
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Exploiting Partial Sensitivity of Data Using Client Side Buckets

Permalink
https://escholarship.org/uc/item/35w9k19f

Author
MISHRA, ANURAG

Publication Date
2017

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/35w9k19f
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Exploiting Partial Sensitivity of Data Using Client Side Buckets

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Science

by

Anurag Mishra

Thesis Committee:
Professor Sharad Mehrotra, Chair

Professor Nalini Venkatasubramanian
Professor Gopi Meenakshisundaram

2017

c© 2017 Anurag Mishra

DEDICATION

To mom and dad

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

ABSTRACT OF THE THESIS viii

1 Introduction 1
1.1 Cloud Computing . 1
1.2 Security in Cloud Computing . 4
1.3 Existing Techniques . 6
1.4 Motivation . 8
1.5 Problem Statement and Contribution 11

2 Related Work 13
2.1 Encryption Based Techniques . 13
2.2 Secret Sharing Techniques . 17

3 System Setting 18
3.1 Adverserial Model . 19
3.2 Security Definition and Correctness 21

4 Query Bucketization 24
4.1 The Base Case . 26
4.2 A Simple Extension of the Base Case 31
4.3 General Case: Multiple Values with Multiple Tuples 33

5 Effective Cost Model 38
5.1 Motivation . 38
5.2 Non-Indexable Technique . 41
5.3 Indexable Technique . 44
5.4 Hybrid Technique . 47

iii

6 Experiments 50
6.1 Setup . 50
6.2 Non Indexable Technique . 51
6.3 Indexable Technique . 53
6.4 Hybrid Approach . 56
6.5 Effect of Size of Data . 62

7 Conclusion and Future Work 63

Bibliography 64

iv

LIST OF FIGURES

Page

1.1 A relation: Employee. 10

4.1 The query bucketization technique for 10 sensitive and 10 non-sensitive
values. 28

4.2 An example of assigning 9 sensitive values to 3 buckets. 35
4.3 An assignment of a heavy hitter value but losing survival matching edges. 36

5.1 Non-Indexable Search. 44
5.2 Indexable Search. 47
5.3 Hybrid Model. 49

6.1 Comparison of Sensitive vs Non-Sensitive Time in System A. 52
6.2 Comparison of Sensitive vs Non-Sensitive Time in System B. 52
6.3 Bucketization vs No Bucketization in System A. 53
6.4 Bucketization vs No Bucketization in System B. 54
6.5 Effective Cost in System A. 54
6.6 Effective Cost in System B. 55
6.7 Comparison of Sensitive vs Non-Sensitive Time in System C. 56
6.8 Comparison of Sensitive vs Non-Sensitive Time in System D. 57
6.9 Comparison of Sensitive vs Non-Sensitive Time in System E. 57
6.10 Bucketization vs No Bucketization in System C. 58
6.11 Bucketization vs No Bucketization in System D. 58
6.12 Bucketization vs No Bucketization in System E. 59
6.13 Effective Cost in System C. 59
6.14 Effective Cost in System D. 60
6.15 Effective Cost in System E. 60
6.16 Bucketization vs No Bucketization in System F. 61
6.17 Effective Cost in System F. 61
6.18 Effective Cost vs Size of data set. 62

v

LIST OF TABLES

Page

1.1 Queries and returned tuples/adversarial view. 11

3.1 Notations used in the thesis. 19

4.1 Queries and returned tuples/adversarial view after retrieving tuples
according to Algorithm 2. 31

5.1 Notations for cost model. 40

vi

ACKNOWLEDGMENTS

I would like to thank Professor Sharad Mehrotra for giving me an opportunity to
work with him. I am thankful to him for believing in me and guiding me whenever I
saw no light.
I would also like to thank Shantanu Sharma for his invaluable guidance.

vii

ABSTRACT OF THE THESIS

Exploiting Partial Sensitivity of Data Using Client Side Buckets

By

Anurag Mishra

MASTER OF SCIENCE in Computer Science

University of California, Irvine, 2017

Professor Sharad Mehrotra, Chair

The world today runs on data and lots of private data, whose security is of paramount

importance. We have many secured cryptographic techniques which are practical but

not completely secure. On the other hand we have completely secure techniques which

are not practical to be run as far as time complexity is concerned. In this scenario,

we would like to exploit the fact that there is partial sensitivity of data. We partition

the data into sensitive and non sensitive parts with the former being expensive to

retrieve while the later is comparatively inexpensive. We propose that combining

both the costs using our scheme gives better result than considering the entire data

as sensitive. We will prove this using mathematical models as well as by experiments.

viii

Chapter 1

Introduction

The traditional model of computing dictated all computing resources necessary for

the running of the software system be in-house. So, for years we had the stacks of

disks for storing data and all the horsepower for processing them within the physical

(or in certain case the logical) premises. The primary reason was the prohibitively

expensive cost of the above. But things started to change with the growth of the

Internet and with the gradual decrease in the cost of hardware, there was a push to

move computing infrastructure outside or in other words the gradual move to cloud.

1.1 Cloud Computing

Although the notion of cloud computing is not new, the term was used for the first

time by Eric Schmidt, the CEO of Google. Cloud computing is an amalgamation of

myriad technologies like Virtualization, Grid Computing, Utility Computing and so

on. Before we delve further into the topic we would like to have a formal definition

of cloud computing. We will adopt the definition provided The National Institute of

1

Standards and Technology (NIST) [43].

Definition of Cloud Computing as per NIST: Cloud computing is a model for enabling

convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications, and services) that can be

rapidly provisioned and released with minimal management effort or service provider

interaction.

We also need to distinguish between infrastructure providers, who own and manage

the necessary infrastructure and the services providers who lease computing resources

from the infrastructure providers to solve some problem for the end clients.

With the formal definition of cloud computing out of our way, we can go over some

of the merit associated with cloud computing.

One advantage of cloud computing is that the service provider does not have to

bear the hefty cost of infrastructure up-front. Most of the infrastructure providers

have a pay-as-you-go model. The service provider pays the infrastructure provider

for every hour of service consumed. Another hidden advantage of this model is the

elastic nature of scaling. Businesses generally have peak and non-peak periods of

activity. The cloud model of computing is perfectly adaptable to this changing nature

of demand. Upscaling and downscaling of resources is a breeze in the cloud, at least as

compared to the traditional model of computing. As we have already mentioned, the

general revenue model is that of pay-as-you-use, the service provider can requisition

more resources when there is a surge in computing need and then easily scale back

when the demand ebbs.

In the current era, most service providers are expected to have as low a downtime as

possible. Cloud computing again comes to the rescue. The onus of having a high up-

time is now on the infrastructure provider, who generally practice very stringent Ser-

2

vice Level Agreement(SLA). Effectively, part of the risk of any service provider is now

outsourced to the infrastructure provider. Cloud computing profits from economies

of scale. A multi-tenant architecture provides the pooling of common resources and

the cost associated with them is shared, thus lowering the overall cost for all. An in-

frastructure provider concentrates primarily on providing best infrastructure. Thus,

they can invest in better personnel and better resources as well.

Physical View of Cloud Architecture We can view the cloud architecture as

consisting of many loosely coupled layers stacked on top of one another. The

bottom most layer is hardware. Storage devices like disks, computing devices

like CPU (and/or GPU), networking devices like routers form the bulk of this

layer. The layer above will have some virtualization support like XEN, KVM,

or Hyper-V. The virtualization layer is responsible for compartmentalization of

underlying resources for layers above. On top of this virtualization layer lies the

API friendly layer which exposes standard low-level services like database ser-

vice, transaction processing services. On top of this providers can also provide

service specific layer.

Logical View of Cloud Architecture The loose coupling of the physical layers

allows a logical grouping as well popularly known as SPI model. The lowest two

layers coupled together forms Infrastructure as a Service (IaaS). Amazon EC2 is

a good example. Platform as a Service (PaaS) consist of the bottom three layers,

and thus low-level services like databases are exposed. Microsoft Windows

Azure is prime candidate for PaaS. Going even further, there is Software as a

Service which provides client specific services like Microsoft Office 365. Earlier

we had distinguished between infrastructure providers and service providers.

The infrastructure provider maps to IaaS and PaaS taken together and service

provider maps to SaaS as per the logical view of cloud architecture.

3

In the above discussion, we have not mentioned the ownership of the cloud. Based

on the ownership, the cloud can be public, private or in some cases hybrid.

We will take up Microsoft Azure Platform as an example to look at the various compo-

nents. The stack consists of Windows Azure which is a general-purpose environment

which supports .NET framework based software like those running inside Windows

operating system. SQL Azure consists of SQL Azure database which is reckoned to

be built atop of Microsoft SQL Server. Then there is .NET Services which exposes

underlying features without explicitly requisitioning them.

