trader places it. For example, if the order is made in the morning, it would be

executed in the afternoon. Second is the delay in receiving information, that is, the

trader observes the prices and other important information with some delay, usually

because of the technological barriers, exacerbated by having long physical distance

from the exchange.

In the view of traders, these two types of delays act similarly. In both cases,

orders are executed with prices which are unknown at the time they are made. In

other words, the source of the delayed information does not change the decisions of

the trader. For example, let {0, 1, . . . } be a discrete trading horizon. If there exists

a delay with length of 1 period, then regardless of what the source of delay is, no

trade happens at time 0, and in later times trades happen based on the information

available up until the previous period. The reason is that if the delay is only in

receiving information, then, at time 0 the trader does not have any information, so

he waits till time 1 to get time-0 prices to make a trade and those trades would of

course be executed with time-1 prices. If the delay is only in order execution, then at

time-0 and based on time-0 prices, the trader makes an order, but that order would

be executed with time-1 prices.
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In this work, we start with the binomial model proposed by [10] and consider fixed

periods of delay in the flow of information. Therefore, agents have an information

stream smaller than the information flow of the traded asset. We show that the

market with delayed information is incomplete, and it is not possible to perfectly

replicate most contingent claims. Incomplete markets pose various challenges and for

a review of different approaches, we refer to [41]. We take the worst case scenario

approach, that is super replication, to price and replicate convex contingent claims.

This approach is first suggested by [12] in their seminal paper. We derive recursive

and closed-form formulas for pricing convex contingent claims in the discrete time

model. Later, we study the continuous time limit as the time-step and delay length

tend to zero. We show that the price process under our pricing measure converges to

the Black-Scholes price process, but with enlarged volatility.

A very interesting aspect of our model is the way it shows how delayed information

affects the volatility smile. Our model confirms the intuition of traders that delayed

information would exaggerate the volatility smile, but it does not cause it. We show

that in the continuous limit, volatility is constant and there is no smile, but in the

discrete model, we can observe volatility smile. In other words, it suggests the idea

that the smile observed in the market might not all be by the market itself, and it

could have been exaggerated because of the way we interact with delayed information.

Our model with delayed information has some similarities with the models with

transaction costs, notably in both models, we encounter similar limit theorems and

both risky asset price processes converge to the Black-Scholes price process with some

enlarged volatility. In other words, enlarging volatility can be considered as the way

to take into account both transaction costs and delayed information. [34] is first

to discuss transaction costs in option pricing models. [4] studies transaction costs
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in binomial models, and [31] provides rigorous limit theorems for such models. For

extensive literature on option pricing with transaction costs, we refer to [26].

[27] provides an absence of arbitrage condition in discrete time models with de-

layed information. [29] studies market viability in scenarios that the agent has de-

layed or limited information. In the literature, in markets with delayed information,

risk-minimizing hedging strategies, which is another hedging approach in incomplete

markets, have been studied. Using this approach, [11] models lack of information by

letting the assets to be observed only at discrete times, and [40] presents the general

case of restricted information. Some other works in this direction are [16], [35], [30]

and [7].

The paper is organized as follows. In section 2.3, we set up the discrete time

model with delayed information and define the super-replication price. We discuss

the super-replicating strategy in an N -period binomial model with H = N−1 periods

of delay in subsection 2.3.4, and we generalize the results to an N -period binomial

model with H periods of delay in subsection 2.3.5 using both dynamic programming

and direct approaches. A geometrical representation of the strategy is presented in

subsection 2.3.6. In section 2.4, we study the asymptotic behavior of the model as

the time step and delay length tend to zero. In particular, subsection 2.4.2 is devoted

to the discussion of how delayed information affects the volatility smile.

2.3 Discrete Time Model

Before introducing delays, let us recall the N -period binomial tree model of [10]

for a financial market with a single risky asset and a single risk-free asset (e.g., stock).

Given N ∈ N , let us denote by (Ω,F ,P) a probability space for the canonical space

6
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Ω := {0, 1}N of N -period binomial tree with the Borel σ-algebra F generated by

Ω . For every ω := (ω1, . . . , ωN) ∈ Ω we define a coordinate map by Zk(ω) = ωk for

each k = 1, . . . , N . Let P be the probability measure under which Zk , k = 1, . . . , N

are independent, Bernoulli random variables with P(Zk = 1) = P(Zk = 0) = 1 / 2 ,

k = 1, . . . , N . Define the filtration F := {Fk , k = 0, . . . , N} , where Fk is the

σ-field σ(Z1, . . . , Zk) generated by the first k variables for k = 1, . . . , N and F0 is

the trivial σ-field, i.e., F0 = {∅,Ω}.

In the N -period binomial tree model, the risky asset price Sk : Ω → R and its

discounted price S̃k : Ω→ R, discounted by instantaneous rate r > 0, at time k , are

defined by

Sk(ω) := S0 u
Ik(ω) dk−Ik(ω) , Ik(ω) :=

k∑
l=1

Zl(ω) , S̃k(ω) := e−rk Sk(ω)

k = 1, . . . , N , (2.1)

where S0 is a given initial price of risky asset at time 0 , and u (or d ) is a fixed ratio

by which the price process goes up (or down) in one period with u > 1 + r > d > 0 .

The price processes are adapted to the filtration F .

2.3.1 Delayed Filtration

We shall introduce delays in the flow of information in the N -period binomial

model. For simplicity, let us consider the situation where an investor sends buy or

sell orders to the market at time t , but her orders are not executed until time t+H

with H ∈ {0, . . . , N − 1} delay periods. The investor herself knows that she has

H delay periods when she is sending orders. Then we define the delayed filtration
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G := {Gk, k = 0, 1, . . . , N} , where Gk := F0 , for k = 0 , . . . , H − 1 , and

Gk := Fk−H , k = H , . . . , N , (2.2)

In other words, Gk is the information set of the price process until time min(k−H, 0) ,

rather than time k . In the following, we shall consider investments based on this

delayed information.

Let AG be the set of all G -adapted stochastic processes ∆ := {∆k , k =

0, . . . , N − 1} with ∆k ≡ 0 , k = 0, . . . , H − 1 . Here, each ∆ ∈ AG represents

a strategy for this investor based on the delayed information, that is, the positive

∆k > 0 (the negative ∆k < 0 , respectively) corresponds to the total number of

shares of the risky asset that the investor decides to own (to owe, respectively) at

time k , given information Gk . In other words, the order made at time k−H to buy

or sell (∆k −∆k−1) shares of the risky asset, gets executed at time k with price Sk

(not Sk−H ), because of H periods of delay. Thus the investor has to deal with the

risk of price changes between the time of order submission and execution.

For an initial investment of x0 in the risk free asset and a strategy ∆ ∈ AG , we

shall consider the portfolio value process Vk(x0,∆)(ω) , k = 0, . . . , N , ω ∈ Ω . The

first order ∆H submitted at time 0 is executed at time H , and the portfolio value

process is not observed until time H . Thus we define

VH(x0,∆)(ω) := x0 · erH + ∆H · SH(ω) ,

V0(x0,∆)(ω) := e−rH · VH(x0,∆)(ω) = x0 + ∆H · S̃H(ω) , (2.3)

8
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and in general

Vk(x0,∆)(ω) :=



e−r(H−k) · VH(x0,∆) (ω) , k = 0, . . . , H − 1 ,

erkx0 +
k−1∑
l=H

Sl(ω) ·
(
∆(l−1)∨H −∆l

)
+ Sk(ω) ·∆(k−1)∨H ,

k = H, . . . , N .

(2.4)

For k = H, . . . , N , the first term in the portfolio value process (erkx0) in (2.4) corre-

sponds to the initial investment in the risk free asset. The second term (
∑k−1

l=H Sl(ω) ·

(∆(l−1)∨H −∆l)) is due to the cash flow in the risk free asset up until time k, and the

third term (Sk(ω)·∆(k−1)∨H) relates to the investment in the risky asset at time k. We

call Vk(x0,∆), k = 0, . . . , N the value process from the strategy (x0,∆) ∈ (R,AG).

By construction, the changes in the portfolio value process (Vk(x0,∆)) in (2.4)

starting from its first realization at time H, are only due to the variation in asset

prices. In other words, no money is added to or withdrawn from the portfolio.

Note that the initial portfolio value V0(x0,∆)(ω) in (2.3) is a random variable,

not a constant. This is because it is defined by discounting the time-H portfolio

value VH(x0,∆)(ω), which is the first time the portfolio value is observed due to the

existence of delay.

For k = H, . . . , N , ∆k is Gk -measurable, but Vk(x0,∆) is Fk-measurable.

Thus Vk(x0,∆) is Fk∨H-measurable for k = 0, . . . , N . In this sense, the portfolio is

constructed based on the delayed information.

9
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2.3.2 Absence of Arbitrage

We shall first introduce the notion of arbitrage in our model. In general, arbitrage

means that one cannot reap any benefit for free, that is without taking any risk. In

our model with delayed information, as it is shown in (2.3), the initial portfolio value

V0(x0,∆) is a random variable, because of the existence of delay. Therefore, we need

to adjust the classical notion of arbitrage in the domain of (R,AG) strategies, to take

this into account.

Definition 1 (Arbitrage). An arbitrage opportunity is the strategy (x0,∆) ∈ (R,AG)

such that

max
ω∈Ω
{V0(x0,∆) (ω)} = 0,

P(VN(x0,∆) ≥ 0) = 1, (2.5)

P(VN(x0,∆) > 0) > 0.

The primary difference with the classical definition of arbitrage is the condition

that the maximum of time-0 portfolio value needs to be zero (max
ω∈Ω
{V0(x0,∆) (ω)} =

0). It is obvious that in the case of complete information (i.e, H = 0), this definition

boils down to the classical definition of arbitrage opportunity.

We need to show that there is no arbitrage in our discrete time model with delayed

information. [27] proves that in a general discrete time model with restricted informa-

tion, there does not exist classical arbitrage, if and only if there exists a probability

measure P̃ equivalent to P such that the optional projection under P̃ of the discounted

stock price on the delayed filtration, is a P̃-martingale The setup of our model is a

bit different than that in [27], given that our first order to buy/ sell the risky asset

is executed at time H, rather than at time 0 (i.e. ∆k = 0, k = 0, . . . , H − 1). This

10
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makes the initial portfolio value (V0(x0,∆)) a random variable, rather than always a

constant. Theorem 1 shows that still in our model, there does not exists arbitrage,

in the sense of Definition 1.

Theorem 1. There does not exists any arbitrage opportunity in our discrete time

model, in the domain of (R,AG) strategies.

Proof. According to Definition 1, absence of arbitrage means that for any strategy

(x0,∆) ∈ (R,AG) such that max
ω∈Ω
{V0(x0,∆) (ω)} = 0, the condition P(VN(x0,∆) ≥

0) = 1 implies that P(VN(x0,∆) = 0) = 1.

In the domain of (R,AG), according to (2.3), the condition max
ω∈Ω
{V0(x0,∆) (ω)} =

0 is equivalent to

max
ω∈Ω
{VH(x0,∆) (ω)} = 0.

Which means that in all (N −H)-period binomial models starting from time H, the

initial values for the (x0,∆) strategy is non-positive.

If we consider all these (N − H)-period binomial models individually, they lie

in the general discrete time model framework in [27]. Therefore, in each of these

models, even if we consider the initial values of the strategy to be zero, the condition

P(VN(x0,∆) ≥ 0) = 1 implies P(VN(x0,∆) = 0) = 1, given that we show that

there exists a probability measure P̃ ∼ P such that the P̃-optional projection of the

discounted stock price on the delayed filtration, is a P̃-martingale That is

EP̃
(
S̃k+1|Gk

)
= EP̃

(
S̃k|Gk

)
, k = H, . . . , N − 1. (2.6)

Define the probability measure P̃ such that the coordinate maps Zk, k = 1, . . . , N are

11
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still independent Bernoulli random variables, but with parameters

P̃(Zk = 1) =
uer − d
u− d

= 1− P̃(Zk = 0), k ∈ {1, . . . , N}.

which are the risk-neutral probabilities in the usual binomial model without any delay.

Given that the discounted stock price (S̃k) is (Fk)-martingale under P̃, it follows

that condition (2.6) holds, which shows that there is not any arbitrage opportunity

from time H to N . Consequently, given (2.3), we conclude that there is not arbitrage

in the model in the domain of (R,AG) strategies.

Remark 1. The domain of (R,AG) strategies in Theorem (2.3.2) does not include

all F-adapted strategies, but only those which are G-adapted. In other words, we are

excluding the case that an agent with full information come and exploit the market

with delayed information. If we include all F-adapted strategies, it is likely to have

arbitrage opportunities.

2.3.3 Super-Replication Price

Given that there is no arbitrage in the market, it now makes sense to discuss

about pricing.

Definition 2 (Super-replication price and the value process of super-replicating port-

folio). For any contingent claim with payoff function ϕ : Ω→ R and expiration time

N , its super-replication price π̄(ϕ) is defined as the minimal initial value of portfolio

which exceeds the value ϕ at time N , i.e.,

π̄(ϕ) := inf
(x0,∆)∈Γ

max
ω∈Ω

{
V0(x0,∆)(ω) = x0 + ∆H S̃H(ω)

}
, (2.7)

12
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where

Γ := {(x0,∆) ∈ R×AG : VN(x0,∆) ≥ ϕ P− a.s.} . (2.8)

If there exists a pair (x∗0,∆
∗) that attains the infinitum in (2.7), i.e.,

π̄(ϕ) = maxω∈Ω V0(x∗0,∆
∗)(ω) , then the time- k super replicating portfolio value

Vk(ω) is defined as

Vk(ω) := Vk(x
∗
0,∆

∗)(ω) , k = 0, . . . , N , (2.9)

and consequently, π̄(ϕ) = maxω∈Ω V0(ω) .

Remark 2. The super-replication price is the most conservative pricing approach for

the seller of the option, considering the worst-case scenario. In other words, it is

straightforward to show that any price greater than the super-replication price causes

arbitrage in the market.

Remark 3. It is remarkable to note that call-put parity does not hold anymore. The

reason is that the super-replication price π̄ is a coherent risk measure on the space

L∞(Ω,F,P) of payoff functions, and therefore it is sub additive

All of the results in this paper are for European-style contingent claims with

convex payoff functions. In section 2.3.4, we consider first the case H = N − 1 and

determine the super-replication price and the corresponding strategy. This would

make the building block for the general case discussed in section 2.3.5. The case for

non-convex payoff functions is computationally more demanding as we do not have

access to all the machinery developed for convex functions.
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S0

S0d

S0u

S0d
2

S0ud

S0u
2

time 0 time 1 time 2

Figure 2.1: Asset price process Sk in a 2-period binomial model

2.3.4 An N-period binomial model with H = N − 1 periods

of delay

We determine the super-replication price and the corresponding strategy for the

European contingent claims when H = N − 1 . Having H = N − 1 periods of

delayed information means that at time 0 the risky asset price S0 is observed, but

the order ∆H , sent by the investor at time 0 , would be executed at time H . For

example, when N = 2 and H = 1 , the order ∆1 sent at time 0 is executed at

time 1 with two possible prices S1 = S0d or S1 = S0u (see Figure 2.1).

Let us observe that in the case of H = N − 1 , the terminal value VN(x0,∆) in

(2.4) is simplified to

VN(x0,∆)(ω) = erNx0 + SN(ω) ·∆N−1 . (2.10)

There are (N + 1) possible values of SN(ω) , ω ∈ Ω in (2.1) and there are only

two controls (x0,∆N−1) in the terminal value. Since there are (N + 1) constraints

and only two controls, the minimization problem in (2.7) has possibly infinitely many

solutions. In other words, in an economic sense, the market is not complete. To learn

more about pricing in incomplete markets, we refer to [41].
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Theorem 2. For a European-style contingent claim with payoff ϕ := Φ(SN) for

some convex function Φ(·) in the N-period binomial model with H = N −1 periods

of delay, the super-replication price is

π̄(ϕ) = max
(
x∗0 + e−rH ∆∗H · S0 u

H , x∗0 + e−rH ∆∗H · S0 d
H
)
, (2.11)

where the corresponding strategy (x∗0,∆
∗) is given by ∆∗j ≡ 0 , j = 0, 1, . . . , H − 1 ,

∆∗H = ∆∗N−1 =
Φ(S0u

N)− Φ(S0d
N)

S0 · (uN − dN)
and x∗0 = e−rN · u

NΦ(S0d
N)− dNΦ(S0u

N)

uN − dN
.