1.2 Security in Cloud Computing

We have seen so many wonderful advantages of cloud computing. But like everything

else, it has its own share of limitations. The most prominent ones are security followed

by privacy. The control that one can have over the service decreases as one goes higher

up the stack. Thus, if we use SaaS, we have the least amount of control while we

have the highest level of control if we use IaaS. Here control means the control as

a consumer of the service. For illustration purposes, consider SaaS with Microsoft

Office 365 as an example. In this setup, the end user might not be aware where the

underlying datacenter exists or what storage is being used. The security and uptime

of the service is assured by the provider.

In a traditional setup security was propped up by the pillars of authentication and

authorization. But they are no longer sufficient in case of cloud [39].There is the

risk associated with public internet, multi-tenancy, data storage. To mitigate these

concerns the cloud service providers must provide the required level of compliance for

auditing purposes [51].

4

We will analyze various threats that each logical model suffers from.

• SaaS The service that is being consumed can be shared among the tenants in

multiple ways. At one end of the spectrum, each consumer will have its own

customized version of the software running; while at the other extreme, there

can be a single instance of the program running for all users. The later allows

more efficient use of resources, but has higher vulnerability. Very strict and

efficient security policies are required to separate the data of each tenant [8]. In

the SaaS model, the consumer of the service has no control over the underlying

storage system. The provider is responsible for secured storage and processing

of data. Further the backups taken most be stored securely and with proper

authorization. The service offered by the provider are accessed over the public

internet which has inherent security threats like man in the middle attack.

Secured channels can be established between the client and service providers to

mitigate this concern.

• PaaS The security of PaaS is very tightly coupled with the underlying IaaS.

It is assumed that any breach in one of the guest environment will not affect

another. But if the hypervisor which is responsible for hosting all the guest is

compromised, then all the guests can leak sensitive information.

• IaaS Cloud computing is relatively cheap because it can optimize the use of

resources among many users. By the clever use of software, the underlying

hardware is shared among consumer of services. This means the same disks

and memory is shared by many applications. Thus, any data in memory can be

snooped upon by another process which has higher privileges. In many cases,

there are public repository of Virtual Machines which can be copied and spun

up. They are generally free of malicious content. But if the base is compromised,

then the data of an unsuspecting user is under threat.

5

1.3 Existing Techniques

Over the years, information retrieval has gained significant research attention, leading

to a fundamental database operation, i.e., keyword-based search (e.g., DISCOVER [31]

and [9]) without knowing the schema of the database, and secure keyword query

search [10, 21, 61, 25, 11], which helps in secure data outsourcing to the cloud.

Broadly, existing research on secure query keyword search and tuple retrieval can

be classified into three categories as follows:

• Encryption based techniques examples of which include order-preserving en-

cryption [2], deterministic encryption [7], homomorphic encryption [22], bucketi-

zation [30], searchable encryption [56], private informational retrieval (PIR) [16],

practical-PIR [60], oblivious-RAM (ORAM) [27], oblivious transfers [50, 32],

oblivious polynomial evaluation [44], oblivious query processing [5], search-

able symmetric encryption [17], and distributed searchable symmetric encryp-

tion [33].

• Secret-sharing (SS) [53] based techniques that include distributed point

function [25], function secret sharing [11], functional secret sharing [37], Splin-

ter [59], and others [20, 41].

• Trusted hardware based techniques that include [4, 3, 6, 52, 18, 58, 68].

While a large body of research and corresponding systems both within the research

and open source community and also the commercial database vendors exist, existing

techniques and systems exhibit several significant shortcomings. To appreciate short-

comings of existing technology, we first need to better appreciate features we desire

from the secure solution. In our view, these include: (i) efficiency: the secure solu-

tion must not be orders of magnitude worse than the traditional database solution.

6

In particular, the overheads must not be so high so as to mitigate the advantages of

the cloud pushing database owners to instead revert back to traditional on-site data

management; (ii) security: the secure cloud solution should not leak sensitive data

to the adversary (i.e., the cloud).

Existing techniques, unfortunately, compromise on one or both of the above-mentioned

desirable features/requirements of secure data outsourcing solutions. For instance,

cryptographic approaches such as fully homomorphic encryption (FHE) coupled with

ORAM that provide strong security guarantees and prevent information leakage in-

cur very high overhead and do not scale to (real) large datasets and complex queries.

The computational time for such techniques even for answering simple query [24]

is unacceptable. Mechanisms based on secret-sharing are potentially more scalable

than FHE. However, such techniques split data among multiple non-colluding clouds

resulting in a significant communication overhead and can only support a limited set

of selection and aggregation queries efficiently. In contrast, several partially homo-

morphic techniques that are significantly more scalable compared to FHE have been

developed. Such techniques, however, limit the computations that can be performed

on encrypted data and, furthermore, may also compromise security. For instance,

Gentry and Halevi [23] has argued a fundamental tradeoff between preserving data

privacy and utility, highlighting that a system that supports a more secure tech-

nique, (e.g., ORAM and nondeterministic encryption) does not allow different types

of operations to be applied on the data. Further, the papers [45, 35] show that

when order-preserving and deterministic encryption techniques are used together, on

a dataset in which the entropy of the values is not high enough, an attacker might be

able to construct the entire clear-text by performing a frequency analysis on the en-

crypted data. Moreover, these systems are unable in handling the size attack, where

an adversary having some background knowledge can deduce the outputs (by simply

observing output sizes).

7

While the body of knowledge in secure data outsourcing is improving, and the security

guarantee supported by new systems is improving with time (albeit at higher costs),

the race to develop cryptography-based solutions that (i) are efficient, and (ii) offer

provable security from the application’s perspective is still ongoing.

1.4 Motivation

Recently, given the difficulty in developing a cryptography-based solution to support

efficient and secure data outsourcing, several papers [36, 67, 66, 47, 46, 68] have

proposed a new class of solution based on the observation that an entire dataset is

not typically sensitive. For instance, the discussion in popular media on secure cloud

adoption [1] clearly identifies classifying organizational data into sensitive (for which

public cloud cannot be trusted) and non-sensitive (the loss of which is considered

acceptable risk for the advantages of the cloud model) as one of the key strategies

for adopting the cloud model. The data classification is not too difficult to see if

we consider specific data outsourcing cases. For instance, as discussed in [46] in a

university scenario, data such as class schedule, a list of faculties, faculty offices,

faculty salary in public schools, a catalogue of courses, etc. are all non-sensitive

whereas data about disabilities of students, their course enrollment, and grades would

be sensitive. Existing research has explored exploiting the sensitive vs non-sensitive

data classification in several data outsourcing contexts.

The papers [36, 67, 66, 47] have explored secure MapReduce (MR) system imple-

mentations while [46, 68] have explored secure SQL data processing. The secure MR

solutions as well as the secure SQL execution have been explored in the context of

hybrid clouds wherein data and computations are partitioned between the public and

private clouds in such a way that sensitive data or any information about it is not

8

leaked to the public cloud. In [18, 52, 68], secure hardware on the cloud in the form

of Intel SGX is used to partition the computation.

Our thesis builds upon the above trend towards pragmatic security in cloud-based

data outsourcing systems for keyword search queries with provable security guaran-

tees. Similar to previous approaches, we exploit the fact that not all data might be

sensitive but unlike existing hybrid cloud technique, we develop a cloud-only solution

wherein data is entirely stored on the public cloud. Furthermore, unlike [18, 52, 68],

our approach does not exploit any specialized secure hardware that is also not secure

under the size attack, which will be discussed later in Section 4.3.

Naturally, to store sensitive data on the public cloud, we need to encrypt such data

while non-sensitive data may be stored on the cloud in the clear-text. In our proposed

approach, a query executes on both encrypted sensitive data as well as plaintext non-

sensitive data, and the results of the matches returned to the data owner/querier,

where they are appropriately decrypted, possibly filtered, and merged. It is impor-

tant to mention that we are not changing/modifying any existing secure/non-secure

databases, hence, our approach can be used on top of any database.

Specifically, our approach treats encrypted data processing of the sensitive data as an

oracle or a blackbox for which (above-mentioned) any known partially homomorphic,

searchable encryption technique, FHE, PIR, SS approaches, or SGX-based solutions

can be used. In developing our approach, we will assume that the underlying crypto-

graphic solution is based on non-deterministic encryption, though, such an assump-

tion is not necessary. In particular, the proposed approach can be easily extended

to other encryption techniques, SS techniques, or SGX-based solutions. Our focus

is on joint processing of non-sensitive data in the clear-text along with the blackbox

processing of encrypted sensitive data in such a way that it prevents any information

leakage as a result of the joint processing. However, such a joint processing could re-

9

sult in leakage, which is also possible in current SGX-based cloud models [18, 52, 68],

illustrated through an example below.

Tuple id EId First name Last name SSN Salary Department

t1 E101 Adam Smith 111 1000 Defense
t2 E102 John Williams 222 2000 Design
t3 E103 Eve Smith 333 500 Design
t4 E102 John Williams 222 5000 Defense

Figure 1.1: A relation: Employee.

Example 1 (Employee relation).: Consider an Employee relation, which is given

in Figure 1.1. In this relation, the attribute SSN might be deemed sensitive, and

furthermore, all tuples of employees for the Department = “Defense” might be con-

sidered sensitive. In such a case, the Employee relation may be stored as three rela-

tions, as follows: (i) Employee1 with attributes EId and SSN; (ii) Employee2 with

attributes EId, First Name, Last Name, Salary, and Department, where Department

= “Defense”; and (iii) Employee3 with attributes EId, First Name, Last Name,

Salary, and Department, where Department <> “Defense”. In these relations, Em-

ployee1 and Employee2 contain only sensitive data, while Employee3 contains only

non-sensitive data.

Information leakage through non-sensitive data. Now, we show how query execution

on the partitioned data can lead to the information leakage through non-sensitive

data using the example. We consider an honest-but-curious adversarial cloud that

will return the correct answers to the query but wishes to know information about

the encrypted sensitive tables, Employee1 and Employee2. Consider three queries on

the Employee2 and Employee3 relations, as follows: (i) find all the details of E102,

(ii) find all the details of E101, and (iii) find all the details of E103.

When answering a query, the adversary knows the tuple ids of retrieved encrypted

10

tuples1 and the full information of the returned non-sensitive tuples. We refer to this

information gain at the adversary by observing query execution as the adversarial

view ; shows in Table 1.1. Note that E (ti) shows encrypted ti tuple.

Query value Returned tuples/Adversarial view
Employee1 Employee2 Employee3

E102 E (t2), E (t4) E (t4) t2
E101 E (t1) E (t1) null
E103 E (t3) null t3

Table 1.1: Queries and returned tuples/adversarial view.

Note that outputs of the three queries will reveal enough information in learning

about sensitive data. In the first query, the adversary learns that E102 works in

both sensitive and non-sensitive departments, because the answers obtained from the

three relations contribute in the final answer. In the second query, the adversary

learns that E101 works only in a sensitive department, because the query will not

return any answer from the Employee3 relation. In the third query, the adversary

learns that E103 works only in a non-sensitive department.

1.5 Problem Statement and Contribution

We assume the existence of both sensitive and non-sensitive data. Our goal is to

increase the efficiency of query answering by taking advantages of the fact that part

of the data is non-sensitive, while preserving the security of the sensitive part (unlike

in Example 1). Specifically, we provide a technique, entitled query bucketization (QB),

to prevent information leakage (such as that shown in Example 1) that may result

from the joint processing of sensitive and non-sensitive data on the cloud. We note

that our technique does not prevent leakage that may result solely from encrypted

1The adversary may not learn the tuple ids of encrypted sensitive tuple when using techniques
such as PIR, ORAM, or SS.

11

data processing of sensitive data. For instance, if we use a weak encryption strategy

(e.g., deterministic encryption) to encrypt sensitive data, then information about

which sensitive records contain the same value would leak.

Our goal in this thesis is not to develop a new cryptographic solution to search, but to

explore how existing cryptographic techniques can be safely composed with the query

bucketization approach that allows for non-sensitive data to be stored in the clear-

text without any new additional leakage. To this effect, we define a concept of leakage

through non-sensitive data and prove that the proposed query bucketization approach

prevents any such leakage. Note that a direct corollary is that if the encrypted data

processing approach (used in conjunction with the query bucketization) ensures the

security of sensitive data, the combined approach will offer perfect security.

The query bucketization approach can, thus, be viewed as a pragmatic optimization

of existing (and future) cryptographic approaches that offer at least an identical level

of security offered by those techniques(our technique can prohibit size attack, so in

cases it will provide a superior level of security), but improves efficiency by allowing

non-sensitive data to be processed in the clear-text form. We note that we primarily

develop the thesis in the context of keyword query though we offer extensions to the

approach to handle range and other more complex selection queries. Extending the

approach to joins and more complex SQL queries remains future work.

12

Chapter 2

Related Work

2.1 Encryption Based Techniques

Order Preserving Encryption

Order preserving Encryption(OPE) was first introduced in 2004 [2]. This encryption

scheme guarantees that if , X ≥ Y, then Enc(X) ≥ Enc(Y). Thus the order among

keywords is preserved even after encryption and so it supports range queries and

sorting operations very effectively. But this scheme leaks information and to rectify

this problem a modular OPE technique [42] has been proposed. This technique adds

a secret offset before encrypting using standard OPE. This reduces the likelihood of

knowing the location of the data item in the encrypted storage.

Deterministic Encryption

Deterministic Encryption guarantees that if X = Y , then Enc(X) = Enc(Y). There

is a single key which is used to encrypt all the values. This allows the server to run

point queries effectively. But this is prone to statistical attacks.

13

Non-Deterministic Encryption

Contrary to deterministic encryption discussed above, the non-deterministic encryp-

tion makes sure that for the same plain text, different cypher text will be generated.

One can get this result by using different encryption key for each keyword. This setup

is very secure, but the server is unable to process even basic point queries natively.

Homomorphic Solution

Fully Homomorphic Encryption(FHE) was introduced by [22]. This scheme allows

addition and multiplication over the encrypted text and with recent advancements,

this scheme allows any function to be evaluated over the encrypted text. FHE guaran-

tees very strong encryption but on the downside, the cost of operation is prohibitively

high. Thus, FHE is not used in practical encryption techniques. If a constraint is

added on the type of function to be applied, then one can use Partial Homomorphic

Encryption(PHE). The security of PHE is same as that of FHE, while the cost of

operation is significantly less than FHE. Some of the popular PHE systems are, Pail-

lar [48] scheme which supports Addition and ElGamal [19] scheme which supports

multiplication.

Oblivious RAM

The server can see the access pattern and form frequency and co-occurrence infor-

mation. To hide such access pattern, oblivious RAM has been proposed. ORAM is

a construction which translates the logical address of the application to a physical

address on the server. The ORAM setup guarantees that all the sequence of physical

address generated are of identical probability for the input sequence of physical ad-

dresses. In other word the adversary cannot distinguish between two physical address

sequences generated for two input logical sequence of addresses.

In the most trivial solution, ORAM will read all the items for each operation. So,

adversary cannot mark the items of interest. This will lead to an overhead of O(n) for

14

every operation. The first reasonable implementation of ORAM was first put forward

by Goldreich and Ostrovsky [28] as Square Root ORAM. The fundamental building

block in this scheme is an oblivious sort. Two popular sorting network based algo-

rithm are AKS O(n log2 n) and that of Batcher O(n log n)). Another oblivious sort

algorithm was proposed by Goodrich [29] which uses a randomized modified version of

shellsort. The amortized overhead cost in Square Root ORAM is O(
√
n log2 n) which

is significantly less than O(n), the trivial solution. There was a further reduction of

the overhead by using a Hierarchical Solution, which reduced the cost to an amortized

O(log3 n). The worst case was still O(n log2 n).There were many gradual improve-

ment of the above approach reducing the amortized cost. A novel construction for

ORAM, Tree based ORAM, was proposed by Shi et al. [55] which had the worst

case overhead of O(log n3). A slight modification with a greedy eviction strategy was

proposed in Path ORAM [57].

Private Information Retrieval

Consider a database which has n items, numbered i1 to in. A client would like to

retrieve a particular item ij from the server without revealing the value of i. This

can be achieved using private information retrieval(PIR). PIR comes in primarily

two flavors.One of them is having replicated database which do not collude among

themselves. The other option is to have a single database and employ cryptographic

techniques. The latter is called single database computationally private information

Retrieval(cPIR).

A trivial solution would be to download the entire database to the client, which

will not reveal any information. But this will have a linear communication cost

with respect to the size of the database. Chor et al. [15] introduced a sub-linear

communication scheme which involved replicated databases. Single database PIR

solution was proposed by [38] Kushilevitz and Ostrovsky, with a communication cost

15

of (n−O(n
k
−k2)) and more than one round of interaction between client and server. As

far as accessing the elements of the database is concerned, the PIR scheme must touch

all n elements. If it does not, then the adversary can infer that some elements do not

satisfy by query of the client. To solve the above problem, the problem was reduced to

retrieve k elements from the database, which allows to partition the data into k bins

and using explicit batch codes [34]. One of the ways to develop a PIR system is to

use a homomorphic encryption system in the background. Kushilevitz and Ostrovsky

[38] used the homomorphic system of Goldwasser and Micali for constructing PIR.

Similarly the homomorphic system of Pailler was used by Chang [13] for PIR. Another

school of thought has been to use Φ−Hiding Assumptions. The PIR scheme of Lipmaa

[40] has reduced the communication cost to θ(k log2 n + l log n), where k is a non-

constant security parameter.

Searchable Symmetric Encryption

ORAM and Fully Homomorphic encryption are considered to be very expensive. This

motivated the search for other searchable encryption techniques with provable secu-

rity. Song, Wagner and Perrig were the first to introduce Searchable Symmetric

Encryption(SSE) [56]. Further work on the security definitions of SSE was done

by Eu-Jin Goh [26]. The assumption, till then, was that the adversary was non-

adaptive. This limitation was removed from the security definition by Curtmola et

al. [17]. They allowed the adversary to be adaptive and still there should be no

leakage of access and search pattern. The construction proposed for the searchable

encryption was to use an inverted index solution as described in [17] having a search

complexity O(|DB[W]|). Initially the scheme had a few limitations which were over-

come gradually. First the scheme was made adaptively secure by Chase and Kamara

[14] and further refinement to allow the scheme to be dynamic was done by Cash et

al. [12].