(2.12)

Proof. First, we shall prove that for any ω ∈ Ω , (x∗0,∆
∗) in (2.12) satisfies

inf
(x0,∆)∈Γ

{
V0(x0,∆)(ω) = x0 + ∆H S̃H(ω)

}
= V0(x∗0,∆

∗)(ω) = x∗0 + ∆∗H · S̃H(ω).

(2.13)

Here the infimum is taken over the set Γ in (2.8), that is, x0 ∈ R and ∆ ∈ AG

must satisfy VN(x0,∆) ≥ ϕ(SN) almost surely. Note that VN(x0,∆) = (erNx0 +

x · ∆N−1)|x=SN
in (2.10) is realized as the value at x = SN of linear function

y = erN x0+x·∆N−1 with the slope ∆H and the y -intercept erNx0 in the (x, y) co-

ordinates. Moreover, since the payoff function Φ(·) is convex, by Jensen’s inequality,

one can verify

Γ = {(x0,∆) ∈ R×AG : erNx0 + S0u
N ·∆N−1 ≥ Φ(S0u

N),

erNx0 + S0d
N ·∆N−1 ≥ Φ(S0d

N)} . (2.14)

That is, in order to check whether the inequality VN(x0,∆) ≥ Φ(SN) holds with
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probability one, it suffices to check it just at the extreme cases, in which the asset

price SN at time N is the minimum S0d
N or the maximum S0u

N in the binomial

tree model. Then it is easy to check that the choice (x∗0,∆
∗
H) in (2.12) belongs to the

set Γ as we have erNx∗0 + ∆∗HS0u
N = ϕ(S0u

N) , erNx∗0 + ∆∗HS0d
N = ϕ(S0d

N) . In

other words, the minimization problem is reduced to a linear programming problem

minimize
(x0,∆H)∈R2

x0 + ∆H · S̃H(ω)

subject to erNx0 + S0u
N ·∆H ≥ Φ(S0u

N) ,

and erNx0 + S0d
N ·∆H ≥ Φ(S0d

N) .

Define the Lagrangian as

L := x0 + ∆H S̃H(ω) + λ1[Φ(S0u
N)−

(
erNx0 + S0u

N∆H

)
]

+λ2[Φ(S0d
N)−

(
erNx0 + S0d

N∆H

)
] ,

where λ1 and λ2 are the Lagrangian multipliers. Then, it is easy to check that the

quantities

x∗0 = e−rN · u
NΦ(S0d

N)− dNΦ(S0u
N)

uN − dN
, ∆∗H =

Φ(S0u
N)− Φ(S0d

N)

S0uN − S0dN
,

λ∗1 =
S̃H(ω)− e−rNS0d

N

S0 · (uN − dN)
, λ∗2 =

e−rNS0u
N − S̃H(ω)

S0uN − S0dN

satisfy the Karush-Kuhn-Tucker conditions for the minimization. Hence, (2.13) fol-

lows, and it is the key to prove that

inf
(xo,∆)∈Γ

max
ω∈Ω

V0(x0,∆)(ω) = max
ω∈Ω

inf
(xo,∆)∈Γ

V0(x0,∆)(ω) . (2.15)

16
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Thus, we get

π̄(ϕ) = max
ω∈Ω

inf
(xo,∆)∈Γ

V0(x0,∆)(ω) = max
ω∈Ω

V0(x∗0,∆
∗)(ω) . (2.16)

Then, the proof is completed by the following observation

max
ω∈Ω
{V0(x∗0,∆

∗)(ω) = x∗0 + ∆∗H S̃H(ω)} =

max
(
x∗0 + e−rH∆∗H · S0u

H , x∗0 + e−rH∆∗H · S0d
H
)
. (2.17)

By using Theorem 2, the portfolio value VH ∈ FH in (2.9) at time H of the

super-replicating strategy can be calculated as

VH = erHx∗0 + ∆∗H · SH =
H∑
j=0

e−r(N−H) EQj [Φ(SN)] · 1{SH =S0 uj dH−j}

=
H∑
j=0

e−r(N−H)
[
pj Φ(S0u

N) + qj Φ(S0d
N)
]
· 1{SH =S0 uj dH−j}.

(2.18)

Here {Qj}Hj=0 are probability measures on (Ω,F) defined by

Qj(IN = N) := pj = 1−Qj(IN = 0) = 1− qj ,

pj :=
ujdH−jer(N−H) − dH+1

uH+1 − dH+1
, j = 0, . . . , H . (2.19)

Remark 4. We can conclude from the form in (2.18) that VH , the value of the

17
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super-replicating portfolio at time H, is a function of S0 and SH . In other words

VH ≡ VH(S0, SH),

Therefore, the value process for the super-replicating portfolio is path dependent,

due to the existence of H periods of lag between the times of order submission and

execution.

Thus, the super-replication price π̄(ϕ) can be calculated as

π̄(ϕ) = max
ω∈Ω
V0 (ω) = max

j∈{0,...,H}
e−rN EQj [Φ(SN)] = max

j∈{0,H}
e−rN EQj [Φ(SN)]

= max
j∈{0,H}

e−rN
[
pjΦ(S0u

N) + qjΦ(S0d
N)
]

= e−rN max
(
puΦ(S0u

N) + quΦ(S0d
N) , pdΦ(S0u

N) + qdΦ(S0d
N)
)
. (2.20)

where the third equality follows similarly as in (2.17).

Notation: From now on, we use (pu, qu) as (pH , qH) and (pd, qd) as (p0, q0) , since

(pH , qH) and (p0, q0) correspond to the measures at the extreme points SH = S0u
H

and SH = S0d
H respectively.

2.3.5 An N-Period binomial Model with H Periods of Delay

We extend our considerations from section 2.3.4 and generalize the model to the

N -period binomial model with H(≤ N − 1) periods of delay. We determine the

super-replication price and the corresponding strategy for European style contingent

claims with convex payoff functions. Here we shall solve the problem from both a

dynamic programming (or backward induction) approach and a direct approach.

18
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Dynamic Programming Approach

First, let us define the tree TN(0, 0) of length N as the set of nodes (i, j) , such

that there are i ups and j downs from the node (0, 0) with 0 ≤ i+ j ≤ N , i.e.,

TN(0, 0) := {(i, j) ∈ N2
0 : 0 ≤ i+ j ≤ N}

Then define its (H + 1)-period subtree TH+1(a, b) starting from the node (a, b) at

time a+ b by

TH+1(a, b) := {(i, j) ∈ N2
0 : a+ b ≤ i+ j ≤ a+ b+H + 1 , i ≥ a , j ≥ b}

for every (a, b) ∈ TN(0, 0) such that a+ l ≤ N − (H + 1).

We shall identify all N −H subtrees TH+1(a, b) starting from the nodes (a, b) at

time N − (H + 1) (i.e, a + b = N − (H + 1) ). We use the results in section 2.3.4

and consider the value process of the super-replicating portfolio at time N − 1 as the

new payoffs for the next round of (H + 1)-period subtrees starting from the nodes at

time N − (H + 2) . Then, we keep super-replicating backwards in the same manner.

Remark 5. Given that in the dynamic programming approach, we are using the

results in section (2.3.4) in each step, and Remark (4), we can conclude that the

value process at level k ∈ {H, . . . , N} for the super-replicating strategy in the general

model is also path dependent, that is

Vk ≡ Vk(Sk−H , Sk), k = H, . . . , N . (2.21)

Therefore, let us define the payoff for the subtree TH+1(a, b) starting from the
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node (a, b) at time a+ b at its leaf node (p, q) (i.e, p+ q = a+ b+H + 1 ) by

ΦTH+1(a,b) (p, q) :=



Vp+q
(
Sa+bd , Sa+bd

H+1
)

if p = a ;

max

{
Vp+q

(
Sa+bd , Sa+bu

idH+1−i ) ,
Vp+q

(
Sa+bu , Sa+bu

idH+1−i )}
if p = a+ i , i = 1, . . . , H ;

Vp+q
(
Sa+bu , Sa+bu

H+1
)

if p = a+H + 1 ;

(2.22)

for p+ q ≤ N − 1, and ΦTH+1(a,b) (p, q) := Φ(SN) , p+ q = N where SN = S0u
pdq.

Intuitively, for the subtree TH+1 (a, b) starting at time a + b , there are only two

(H+1) -period subtrees, TH+1 (a+ 1, b) and TH+1 (a, b+ 1), starting at time a+b+1

that can induce payoff at time p + q . So, we need to take the maximum of the

two possible value process as the new payoff because we always consider worst case

scenario in super replication. Note that at the edge points, there exists only one value

process.

Example 1. In the 4 -period binomial tree model (as in Figure 2.2) with H = 1 , what

new payoff we need to consider on the node S3 = S0u
2d depends on whether we are

considering this node as part of the subtree T2 (1, 0) or T2 (0, 1). As part of the subtree

T2 (1, 0), the payoff
(
ΦT2(1,0) (2, 1)

)
would be the maximum of the corresponding value

processes of the subtrees T2 (1, 1) and T2 (2, 0), while as part of the subtree T2 (0, 1),

the payoff
(
ΦT2(0,1) (2, 1)

)
would be the corresponding value processes of the subtrees

T2 (1, 1).

One important ingredient in the dynamic programming approach is that when
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we start from a convex payoff function, the payoff in (2.22) for all the intermediary

(H + 1) -period subtrees needs to be convex with respect to the corresponding risky

asset prices, in order to be able to use Theorem (2) in each step and keep super-

replicating backwards. Theorem (3) formalizes this relation.

Theorem 3. For a European-style contingent claim with payoff ϕ := Φ(SN) for

some convex function Φ(·) in the N-period binomial model with H ≤ N−1 periods

of delay, the payoff function ΦTH+1(a,b) (., .), a+b = 0, . . . , N−(H+1) in (2.22) for all

the intermediary (H + 1)-period subtrees are convex with respect to the corresponding

risky asset prices.

Proof. Note that for a + b = N − (H + 1), the payoff functions ΦTH+1(a,b) (., .) for

all (N − H) intermediary (H + 1)-period subtrees are convex, since the final payoff

function Φ(SN) is convex.

Now we show that all the payoff functions ΦTH+1(a′,b′) (., .), a′+ b′ = a+ b− 1 will

be convex, if all the payoff functions ΦTH+1(a,b) (., .), a+ b ∈ {0, . . . , N − (H + 1)} are

convex. By induction this completes the proof.

Given that the payoff function ΦTH+1(a,b) (., .) is convex, by Theorem (2), there

exists x∗1 and ∆∗1 such that we define

h1(t) :=



Va+b+H(Sa′+b′u , Sa+b+H ) = erHx∗1 + ∆∗1t,

t ∈ {Sa′+b′udH , . . . , Sa′+b′uH+1};

erHx∗1 + ∆∗1t, t = Sa′+b′d
H+1,
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Similarly, there exists x∗2 and ∆∗2 such that we define

h2(t) :=



Va+b+H(Sa′+b′d , Sa+b+H ) = erHx∗2 + ∆∗2t,

t ∈ {Sa′+b′dH+1, . . . , Sa′+b′u
Hd};

erHx∗2 + ∆∗2t, t = Sa′+b′u
H+1,

we can define

h(t) := max (h1(t), h2(t)) , t ∈ {Sa′+b′dH+1, . . . , Sa′+b′u
H+1}; (2.23)

Note that h(t) = ΦTH+1(a′,b′) (p, q) where t := S0u
pdq, given that ΦTH+1(a,b) (., .) is

convex, and (2.22).

The discrete function h(.) is convex if for any v and w such that S0u
vdw ∈

{Sa′+b′udH , Sa′+b′uHd}, we have

h (tp) + h (tn) ≥ 2h (tm) . (2.24)

where tp : = S0u
v−1dw+1, tn : = S0u

v+1dw−1 and tm : = S0u
vdw.

Depending on the choice of v and w, there are 4 cases:

Case 1: h(tp) = h1(tp) and h(tn) = h1(tn). Then, given the form in (2.23), we have

h(tm) = h1(tm). Then, it is straightforward to show that (2.24) follows by linearity

of the function h1(tm).

Case 2: h(tp) = h2(tp) and h(tn) = h2(tn). This case follows similar to that of case 1.

Case 3: h(tp) = h1(tp) and h(tn) = h2(tn). Then, h(tm) would equal to either h1(tm)

or h2(tm). Without loss of generality assume that h(tm) = h1(tm). Then given that
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h(tn) = h2(tn), we conclude by the form in (2.23) that h2(tn) ≥ h1(tn). So, we derive

h (tp) + h (tn) = h1 (tp) + h2 (tn) ≥ h1 (tp) + h1 (tn) ≥ 2h1 (tm) = 2h (tm) .

Where the last inequality follows by the linearity of the h1(.) function.

Case 4: h(tp) = h2(tp) and h(tn) = h1(tn). This case follows similar to that of case

3.

Therefore, given Theorem (3), we can apply the dynamic programming approach,

and derive the portfolio value Vk(Sk−H , Sk) in (2.21) at level k = a + b + H, k ∈

{H, . . . , N − 1} of the super-replicating strategy, using representation (2.18), as

Vk(S0u
adb, Sk) =

H∑
j=0

e−r
[
pjΦTH+1(a,b) (a+H + 1, b)

+qjΦTH+1(a,b) (a, b+H + 1)

]
1{Sk=Sk−HujdH−j}, k = H, . . . , N − 1.

(2.25)

where pj and qj, j = 0, . . . , H are defined as in (2.19).

Plugging in (2.22) for k = H, . . . , N − 2, we obtain the key recursive formula

Vk(Sk−H , Sk) =
H∑
j=0

e−r
[
pjVk+1(Sk−Hu , Sk−Hu

H+1)

+qjVk+1(Sk−Hd , Sk−Hd
H+1 )

]
1{Sk=Sk−HujdH−j}, k = H, . . . , N − 2.

(2.26)

Remark 6. We can conclude that, when we are super-replicating backwards, the value

process Vk(Sk−H , Sk) in (2.21) is only required at the two extreme points Sk = Sk−Hu
H

23



Option Pricing with Delayed Information Chapter 2

S0

S0d

S0u

S0d
2

S0ud

S0u
2

S0d
3

S0ud
2

S0u
2d

S0u
3

S0d
4

S0ud
3

S0u
2d2

S0ud
3

S0u
4

time 0 time 1 time 2 time 3 time 4

Figure 2.2: Asset price process Sk in a 4-period binomial model

and Sk = Sk−Hd
H , because of the form on the right hand side of the recursive formula

(2.26). In other words, we just use (pu, qu) = (pH , qH) and (pd, qd) = (p0, q0).

Therefore, similar to (2.20), the super-replication price π̄(ϕ) can be finally calcu-

lated as

π̄(ϕ) = e−rH max
(
VH(S0, S0u

H),VH(S0, S0d
H)
)
. (2.27)

Direct Approach

In this section, we solve the recursive equation (2.26) and obtain the value process

Vk(Sk−H , Sk) for the super-replicating strategy explicitly. As Remark (6) suggests,

when we super-replicate backwards, we just need the value process at the extreme

points, that is Vk(Sk−H , Sk−HuH) and Vk(Sk−H , Sk−HdH), k = H, . . . , N − 1.

Define probability spaces (Ωk,Fk,Qk) for k = H, . . . , N − 1 with Ωk = {0, 1}Ñ+H ,

the Borel σ-algebra Fk on Ωk, and Ñ = N − k. For every ωk = (ωk,1, . . . , ωk,Ñ+H) ∈

Ωk, we define a coordinate map by Zk,m(ωk) = ωk,m for each m ∈ {1, . . . , Ñ +H}.

Let Qk be the probability measure under which Zk,m,m = 1, . . . , Ñ + H with
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initial position Zk,0 is a Markov chain, and for l = 1, . . . , Ñ − 1, it has transition

matrix

Q =

 qd pd

qu pu

 on {0, 1}, (2.28)

Besides, for l = Ñ , . . . , Ñ +H,

Qk

(
Zk,Ñ+H = · · · = Zk,Ñ = 1|Zk,Ñ−1 = 1

)
= pu,

Qk

(
Zk,Ñ+H = · · · = Zk,Ñ = −1|Zk,Ñ−1 = 1

)
= qu,

Qk

(
Zk,Ñ+H = · · · = Zk,Ñ = 1|Zk,Ñ−1 = 0

)
= pd,

Qk

(
Zk,Ñ+H = · · · = Zk,Ñ = −1|Zk,Ñ−1 = 0

)
= qd. (2.29)

The risky asset price Sk−H+m satisfies

Sk−H+m := Sk−Hu
Ik,mdm−Ik,m , Ik,m =

m∑
l=1

Zk,l, m = 1, . . . , Ñ +H , (2.30)

Remark 7. Under measures Qk, k = H, . . . , N−1, pu is the probability of an upward

move preceded with an upward move, qu is the probability of a downward move pre-

ceded with an upward move, pd is the probability of an upward move preceded with a

downward move, and qd is the probability of a downward move preceded with a down-

ward move. Besides, equations (2.29) are to ensure that the last H + 1 moves are all

either upward or downward.