16

2.2 Secret Sharing Techniques

Secure multi-party computation

In a secure multi-party computation setup; there are n participants say P1, P2, . . . Pn

and each of the participant has some value V1, V2, . . . Vn. A target function must

be calculated whose input requires all the values from V1, V2, . . . Vn but none of the

participant should know any value other than the value they possess. There is an

added constraint that they cannot use any secured participant who is not part of the

system to calculate the target function. Historically, the problem was put forward

as a secure two party computation by Yao [62]. The solution is famously known as

Yao's Garbled Circuit [63]. The system can be extended to multi-party protocols

where there are sophisticated solution like Shamir Secret Sharing and Replicated

Secret Sharing.

Shamir Secret Sharing

To uniquely determine a polynomial in K-1 degree, a minimum of K points are re-

quired. K-1 points cannot uniquely determine the polynomial. This concept is ex-

ploited in Shamir Secret Sharing setup [54]. The data is divided into n parts and K is

the threshold for the minimum number of parts required to reconstruct the original

data. If K = n, then all the parts are required. Ideally n is greater than K. To find

the coefficients, from the k parts, Lagranges interpolation is applied on the k data

items. The scheme is mathematically proven to be secure as any less than k parts

cannot recreate the original data.

17

Chapter 3

System Setting

The model. We assume two entities in our model, as follows:

1. A database (db) owner : who divides a relationR having attributes, sayA1, . . . , An,

into two relations based on data sensitivity, as follows: Rs and Rns containing all

sensitive and non-sensitive tuples, respectively. The DB owner outsources the

relation Rns to a public cloud. The tuples of the relation Rs are encrypted using

any existing mechanism before outsourcing to the same public cloud. However,

as we mentioned earlier, we emphasize to use nondeterministic encryption of Rs

for the purpose of simplicity.

2. The untrusted public cloud : that stores the databases, executes queries, and

provides answers.

Query execution. In the model, the DB owner wishes to search an attribute value

(or a keyword), say Q = w, on Rs and Rns. Assume that the value w exist in Rs

and Rns. The user creates two lists, say Ls and Lns, of values, Ls for search on

Rs and Lns for search on Rns, and sends them to the cloud. The list Ls contains

18

encrypted representation of some values including w, and the list Lns contains some

values including w in the clear-text.

After that, the sensitive and non-sensitive tuples containing all the required attribute

values are fetched using an existing (secure) technique on the relation Rs and a direct

SQL query execution on the relation Rns, respectively. Here, we are not dealing with

how the values of the list Ls and Lns are converted into a secure search and a SQL

queries, respectively. The cloud sends output tuples to the DB owner that filters

extra tuples. Notations used in this thesis are given in Table 3.1.

Notations Meaning

|S| Number of sensitive data values

|NS | Number of non-sensitive data values

Rs Sensitive parts of a relation R

Rns Non-sensitive parts of a relation R

Bs The number of sensitive buckets

Bsi ith sensitive buckets

|Bs| = y Sensitive values in a sensitive bucket

Bns The number of non-sensitive buckets

Bnsi ith sensitive buckets

|Bns | = x Non-sensitive values in a non-sensitive bucket

Q(w)(S,NS) A query Q for a value w searching on S and NS

tw Tuples having a value w

Table 3.1: Notations used in the thesis.

3.1 Adverserial Model

In our setting, recall that sensitive data is encrypted while non-sensitive data resides

in the clear-text. We assume an honest-but-curious adversary, which is considered in

the standard setting for security in the public cloud [64, 65] that is not trustworthy

or secure.

19

An adversarial public cloud, thus, correctly computes assigned tasks; however, it

may exploit side knowledge (e.g., query execution, background knowledge, output

size) to gain as much information as possible about sensitive data. The adversary

cannot launch any attack against the DB owner.1 Furthermore, an adversary can

eavesdrop on the communication channels between the cloud and the DB owner, and

that may help in gaining knowledge about sensitive data, the query, or the results.

The adversary has full access to the following information:

1. The full information of the non-sensitive data. For example, for the given

Employee relation in Example 1, an adversary knows the complete Employee3

relation.

2. Auxiliary information of the sensitive data. Here, the auxiliary information may

contain the structure of the relation, number of tuples in the relation, and that

some departments are sensitive by finding that all the departments are not in

the non-sensitive database.

For example, the adversary knows that there are two sensitive relations, one of

them containing four tuples and the other one containing two tuples, in Em-

ployee1 and Employee2 relations; refer to Example 1. However, the adversary is

not aware of the following information that how many people work in a specified

sensitive department, is a specified person working only in a sensitive depart-

ment, only in a non-sensitive department, or both, or what is the SSN of an

employee.

3. Adversarial view. As shown in Example 1. Recall that the adversarial view

contains the values in Ls and Lns, and returned tuples satisfying Ls and Lns.

4. Some frequent query values.

1We do not consider cyber-attacks that can exfiltrate data from the DB owner directly since
defending against generic cyber-attacks are beyond the scope of this thesis.

20

3.2 Security Definition and Correctness

In the above-mentioned adversarial setting, and inputs and outputs of the algorithm,

we consider the sensitive data as an oracle. Here, the goal of the adversary is to find

as much as possible sensitive information (using the adversarial view or background

knowledge), and our goal is to prevent the information leakage through non-sensitive

data. To define a notion of perfect data security, we first define two terms associated

values and tuples and related sensitive tuples, as follows:

Notations for the definitions. Consider two attribute values v and v′ in the domain of

an attribute Aj of the relation R. Let E(v) and E(v′) be encrypted representations

of v and v′, respectively, in the relation Rs. Let E(tv) and E(tv′) be encrypted tuples

containing the value v and v′, respectively, in the relation Rs. Later, we will indicate

the value v by a notation si that denotes that si is the ith sensitive value in the domain

of the attribute Ai in the relation Rs. Let nsi be a non-sensitive value at ith position

in the domain of the attribute Ai of the relation Rns.

Associated values and associated tuples. We say the value E(v) is associated (denoted

by
a
=) with a non-sensitive value, say nsi, of the relation Rns in the attribute Ai, if

the clear-text representation of the value E(v) is identical to nsi. In Example 1, the

value E102 is an associated value.

We say a sensitive tuple (E(tv)) is associated with a non-sensitive tuple, if the two

tuples share a common value in the attribute Ai. In Example 1, the sensitive tuple

t2 is associated with the non-sensitive tuple t4, because these two tuples have an

identical value of the EId attribute.

Related sensitive values. We say the value E(v) is related (denoted by
r
=) with the

valve E(v′) in the attribute Ai, if there exist any relationship between the clear-text

21

representation of the encrypted values E(v) and E(v′), i.e., v < v′, v > v′, v = v′, or

v 6= v′. In Example 1, the values of the Salary attribute has a relationship with each

other.

We say a sensitive tuple, E(tv), is related with the sensitive tuple E(tv′), if the adver-

sary can find a relation between the two tuples based on the encrypted representation

of the attribute Ai. In Example 1, if we encrypt Salary attribute of the Employee

relation using order-preserving encryption, then the adversary can learn an order

of the values (however, such a situation can be eliminated using nondeterministic

encryption).

Definition: Perfect Data Security. Let X be auxiliary information about the

sensitive data, S be the sensitive data, NS be the non-sensitive data, si is the ith

sensitive value, and ns i is the ith non-sensitive value. The perfect data security states

that the adversary having the X finds the following two conditions after executing a

set of queries, Q, on S and NS at a specified attribute, Ai of a relation, denoted as

Q(S,NS)[Ai]:

(01) Pr[si
a
= nsj|X] = Pr[si

a
= nsj|X,Q(S,NS)[Ai]],

where i ∈ 1, 2 . . . , |S| and j ∈ 1, 2, . . . , |NS |

(02) Pr[si
r
= sj|X,Q(S)] = Pr[si

r
= sj|X,Q(S,NS)[Ai]],

where i 6= j and i, j ∈ 1, 2, . . . |S|

The first equation (01) captures the fact that an initial probability of associating

a sensitive value with a non-sensitive value will be identical after executing several

queries on the database. The second equation (02) captures the fact that all the

(encrypted) sensitive values preserve an identical relation, which is leaked by an

22

underlying encrypted technique, after executing a query on the sensitive and the

non-sensitive data, to the relation after executing a query only on the sensitive data.

In addition to the data security, we define algorithm correctness next.

Correctness. We are focusing on the search query for an attribute value. Let R be

a relation that is partitioned into a sensitive relation Rs and a non-sensitive relation

Rns. In our context, a query on the Rs and Rns relations for an attribute value w is

correct if it returns all the sensitive and non-sensitive tuples containing w that are

identical to the returned tuples in response to a query executed only on the relation

R.

Definition: Algorithm correctness. Let R be a relation containing sensitive and

non-sensitive data. Let S and NS be the sensitive and non-sensitive datasets of R,

respectively. Let q(w)(S,NS)[Ai] be a query, q, for an attribute value w in the attribute

Ai of S and NS datasets. Let Result2 be a function for computing the final output.

Then, an algorithm is correct if it returns tuples containing the value w in the attribute

Ai of S and NS datasets, where the output tuples are identical to answer to the query

execution only on the relation R:

q(w)(R)[Ai] ≡ Res [q(w)(S,NS)[Ai]]

2In our context, the function Result will decrypt sensitive data and merge sensitive-non-sensitive
data for providing the final outputs.

23

Chapter 4

Query Bucketization

In this section, we introduce the query bucketization technique (which is executed

at the DB owner side) to ensure the perfect data security while processing search

queries over non-sensitive data in the clear-text. We develop our strategy initially

under the assumption that queries are only on a single attribute Ai and will generalize

the approach to search over multiple attributes. The bucketization approach takes as

input (i) the set of data values (of Ai) that are sensitive along with their count, and

(ii) the set of data values (of Aj) that are non-sensitive, along with their count. The

bucketization returns a partition of attribute values that form the query buckets for

both the sensitive as well as for the non-sensitive parts of the query. We begin by

developing the approach for the case when a sensitive tuple is associated with at most

one non-sensitive tuple. We then develop a simple extension to deal with a situations

where the number of non-sensitive (or sensitive) values are close to a square number.

Finally, we will provide a general strategy to create buckets when a sensitive tuple is

associated with several non-sensitive tuples.

Informally, the technique distributes attribute values in a rectangle, where rows are

24

sensitive buckets, and columns are non-sensitive buckets. For example, suppose there

are 16 values, which we say 0, 1, . . . , 15 and assume all the values have sensitive and

associated non-sensitive tuples. Now, the DB owner arranges 16 values in a 4 × 4

grid, as follows:

Bns1 Bns2 Bns3 Bns4

Bs1 11 2 5 14

Bs2 10 3 8 7

Bs3 0 15 6 4

Bs4 13 1 12 9

In this example, we have four sensitive buckets Bs1 {11,2,5,14}, Bs2 {10,3,8,7}, Bs3

{0,15,6,4}, Bs4 {13,1,12,9} and four non-sensitive buckets Bns1 {11,10,0,13}, Bns2

{2,3,15,1}, Bns3 {5,8,6,12}, Bns4 {14,7,4,9}. When a query arrives for a value, say 1,

the DB owner searches for the tuples containing either of 2,3,15,1 (viz. Bns2) on the

non-sensitive data and queries for tuples containing values in Bs4 (viz., 13,1,12,9) over

the sensitive data using the cryptographic mechanism integrated into the approach.

Note that such a search is over the encrypted representation and that the DB owner

does not expose the elements in the sensitive bucket in the clear-text form to the

adversary. As we will show, in the query bucketization, while the adversary learns

that the user’s query corresponds to one of the four values in Bns2, since query values

in Bs1 are encrypted, it does not learn any sensitive value or association between

sensitive and non-sensitive data.

25

4.1 The Base Case

The query bucketization technique consists of two steps. First, query buckets are

created (information about which will reside at the DB owner) using which queries will

be rewritten. The second step consists of rewriting the query based on bucketization.

Here, we explain the technique for the base case, where a sensitive tuple, say ts, is

associated with at most a single non-sensitive tuple tns and vice versa (i.e.,
a
= is a 1:1

relationship). Thus, if the value has two tuples, then one of them must be sensitive

and the other one must be non-sensitive, but both the tuples cannot be sensitive or

non-sensitive. A value can also have only one tuple that must be either sensitive or

non-sensitive.

The scenario depicted in Example 1 satisfied the base case. The EId attribute values

corresponding to sensitive tuples include 〈E101, E102〉 and that from non-sensitive

relation 〈E103, E102〉 for which
a
= is 1:1. We will further assume that the number of

sensitive values |S| is less than or equal to the number of non-sensitive values |NS |

(recall that |NS | and |S| denote the number of non-sensitive and sensitive values,

respectively). We discuss the query bucketization solution under the above assump-

tion, but relax the assumption subsequently. Before we describe the bucketization

approach, we first define the concept of approximately square factors of a number.

Approximately square factors. We say two numbers, say x and y, as approxi-

mately square factors of a number, say n > 0, if they are equal or very close to each

other such that the difference between x and y is less than the difference between any

two factors of n (and x× y = n).

Step 1: Bucket creation. The query bucketization technique finds two approxi-

mately square factors of |NS |, say x and y, where x ≥ y. We create Bs = x sensitive

26

buckets, where each sensitive bucket contains at most y values. Thus, we are assum-

ing |S| ≥ x. We further create Bns = d|NS|/xe non-sensitive buckets, where each

non-sensitive bucket contains at most |Bns| = x values. Note that we are assuming

that |S| ≤ |NS |.1

Assignment of sensitive values. We numbered the sensitive buckets from 0 to x − 1

and the values therein from 0 to y − 1. To assign a value to sensitive buckets, we

first generate a permutation of the set of sensitive values — that is, values that are

present in sensitive tuples. Such a permutation will be kept secret from the adversary

by the DB owner.2 In order to assign sensitive values to sensitive buckets, we take

the ith sensitive value and assign it to i modulo x sensitive bucket.

Assignment of non-sensitive values. We numbered the non-sensitive buckets from 0

to d|NS|e/x−1 and values therein from 0 to x−1. Take a sensitive bucket, say j, and

its ith sensitive value. Assign the non-sensitive value associated with the ith sensitive

value to the jth position of ith non-sensitive bucket. Here, if each value of a sensitive

bucket has an associated non-sensitive value and |S| = |NS |, then we have assigned

all the non-sensitive values to their buckets. However, it may be the case that only

a few sensitive values have their associated non-sensitive values and |S| ≤ |NS |. In

this case, we assign the sensitive and their associated non-sensitive values to buckets

like we did in the previous case. However, we need to assign the non-sensitive values

that are not associated with a sensitive value, by filling all the non-sensitive buckets

to size x.

Example 2: (Query bucketization example). We show the bucket creation

1We are assuming that the amount of sensitive data is smaller than the non-sensitive data.
However, we can handle the case of |S| > |NS | by applying the same procedure but in the reverse
way, i.e., factorizing |S|.

2We emphasize to first permute sensitive values to prevent the adversary to create buckets at her
end. For example, if the adversary is aware of a fact that employee ids are ordered, then she can
also create buckets by knowing the number of resultant tuples to a query. However, for simplicity,
we do not show permuted sensitive values in any figure.

27

method for 10 sensitive values and 10 non-sensitive values. We assume that the

only five sensitive values say s1, s2, s3, s5, s6 have their associated non-sensitive values

ns1, ns2, ns3, ns5, ns6, and the remaining 5 sensitive (say, s4, s7, s8, . . . s10) and 5 non-

sensitive values (say, ns11, ns12, . . . , ns15) are not associated. For simplicity, we use

different indexes for non-associated values.

We create 2 non-sensitive buckets and 5 sensitive buckets, and divide 10 sensitive

values over 5 sensitive buckets, as follows: Bs0 {s5, s10}, Bs1 {s1, s6}, Bs2 {s2, s7},

Bs3 {s3, s8}, Bs4 {s4, s9}; see Figure 4.1. Now, we distribute non-sensitive values

associated with the sensitive values over two non-sensitive buckets, resulting in the

bucket Bns0 {ns5, ns1, ns2, ns3} and Bns1 {∗, ns6, ∗, ∗, ∗}, where ∗ shows empty po-

sitions in the bucket. In sequel, we need to fill the non-sensitive buckets by the re-

maining 5 non-sensitive values; hence, ns11 is assigned to the last position of the

bucket Bns0, and the bucket Bns1 contains the remaining 4 non-sensitive values such

as {ns12, ns6, ns13, ns14, ns15}.

Sensitive buckets Non-sensitive buckets

s1, s6

s2, s7

s3, s8

ns12, ns6, ns13, ns14, ns15

ns5, ns1, ns2, ns3, ns11

Bs1

Bs2

Bs3

Bns1

Bns0

s4, s9

s5, s10

Bs4

Bs0

Figure 4.1: The query bucketization technique for 10 sensitive and 10 non-sensitive
values.

Aside. Note that we assigned less or equal number of data values in a sensitive bucket

than a non-sensitive bucket.

We could have formed the non-sensitive and sensitive buckets in such a way that the

number of elements in sensitive buckets is higher than the non-sensitive buckets. We

chose sensitive buckets to be smaller since (i) the processing time on encrypted data

28

Algorithm 1: Bucket creation algorithm, the base case.

Inputs: |NS |: the number of values in the non-sensitive data, |S|: the number
of values in the sensitive data.