Remark 8. Under measures Qk, k = H, . . . , N − 1, probability of a downward move

preceded by a downward move (qd) is higher than the probability of a downward move

preceded by an upward move (qd). Similar is also true for upward moves. So, the vari-
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ance of the risky asset price is higher under these measures than the initial measure

P.

Remark 9. If we put H = 0, the transition matrix (2.28) would have duplicate

rows (i.e. pu = pd and qu = qd). Therefore, in this case, the model boils down

to the binomial tree model of [10], and all the equations get significantly simplified

accordingly.

Theorem (4) expresses Vk(Sk−H , Sk−HuH) and Vk(Sk−H , Sk−HdH), k = H, . . . , N−

1 as expectations under the measure Qk.

Theorem 4. For a European-style contingent claim with payoff ϕ := Φ(SN) for

some convex function Φ(SN) ∈ L∞(Ωk,Fk,Qk), k = H, . . . , N − 1, the value process

Vk(Sk−H , Sk−HuH) and Vk(Sk−H , Sk−HdH), k = H, . . . , N−1 for the super-replicating

strategy, in an N-period binomial model with H periods of delay, can be calculated as

Vk(Sk−H , Sk−HuH) = e−rÑEQk (Φ (SN) |Zk,0 = 1) , (2.31)

Vk(Sk−H , Sk−HdH) = e−rÑEQk (Φ (SN) |Zk,0 = 0) . (2.32)

Proof. We need to show that (2.31) and (2.32) satisfy the recursive equation (2.26)

for k = H, . . . , N − 2, and equation (2.25) for k = N − 1. For k = N − 1, it is already

shown in (2.18), and for k = H, . . . , N − 2, by conditioning on Zk,1, (2.31) satisfies

Vk(Sk−H , Sk−HuH) = e−rÑEQk (Φ (SN) |Zk,0 = 1) ,

= e−rÑ

[
EQk (Φ (SN) |Zk,0 = 1, Zk,1 = 0)Qk(Zk,1 = 0|Zk,0 = 1)

+EQk (Φ (SN) |Zk,0 = 1, Zk,1 = 1)Qk(Zk,1 = 1|Zk,0 = 1)

]
.
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Note that by the way the spaces (Ωk,Fk,Qk) and (Ωk+1,Fk+1,Qk+1) are con-

structed,

EQk (Φ (SN) |Zk,0 = 1, Zk,1 = 0) = e−rEQk+1 (Φ (SN) |Zk+1,0 = 0) ,

EQk (Φ (SN) |Zk,0 = 1, Zk,1 = 1) = e−rEQk+1 (Φ (SN) |Zk+1,0 = 1) .

Also, Qk(Zk,1 = 0|Zk,0 = 1) = qu and Qk(Zk,1 = 1|Zk,0 = 1) = pu. Therefore,

Vk(Sk−H , Sk−HuH) = e−rÑ
[
puEQk+1 (ϕ (SN) |Zk+1,0 = 1)

+quEQk+1 (ϕ (SN) |Zk+1,0 = 0)

]
,

= e−r
[
puVk+1(Sk−H+1 = Sk−Hu, Sk+1 = Sk−Hu

H+1)

+quVk+1(Sk−H+1 = Sk−Hd, Sk+1 = Sk−Hd
H+1)

]
.

which completes the proof. Similarly, it can also be shown for (2.32).

Remark 10. If we are interested just to find out the time-0 super-replication price

π̄(ϕ), we only need the probability space (ΩH ,FH ,QH) where ΩH = {0, 1}N . Then,

we would have

π̄(ϕ) = e−rN max
{
EQH (Φ (SN) |ZH,0 = 1) ,EQH (Φ (SN) |ZH,0 = 0)

}
. (2.33)

Lemma 1 calculates EQk (Φ (SN) |Zk,0 = 1), k = H, . . . , N − 1.

For H + 1 ≤ i ≤ Ñ +H − 1, 1 ≤ j ≤ min(i−H, Ñ +H − i). Define

f(i, j) :=

(
Ñ +H − i− 1

j − 1

)(
i−H
j

)
q(j)
u q

(Ñ+H−i−j)
d p(i−j−H)

u p
(j)
d . (2.34)
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Also for 0 ≤ i ≤ Ñ − 2, 1 ≤ j ≤ min(i+ 1, Ñ − i− 1), define

h(i, j) :=

(
Ñ − i− 2

j − 1

)(
i

j − 1

)
q(j)
u q

(Ñ−i−j)
d p(i−j+1)

u p
(j−1)
d

+

(
Ñ − i− 2

j − 1

)[(
i+ 1

j

)
−
(

i

j − 1

)]
q(j+1)
u q

(Ñ−i−j−1)
d p(i−j)

u p
(j)
d .

(2.35)

Lemma 1. For a function Φ(SN) ∈ L∞(Ωk,Fk,Qk), k = H, . . . , N−1, the conditional

expectation EQk (Φ (SN) |Zk,0 = 1) can be explicitly calculated as

EQk (Φ (SN) |Zk,0 = 1) =
Ñ+H∑
i=0

Qk

(
SN = Sk−Hu

idÑ+H−i|Zk,0 = 1
)

Φ(Sk−Hu
idÑ+H−i),

(2.36)

where Qk

(
SN = Sk−Hu

idÑ+H−i |Zk,0 = 1
)

is given by



min(i+1,Ñ−i−1)∑
j=1

h(i, j) 0 ≤ i ≤ H;

min(i+1,Ñ−i−1)∑
j=1

h(i, j) +
min(i−H,Ñ+H−i)∑

j=1

f(i, j) H + 1 ≤ i ≤ Ñ − 2;

p
(Ñ−1)
u qu +

min(Ñ−H−1,H+1)∑
j=1

f(i, j) i = Ñ − 1;

min(i−H,Ñ+H−i)∑
j=1

f(i, j) Ñ ≤ i ≤ Ñ +H − 1;

p
(Ñ)
u i = Ñ +H,

(2.37)
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Proof. Note that Qk

(
SN = Sk−Hu

idÑ+H−i|Zk,0 = 1
)

, i = 0, . . . , Ñ +H is the sum of

several products of Ñ elements chosen out of {pu, pd, qu, qd}, and each product term

corresponds to a path in the tree starting from the node Sk−H , and ending in the

node SN = Sk−Hu
idÑ+H−i.

Given equations (2.29), the last H + 1 moves need to be either upward or down-

ward, and they contribute to as just one single move. Since it is conditioned on

Zk,0 = 1, according to Remark (7), the first element in all of the product terms is either

qu or pu. For H+1 ≤ i ≤ Ñ−2, the last (H+1)-period move to SN = Sk−Hu
idÑ+H−i

can be both downward and upward.

In the case that it is upward, we need to consider all the paths starting from

Sk−H to SN−2 = Sk−Hu
i−2dÑ+H−i which consist of i − 2 upward moves and Ñ +

H − i downward ones. There are
(
Ñ+H−2

ı−2

)
of such paths, but these paths are not

all equivalent and result in different product terms of Ñ elements chosen out of

{pu, pd, qu, qd}, based on the location of the Ñ +H − i downward moves in the path.

Note that all paths which have the same number of downward groups result in the

same product terms, where a downward group is any number of consecutive downward

moves preceded (if any) by an upward move and also succeeded (if any) by an upward

move. For example, both of the sequences↗↘↘↘↗↘ and↘↘↗↗↘↘ have two

groups of ↘ moves. The reason for studying downward groups is that the starting

element in all of them is qu.

In this notation, j corresponds to the number of groups which starts from 1

(assuming that there exists at least one downward move) and can reach to min(i −

H, Ñ + H − i). Notice that there are
(
Ñ+H−i−1

j−1

)(
i−H
j

)
paths which have exactly j

groups. Therefore, along those path the power of both qu and pd is j and consequently,

the powers of qd and pu are respectively Ñ +H − i− j and i− j −H. Here f(i, j) in
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equation (2.34) corresponds to these paths.

The second case is that the last (H+1)-period move is downward. Then, we need

to consider all the paths starting from the node Sk−H to SN−2 = Sk−Hu
idÑ+H−i−2

which consist of i upward moves and Ñ + H − i − 2 downward ones. Here not

only the number of downward moves is important, but also the direction (upward or

downward) of the move from time N − 3 to N − 2 is also relevant.

Note that there are
(
Ñ−i−2
j−1

)(
i

j−1

)
paths which have exactly j groups such that the

last 1-period move from N − 3 to N − 2 is downward, so the corresponding product

term is q
(j)
u q

(Ñ−i−j)
d p

(i−j+1)
u p

(j−1)
d , and there are

(
Ñ−i−2
j−1

)
[
(
i+1
j

)
−
(

i
j−1

)
] paths which have

exactly j groups such that the last 1-period move from N − 3 to N − 2 is upward.

The function h(i, j) in equation (2.35) takes all these paths into account.

For H + 1 ≤ i ≤ Ñ − 2, it is necessary to use both f(i, j) and h(i, j) to take

into account that the last (H + 1)-period move can be both upward and downward.

The same reasoning works for 0 ≤ i ≤ H and Ñ ≤ i ≤ Ñ + H − 1, but here the

last (H + 1)-period move can only be downward for 0 ≤ i ≤ H and upward for

Ñ ≤ i ≤ Ñ +H − 1. For i = Ñ − 1 when the last (H + 1)-period move is downward

and i = Ñ + H, the fuctions f(i, j) and h(i, j) cannot be used because in all of the

paths from Sk−H to SN−2 = Sk−Hu
Ñ+H−2, there is not any downward move at all to

make a downward group (i.e, j = 0).

Similarly, Lemma 2 calculates EQk (Φ (SN) |Zk,0 = 0), k = H, . . . , N − 1. Also for
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H + 2 ≤ i ≤ Ñ +H, 1 ≤ j ≤ min(i−H − 1, Ñ +H − i+ 1), define

f̃(i, j) :=

(
i−H − 2

j − 1

)(
Ñ +H − i
j − 1

)
q(j−1)
u q

(Ñ+H−i−j+1)
d p(i−j−H)

u p
(j)
d

+

(
i−H − 2

j − 1

)[(
Ñ +H − i+ 1

j

)
−
(
Ñ +H − i
j − 1

)]
q(j)
u q

(Ñ+H−i−j)
d p(i−j−H−1)

u p
(j+1)
d .

(2.38)

For 1 ≤ i ≤ Ñ − 1, 1 ≤ j ≤ min(i, Ñ − i), define

h̃(i, j) :=

(
i− 1

j − 1

)(
Ñ − i
j

)
q(j)
u q

(Ñ−i−j)
d p(i−j)

u p
(j)
d . (2.39)

Lemma 2. For a function Φ(SN) ∈ L∞(Ωk,Fk,Qk), k = H, . . . , N−1, the conditional

expectation EQk (Φ (SN) |Zk,0 = 1) can be explicitly calculated as

EQk (Φ (SN) |Zk,0 = 1) =
Ñ+H∑
i=0

Qk

(
SN = Sk−Hu

idÑ+H−i|Zk,0 = 1
)

Φ(Sk−Hu
idÑ+H−i),

(2.40)

where Qk

(
SN = Sk−Hu

idÑ+H−i |Zk,0 = 1
)

is given by
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q
(Ñ)
d i = 0

min(i,Ñ−i)∑
j=1

h̃(i, j) 1 ≤ i ≤ H;

q
(Ñ−1)
d pd +

min(H+1,Ñ−H−1)∑
j=1

h̃(i, j) i = H + 1;

min(i,Ñ−i)∑
j=1

h̃(i, j) +
min(i−H−1,Ñ+H−i+1)∑

j=1

f̃(i, j) H + 2 ≤ i ≤ Ñ − 1;

min(i−H−1,Ñ+H−i+1)∑
j=1

f̃(i, j) Ñ ≤ i ≤ Ñ +H.

(2.41)

Proof. The proof follows very similarly as that of Lemma 1 with only this difference

that since Zk,0 = 0, we look for upward groups instead of downward groups.

2.3.6 Geometrical Representation

In this subsection, we first discuss Theorem 2 from a geometrical perspective Then,

we represent the dynamic programming approach in subsection 2.3.5 geometrically

For convenience, assume that interest rate r = 0, and H = 1 in this subsection.

In Theorem 2, we discussed that in an N -period binomial model with H = N − 1

periods of delay, for a European-style convex contingent claim with payoff function

ϕ := Φ(SN) ∈ L∞(Ω,F,P), there exist ∆∗H and x∗0 such that

VH(S0, SH) = x∗0 + ∆∗HSH . (2.42)
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S2

Φ(S2)

S0d2 S0d S0S0ud S0u S0u2

x∗0

Φ
Optimal Line

V1(S0, S1 = S0u)

V1(S0, S1 = S0d)

Figure 2.3: Super-replicating Strategy in a 2-period binomial Model with a
1-period Delay. The optimal line characterizes the super-replicating strategy.
The slope of it is ∆∗1 and its intercept is x∗0. The super-replication price is
π̄(ϕ) = max {V1(S0, S1 = S0d),V1(S0, S1 = S0u)}.

This suggests that there exists a line with slope ∆∗H and intercept x∗0 such that the

super-replicating value function VH(S0, SH) lie on that line. Figure 2.3 shows this

optimal line, the super-replication price, and the super-replicating value functions in

a 2-period binomial model with 1 period of delay.

It is more intuitive to demonstrate the dynamic programming approach in sub-

section 2.3.5 geometrically Figure 2.2 shows a 4-period binomial model with 1-period

delay. Figure 2.4 shows how to geometrically find the super-replication price for a

contingent claim with convex payoff function (Φ(.)). For convenience and to avoid a

clutter of points on the x-axis, suppose ud = 1, so some of the points in the model

lie on each other.

Now in order to find the super-replication prices at time 3, it is necessary to

consider the three 2-period binomial models with 1-period delay T2(2, 0), T2(1, 1)

and T2(0, 2). In Figure 2.4, the lines (om), (nl) and (mk) show the optimal super-

replication lines for each of these models respectively. As it can be seen, there are two

payoffs at either of the nodes S3 = S0u
2d and S3 = S0ud

2 depending on which subtree

is used for pricing (i.e. depending on what S1 is). Now, we go one period further back
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S4

Φ(S4)

S0d
4 S0d

3 S0ud
3 S0ud

2S0u
2d2S0u

2d S0u
3d S0u

3 S0u
4

S0d
2 S0d S0ud S0u S0u

2

S0

Φ

mk nl

omjh

ig

fd
V1(S0, S1 = S0u)
V1(S0, S1 = S0d)

Figure 2.4: Geometrical Representation of the Super replicating Strategy in a
4-period binomial Model with 1-period Delay using a Dynamic Programming Ap-
proach

to find out the payoffs at time 2. We need to consider two 2-period models T2(1, 0)

and T2(0, 1). Note that in each of these two models, the corresponding payoff at nodes

S2 = S0u
2d (out of two payoffs ΦT2(1,0) (2, 1) and ΦT2(0,1) (2, 1) ) and S2 = S0ud

2 (out

of two payoffs ΦT2(1,0) (1, 2) and ΦT2(1,0) (1, 2) ) needs to be chosen. As Theorem (3)

suggests, the payoff functions for both of these models are convex. The lines (jh)

and (ig) demonstrate the optimal lines for these models. Similarly, to calculate the

payoff at time 1, the 2-period model T2(0, 0) needs to be used and the line (fd)

shows the optimal line for this model. Finally, we have the super-replication price

π̄(ϕ) = max {V1(S0, S1 = S0d),V1(S0, S1 = S0u)}.

2.4 Continuous Time Model

In this section, we discuss the asymptotic behavior of the model. We define the

probability spaces (Ωn,Fn,Qn), n ∈ N such that Ωn = {0, 1}n, and Fn is the Borel
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σ-algebra on Ωn. For every ωn = (ωn1 , . . . , ω
n
n) ∈ Ωn, we define a coordinate map by

Zn
` (ωn) = ωn` for each ` ∈ {1, . . . , n}. Define the filtration {Fn` , ` = 0, . . . , n}, where

Fn` is the σ-field σ(Zn
1 , . . . , Z

n
` ) generated by the first ` variables for ` = 1, . . . , n and

F0 is the trivial σ-field.

Let µ, σ, r ∈ [0,∞), H ∈ N, and T > 0 (fixed time horizon). Then, define the

sequences

µn = µTδ2
n, σn = σ

√
Tδn, un = exp (µn + σn),

dn = exp (µn − σn), rn = rTδ2
n, Hn = HTδ2

n. (2.43)

Where the order δn = 1/√n, as in Donsker’s theorem.

Remark 11. H characterizes the number of periods we have delayed information,

which is constant in the asymptotic analysis. However, Hn is the amount of time

we have delayed information, which should vanish in the limit. Otherwise, the super-

replication price would explode and converge to the maximum of the contingent claim

payoff function.

2.4.1 Price Process Asymptotic

Define the probability measures Qn, similar to (2.28) and (2.29), such that Zn
` , ` =

1, . . . , n with initial position Zn
0 is a Markov chain, and for ` = 1, . . . , n −H − 1, it

has transition matrix

Qn =

 qn,d pn,d

qn,u pn,u

 on {0, 1}, (2.44)
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Besides, for m = n−H, . . . , n,

Qn
(
Zn
n = · · · = Zn

n−H = 1|Zn
n−H−1 = 1

)
= pn,u,

Qn
(
Zn
n = · · · = Zn

n−H = −1|Zn
n−H−1 = 1

)
= qn,u,

Qn
(
Zn
n = · · · = Zn

n−H = 1|Zn
n−H−1 = 0

)
= pn,d,

Qn
(
Zn
n = · · · = Zn

n−H = −1|Zn
n−H−1 = 0

)
= qn,d. (2.45)

Where pn,u, qn,u, pn,d and qn,d are defined, similar to (2.19), as

pn,u :=
u

(H)
n ern − d(H+1)

n

u
(H+1)
n − d(H+1)

n

= 1− qn,u, pn,d :=
d

(H)
n ern − d(H+1)

n

u
(H+1)
n − d(H+1)

n

= 1− qn,d, (2.46)

Then, the risky asset price Sn` , similar to (2.1), satisfies

Sn` = S0 exp

[
`µn + σn

∑̀
i=1

Xn
i

]
, ` = 0, . . . , n. (2.47)

Where Xn
i = 2Zn

i − 1.

Lemma 3 provides asymptotic for pn,u and pn,d.

Lemma 3. We have

pn,u =
2H + 1

2(H + 1)
−
(

µ− r
2 (H + 1)σ

+
2H + 1

4(H + 1)
σ

)√
Tδn +O

(
δ2
n

)
, (2.48)

pn,d =
1

2(H + 1)
−
(

µ− r
2 (H + 1)σ

+
2H + 1

4(H + 1)
σ

)√
Tδn +O

(
δ2
n

)
. (2.49)

Proof. The proof simply follows by using Taylor’s expansion on un, dn and rn, and

plugging them in (2.46).

Discretize the time interval by setting tn` := T`/n. By interpolating the risky asset
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price process (Sn` ) on the intervals [tn`−1, t
n
` ) constant piecewisely, we get the process

S(n) = (S
(n)
t )0≤t≤T

S
(n)
t := Snbntc/T , 0 ≤ t ≤ T, (2.50)

Where b.c is the floor function.

The process S(n) has trajectories which are right continuous with left limits. Note

that in particular

S
(n)
tn`

= Sn` , ` = 0, . . . , n.

Here, S(n) under measure Qn is distributed according to a probability measure ρn on

the Skorokhod space D[0, T ] of right continuous functions with left limits. Theorem

5 provides a weak convergence for the sequence (ρn)n∈N.

Theorem 5. The sequence of processes (S(n))n∈N converges in distribution to the

process (St)0≤t≤T with dynamics

dSt = rStdt+ σ̃dWt, 0 ≤ t ≤ T. (2.51)

Where (Wt)0≤t≤T is a Brownian motion, and we have the enlarged volatility

σ̃ =
√

2H + 1σ. (2.52)

Proof. First, note that

Qn
(
Xn
` = 1|Xn

`−1

)
=

1

2

[
pn,u + pn,d +Xn

`−1 (pn,u − pn,d)
]
, ` = 1, . . . , n−H − 1,
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According to Lemma 3, we conclude that

Qn
(
Xn
` = 1|Fn`−1

)
= p`

(
`,Xn

`−1

)
, ` = 1, . . . , n−H − 1,

where in the notation of [24]

pn(`, x) =
1

2
[1 + φδn + λnx] +O(δ2

n),

φ = −2

[
µ− r

2 (H + 1)σ
+

2H + 1

4 (H + 1)
σ

]√
T ,

λn =
H

H + 1
+O(δ2

n).

[24] provides a functional central limit theorem for generalized correlated random

walks. If we define functions an(t, y) := λn and bn(t, y) := φ, theorem 1 and remark

3 in [24] and continuous mapping theorem show that S(n), regardless of the initial

distribution of Xn
0 , converges in distribution to (St)0≤t≤T in (2.51). Note that here

λn = pn,u−pn,d corresponds to the gap caused by the delay in the flow of information,

and this is the main source making the price process under the pricing measure more

volatile. A brief summary of the asymptotic results in [24] are provided in (A).

2.4.2 Exaggerated Volatility Smile

In this subsection, we discuss the volatility smile of the model, and how it evolves

with the number of periods (n). Volatility smile is the graph of Black-Scholes implied

volatility with respect to the strike price. Implied volatility is the value of the volatility

in the Black-Scholes pricing model which generates a price equal to that of our model.

Several market features, such as crash phobia, have been attributed as the culprits

of the market smile. The volatility smile has been one of the central topics in option
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pricing literature, and many models have been developed to capture it. We refer to

[19] for more discussion in this regard.

Our model with delayed information shows that delayed information exaggerates

the smile. Figure 2.5 plots the volatility smiles for call and put options in the model

with and without delayed information when n = 100. In the model with delayed

information (Hn = 1
100

year ≈ 2.52 days), we observe volatility smile, on the contrary

with the model without delayed information where we get an almost flat smile, which

is expected according to the Remark 9. Note that in the model with delayed infor-

mation, we have different smiles for call and put option, and that is because there is

not any call-put parity, as discussed in Remark 3.

Figure 2.5 plots the volatility smiles for call and put options when the number

of periods is very big (n = 250, 000) for the model with delayed information (Hn =

1
250,000

year ≈ 30 seconds). We observe almost the same flat volatility smiles for both

call and put options, which can be also calculated by the theoretical results in 2.52.

These volatility smiles in Figures 2.5 and 2.6 confirm the intuition of traders that

delayed information would exaggerate the volatility smile, but it is not its culprit.

This is because in the continuous limit, volatility is constant and there is no smile,

but in the discrete model, we can observe volatility smile. Therefore, it conveys that

the smile observed in the market might have been exaggerated by the way we interact

with delayed information, and the smile might not be caused all by the market itself.
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Figure 2.5: Volatility smile for the Call and Put options in the binomial model
with and without delayed information (Hn = 1

100 year ≈ 2.52 days and 0 day
respectively). The parameters are σ = 0.1, T = 1, r = 0, S0 = 40, and n = 100

Figure 2.6: Volatility smile for the Call and Put options in the binomial model
with delayed information (Hn = 1

250,000 year ≈ 30 seconds). The parameters are
σ = 0.1, T = 1, r = 0, S0 = 40, and n = 250, 000
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Chapter 3

Systemic Risk and Stochastic

Games with Delay

3.1 Abstract

We propose a model of inter-bank lending and borrowing which takes into account

clearing debt obligations. The evolution of log-monetary reserves of N banks is de-

scribed by coupled diffusions driven by controls with delay in their drifts. Banks are

minimizing their finite-horizon objective functions which take into account a quadratic

cost for lending or borrowing and a linear incentive to borrow if the reserve is low

or lend if the reserve is high relative to the average capitalization of the system. As

such, our problem is an N -player linear-quadratic stochastic differential game with

delay. An open-loop Nash equilibrium is obtained using a system of fully coupled

forward and advanced backward stochastic differential equations. We then describe

how the delay affects liquidity and systemic risk characterized by a large number of

defaults. We also derive a close-loop Nash equilibrium using an HJB approach. This
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chapter is a joint work with René Carmona, Jean-Pierre Fouque and Li-Hsien Sun.

3.2 Introduction

In [6], we proposed a stochastic game model of inter-bank lending and borrowing

where banks borrow from or lend to a central bank with no obligation to pay back

their loans and no gain from lending. The main finding was that in equilibrium,

the central bank is acting as a clearing house, liquidity is created, thus leading to a

more stable system. Systemic risk was analyzed as in [15] in the case of a linear model

without control. Systemic risk being characterized as the rare event of a large number

of defaults occurring when the average capitalization reaches a prescribed level, the

conclusion was that inter-bank lending and borrowing leads to stability through a

flocking effect. For this type of interaction without control, we also refer to [14, 17]

and [18].

In order to make the toy model of [6] more realistic, we introduce delay in the

controls. This forces banks to take responsibility for past lending and borrowing. In

this paper, the evolution of the log-monetary reserves of N banks is described by a

system of delayed stochastic differential equations, and banks try to minimize their

costs or maximize their profits by controlling the rate of borrowing or lending. They

interact via the average capitalization meaning that banks consider this average as a

critical level to determine borrowing from or lending to the central bank.

We identify open-loop Nash equilibria by solving fully coupled forward and ad-

vanced backward stochastic differential equations (FABSDEs) introduced by [39]. Our

conclusion is that the new effect created by the need to pay back or receive refunds

due to the presence of the delay in the controls, reduces the liquidity observed in the
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case without delay. However, despite these quantitative differences, the central bank

is still acting as a clearing house. A closed-loop Nash equilibrium to this stochas-

tic game with delay is derived from the Hamilton-Jacobi-Bellman (HJB) equation

approach using the results in [22] and we provide a verification Theorem.

For a general introduction to BSDEs, stochastic control and stochastic differen-

tial games without delay, we refer to the recent monograph [5]. Stochastic control

problems with delay have been studied from various points of view. When the de-

lay only appears in the state variable, solutions to delayed optimal control problems

were derived from variants of the Pontryagin-Bismut-Bensoussan stochastic maximum

principle. See for instance [36] and [37]. Alternatively, in order to use dynamic pro-

gramming, [32] and [33] reduce the system with delay to a finite-dimension problem,

but still the delay does not appear in the control like in the case we want to study.

The general case of stochastic optimal control of stochastic differential equations

with delay both in the state and the control is studied using an infinite-dimensional

HJB equation in [21], and [22]. The case with pointwise delayed control is studied in

[23]. The general stochastic control problem in the case of delayed states and controls

both appearing in the forward equation is studied in [8], [9] and [43] by using the

forward and advanced backward stochastic equations. Linear-Quadratic mean field

Stackelberg games with delay and with a major player and many small players are

studied in [2].

The typical problem studied in this paper can be described as follows. The dy-

namics of the log-monetary reserves of N banks are given by the following coupled

diffusion processes X i
t , i = 1, · · · , N ,

dX i
t =

(
αit − αit−τ

)
dt+ σdW i

t , 0 ≤ t ≤ T, (3.1)
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where W i
t , i = 1, · · · , N are independent standard Brownian motions, and the rate

of borrowing or lending αit represents the control exerted by bank i on the system.

In this example, we use the simplest possible form of delay, the delayed control αit−τ

corresponding to repayments after a fixed time τ such that 0 ≤ τ ≤ T . We shall use

deterministic initial conditions given by

X i
0 = ξi, and αit = 0, t ∈ [−τ, 0). (3.2)

For simplicity, we assume that the banks have the same volatility σ > 0. In what

follows we use the notations X = (X1, · · · , XN), x = (x1, · · · , xN), α = (α1, · · · , αN),

and x = 1
N

∑N
i=1 x

i.

Before concentrating on the specific case (3.1), we prove a dedicated version of

the sufficient condition of the Pontryagin stochastic maximum principle for a more

general class of models for which the dynamics of the states are given by stochastic

differential equations of the form:

dX i
t =

(∫ τ

0

αit−sθ(ds)

)
dt+ σdW i

t , 0 ≤ t ≤ T, (3.3)

where θ is a nonnegative measure on [0, τ ]. The special case (3.1) corresponds to

θ = δ0 − δτ .

Bank i chooses its own strategy αi in order to minimize its objective function of

the form:

J i(α) = E
{∫ T

0

fi(Xt, α
i
t)dt+ gi(XT )

}
. (3.4)

In this paper, we concentrate on the running and terminal cost functions used in [6],
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namely:

fi(x, α
i) =

(αi)2

2
− qαi(x− xi) +

ε

2
(x− xi)2, q ≥ 0, ε > 0, (3.5)

and

gi(x) =
c

2

(
x− xi

)2
, c ≥ 0, (3.6)

with q2 < ε so that fi(x, α) is convex in (x, α). Note that the case τ > T corresponds

to no repayment and therefore no delay in the equations,. The case τ = 0 corresponds

to the case with no control and therefore no lending or borrowing. The term qαi(x−

xi) in the objective function (3.5) is an incentive to lend or borrow from a central

bank which in this model does not make any decision and simply provides liquidity.

However, we know that in the case with no delay ([6]), in equilibrium, the central

bank acts as a clearing house. We will see in Section 3.7 that this is still the case

with delay.

The paper is organized as follows. In Section 3.3, we briefly review the model

without delay presented in [6]. The analysis of the stochastic differential games with

delay is presented in Section 3.4 where we derive an exact open-loop Nash equilibrium

using the FABSDE approach. In the process, we derive the clearing house role of

the central bank in Remark 12. Section 3.5 is devoted to the derivation of a closed-

loop equilibrium using an infinite-dimensional HJB equation approach with pointwise

delayed control presented in [23]. In Section 3.6, we provide a verification Theorem.

The effect of delay in term of financial implication is discussed in Section 3.7 where

the main finding is that the introduction of delay in the model does not change the

fact that in equilibrium, the central bank acts as a clearing house. However, liquidity

is affected by the delay time.
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3.3 Stochatic Games and Systemic Risk

The aim of this section is to briefly review the model of inter-bank lending or

borrowing without delay studied in [6]. It is described by the model presented in the

previous section but with τ > T so that the delay term αit−τ in (3.1) is simply zero.

The setup (3.4,3.5,3.6) of the stochastic game remains the same.

The open-loop problem consists in searching for an equilibrium among strategies

{αit, i = 1, · · · , N} which are adapted processes satisfying some integrability property

such as E
(∫ T

0
|αit|dt

)
<∞. The Hamiltonian for bank i is given by

H i(x, yi, α) =
N∑
k=1

αkyi,k +
(αi)2

2
− qαi(x− xi) +

ε

2
(x− xi)2, (3.7)

where yi = (yi,1, · · · , yi,N), i = 1, · · · , N are the adjoint variables.

For a given α = (αi)i=1,···,n, the controlled forward dynamics of the states X i
t are

given by (3.1) without the delay term and with initial conditions X i
0 = ξi. The adjoint

processes Y i
t = (Y i,j

t ; j = 1, · · · , N) and Zi
t = (Zi,j,k

t ; j = 1, · · · , N, k = 1, · · · , N)

for i = 1, · · · , N are defined as the solutions of the backward stochastic differential

equations (BSDEs):

dY i,j
t = −∂xjH i(Xt, Y

i
t , αt)dt+

N∑
k=1

Zi,j,k
t dW k

t (3.8)

with terminal conditions Y i,j
T = ∂xjgi(XT ) for i, j = 1, · · · , N where gi is given by

(3.6). For each admissible strategy profile α = (αi)i=1,···,n, standard existence and

uniqueness results for BSDEs apply and the existence of the adjoint processes is
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guaranteed. Note that from (3.7), we have

∂xjH
i = −qαi( 1

N
− δi,j) + ε(x− xi)( 1

N
− δi,j).

The necessary condition of the Pontryagin stochastic maximum principle suggests

that one minimizes the Hamiltonian H i with respect to αi which gives:

α̂i = −yi,i + q(x− xi). (3.9)

With this choice for the controls αi, the forward equation becomes coupled with the

backward equation (3.8) to form a forward-backward coupled system. In the present

linear-quadratic case, we make the ansatz

Y i,j
t = φt(

1

N
− δi,j)(X t −X i

t), (3.10)

for some deterministic scalar function φt satisfying the terminal condition φT = c.