Outputs: Bs : sensitive buckets; Bns : non-sensitive buckets
1 Function create buckets(S ,NS) begin
2 Permute all sensitive values
3 x, y ← approx sq factors(|NS |): x ≥ y
4 |Bns | ← x, Bns ← d|NS |/xe, Bs ← x, |Bs | ← y
5 for i ∈ (1, |S|) do Bs[i modulo x][∗]← S[i];
6 for (i, j) ∈ (0, Bs − 1), (0, |Bs| − 1) do Bns[j][i]← allocateNS (Bs [i][j]) ;
7 for i ∈ (0, Bns − 1) do Bns [i][∗]← fill the bucket if empty with the size

limit to x ;
8 return Bs and Bns

9 Function allocateNS (Bs [i][j]) begin
find a non-sensitive value associated with the jth sensitive value of the ith

sensitive bucket

is higher than the clear-text data processing; hence, by searching and retrieving less

sensitive tuples, we decrease the encrypted data processing time; and (ii) it may be the

case that the size of each sensitive tuple is significantly large; hence, retrieving fewer

sensitive tuples is always beneficial. For example, in the case of hospital database

that may hold cancer cells images as sensitive data while the non-sensitive holds

information about fever and cold without any image.

Step 2: Bucket retrieval – answering queries. The bucket retrieval algorithm

first checks the existence of a query value in sensitive buckets and/or non-sensitive

buckets. If the value exists in a sensitive bucket and a non-sensitive bucket, the DB

owner retrieves the two buckets. Note that here the adversarial view is not enough

to leak the query value or to find a value that is shared between the two buckets.

There may be three other cases, as follows: (i) some sensitive values of a bucket

are not associated with any non-sensitive value, (ii) a sensitive bucket does no holds

any value that is associated with any non-sensitive value, and (iii) many non-sensitive

buckets containing no value that is associated with any sensitive value. In all the three

29

cases, if the DB owner retrieves only bucket of one side containing the value, then

it will lead to information leakage, like Example 1. In order to prevent information

leakage, Algorithm 2 follows two rules given below :

(R1) q(w) ∧ w ∈ S,w = Bsi[j] 7→ Bsi ∧Bnsj

(R2) q(w) ∧ w ∈ NS , w = Bnsi[j] 7→ Bnsi ∧Bsj

The notations q(w) denotes a query, q, for an attribute value w, and 7→ denotes what

does the DB owner receive as an answer to the query. By Line 2 of Algorithm 2, the

DB owner knows that the value w is either sensitive or non-sensitive.

The Rule (R1) says that the value w is a sensitive value that is at the jth position

of an ith sensitive bucket, and the DB owner fetches the ith sensitive and the jth

non-sensitive buckets (see Line 3 of Algorithm 2).

The Rule (R2) says that the value w is a non-sensitive value that is at the jth position

of an ith non-sensitive bucket, and the DB owner fetches the jth non-sensitive and the

jth sensitive buckets (see Line 6 of Algorithm 2).

Example 2: (Query bucketization example: continued.) Now, we show how

to retrieve tuples. If a query is for a sensitive value, say s2, refer to Figure 4.1, then

the DB owner fetches two buckets Bs2 and Bns1. If a query is for a non-sensitive

value, say ns14, then the DB owner fetches two buckets Bns1 and Bs3. Thus, it

is impossible for the adversary to find that which is an exact query value from the

non-sensitive bucket and which is the sensitive value associated with one of the non-

sensitive values. This fact is also clear from Table 4.1, which is showing that the

adversarial view is not enough to deduce any information about sensitive data, unlike

Example 1. In Table 4.1, E(si) shows the encrypted value of si, and for simplicity,

we are not depicting the adversarial view for each value.

30

Exact query value Returned tuples/Adversarial view
Sensitive data Non-sensitive data

ns1 or s1 E(s1),E(s6) ns1 ,ns2 ,ns3 ,ns4,ns5
ns2 or s2 E (s2),E (s7) ns1 ,ns2 ,ns3 ,ns4 ,ns5
ns3 or s3 E (s3),E (s8) ns1 ,ns2 ,ns3 ,ns4 ,ns5
ns5 or s5 E (s5),E (s10) ns1 ,ns2 ,ns3 ,ns4 ,ns5
ns6 or s6 E (s1),E (s6) ns12,ns6 ,ns13,ns14,ns15

s7 E(s2),E(s7) ns12,ns6 ,ns13,ns14,ns15

ns12 E(s5),E(s10) ns12,ns6 ,ns13,ns14,ns15

ns13 E (s2),E (s7) ns12,ns6 ,ns13,ns14,ns15

Table 4.1: Queries and returned tuples/adversarial view after retrieving tuples ac-
cording to Algorithm 2.

Algorithm 2: Bucket retrieval algorithm.

Inputs: q(w): a query q for an attribute value w.
Outputs: Bsa and Bnsb: one sensitive bucket and one non-sensitive bucket to
be retrieved for answering q(w).

Variables: found ← false
1 Function retrieve buckets(q(w)) begin
2 for (i, j) ∈ (0, Bs − 1), (0, |Bs| − 1) do

if w = Bsi[j] then
3 return Bsi and Bnsj; found ← true; break

4 if found 6= true then
5 for (i, j) ∈ (0, Bns − 1), (0, |Bns| − 1) do
6 if w = Bnsi[j] then

return Bnsi and Bsj; break

4.2 A Simple Extension of the Base Case

Algorithm 1 creates buckets when the number of non-sensitive data values are not

a prime number, by finding the two approximately square factors. However, Algo-

rithm 1 may result in the higher cost (i.e., the number of retrieve tuple) when the

sum of the approximately square factors is high. For example, if there are 41 sensi-

tive data values and 82 non-sensitive data values, then we may have 2 non-sensitive

buckets having 41 values in each and 41 sensitive buckets having exactly one value

in each. In this case, answering a query results in retrieval of 42 tuples. We may

31

also create two sensitive buckets and 41 non-sensitive buckets containing exactly two

non-sensitive values in each. These query buckets will require us to fetch 23 tuples.

However, we can reduce the cost significantly.

An extension to the query bucketization technique is provided in Algorithm 3 that

handles the case when the number of NS values is close to a square number. For

simplicity, in this extension, we considered the base case scenario for defining the

number of tuples with each value. We first find two approximately square factors

of non-sensitive values and the cost; lines 2 and 3. We also find a square number

closest to the non-sensitive values and find the cost; line 4. Now, we create buckets

using the method that results in fewer numbers of retrieved tuples (line 5). When

we create buckets using the square number to the non-sensitive values (line 6), the

remaining non-sensitive values (greater than the square number) that do not have

any associative sensitive value can be handled by putting an equal number of the

remaining values in the buckets. Note that the assignment of sensitive values and

associated non-sensitive values is carried out as we did in Algorithm 1.

Example 4: (An example for the query bucketization extension). Consider

41 sensitive data values and 82 non-sensitive data values, having one tuple each. In

this case, 81 is the closest square number to 82. Here, we can create 9 non-sensitive

buckets and 9 sensitive buckets. We follow Algorithm 1 for allocating sensitive values

and associated non-sensitive values, resulting in that a sensitive bucket holds at most

5 values and a non-sensitive bucket holds at most 10 values. Here, we need to retrieve

at most 15 tuples to answer a query.

32

Algorithm 3: An extension to the query bucketization, the base case.

Inputs: |NS |, |S|.
Outputs: Bs , Bns

1 Function bucket extension(S ,NS) begin
2 x, y ← approx sq factors(|NS |): x ≥ y
3 costd ← x+ y
4 z ← closest SquareNum(|NS |), costsn ← 2(z/

√
z)

5 if (costsn + d(|NS | − z)/
√
ze < costd) then

6 Execute Algorithm 1(S, z) and add (NS − z)/
√
z number of the

remaining non-sensitive values in each non-sensitive buckets

7 else Execute Algorithm 1(S,NS)

4.3 General Case: Multiple Values with Multiple

Tuples

In this section, we will consider a case when data values have different number of

tuples. We will see that sensitive values with different number of tuples provide

enough information to the adversary to disclose the sensitive data; hence, provide a

way to overcome such a situation. We mentioned that SGX-bsed solutions are not

enough secure for handing joint processing of skewed or non-skewed sensitive and

non-sensitive data. This fact will also clear from the following size attack scenario.

Size attack scenario under SGX-based solutions. SGX-based solutions are

capable to process sensitive data in the enclave. However, the joint processing of

the sensitive and non-sensitive data may lead to the information leakage through

non-sensitive data, as shown in Example 1. Moreover, these solutions are not se-

cure when sensitive values have skewed tuples. Consider a query, say q1, find all

employees earing $10K, and assume that most of the employees earn $10K. The

joint processing of the query q1 on sensitive and non-sensitive data in the current

SGX-based solutions [18, 52, 68] will reveal the number of sensitive employees earn-

ing $10K as well as the query. The current SGX-based solutions [18, 52, 68] provide

33

padding to hide an exact number of resultant tuples, however, the padding is not

enough to maintain security. For example, consider a query find all employees

earing $50K, and assume that fewer employees earn $50K, then addition of fake tu-

ples will distinguish that most of the employees in sensitive data earn $10K and fewer

employees earn $50K. In short, all SGX-based solutions lag behind in providing a

quantitative amount of fake tuples to be added for hiding output sensitive data size.

Size attack scenario in the naive query bucketization. The query bucketization

technique can hide the exact query value unlike the previous example. However, in the

case of different number of tuples with sensitive values, the size of sensitive buckets

is non-identical, and different-sized sensitive buckets may leak sensitive data when

accessing non-sensitive data.

For example in the case of 10 sensitive and 10 non-sensitive values, refer to Figure 4.1,

consider a sensitive value, say s1, has 1000 sensitive tuples and an associated non-

sensitive value, say ns1, has 2000 has tuples, while all the other values have only 100

sensitive tuples and the associated 200 non-sensitive tuples.

In this scenario, consider the query execution for a value, say ns1. The DB owner

retrieves tuples according to two buckets such as Bs1 (containing encrypted tuples

having s1 and s6) and Bns0 (containing tuples of ns1, ns2, . . . , ns5). Obviously, the

number of retrieved tuples satisfying the values of the buckets Bs1 and Bns0 will be

highest (i.e., 3900) as compared to the number of tuples retrieved according to any

two buckets. Thus, the retrieval of the two buckets Bs1 and Bns0 provides enough

information to the adversary that which is the sensitive bucket associated with the

bucket holding the attribute value ns1. Note that this type of size attack cannot be

prevented by any SGX-based solutions [18, 52, 68] too, while we use these solution

as a blackbox for sensitive data processing.

34

In order to hold the second equation of the perfect data security, which is not main-

tained in the above example, to be true, we need to make identical-sized sensitive

buckets. A simple way of doing this is to outsource some encrypted fake tuples in

a way that the size of each sensitive bucket will be identical. However, we need to

be careful; otherwise, adding fake tuples in each sensitive bucket may increase the

cost (i.e., the number of retrieved tuples), if all the heavy-hitter sensitive values are

allocated to a single bucket. This fact will be clear by the following example.

Example 5: (Illustrating ways to assign sensitive values to buckets). We

consider 9 sensitive values, say s1, s2, . . . s9, having 10, 20, 30, 40, 50, 60, 70, 80, and

90 tuples, respectively. There are multiple ways for allocating these values to three

buckets so that we need to add a minimum number of fake tuples to each bucket. In

Figure 4.2, we show two different ways to assign these values to buckets. The best we

can do to minimize the addition of fake encrypted tuples and hence minimizing the

cost is to use three buckets as given in Figure 4.2b. Here, we need to add only 20

and 10 fake encrypted tuples to the bucket Bs1 and Bs2, respectively. However, the

first way, see Figure 4.2a, requires us to add 180 and 90 fake encrypted tuples to the

buckets Bs1 and Bs2, respectively for making identical-sized buckets.

s4, s5, s6

s7, s8, s9

Bs1

Bs2

Bs3

s1, s2, s3

(a) The first way.

s9, s4, s1

s8, s5, s2

s7, s6, s3

Bs1

Bs2

Bs3

(b) The second way.

Figure 4.2: An example of assigning 9 sensitive values to 3 buckets.

It is important to mention that there is no need to add any fake tuple if the all the

non-sensitive values have an identical number of tuples. In this case, the adversary

cannot deduce which sensitive bucket contains sensitive parts corresponding to a non-

sensitive value. However, it is obvious that we cannot add any fake non-sensitive tuple

35

in the clear-text.

Before describing how to add fake encrypted tuples to buckets, we show that the

partitioning of values to Bs buckets leading to identical-sized buckets, where a bucket

is not adhered to hold y values, is not a communication efficient solution. For example,

consider 9 sensitive values, where the first value has 100 tuples and all the other values

have 25 tuples each. In this case, we will get buckets as shown in Figure 4.3. Note

that the buckets Bs2 and Bs3 are associated with all the three non-sensitive buckets

while the bucket Bs1 is associated with only Bns1. Thus, the given bucketization does

not prevent the survival matching edges. In order to prevent all the survival matching

edges, we need to ask fake queries for buckets 〈Bs1, Bns2〉 and 〈Bs1, Bns3〉.

s1

s2, s3, s4, s5

s6, s7, s8, s9

ns1, ns4, ns7

ns2, ns5, ns8

ns3, ns6, ns9

Sensitive buckets Non-sensitive buckets

Bs1

Bs2

Bs3

Bns2

Bns1

Bns3

Figure 4.3: An assignment of a heavy hitter value but losing survival matching edges.

Adding fake encrypted tuples. As an assumption, we know the number of sen-

sitive buckets and use the following strategy for allocating sensitive values to the

buckets:

1. Sort all the values in a decreasing order of the number of tuples.

2. Select Bs largest values and allocate one in each bucket.

3. Select the next value and find a bucket that is containing the fewest number

of tuples. If the bucket is holding y values, then add the value to the bucket;

otherwise, select other buckets with the fewest number of tuples. Repeat this

step, until all the values are not allocated to the bucket.

36

4. Add fake tuples to the buckets so that each bucket contains identical number

of tuples

5. Allocate non-sensitive values according to Algorithm 1, lines 6 and 7.

37

Chapter 5

Effective Cost Model

5.1 Motivation

The previous chapter dealt with the implementation of bucketization technique and

its security details. In this chapter we will develop an empirical cost model to estimate

the effectiveness of this scheme. Every secured database has some overhead which it

has to pay for security when compared to database storing data in plain text. We

capture this overhead by a term β. Imagine a database D with d distinct domain

values V = v1, . . . , vd and r copies per vi on average, Thus D = d ∗ r. Consider

retrieving a set of records for a given domain value vi in a given encrypted strategy(E)

and a cost of retrieving it in plain text. We define β as below.

β(D,E) =

∑
vi∈V retrieve(vi, D,E)∑

vi∈V retrieve(vi, D, plaintxt)
(5.1)

Depending on the type of encryption supported by the database, we will have different

values of β.

38

To compare the savings that result due to using bucketization, we have to introduce

another parameter η. Let the domain value vi be associated with bucket Bm, having

vs domain values, on the sensitive side and Bn, having vns domain values, for the non

sensitive side. Time taken for retrieving each individual bucket is TS (from sensitive

side) and TNS (from non sensitive side). TFE is time taken to retrieve all records

for vi, when the entire data set is encrypted and we do not use any bucketization

technique.

TS =
vs∑
i=1

∑
vi∈V

retrieve(vi, D,E) (5.2)

TNS =
vns∑
i=1

∑
vi∈V

retrieve(vi, D, plaintext) (5.3)

TFE =
∑
vi∈V

retrieve(vi, D,E) (5.4)

We now define η as follows:

η =
TS + TNS
TFE

(5.5)

Note that both the definition of β and η depend upon not just the underlying crypto-

graphic technique, but in general, will depend upon the database being stored and the

distribution of values we will see. The main objective of the section is to gain insight

about conditions when bucketization is beneficial and not to exactly characterize cost

model for different techniques. As a result, we will make simplifying assumptions

about the data and value distributions to make analysis possible.In particular, we

will assume uniform distribution of the values, that is, ri(defined in table 5.1) for

each value vi is identical and secondly our entire data is in memory.

If η < 1, then our bucketization technique is effective.

39

To construct the model, we would need various notations which are introduced below

Notations Meaning

BS Size of sensitive bucket

BNS Size of non-sensitive bucket

α Sensitivity factor

D Total number of keys

d Total number of unique keys

r Replication Factor(D = r ∗ d)

E(D) Cost of retrieving a single key over encrypted data of size D

NE(D) Cost of retrieving a single key over non-encrypted data of size D

α(r,α) Replication reduction factor when sensitivity = α

trn Time to fetch 1 record over network

trd Time to decrypt 1 record

tfn Time to filter 1 record

HX Height of B+ Tree when it contains X elements

tei Time to process each node of an encrypted B+ Tree

Table 5.1: Notations for cost model.

Lemma 1 Let D be a database and let I be a B+ index over attribute Ai. Let us

assume that height of tree is Hi. Now consider the database contains only α ∗ D

number of tuples. The B+ index is still on the same attribute Ai. The height of the

B+ tree does not change if α > 1
F

, where F is the fan-out of the B+ tree.

Proof sketch. Consider two separate B+ tree indices B1 and B2 forD1 andD2 elements

respectively such that D1 > D2. Let D2 = α ∗D1 and hence α < 1. The height of a

B+ tree can be approximated to be dlogF De where D is the number of elements in

the B+ tree. The height of the B+ tree will change if D1 > F ∗D2, if the base of the

40

log function is F ; or conversely the height will not change if D1 < F ∗D2.

D1 < F ∗D2

⇒ D1

D2

< F

⇒ D1

α ∗D1

< F

⇒ 1

α
< F

⇒ α >
1

F
(5.6)

Typically the fan-out of a B+ tree in a database is in the order of hundreds. Con-

sidering a minimalistic value of F = 100, we would get a lower bound of α to be

0.01.On the other end of the spectrum if α → 1, it is trivial to show that the value

of D remains almost same and thus the height as well.