Using this ansatz, the backward equations (3.8) become

dY i,j
t = (

1

N
− δi,j)(X t −X i

t)

[
q(1− 1

N
)φt − (ε− q2)

]
dt+

N∑
k=1

Zi,j,k
t dW k

t . (3.11)

Using (3.9) and (3.10), the forward equation becomes

dX i
t =

[
q + (1− 1

N
)φt

]
(X t −X i

t)dt+ σdW i
t . (3.12)

Differentiating the ansatz (3.10) and identifying with the Ito’s representation (3.11),
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one obtains from the martingale terms the deterministic adjoint variables

Zi,j,k
t = φtσ(

1

N
− δi,j)(

1

N
− δi,k) for k = 1, · · · , N,

and from the drift terms that the function φt must satisfy the scalar Riccati equation

φ̇t = 2q(1− 1

2N
)φt + (1− 1

N
)φ2

t − (ε− q2), (3.13)

with the terminal condition φT = c. The explicit solution is given in [6]. Note that

the form (3.9) of the control αit, and the ansatz (3.10) combine to give:

αit =

[
q + (1− 1

N
)φt

]
(X t −X i

t), (3.14)

so that, in this equilibrium, the forward equations become

dX i
t =

(
q + (1− 1

N
)φt

)
(X t −X i

t)dt+ σdW i
t . (3.15)

Rewriting (X t − X i
t) as 1

N

∑N
j=1(Xj

t − X i
t), we see that the central bank is simply

acting as a clearing house. From the form (3.15), we observe that the X i’s are mean-

reverting to the average capitalization given by

dX t =
σ

N

N∑
j=1

dW j
t , X0 =

1

N

N∑
j=1

ξj.

In [15], we identified the systemic event as

{
min

0≤t≤T
(X t −X0) ≤ D

}
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and we computed its probability

P
(

min
0≤t≤T

(X t −X0) ≤ D

)
= 2Φ

(
D
√
N

σ
√
T

)
, (3.16)

where Φ is the N (0, 1)-cdf. This systemic risk probability is exponentially small of

order exp(−D2N/(2σ2T )) as in the large deviation estimate.

3.4 Stochastic Games with Delay

Most often, a tailor made version of the stochastic maximum principle is used as

a workhorse to construct open loop Nash equilibria for stochastic differential games.

Here, we provide such a tool in a more general set up than used in the paper because

we believe that this result is of independent interest on its own. We then specialize

it to the model considered for systemic risk in Section 3.4.3.

3.4.1 The Model

We work with a finite horizon T > 0. Recall that we denote by τ > 0 the delay

length. As explained in the introduction, the delay is implemented with a (signed)

measure θ on [0, τ ], and in the case of interest, we shall use the particular case

θ = δ0 − δτ . All the stochastic processes are defined on a probability space (Ω,F ,P)

equipped with a right continuous filtration F = (Ft)0≤t≤T . The state and control

processes are denoted by X = (Xt)0≤t≤T and ff = (αt)0≤t≤T . They are progressively

measurable processes with values in (Rd)N and a closed convex subset A of (Rd)N
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respectively. They are linked by the dynamical equation:

dXt =< α[t], θ > dt+ σdWt (3.17)

where W = (Wt)0≤t≤T is a (d × N)-dimensional F-Brownian motion, σ is a positive

constant or a matrix. We use the notation α[t] = α[t−τ,t] for the restriction of the path

of α to the interval [t−τ, t]. By convention, and unless specified otherwise, we extend

functions defined on the interval [0, T ] to functions on [−τ, T + τ ] by setting them

equal to 0 outside the interval [0, T ]. Also, we use the bracket notation < f, θ > to

denote the integral
∫ τ

0
f(s)θ(ds).

We assume that the dynamics of the state Xt of the system are given by a stochas-

tic differential equation (3.17) which we can rewrite in coordinate form if we denote

by X i
t the N components of Xt, in which case we can interpret X i

t as the private state

of player i:

dX i
t =

(∫ τ

0

αit−sθ(ds)

)
dt+ σdW i

t , 0 ≤ t ≤ T, (3.18)

where the components W i
t , i = 1, · · · , N of Wt are independent standard Wiener

processes, and the component processes (αit)t≥0 can be interpreted as the strategies

used by the individual players. As explained in the introduction, θ is a nonnegative

measure on [0, τ ] implementing the impact of the delay on the dynamics. Recall

that the special case of interest corresponds to θ = δ0 − δτ . We assume the initial

conditions:

X i
0 = ξi, and αit = 0, t ∈ [−τ, 0). (3.19)

The assumptions that the various states have the same volatility σ > 0 and the
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delay measure θ is the same for all the players are only made for convenience. These

symmetry properties are important to derive mean field limits, but they are not really

needed when we deal with finitely many players. The objective function of player i

is given by (3.4) which we repeat here:

J i(α) = E
{∫ T

0

fi(Xt, α
i
t)dt+ gi(XT )

}
.

For the sake of simplicity, we assume that the cost fi to player i depends only upon

the control αit of player i, and not on the controls αjt for j 6= i of the other players. In

the case of games with mean field interactions, the cost functions are often of the form

fi(x, α) = f(xi, x, α) and gi(x) = g(xi, x), as in the particular case of the systemic

risk model studied in this paper where:

fi(x, α
i) = f(xi, x, αi) =

(αi)2

2
− qαi(x− xi) +

ε

2
(x− xi)2,

for q ≥ 0 and ε > 0 as in (3.5), and:

gi(x) = g(xi, x) =
c

2

(
x− xi

)2
, c ≥ 0,

as in (3.6) and with q2 < ε to make sure that fi(x, α) is convex in (x, α). Next, we

introduce the system of adjoint equations.

3.4.2 The Adjoint Equations

For each player i and each given admissible control αi = (αit)0≤t≤T for player i,

we define the adjoint equation for player i as the Backward Stochastic Differential
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Equation (BSDE):

dY i
t = −∂xfi(Xt, α

i
t)dt+ Zi

tdWt, 0 ≤ t ≤ T (3.20)

with terminal condition Y i
T = ∂xgi(XT ), and we call the processes Yi = (Y i

t )0≤t≤T and

Zi = (Zi
t)0≤t≤T the adjoint processes corresponding to the strategy αi = (αit)0≤t≤T

of player i. Notice that each Yi has the same dimension as X, namely N × d if

d is the dimension of each individual player private state X i
t , while each Zi has

dimension N2 × d. Accordingly, we shall use the notation Y i
t = (Y i,j

t )j=1,···,N where

each Y i,j
t has the same dimension d as each of the private states Xj

t , and similarly,

Zi
t = (Zi,j,k

t )j,k=1,···,N . In the application of interest to us in this paper we have d = 1.

As before, the following notation will turn out to be helpful. If Y = (Yt)0≤t≤T

is a progressively measurable process (scalar or multivariate) with continuous sample

paths, we denote by Ỹ = (Ỹt)0≤t≤T the process defined by:

Ỹt = E
[ ∫ τ

0

Yt+sθ(ds) |Ft
]

=

∫ τ

0

E[Yt+s|Ft] θ(ds), 0 ≤ t ≤ T.

Moreover, for each t ∈ [0, T ], x ∈ (Rd)N and y ∈ Rd, we denote by α̂i(x, y) any α ∈ Rd

satisfying:

∂αfi(x, α) = −y. (3.21)

Under specific assumptions the implicit function theorem will provide existence of α̂i,

and regularity properties of this function with respect to the variables x and y.
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3.4.3 Sufficient Condition for Optimality

Theorem 6. Let us assume that the cost functions fi are continuously differentiable

in (x, α) ∈ (Rd)N × Rd, and gi are continuously differentiable on (Rd)N with partial

derivatives of (at most) linear growth, and that:

(i) the functions gi are convex;

(ii) the functions (x, α) 7→ fi(x, α) are convex.

If α = (α1
t , · · · , αNt )0≤t≤T is an admissible adapted (open loop) strategy profile, and

(X,Y,Z) = ((X1
t , · · · , XN

t ), (Y 1
t , · · · , Y N

t ), (Z1
t , · · · , ZN

t )) are adapted process such

that the dynamical equation (3.17) and the adjoint equations (3.20) are satisfied for

the controls αit = α̂i(Xt, Ỹ
i,i
t ), then the strategy profile α = (α1

t , · · · , αNt )0≤t≤T is an

open loop Nash equilibrium.

Proof. We follow the proof given in [5] in the case without delay. We fix i ∈

{1, · · · , N}, a generic admissible control strategy (βt)0≤t≤T for player i, and for the

sake of simplicity, we denote by X ′ the state X
(α̂−i,β)
t controlled by the strategies

(α̂−i, β). The function gi being convex, almost surely, we have:

gi(XT )− gi(X ′T )

≤ (XT −X ′T ) · ∂xgi(XT )

= (XT −X ′T ) · Y i
T

=

∫ T

0
(Xt −X ′t) dY i

t +

∫ T

0
Y i
t d(Xt −X ′t)

= −
∫ T

0
(Xt −X ′t) · ∂xfi(Xt, α

i
t) dt+

∫ T

0
Y i
t · < α[t] − (α̂−i, β)[t], θ > dt + martingale

= −
∫ T

0
(Xt −X ′t) · ∂xfi(Xt, α

i
t) dt+

∫ T

0
Y i,i
t · < αi[t] − β[t], θ > dt + martingale.

Notice that we can use the classical form of integration by parts is due to the fact
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that the volatilities of all the states are the same constant σ. Taking expectations of

both sides and plugging the result into

J i(α)− J i((α−i,β)) = E
{∫ T

0

[fi(Xt, α
i
t)− fi(X ′t, βt)]dt

}
+ E{gi(XT )− gi(X ′T )},

we get:

J i(α)− J i((α−i,β))

≤ E
{∫ T

0

[fi(Xt, α
i
t)− fi(X ′t, βt)]dt−

∫ T

0

(Xt −X ′t) · ∂xfi(Xt, α
i
t) dt

}
+ E

{∫ T

0

Y i,i
t · < αi[t] − β[t], θ > dt

}
≤ E

{∫ T

0

[αit − βt]∂αfi(Xt, α
i
t) + Y i,i

t · < αi[t] − β[t], θ > dt

}
. (3.22)

Notice that:

E
[ ∫ T

0

Y i,i
t · < αi[t] − β[t], θ > dt

]
= E

[ ∫ τ

0

(∫ T−s

−s
Y i,i
t+s[α

i
t − αit]dt

)
θ(ds)

]
=

∫ τ

0

∫ T

0

E[Y i,i
t+s[α

i
t − βt]dt θ(ds)]

=

∫ τ

0

∫ T

0

E[E[Y i,i
t+s|Ft][αit − βt]dt θ(ds)]

= E
[ ∫ τ

0

∫ T

0

(∫ τ

0

E[Y i,i
t+s|Ft]θ(ds)

)
[αit − βt]dt

]
= E

[ ∫ T

0

Ỹ i,i
t · [αit − βt]dt

]
.

Consequently:

J i(α)− J i((α−i,β)) ≤ E
{∫ T

0

(
[αit − βt]∂αfi(Xt, α

i
t) + Ỹ i,i

t · [αit − βt]
)
dt

}
= 0
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by definition (3.21) of α̂(t, X̂t, Ỹ
i,i
t ).

Example

We shall use the above result when d = 1, θ = δ0 − δ−τ so that < α[t], θ >=∫ δ
0
αt−τ θ(dτ) = αt−αt−δ, and the cost functions are given by (3.5) and (3.6), namely:

fi(x, α) =
1

2
α2 − qα(x− xi) +

ε

2
(x− xi)2

for some positive constants q and ε satisfying q < ε2 which guarantees that the

functions fi are convex. Notice that relation (3.21) gives α̂i(x, y) = −y − q(xi − x).

To derive the adjoint equations we compute:

∂xifi(x, α) = (1− 1

N
)[qα+ ε(xi − x)], and ∂xjfi(x, α) = − 1

N
[qα+ ε(xi − x)],

for j 6= i. Accordingly, the system of forward and advanced backward equations

identified in the above theorem reads:
dXi

t = − < Ỹ i,i
[t] + q(Xi

[t] −X [t]), θ > dt+ σdW i
t , i = 1, · · · , N

dY i,j
t = (δi,j − 1

N )[qỸ i,j
t + (q2 − ε)(Xi

t −Xt)]dt+
∑N

k=1 Z
i,j,k
t dW k

t i, j = 1, · · · , N
(3.23)

where we used the Kronecker symbol δi,j which is equal to 1 if i = j and 0 if i 6= j.

If we specialize this system to the case θ = δ0 − δτ , we have Ỹ i,j
t = Y i,j

t − E[Y i,j
t+τ |Ft],
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so that the forward advanced-backward system reads:



dXi
t = (−Y i,i

t + Y i,i
t−τ + E[Y i,i

t+τ |Ft]− E[Y i,i
t |Ft−τ ]

−q[Xi
t −Xi

t−τ −Xt +Xt−τ ])dt+ σdW i
t , i = 1, · · · , N

dY i,j
t = (δi,j − 1

N )[qY i,j
t − qE[Y i,j

t+τ |Ft] + (q2 − ε)(Xj
t −Xt)]dt+

∑N
k=1 Z

i,j,k
t dW k

t

i, j = 1, · · · , N.
(3.24)

The version of the stochastic maximum principle proved in Theorem 6 reduces the

problem of the existence of Nash equilibria for the system, to the solution of forward

anticipated-backward stochastic differential equation. The following result can be

used to resolve the existence issue but first we make the following remark which is

key in term of financial interpretation.

Remark 12 (Clearing House Property). In the present situation, in contrast

with the case without delay presented in Section 3.3, we will not be able to derive

explicit formulas for the equilibrium optimal strategies such as (3.14). However, it is

remarkable to see that the clearing house property
∑
αi = 0 still holds. Indeed, setting

i = j in (3.23) and summing over N to derive an equation for Y t = 1
N

∑N
i=1 Y

i,i
t and

Z
k

t = 1
N

∑N
i=1 Z

i,i,k
t , we find:

dY t = −
(

1

N
− 1

)
qỸ tdt+

N∑
k=1

Z
k

t dW
k
t , t ∈ [0, T ],

with terminal condition Y t = 0 for t ∈ [T, T + τ ]. This equation admits the unique

solution:

Y t = 0, t ∈ [0, T + τ ], and Z
k

t = 0, k = 1, · · · , N, t ∈ [0, T ].
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and as a result,

α̂t = −Ỹ t = 0. (3.25)

In what follows, on the top of q2 < ε, we further assume that

q2(1− 1

2N
)2 ≤ ε(1− 1

N
), (3.26)

which is satisfied for N large enough, or q small enough.

Theorem 7. The FABSDE (3.24) has a unique solution.

Proof. Assuming that (X̌, Y̌ , (Žk)k=1,···,N) is given as an input, we solve the system

(3.37) for λ = λ0 and the processes φt, ψ
k
t , rt and the random variable ζ replaced

according to the prescriptions:

φt ← φt + κ[Y̌t− < ˜̌Y [t] + qX̌[t], θ >]

ψkt ← ψkt + κ[Žk
t + σ(

1

N
− δi,k)], k = 1, · · · , N

rt ← rt + κ[X̌t + (1− 1

N
)[q ˜̌Y t +

(
q2 − ε

)
X̌t]]

ζ ← ζ + κ[−X̌T + c(1− 1

N
)X̌T ],

and denote the solution by (X, Y, (Zk)k=1,···,N). In this way, we defined a mapping

Φ : (X̌, Y̌ , (Žk)k=1,···,N)→ Φ(X̌, Y̌ , (Žk)k=1,···,N) = (X, Y, (Zk)k=1,···,N),

and the proof consists in proving that the latter is a contraction for small enough

κ > 0.

Consider (X̂, Ŷ , (Ẑk)k=1,···,N) = (X −X ′, Y − Y ′, (Zk − Zk′)k=1,···,N) where

(X, Y, (Zk)k=1,···,N) and (X ′, Y ′, (Zk ′)k=1,···,N) are the corresponding image using in-
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puts (X̌, Y̌ , (Žk)k=1,···,N) and (X̌ ′, Y̌ ′, (Žk′)k=1,···,N). We obtain

dX̂t = [−(1− λ0)Ŷt − λ0 <
˜̂
Y [t] + qX̂[t], θ > +κ[ ̂̌Yt− <

˜̌̂
Y [t] + q ̂̌X [t], θ >]]dt

+
N∑
k=1

[−(1− λ0)Ẑk
t + κ ̂̌Zk

t ]dW
k
t

dŶt = [−(1− λ0)X̂t + λ0(1− 1

N
)[q
˜̂
Y t + (q2 − ε)X̂t]

+κ[ ̂̌X t + (1− 1

N
)[q
˜̌̂
Y t + (q2 − ε) ̂̌X t]]]dt+

N∑
k=1

Ẑk
t dW

k
t , (3.27)

with initial condition X̂0 = 0 and terminal conditions ŶT = (1−λ0)X̂T +λ0c(1− 1
N

)X̂T

− κ ̂̌XT + κc(1− 1
N

) ̂̌XT and Ŷt = 0 for t ∈ (T, T + τ ] in the case of c > 0, and ŶT = 0

and Ŷt = 0 for t ∈ (T, T + τ ] in the case of c = 0. As we stated in the text, we only

give the proof in the case c = 0 to simplify the notation. The proof of the case c > 0

is a easy modification. Using the form of the terminal condition and Itô’s formula,

we get

0 = E[ŶT X̂T ]

= E
∫ T

0

{
Ŷt

[
− (1− λ0)Ŷt − λ0 <

˜̂
Y [t] + qX̂[t], θ > +κ[ ̂̌Yt− <

˜̌̂
Y [t] + q ̂̌X [t], θ >]

]
+X̂t

[
− (1− λ0)X̂t + λ0(1− 1

N
)[q
˜̂
Y t + (q2 − ε)X̂t]

+κ[ ̂̌X t + (1− 1

N
)[q
˜̌̂
Y t + (q2 − ε) ̂̌X t]]

]
− (1− λ0)

N∑
k=1

|Ẑk
t |2+κ

N∑
k=1

Ẑk
t
̂̌Zk

t

}
dt

(3.28)
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= −(1− λ0)E
∫ T

0

|Ŷt|2dt− λ0E
∫ T

0

Ŷt <
˜̂
Y [t] + qX̂[t], θ > dt

+κE
∫ T

0

Ŷt[
̂̌Yt− <

˜̌̂
Y [t] + q ̂̌X [t], θ >]dt− (1− λ0)E

∫ T

0

|X̂t|2dt

+λ0(1− 1

N
)E
∫ T

0

X̂t[q
˜̂
Y t + (q2 − ε)X̂t]dt

+κE
∫ T

0

X̂t[
̂̌X t + (1− 1

N
)[q
˜̌̂
Y t + (q2 − ε) ̂̌X t]]dt

−(1− λ0)E
∫ T

0

N∑
k=1

|Ẑk
t |2dt+ κ

N∑
k=1

Ẑk
t
̂̌Zk

t dt (3.29)

and rearranging the terms we find:

(1− λ0)[E
∫ T

0

|X̂t|2dt+ E
∫ T

0

|Ŷt|2dt+ E
∫ T

0

N∑
k=1

|Ẑk
t |2 dt]

= κE
∫ T

0

X̂t
̂̌X tdt− λ0E

∫ T

0

Ŷt <
˜̂
Y [t] + qX̂[t], θ > dt

+κE
∫ T

0

Ŷt[
̂̌Yt− <

˜̌̂
Y [t] + q ̂̌X [t], θ >]dt

+λ0(1− 1

N
)E
∫ T

0

X̂t[q
˜̂
Y t + (q2 − ε)X̂t]dt

+κ(1− 1

N
)E
∫ T

0

X̂t[q
˜̌̂
Y t + (q2 − ε) ̂̌X t]]dt+ κE

∫ T

0

N∑
k=1

Ẑk
t
̂̌Zk

t dt (3.30)

Letting µ = ε(1− 1
N

)− q2(1− 1
2N

)2 > 0, we obtain:

(1− λ0 + λ0µ)E
∫ T

0

|X̂t|2dt+ (1− λ0)E
∫ T

0

|Ŷt|2dt+ (1− λ0)E
∫ T

0

N∑
k=1

|Ẑk
t |2dt

≤ κE
∫ T

0

Ŷt[
̂̌Yt− <

˜̌̂
Y [t] + q ̂̌X [t], θ >]dt

+κ(1− 1

N
)E
∫ T

0

((
q2 − ε

) ̂̌X t + q
˜̌̂
Y t)X̂tdt+ κE

∫ T

0

N∑
k=1

Ẑk
t
̂̌Zk

t dt,

and a straightforward computation using repeatedly Cauchy–Schwarz and Jensen’s
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inequalities leads to the existence of a positive constant K1 such that

(1− λ0 + λ0µ)E
∫ T

0

|X̂t|2dt+ (1− λ0)E
∫ T

0

|Ŷt|2dt+ (1− λ0)E
∫ T

0

N∑
k=1

|Ẑk
t |2dt

≤ κK1

{
E
∫ T

0

|X̂t|2dt+ E
∫ T

0

|Ŷt|2dt+ E
∫ T

0

N∑
k=1

|Ẑk
t |2dt

+E
∫ T

0

| ̂̌X t|2dt+ E
∫ T

0

| ̂̌Y t|2dt+ E
∫ T

0

N∑
k=1

| ̂̌Zk

t |2dt
}
.

Referring to [3], applying Itô’s formula to |X̂t|2 and |Ŷt|2, Gronwall’s inequality, and

again Cauchy-Schwarz and Jensen’s inequalities, owing to 0 ≤ λ0 ≤ 1, we obtain a

constant K2 > 0 independent of λ0 so that

sup
0≤t≤T

E|X̂t|2≤ κK2

{
E
∫ T

0

| ̂̌X t|2+| ̂̌Y t|2+
N∑
k=1

| ̂̌Zk

t |2dt

}

+K2

{
E
∫ T

0

|Ŷt|2+
N∑
k=1

|Ẑk
t |2dt

}
,

E
∫ T

0

|X̂t|2dt ≤ κK2T

{
E
∫ T

0

| ̂̌X t|2+| ̂̌Y t|2+
N∑
k=1

| ̂̌Zk

t |2dt

}

+K2T

{
E
∫ T

0

|Ŷt|2+
N∑
k=1

|Ẑk
t |2dt

}
,

E
∫ T

0

|Ŷt|2+
N∑
k=1

|Ẑk
t |2dt ≤ κK2

{
E
∫ T

0

| ̂̌X t|2+| ̂̌Y t|2+
N∑
k=1

| ̂̌Zk

t |2dt

}

+K2E
∫ T

0

|X̂t|2dt. (3.31)
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By using (3.31), there exists 0 < µ′ < µ/K2 such that

λ0µ
′K2E

∫ T

0

|X̂t|2dt

≥ λ0µ
′

(
E
∫ T

0

|Ŷt|2+
N∑
k=1

|Ẑk
t |2dt

)

−λ0µ
′κK2

{
E
∫ T

0

| ̂̌X t|2+| ̂̌Y t|2+
N∑
k=1

| ̂̌Zk

t |2dt

}

≥ λ0µ
′

(
E
∫ T

0

|Ŷt|2+
N∑
k=1

|Ẑk
t |2dt

)

−µ′κK2

{
E
∫ T

0

| ̂̌X t|2+| ̂̌Y t|2+
N∑
k=1

| ̂̌Zk

t |2dt

}
(3.32)

Therefore, we have

(
1− λ0 + λ0(µ−K2µ

′)

)
E
∫ T

0

|X̂t|2dt

+(1− λ0 + λ0µ
′)E
∫ T

0

|Ŷt|2dt+ (1− λ0 + λ0µ
′)E
∫ T

0

N∑
k=1

|Ẑk
t |2dt

≤ κK1

{
E
∫ T

0

|X̂t|2dt+ E
∫ T

0

|Ŷt|2dt+ E
∫ T

0

N∑
k=1

|Ẑk
t |2dt

+E
∫ T

0

| ̂̌X t|2dt+ E
∫ T

0

| ̂̌Y t|2dt+ E
∫ T

0

N∑
k=1

| ̂̌Zk

t |2
}

+κK2µ
′

{
E
∫ T

0

| ̂̌X t|2dt+ E
∫ T

0

| ̂̌Y t|2dt+ E
∫ T

0

N∑
k=1

| ̂̌Zk

t |2dt

}
. (3.33)

Note that since µ−K2µ
′ and µ′ stay in positive, we have (1−λ0 +λ0(µ−K2µ

′)) ≥ µ′′

and (1 − λ0 + λ0µ
′) ≥ µ′′ where for some µ′′ > 0. Combining the inequalities (3.31-
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3.33), we obtain

E
∫ T

0

|X̂t|2dt+ E
∫ T

0

|Ŷt|2dt+ E
∫ T

0

N∑
k=1

|Ẑk
t |2dt

≤ κK

(
E
∫ T

0

| ̂̌X t|2dt+ E
∫ T

0

| ̂̌Y t|2dt+ E
∫ T

0

N∑
k=1

| ̂̌Zk

t |2dt

)
, (3.34)

where the constant K depends upon µ′, µ′′, K1, K2, and T . Hence, Φ is a strict

contraction for sufficiently small κ.

Remark 13. While this theorem gives existence of open loop Nash equilibria for

the model, it is unlikely that uniqueness holds. However, the cost functions fi and

gi depending only upon xi and x, one could consider the mean field game problem

corresponding to the limit N → ∞, and in this limiting regime, it is likely that the

strict convexity of the cost functions could be used to prove some form of uniqueness

of the solution of the equilibrium problem.

Proof. We first solve the system considering only the case j = i. Once this is done, we

should be able to inject the process Xt = (X1
t , · · · , XN

t ) so obtained into the equation

for dY i,j
t for j 6= i, and solve this advanced equation with random coefficients.

Summing over i = 1, · · · , N the equations for X i in (3.23), using the clearing

house property of Remark 12, and denoting ξ = 1
N

∑N
i=1 ξ

i give

X t = ξ +
σ

N

N∑
i=1

W i
t , t ∈ [0, T ]. (3.35)

Therefore, without loss of generality, we can work with the “centered” variables X i,c
t =

X i
t −X t, Y

i,i,c
t = Y i,i

t −Y t = Y i,i
t , and Zi,i,k,c

t = Zi,i,k
t −Zk

t = Zi,i,k
t which must satisfy
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the system:


dX i,c

t = − < Ỹ i,i
[t] + qX i,c

[t] , θ > dt+ σ
∑N

k=1(δi,k − 1
N

)dW k
t ,

dY i,i
t = (1− 1

N
)[qỸ i,i

t + (q2 − ε)X i,c
t ]dt+

∑N
k=1 Z

i,i,k
t dW k

t

(3.36)

with X i,c
0 = ξi,c := ξi − ξ, Y i,i

T = −c
(

1
N
− 1
)
X i,c
T , and Y i,i

t = 0 for t ∈ (T, T + τ ] for

i = 1, · · · , N . We solve this system by extending the continuation method (see for

example [38] and [39]) to the case of stochastic games. We consider a system which

is written as a perturbation of the previous one without delay. Since we now work

with i ∈ {1, · · · , N} fixed, we drop the exponent i from the notation for the sake of

readability of the formulas.


dXλ

t = [−(1− λ)Y λ
t − λ < Ỹ λ

[t] + qXλ
[t], θ > +φt]dt

+
∑N

k=1[−(1− λ)Zk,λ
t + λσ(δi,k − 1

N
) + ψkt ]dW k

t ,

dY λ
t = [−(1− λ)Xλ

t + λ(1− 1
N

)[qỸ λ
t + (q2 − ε)Xλ

t ] + rt]dt+
∑N

k=1 Z
k,λ
t dW k

t

(3.37)

with initial conditionXλ
0 = ξi,c and terminal condition Y λ

T = (1−λ)Xλ
T−λc

(
1
N
− 1
)
Xλ
T+

ζ i,i and Y λ
t = 0 for t ∈ (T, T + τ ] in the case of c > 0, and Y λ

T = ζ i,i and Y λ
t = 0 for

t ∈ (T, T + τ ] in the case of c = 0.

Here (recall that i is now fixed), φt, ψ
k
t , rt are for k = 1, · · · , N , square integrable

processes which will be chosen at each single step of the induction procedure. Also

ζ is a L2(Ω,FT ) random variable. Observe that if λ = 0, the system (3.37) is a

particular case of the system in Lemma 2.5 in [38] for which existence and uniqueness

is established, and it becomes the system (3.36) when setting λ = 1, ζ i,i = 0, φit = 0,

ψi,i,kt = 0, ri,it = 0, i = 1, · · · , N and k = 1, · · · , N , for 0 ≤ t ≤ T . We only give the
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proof of existence and uniqueness for the solution of the system (3.36) in the case of

c = 0. The same arguments can be used to treat the case c > 0.

The proof relies on the following technical result which we prove in the appendix.

Lemma 4. If there exists λ0 ∈ [0, 1) such that for any ζ and φt, rt, ψ
k
t , k = 1, · · · , N

for 0 ≤ t ≤ T the system (3.37) admits a unique solution for λ = λ0, then there

exists κ0 > 0, such that for all κ ∈ [0, κ0), (3.37) admits a unique solution for any

λ ∈ [λ0, λ0 + κ).

Taking for granted the result of this lemma, we can prove existence and uniqueness

for (3.37). Indeed, for λ = 0, the result is known. Using Lemma 4, there exists κ0 > 0

such that (3.37) admits a unique solution for λ = 0 + κ where κ ∈ [0, κ0). Repeating

the inductive argument n times for 1 ≤ nκ0 < 1 + κ0 gives the result for λ = 1

and, therefore, the existence of the unique solution for (3.36). Since X i,c
t = X i

t −X t,

Y i,i,c
t = Y i,i

t and Zi,i,k,c
t = Zi,i,k

t , and X t is given by (3.35), we obtain a unique solution

(X i
t , Y

i,i
t , Zi,i,k

t ) to the system (3.23).

3.5 Hamilton-Jacobi-Bellman (HJB) Approach

In this section, we return to the particular case θ = δ0−δτ of the drift given by the

delayed control αt − αt−τ . The HJB approach for delayed systems has been applied

by [42] to a deterministic linear quadratic control problem. Later, [20] followed a

similar approach for stochastic control problems. Here, we generalize the approach

[20] based on an infinite dimensional representation and functional derivatives. We

extend this approach to our stochastic game model with delay in order to identify a

closed-loop Nash equilibrium.

Note that two specific features of our discussion require additional work for our
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argument to be fully rigorous at the mathematical level. First, the delayed control in

the state equation appears as a mass at time t− τ and a smoothing argument as in

[23] is needed. Second, we are using functional derivatives and proper function spaces

should be introduced for our computations to be fully justified. However, since most

of the functions we manipulate are linear or quadratic, we refrain from giving the

details. In that sense, and for these two reasons, what follows is merely heuristic. A

rigorous proof of the fact that the equilibrium identified in this section is actually a

Nash equilibrium will be given in Section 3.6.

3.5.1 Infinite Dimensional Representation

Let HN be the Hilbert space defined by

HN = RN × L2([−τ, 0];RN),

with the inner product

〈z, z̃〉 = z0z̃0 +

∫ 0

−τ
z1(ξ)z̃1(ξ) dξ,

where z, z̃ ∈ HN , and z0 and z1(.) correspond respectively to the RN -valued and

L2([−τ, 0];RN)-valued components.

By reformulating the system of coupled diffusions (3.1) in the Hilbert space HN ,

the system of coupled Abstract Stochastic Differential Equations (ASDE) for Z =

(Z1, · · · , ZN) ∈ HN appears as

dZt = (AZt +Bαt) dt+GdWt, 0 ≤ t ≤ T, (3.38)

Z0 = (ξ, 0) ∈ HN .
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where Wt = (W 1
t , · · · ,WN

t ) is a standard N -dimensional Brownian motion and ξ =

(ξ1, · · · , ξN).

Here Zt = (Z0,t, Z1,t,r), r ∈ [−τ, 0] corresponds to (Xt, αt−τ−r) in the system of

diffusions (3.1). In other words, for each time t, in order to find the dynamics of

the states Xt, it is necessary to have Xt itself, and the past of the control αt−τ−r,

r ∈ [−τ, 0].

The operator A : D(A) ⊂ HN → HN is defined as

A : (z0, z1(r))→ (z1(0),−dz1(r)

dr
) a.e., r ∈ [−τ, 0],

and its domain is

D(A) = {(z0 , z1 (.)) ∈ HN : z1 (.) ∈W 1 ,2 ([−ø , 0 ];RN ), z1 (−ø) = 0}.

The adjoint operator of A is A∗ : D(A∗) ⊂ HN → HN and is defined by

A∗ : (z0, z1(r))→ (0,
dz1(r)

dr
) a.e., r ∈ [−τ, 0],

with domain

D(A∗) = {(w0 ,w1 (.)) ∈ HN : w1 (.) ∈W 1 ,2 ([−ø , 0 ]);RN ),w0 = w1 (0 )}.

The operator B : RN → HN is defined by

B : u→ (u,−δ−τ (r)u), r ∈ [−τ, 0],

where δ−τ (.) is the Dirac measure at −τ .
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Remark 14. Note that in [20], the case of pointwise delay is not considered as the

above operator B becomes unbounded because of the dirac measure. Here, we still use

the unbounded operator B (in a heuristic sense!) and for a rigorous treatment, we

refer to [23] where they use partial smoothing to accommodate the case of pointwise

delay.

Finally, the operator G : RN → HN is defined by

G : z0 → (σz0, 0).

Remark 15. Let Zt be a weak solution of the system of coupled ASDEs (3.38) and

Xt be a continuous solution of the system of diffusions (3.1), then, with a similar line

of reasoning as in Proposition 2 in [20], it can be proved that Xt = Z0,t, a.s. for all

t ∈ [0, T ].

3.5.2 System of Coupled HJB Equations

In order to use the dynamic programming principle for stochastic games (we refer

to [5]) in search of closed-loop Nash equilibrium, the initial time is varied. At time

t ∈ [0, T ], given initial state Zt = z (whose second component is the past of the

control), bank i chooses the control αi to minimize its objective function J i(t, z, α).

J i(t, z, α) = E
{∫ T

t

fi(Z0,s, α
i
s)dt+ gi(Z0,T ) | Zt = z

}
, (3.39)
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In equilibrium, that is all other banks j 6= i have optimized their objective function,

bank i’s value function V i(t, z) is

V i(t, z) = inf
αi
J i(t, z, α). (3.40)

The set of value functions V i(t, z), i = 1, · · · , N is a solution (in a suitable sense) of

the following system of coupled HJB equations:

∂tV
i +

1

2
Tr(Q∂zzV

i) + 〈Az, ∂zV i〉+H i
0(∂zV

i) = 0, (3.41)

V i(T ) = gi,

where Q = G ∗G, and the Hamiltonian function H i
0(pi) : HN → R is defined by

H i
0(pi) = inf

αi
[〈Bα, pi〉+ fi(z0, α

i)]. (3.42)

Here, pi ∈ HN and can be written as pi = (pi,1, · · · , pi,N) where pi,k ∈ H1, k =

1, · · · , N . Given that fi(z0, α
i) is convex in (z0, α

i),

α̂i = −〈B, pi,i〉 − q(zi0 − z̄0). (3.43)

Therefore,

H i
0(p) = 〈Bα̂, pi〉+ fi(z0, α̂

i),

=
N∑
k=1

〈B, pi,k〉
(
−〈B, pk,k〉 − q(zk0 − z̄0)

)
+

1

2
〈B, pi,i〉2 +

1

2
(ε− q2)(z̄0 − zi0)2. (3.44)
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We then make the ansatz

V i(t, z) = E0(t)(z̄0 − zi0)2 − 2(z̄0 − zi0)

0∫
−τ

E1(t,−τ − s)(z̄1,s − zi1,s)ds

+

0∫
−τ

0∫
−τ

E2(t,−τ − s,−τ − r)(z̄1,s − zi1,s)(z̄1,r − zi1,r)dsdr + E3(t),

(3.45)

where E0(t), E1(t, s), E2(t, s, r) and E3(t) are some deterministic functions to be

determined. It is assumed that E2(t, s, r) = E2(t, r, s).

Remark 16. Note that the ansatz (3.45) depends on z ∈ HN whose second component

is the past of all banks’ controls α. In other words, the value function V i(t, z) is an

explicit function of the past of all banks’ controls αt−τ−r, r ∈ [−τ, 0].

The derivatives of the ansatz (3.45) are as follows

∂tV
i =

dE0(t)

dt
(z̄0 − zi0)2 − 2(z̄0 − zi0)

0∫
−τ

∂E1(t,−τ − s)
∂t

(z̄1,s − zi1,s)ds

+

0∫
−τ

0∫
−τ

∂E2(t,−τ − s,−τ − r)
∂t

(z̄1,s − zi1,s)(z̄1,r − zi1,r)dsdr +
dE3(t)

dt
,

(3.46)

∂zjV
i =


2E0(t)(z̄0 − zi0)− 2

0∫
−τ
E1(t,−τ − s)(z̄1,s − zi1,s)ds

−2(z̄0 − zi0)E1(t, s) + 2
0∫
−τ
E2(t,−τ − s,−τ − r)(z̄1,r − zi1,r)dr


(

1

N
− δi,j

)
,

(3.47)

∂zjzkV
i =

 2E0(t) −2E1(t,−τ − s)

−2E1(t,−τ − s) 2E2(t,−τ − s,−τ − r)

( 1

N
− δi,j

)(
1

N
− δi,k

)
. (3.48)
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By plugging the ansatz (3.45) into the HJB equation (3.41), and collecting all the

corresponding terms, the following set of equations are derived for t ∈ [0, T ] and

s, r ∈ [−τ, 0].

The equation corresponding to the constant terms is

dE3(t)

dt
+ (1− 1

N
)σ2E0(t) = 0, (3.49)

The equation corresponding to the (z̄0 − zi0)2 terms is

dE0(t)
dt

+ ε
2

= 2(1− 1
N2 )(E1(t, 0) + E0(t))2 + 2q(E1(t, 0) + E0(t)) + q2

2
. (3.50)

The equation corresponding to the (z̄0 − zi0)(z̄1 − zi1) terms is

∂E1(t,s)
∂t
− ∂E1(t,s)

∂s
= 2(1− 1

N2 )
(
E1(t, 0) + E0(t) + q

2(1− 1
N2 )

)
(E2(t, s, 0) + E1(t, s)) .

(3.51)

The equation corresponding to the (z̄1 − zi1)(z̄1 − zi1) terms is

∂E2(t,s,r)
∂t

− ∂E2(t,s,r)
∂s

− ∂E2(t,s,r)
∂r

=

2(1− 1
N2 ) (E2(t, s, 0) + E1(t, s)) (E2(t, r, 0) + E1(t, r)) . (3.52)
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The boundary conditions are

E0(T ) =
c

2
,

E1(T, s) = 0,

E2(T, s, r) = 0,

E2(t, s, r) = E2(t, r, s), (3.53)

E1(t,−τ) = −E0(t), ∀t ∈ [0, T ),

E2(t, s,−τ) = −E1(t, s), ∀t ∈ [0, T ),

E3(T ) = 0.

Note that with these boundary conditions (at t = T ), we have V i(T, z) = gi(z0) =

c
2
(z̄0 − zi0)2, as desired.

Remark 17. The set of equations (3.49–3.52) on the domain t ∈ [0, T ], s, r ∈ [−τ, 0],

and with boundary conditions (3.53) admits a unique solution. This can be shown by

following the steps of the proof of Theorem 6 in [1] and using a fixed point argument

(see also [8]).

If all the other banks choose their optimal controls, then the bank i’s optimal

strategy α̂i, i = 1, · · · , N follows

α̂it = −〈B, ∂ziV i〉 − q(zi0 − z̄0),

= 2

(
1− 1

N

)[(
E1(t, 0) + E0(t) +

q

2
(
1− 1

N

)) (z̄0 − zi0)

−
∫ 0

−τ
(E2(t,−τ − s, 0) + E1(t,−τ − s)) (z̄1,s − zi1,s)ds

]
. (3.54)
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In terms of the original system of coupled diffusions (3.1), the closed-loop Nash equi-

librium corresponds to

α̂it = 2

(
1− 1

N

)[(
E1(t, 0) + E0(t) +

q

2
(
1− 1

N

)) (X̄t −X i
t)

+

∫ t

t−τ
[E2(t, s− t, 0) + E1(t, s− t)] ( ¯̂αs − α̂is)ds

]
, i = 1, · · · , N.

(3.55)

Remark 18. As pointed out in Remark 12 of Section 3.4, in the present situation we

still have
∑N

i=1 α̂
i
t = 0 and therefore, in this equilibrium, the central bank serves as a

clearing house (see also the discussion of Section 3.7).

3.6 A Verification Theorem

In this section, we provide a verification theorem establishing that the strategies

given by (3.55) correspond to a Nash equilibrium. Our solution is only almost explicit

because the equilibrium strategies are given by the solution of a system of integral

equations. This approach has been used by [1] to find the optimal control in a

deterministic delayed linear quadratic control problem. Recently, [8] and [25] have

applied this approach to delayed linear quadratic stochastic control problems. In

this section, we generalize it to delayed linear -quadratic stochastic games differential

games.

We recall that at time t ∈ [0, T ], given x = (x1, · · · , xN), which should be viewed

as the state of the N banks at time t, and an A-valued function α on [0, τ), which

should be viewed as their collective controls over the time interval [t − τ, t), bank i
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chooses the strategy αi to minimize its objective function

J i(t, x, α, αt) = E
{∫ T

t

fi(Xs, α
i
s)ds+ gi(XT ) | Xt = x, α[t) = α

}
. (3.56)

Here α[t) is defined as the restriction of the path s 7→ αs to the interval [t− τ, t) and

αt is an admissible control strategy for the N banks over the time interval [t, T ]. We

denote by At this set of admissible strategies.

In the search for Nash equilibria, for each bank i, we assume that the banks

j 6= i chose their strategies α−i,t for the future [t, T ], in which case, bank i’s should

choose a strategy αi,t ∈ Ai,t in order to try to minimize its objective function

J i(t, x, α, (αi,t, α−i,t)). As a result we define the value function V i(t, x, α, α−i,t) of

bank i by:

V i(t, x, α, α−i,t) = inf
αi,t∈Ai,t

J i(t, x, α, (αi,t, α−i,t)). (3.57)

Because of the linear nature of the dynamics of the states, together with the quadratic

nature of the costs, we expect that in equilibrium, the functions J i and V i to be

quadratic functions of the state x and the past α of the control. This is consistent

with the choices we made in the previous section. Accordingly, we write the functions

V i as

V i(t, x, α) = E0(t)(x̄− xi)2 + 2(x̄− xi)
t∫

t−τ

E1(t, s− t)(ᾱs − αis)ds

+

t∫
t−τ

t∫
t−τ

E2(t, s− t, r − t)(ᾱs − αis)(ᾱr − αir)dsdr + E3(t), (3.58)

where the deterministic functions Ei (i = 0, · · · , 3), are the solutions of the system
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(3.49–3.52) with the boundary conditions (3.53). We dropped the dependence of V i

upon its fourth parameter α−i,t because the right hand side of (3.58) does not depend

upon α−i,t.

The main result of this section is Proposition 2 below which says that any solution

of the system (3.55) of integral equations provides a Nash equilibrium. For that

reason, we first prove existence and uniqueness of solutions of these integral equations

when they are recast as a fixed point problem in classical spaces of adapted processes.

This is done in Lemma 5 below. We simplify the notation and we rewrite equation

(3.55) for the purpose of the proof of the lemma. We set:

ϕ(t) = 2

(
1− 1

N

)(
E1(t, 0) + E0(t) +

q

2
(
1− 1

N

))

and

ψ̄(t, s) = [E2(t, s− t, 0) + E1(t, s− t)]1[t−τ,t](s)

so that equation (3.55) can be rewritten as:

α̂it = ϕ(t)(X̄t −X i
t) +

∫ t

0

ψ̄(t, s)( ¯̂αs − α̂is)ds

= ϕ(t)

(
(ξ̄ − ξi)−

∫ t

0

[( ¯̂αs − α̂is)− ( ¯̂αs−τ − α̂is−τ )]ds+ σ[W̄t −W i
t ]

)
+

∫ t

0

ψ̄(t, s)( ¯̂αs − α̂is)ds. (3.59)

Summing these equations for i = 1, · · · , N , we see that any solution should necessarily

satisfy
∑

1≤i≤N α̂
i = 0, so that if we look for a solution of the system (3.55), we might

as well restrict our search to processes satisfying ¯̂αt = 0 for all t ∈ [0, T ].

So we denote by RN
0 the set of elements x = (x1, · · · , xN) of RN satisfying
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∑
1≤i≤N x

i = 0, and by H2,N
0 the space of RN

0 -valued adapted processes a = (at)0≤t≤T

satisfying

‖a‖2
0:= E

[ ∫ T

0

|at|2dt
]
<∞.

Clearly, H2,N
0 is a real separable Hilbert space for the scalar product derived from the

norm ‖ · ‖0 by polarization. For a ∈ H2,N
0 we define the RN

0 -valued process Ψ(a) by:

Ψ(a)it = ϕ(t)(ξ̄− ξi) + σϕ(t)[W̄t−W i
t ] +

∫ t

0

ψ(t, s)aisds, 0 ≤ t ≤ T, i = 1, · · · , N.

(3.60)

where the function ψ is defined by ψ(t, s) = 1− 1[0,0∨(t−τ)](s)− ψ̄(t, s). We shall use

the fact that the functions ϕ and ψ are bounded.

Given the above set-up, existence and uniqueness of a solution to (3.55) is given

by the following lemma whose proof mimics the standard proofs of existence and

uniqueness of solutions of stochastic differential equations.

Lemma 5. The map Ψ defined by (3.60) has a unique fixed point in H2,N
0 .

We now prove existence of Nash equilibria for the system.

Proposition 1. The strategies (α̂it)0≤t≤T, i=1,···,N given by the solution of the system

of integral equations (3.55) form a Nash equilibrium, and the corresponding value

functions are given by (3.58).

In other words, we prove that

V i(0, ξi, α[0)) ≤ J i(0, ξi, α[0), (α
i, α̂−i)),
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for any αi, and choosing αi = α̂i gives:

V i(0, ξi, α[0)) = J i(0, ξi, α[0), (α̂
i, α̂−i)).

Notice that the equilibrium strategies which we identified are in feedback form in the

sense that each α̂it is a deterministic function of the trajectory X[0,t] of the past of

the state. Notice also that there is absolutely nothing special with the time t = 0

and the initial condition X0 = ξ, α[0) = 0. Indeed for any t ∈ [0, T ] and RN -valued

square integrable random variable ζ, the same proof can be used to construct a Nash

equilibrium for the game over the interval [t, T ] and any initial condition (Xt = ζ, α[t)).

Proof. We fix an arbitrary i ∈ {1, · · · , N}, an admissible control αi ∈ A−i for player

i, and we assume that the state process (Xt)0≤t≤T for the N banks is controlled by

(αit, α̂
i
t)0≤t≤T where (α̂kt )0≤t≤T, k=1,···,N solves the system of integral equations (3.55).

Next, we apply Itô’s formula to V i(t,Xt, α[t)) where the function V i is defined by

(3.58). We obtain
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dV i(t,Xt, α[t)) ={
dE0(t)

dt
(X̄t −X i

t)
2 + 2E0(t)(X̄t −X i

t)
(
ᾱt − αit − (ᾱt−τ − αit−τ )

)
+

N∑
j=1

σ2E0(t)(
1

N
− δi,j)2 + 2

(
ᾱt − αit − (ᾱt−τ − αit−τ )

) t∫
t−τ

E1(t, s− t)(ᾱs − αis)ds

+2(X̄t −X i
t)

t∫
t−τ

[
∂E1(t, s− t)

∂t
− ∂E1(t, s− t)

∂s

]
(ᾱs − αis)ds

+2(X̄t −X i
t)E1(t, 0)(ᾱt − αit)− 2(X̄t −X i

t)E1(t,−τ)(ᾱt−τ − αit−τ )

+

t∫
t−τ

t∫
t−τ

[
∂E2(t, s− t, r − t)

∂t
− ∂E2(t, s− t, r − t)

∂s

−∂E2(t, s− t, r − t)
∂r

]
(ᾱs − αis)(ᾱr − αir)dsdr

+(ᾱt − αit)

 t∫
t−τ

E2(t, s− t, 0)(ᾱs − αis)ds+

t∫
t−τ

E2(t, 0, r − t)(ᾱr − αir)dr


−(ᾱt−τ − αit−τ )

 t∫
t−τ

E2(t, s− t,−τ)(ᾱs − αis)ds+

t∫
t−τ

E2(t,−τ, r − t)(ᾱr − αir)dr


+
dE3(t)

dt

}
dt

+
N∑
j=1

{
+ 2E0(t)(X̄t −X i

t)(
1

N
− δi,j)

+2(
1

N
− δi,j)

t∫
t−τ

E1(t, s− t)(ᾱs − αis)ds

}
σdW j

t . (3.61)

Then, integrating between 0 and T , using V i(T,XT ) = gi(XT ) (ensured by the bound-

ary conditions at t = T for Ek, k = 0, 1, 2, 3), taking expectation, using the differential

equations (3.49-3.52), using the short notation A1 = 1− 1
N
, A2 = 1− 1

N2 , and adding
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E
T∫
0

fi(Xs, α
i
s)dt on both sides, one obtains:

−V i(0, ξi, α[0)) + E(gi(XT )) + E
T∫

0

fi(Xs, α
i
s)dt = −V i(0, ξi, α[0)) + J i(0, ξi, α[0), α)

= E
T∫

0

{[
− ε

2
+ 2A2(E1(t, 0) + E0(t))2 + 2q(E1(t, 0) + E0(t)) +

q2

2

]
(X̄t −X i

t)
2

+2E0(t)(X̄t −X i
t)
(
(ᾱt − αit)− (ᾱt−τ − αit−τ )

)
+ σ2E0(t)

N∑
j=1

(
1

N
− δi,j)2

+2
(
ᾱt − αit − (ᾱt−τ − αit−τ )

) t∫
t−τ

E1(t, s− t)(ᾱs − αis)ds

+2(X̄t −X i
t)

t∫
t−τ

[
2A2

(
E1(t, 0) + E0(t) +

q

2A2

)(
E2(t, s− t, 0)

+E1(t, s− t)
)]

(ᾱs − αis)ds

+2(X̄t −X i
t)E1(t, 0)(ᾱt − αit)− 2(X̄t −X i

t)E1(t,−τ)(ᾱt−τ − αit−τ )

+

t∫
t−τ

t∫
t−τ

[
2A2 (E2(t, s− t, 0) + E1(t, s− t))

(
E2(t, r − t, 0)

+E1(t, r − t)
)]

(ᾱs − αis)(ᾱr − αir)dsdr

+(ᾱt − αit)

 t∫
t−τ

E2(t, s− t, 0)(ᾱs − αis)ds+

t∫
t−τ

E2(t, 0, r − t)(ᾱr − αir)dr


−(ᾱt−τ − αit−τ )

 t∫
t−τ

E2(t, s− t,−τ)(ᾱs − αis)ds+

t∫
t−τ

E2(t,−τ, r − t)(ᾱr − αir)dr


−A1σ

2E0(t) +
1

2
(αit)

2 − qαit(X̄t −X i
t) +

ε

2
(X̄t −X i

t)
2

}
dt. (3.62)

Observe that the terms in ε cancel, the terms in σ2 cancel, and the terms involving

delayed controls cancel using symmetries and boundary conditions (3.53) for the
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functions Ek’s.

Next, motivated by (3.55), we rearrange the terms left in (3.62) so that the square

of

αit − 2A1

[(
E1(t, 0) + E0(t) +

q

2A1

)
(X̄t −X i

t) +

∫ t

t−τ

[
E2(t, s− t, 0)

+E1(t, s− t)
]
( ¯̂αs − α̂is)ds

]

appears first. We obtain

−V i(0, ξi, α[0)) + J i(0, ξi, α[0), α) =

E
T∫

0

{
1

2

(
αit − 2A1

[(
E1(t, 0) + E0(t) +

q

2A1

)
(X̄t −X i

t)

+

∫ t

t−τ
[E2(t, s− t, 0) + E1(t, s− t)] ( ¯̂αs − α̂is)ds

])2

+(X̄t −X i
t)

2

[
− 2[A1(E1(t, 0) + E0(t) +

q

2
]2 + 2A2(E1(t, 0) + E0(t))2

+2q(E1(t, 0) + E0(t)) +
q2

2

]
+(X̄t −X i

t)
[
2αit[A1(E1(t, 0) + E0(t)] + 2(E1(t, 0) + E0(t))(ᾱt − αit)

]
+(X̄t −X i

t)

(∫ t

t−τ
(E2(t, s− t, 0) + E1(t, s− t)(ᾱs − αis)ds

)[
− 4A1

(
A1(E1(t, 0)

+E0(t) +
q

2

)
+ 4A2

(
E1(t, 0) + E0(t) +

q

2A2

)]
+

(∫ t

t−τ
(E2(t, s− t, 0) + E1(t, s− t)(ᾱs − αis)ds

)[
2A1α

i
t + 2(ᾱt − αit)

]
+

(∫ t

t−τ
(E2(t, s− t, 0) + E1(t, s− t)(ᾱs − αis)ds

)2 [
−2A2

1 + 2A2

]}
dt. (3.63)

Using A2 = A2
1 + 2

N
A1 and the relation ᾱt − αit = 1

N

∑
j 6=i

αjt −A1α
i
t, we simplify (3.63)
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to obtain:

−V i(0, ξi, α[0)) + J i(0, ξi, α[0), α) =

E
T∫

0

{
1

2

(
αit − 2A1

[(
E1(t, 0) + E0(t) +

q

2A1

)
(X̄t −X i

t)

+

∫ t

t−τ
[E2(t, s− t, 0) + E1(t, s− t)] ( ¯̂αs − α̂is)ds

])2

+(X̄t −X i
t)

2

[
4

N
A1(E1(t, 0) + E0(t))2 +

2q

N
(E1(t, 0) + E0(t))

]
+(X̄t −X i

t)

[
2

N

∑
j 6=i

αjt (E1(t, 0) + E0(t))

]

+(X̄t −X i
t)

(∫ t

t−τ
(E2(t, s− t, 0) + E1(t, s− t)(ᾱs − αis)ds

)[
8

N
A1(E1(t, 0)

+E0(t)) +
2q

N

]
+

(∫ t

t−τ
(E2(t, s− t, 0) + E1(t, s− t)(ᾱs − αis)ds

)[
2

N

∑
j 6=i

αjt

]

+

(∫ t

t−τ
(E2(t, s− t, 0) + E1(t, s− t)(ᾱs − αis)ds

)2 [
4

N
A1

]}
dt. (3.64)

Now, assuming that the players j 6= i are using the strategies α̂jt given by (3.55), the

quantity
∑
j 6=i

αjt becomes

∑
j 6=i

α̂jt = −2A1

[(
E1(t, 0) + E0(t) +

q

2A1

)
(X̄t −X i

t)

+

∫ t

t−τ
[E2(t, s− t, 0) + E1(t, s− t)] ( ¯̂αs − α̂is)ds

]
.

Plugging this last expression in (3.64), one sees that the terms after the square cancel
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and we get

−V i(0, ξi, α[0)) + J i(0, ξi, α[0), (α
i, α̂−i)) =

E
T∫

0

{
1

2

(
αit − 2A1

[(
E1(t, 0) + E0(t) +

q

2A1

)
(X̄t −X i

t)

+

∫ t

t−τ
[E2(t, s− t, 0) + E1(t, s− t)] ( ¯̂αs − α̂is)ds

])2
}
dt.

(3.65)

Consequently V i(0, ξi, α[0)) ≤ J i(0, ξi, α[0), (α
i, α̂−i)), and choosing αi = α̂i leads to

V i(0, ξi, α[0)) = J i(0, ξi, α[0), (α̂
i, α̂−i)).

3.7 Financial Implications and Numerical Illustra-

tion

The main finding is that taking into account repayment with delay does not change

the fact that the central bank providing liquidity is acting as a clearing house in all

the Nash equilibria we identified (open-loop in Section 3.4 or closed-loop in Sections

3.5 and 3.6).

The delay time, that is the single repayment maturity τ that we considered in this

paper, controls the liquidity provided by borrowing and lending. The two extreme

case are:

1. No borrowing/lending: τ = 0:

In that case, no liquidity is provided and the log-reserves X i
t follow independent

Brownian motions.
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2. No repayment: τ ≥ T :

This is the case studied previously in [6] and summarized in Section 3.3. The

rate of liquidity (the speed at which money is flowing through the system) is

given by
[
q + (1− 1

N
)φt
]

as shown in equation (3.12).

3. Intermediate regime 0 < τ < T :

We conjecture that the rate of liquidity is monotone in τ . For instance, in the

case of the close-loop equilibrium obtained in Section 3.6 given by (3.55), the

rate of liquidity is [2E1(t, 0) + 2E0(t) + q] where the function E1 and E0 are

solutions to the system (3.49–3.51). These solutions are not given by closed

form formulas. We computed them numerically. We show in Figure 3.1 that as

expected, liquidity increases as τ increases. This is clear for values of τ which

are small relative to the time horizon T . For values of τ which are large and

comparable with T , the boundary effect becomes more important as oscillations

propagate backward.
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Figure 3.1: Liquidity as a function of the delay time τ . The parameters are T = 20,
q = 1, ε = 2, and c = 0.
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Appendix A

Generalized Correlated Random

Walks Diffusion Limit

This section provides a diffusion limit for generalized correlated random walks. It is

a brief version of [24], up until some notational changes.

Consider probability spaces (Ωn,Fn,Pn), n ∈ N where we define binary random

variables Xn
k taking −1 and 1. Then define Y n by

Y n
k = Y n

0 +
k∑
j=1

(
µn + σnX

n
j

)
, k = 0, . . . , n

Where µn and σn are defined as in A.1.

Define tnk := Tk/n, and then by the constant interpolation on the intervals

[tnk−1, t
n
k), we get the Right Continuous with Left Limits (RCLL) process Y (n) by

Y
(n)
t := Y n

bntc/T , 0 ≤ t ≤ T,
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Let F(n) =
(
F (n)
t

)
0≤t≤T

. Therefore

F (n)
t = σ

(
Y n

0 , . . . , Y
n
k−1

)
:= Fnk−1, t ∈ [tnk−1, t

n
k), k = 1, . . . , n.

Here, Y (n) under measure Pn is distributed according to a probability measure ρn

on the Skorokhod space D[0, T ] of RCLL functions. The goal is to provide a weak

convergence result for (ρn), n ∈ N under some regularity conditions.

We impose three conditions:

• There exists constants µ ∈ R, σ > 0 and β ∈ (0, 1) such that

µn = µδ2
n +O

(
δ1+β
n

)
,

σn = σδn +O
(
δ2+β
n

)
. (A.1)

• We have

Pn
(
Xn
k = 1|Fnk−1

)
= pn

(
k, Y n

k−1, X
n
k−1

)
, k = 1, . . . , n.

Where

pn (k, y, x) =
1

2
(1 + xa (tnk , y) + δnb (tnk , y)) +O

(
δ1+β
n

)
.

k = 1, . . . , n, y ∈ R, x = −1, 1

• Functions a(., .) and b(., .) are regular enough such that we can define the op-

85



Generalized Correlated Random Walks Diffusion Limit Chapter A

erator L on C2 functions f(y) via

(Lf) (t, y) :=
1

2
σ2 1 + a(t, y)

1− a(t, y)
f ′′(y) +

(
µ+

σb(t, y)

1− a(t, y)
+

σ2a′(t, y)

(1− a(t, y))2

)
f ′(y).

Theorem 8. If (Y n
0 ) converges in distribution to Y0, and the martingale problem for

L is well-posed on C[0, T ], then
(
Y (n)

)
converges in distribution to Y with dynamics

dYt =

(
µ+

σb(t, Yt)

1− a(t, Yt)
+

σ2a′(t, Yt)

(1− a(t, Yt))
2

)
dt+ σ

√
1 + a(t, Yt)

1− a(t, Yt)
dWt (A.2)

and initial value Y0.

The starting point for the proof is the following proposition (2) from [13].

Proposition 2. Define the operator G on C∞ functions f with compact support by

Gf := 1
2
cf ′′ + γf ′ where c : R → [0,∞) and γ : R → R are continuous functions.

Assume that the martingale problem for G is well-posed on C[0, T ]. Consider Γ(n) and

C(n) as F(n)-adapted processes such that N (n) := Y (n)− Y (n)
0 − Γn and

(
N (n)

)2−C(n)

are (F(n),Pn) local martingales for all n, and C(n) is increasing. Define the stopping

time

τ rn := inf
{
t ≥ 0

∣∣∣|Y (n)
t |≥ r or |Y (n)

t− |≥ r
}
∧ 1.
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Also, assume that

lim
n→∞

En
[

sup
0≤t≤τrn

|Y (n)
t − Y (n)

t− |2
]

= 0,

lim
n→∞

En
[

sup
0≤t≤τrn

|Γ(n)
t − Γ

(n)
t− |2

]
= 0,

lim
n→∞

En
[

sup
0≤t≤τrn

|C(n)
t − C

(n)
t− |
]

= 0,

sup
0≤t≤τrn

∣∣∣∣∣∣Γ(n)
t −

t∫
0

γ(Y (n)
s )ds

∣∣∣∣∣∣→ 0, in probability

sup
0≤t≤τrn

∣∣∣∣∣∣C(n)
t −

t∫
0

c(Y (n)
s )ds

∣∣∣∣∣∣→ 0, in probability

Then (Y (n)) converges in distribution to the solution for the martingale problem (G, ν),

where ν is the probability measure to which Y
(n)

0 under Pn converge weakly.

From now onwards, we drop all subscripts and superscripts n, except for µn and

σn where it might cause confusion.

We first use Doob decomposition and write Y = Y0 +M + A. Then we get

∆Ak := E (∆Yk|Fk−1) = µn + σnE (Xk|Fk−1) = µn + σn (2p(Yk−1, Xk−1)− 1) .

By using our first two conditions,

∆Ak = µδ2 + σb(Yk−1)δ2 + σnXk−1a(Yk−1) +O(δ2+β).

We use Taylor expansion on a(Yk−1)/1−a(Yk−1) to get

a(Yk−1)

1− a(Yk−1)
=

a(Yk−2)

1− a(Yk−2)
+

a′(Yk−2)

(1− a(Yk−2))2 ∆Yk−1 +O(δ1+β).
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Multiplying both sides by σnXk−1 = ∆Yk−1 − µn, we obtain

σnXk−1
a(Yk−1)

1− a(Yk−1)
=

a(Yk−2)

1− a(Yk−2)

(
∆Yk−1 − µδ2

)
+

a′(Yk−2)

(1− a(Yk−2))2σ
2δ2 +O(δ2+β).

Using the identity a/1−a = 1/1−a− 1 and ∆Y = ∆M + ∆A, we derive

∆Yk
1− a(Yk−1)

=
∆Mk

1− a(Yk−1)
+

1

1− a(Yk−2)
∆Yk−1 −∆Yk−1 +

µ+ σb(Yk−1)

1− a(Yk−1)
δ2

+µδ2

(
1− 1

1− a(Yk−2)

)
+

a′(Yk−2)

(1− a(Yk−2))2σ
2δ2 +O(δ2+β).

We now provide three lemmas. For their proofs, we refer to [24].

Lemma 6. Let N be a martingale defined as

Nm :=
m∑
k=1

∆Mk

1− a(Yk−1)
, m = 0, . . . , n

Then, define Γ := Y − Y0 −N . We get

Γm =
m∑
k=1

(
µ+

σb(Yk−1)

1− a(Yk−1)
+

σ2a′(Yk−1)

(1− a(Yk−1))2

)
δ2 +O(δβ), m = 0, . . . n.

Lemma 7. Define the process C by

Cm :=
m∑
k=1

V ar [∆Mk|Fk−1]

(1− a(Yk−1))2 , m = 0, . . . n.

Then,

Cm =
m∑
k=1

σ2 1 + a(Yk−1)

1− a(Yk−1)
δ2 +O(δβ), m = 0, . . . , n,

and N2 − C is a martingale.
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We now show that the processes N , Γ and C satisfy the assumptions of our

proposition. Define functions

γ(x) := µ+
σb(x)

1− a(x)
+

σ2a′(x)

(1− a(x))2 , c(x) := σ2 1 + a(x)

1− a(x)
.

Using our first condition, we get

sup
0≤t≤T

|Y (n)
t − Y (n)

t− |= max
k=1,...,n

|∆Y n
k |= O(δn).

Since Y (n) is the piecewise constant interpolation of Y n, we obtain

sup
0≤t≤T

|Γ(n)
t − Γ

(n)
t− |+ sup

0≤t≤T
|C(n)

t − C
(n)
t− |= O(δβn).

Lemma 8. For our γ, c, Γ(n) and C(n), the last two conditions regarding convergence

in probability in (2) hold.

The above three lemmas show that all the assumptions of Proposition (2) are

satisfied. So, Y (n) converges in distribution to the solution of the martingale problem

(G, ν), which is the same as Y in Theorem (8). This completes the proof.

If we allow functions a and b to depend on either t or n, similar arguments still

go through with some modifications. For more details in this regard, we again refer

to [24].
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