5.2 Non-Indexable Technique

This is the most trivial solution, where the database does not allow search over en-

crypted data in sub-linear time. We cannot use a database which uses deterministic

encryption, as this leaks information like correlation.So we use non-deterministic en-

cryption. The most trivial solution is to download the entire database and filter out

the rows which are of interest to us. Later we will discuss more sophisticated tech-

niques. β for this scenario is defined as the overhead of fetching a record in encrypted

setting to that of non-encrypted setting. E(D) refers to the cost of retrieving a given

domain value from the encrypted database, while NE(D) refers to the cost of fetch-

ing the same domain value from a plain text setting. We have to keep in mind that

the domain value may be mapped to more that one tuple depending on the value of

41

replication factor.

βNI =
E(D)

NE(D)
(5.7)

Setup The sensitive data is in non-deterministic fashion while the non-sensitive data

is stored in plain text.To study the effectiveness of our bucketization technique, we

will use compare with a database where the entire data set is stored using non-

deterministic encryption.

Lemma 2 The time required to find an element in database storing clear text data

is approximately independent of the data set size, provided α > 1
F

.

NE(α ∗D) ≈ NE(D) (5.8)

Proof sketch

NE(α ∗D) = tpi ∗Hα∗D + tra ∗ α(r,α) ∗ r

= tpi ∗HD + tra ∗ α(r,α) ∗ r (By Lemma 1) (5.9)

NE(D) = tpi ∗HD + tra ∗ r (5.10)

NE(D)−NE(α ∗D) = tra ∗ r(1− α(r,α)) (5.11)

The value of α(r,α) can range between α and 1. For our scheme the value of 1 is

the worst setting possible, which means the time to process NE(α ∗ D) is same as

NE(D). Any value of less than 1, will lower the value of η as we will pay a lower cost

of processing a smaller fraction of non-encrypted data. But we will assume the worst

case possible for our technique and try to see if our scheme is still effective. Thus we

will consider NE(α ∗D) =⇒ NE(D), but never the converse.

42

Lemma 3 The time required to find an element in an encrypted database,having no

index, of size α ∗ D is α times the processing time required for a data set of size D

under the same conditions.

E(α ∗D) = α ∗ E(D) (5.12)

Proof sketch

E(D) = trn ∗D + trd ∗D + trf ∗D (5.13)

E(α ∗D) = trn ∗ α ∗D + trd ∗ α ∗D + trf ∗ α ∗D

= α ∗ (trn ∗D + trd ∗D + trf ∗D)

= α ∗ E(D) (5.14)

To estimate the value of η, we will fetch the entire data from Sensitive dataset and

filter the required values. At the Non-Sensitive side, we can use index to fetch the

bucket of required elements. The total time is then compared with the case when the

entire dataset was Sensitive.

η =
E(α ∗D) +BNS ∗NE((1− α) ∗D)

E(D)

=
α ∗ E(D)

E(D)
+
BNS ∗NE((1− α) ∗D)

E(D)
(as per Lemma 3)

= α +
BNS ∗NE(D)

E(D)
(if α < 1− 1

F
and Lemma 2)

= α +BNS ∗
1

E(D)
NE(D)

= α +BNS ∗
1

βNI
(as per the definition of β in 5.7) (5.15)

Analysis BNS is the size of a single bucket for non-sensitive data. The value of βNI ,

43

which is the β value considering the database supports only non-indexable search, is

very high as there is a huge overhead of downloading the entire database and is in

the range of 5000 to 10000. Thus the second term in the above equation is very small

and hence the value of η is driven by the sensitivity factor α. We have plotted the

graph in figure 5.1 using equation 5.15.

1000 2000 3000 4000 5000

0.2

0.4

0.6

0.8

1.0

= 1
= 0.1
= 0.3
= 0.5
= 0.7
= 0.9

Figure 5.1: Non-Indexable Search.

5.3 Indexable Technique

Searching over encrypted data in logarithmic time is the gold standard of secured

databases. Although current research has not yet achieved any effective technique

which allows all operations like point query, range queries, sorting over encrypted data

without leaking information in logarithmic time, there has been a lot of work which

allows a subset of operation to be performed in logarithmic scale. We propose a model

44

that will enable us to evaluate the effective cost when using the bucketization approach

on top of a database that supports logarithmic time searchable encryption.As usual

we define βI as the overhead of fetching a record in encrypted setting to that in plain

text. Here the E in E(D) refers to a database which support indexable encryption

unlike the non-indexable encryption in the earlier section.

βI =
E(D)

NE(D)
(5.16)

Setup The Sensitive dataset is stored in the database which supports indexable search,

whose β value is βI . The Non-Sensitive part is stored as plaintext. To calculate the

effective cost, we store the entire dataset in another instance of the same database

which was used to store the sensitive part.

Lemma 4 In an indexed encrypted database setting, the processing time of (α ∗ D)

elements is same as the processing time of D elements times α(r,α).

E(α ∗D) = α(r,α) ∗ E(D) (5.17)

Proof sketch

E(α ∗D) = [(tei ∗Hα∗D) + trd] ∗ (α(r,α) ∗ r)

= [(tei ∗HD) + trd] ∗ (α(r,α) ∗ r) (height invariance by Lemma 1)

= {[(tei ∗HD) + trd] ∗ r} ∗ α(r,α)

= E(D) ∗ α(r,α)

Now we can estimate the effective cost η. Recall that η is the ratio of the cost

of processing a query in a bucketization setting to that of processing without any

45

bucketization technique.

η =
BS ∗ E(α ∗D) +BNS ∗NE((1− α) ∗D)

E(D)

=
BS ∗ E(α ∗D)

E(D)
+
BNS ∗NE((1− α) ∗D)

E(D)

=
BS ∗ α(r,α) ∗ E(D)

E(D)
+
BNS ∗NE((1− α) ∗D)

E(D)
(as per Lemma 4)

= BS ∗ α(r,α) +
BNS ∗NE(D)

E(D)
(if α < 1− 1

F
and Lemma 2)

= BS ∗ α(r,α) +BNS ∗
1

E(D)
NE(D)

= BS ∗ α(r,α) +BNS ∗
1

βI
(as per the definition of β in 5.16) (5.18)

In most of our setup the value of α(r,α) is approximately 1.Thus the above equation

can be reduced to

η = BS +BNS ∗
1

βI
(5.19)

If we ignore this assumption, we will get a slightly lower value of η.To make our

technique more robust we are approximating to a higher value of η, or in other words

we have assuming scenarios where data distribution is antagonistic to our approach.

Analysis The value of η in the above equation is dominated by the first term, BS,

which is the size of a single bucket for sensitive data, whose value is more than 1 in

the bucketization technique.Hence the value of η > 1, which means the bucketization

technique is computationally ineffective. On the other hand, this technique is immune

to size attack, as the number of elements returned by our technique always returns

the same which is not the case otherwise. The graph is drawn in the figure 5.2.

46

0 20 40 60 80 100

0

200

400

600

800

1000

1200
= 1
= 0.1
= 0.3
= 0.5
= 0.7
= 0.9

Figure 5.2: Indexable Search.

5.4 Hybrid Technique

In the indexable technique discussed above, we found out that the effective cost(η)

was always more than one but we had more security. To get the best of both world,

we will use a hybrid approach. The storage and retrieval of the sensitive dataset is as

per the technique described in [49]. Let the value of β associated with this technique

be βP and system be designated as SystemP . Non-Sensitive data is stored in plain-

text. To measure the effectiveness of this setup we will use any other system which

supports indexable search over encrypted data.Let the value of β associated with this

system be βS and the system be designated as SystemS. We have already defined the

notion of E(D). To distinguish between the two system, we have added a subscript

to denote the system for which we are mapping the E(D) to. The two values of β

47

are defined below.

βP =
EP (D)

NE(D)
(5.20)

βS =
ES(D)

NE(D)
(5.21)

Effective Cost (η) can be estimated as below:

η =
BS ∗ EP (α ∗D) +BNS ∗NE((1− α) ∗D)

ES(D)

=
BS ∗ EP (α ∗D)

ES(D)
+
BNS ∗NE((1− α) ∗D)

ES(D)

=
BS ∗ α(r,α) ∗ EP (D)

Es(D)
+
BNS ∗NE((1− α) ∗D)

ES(D)
(as per Lemma 4)

= BS ∗ α(r,α) ∗
EP (D
NE(D)

)

ES(D)
NE(D)

+
BNS ∗NE(D)

Es(D)
(if α < 1− 1

F
and Lemma 2)

= BS ∗ α(r,α) ∗
βP
βS

+BNS ∗
1

ES(D)
NE(D)

(as per equation 5.20 and 5.21)

= BS ∗ α(r,α) ∗
βP
βS

+BNS ∗
1

βS
(as per the definition of β in 5.21) (5.22)

In most of our setup the value of α(r,α) is approximately 1. We have discussed the

significance of this assumption in the previous two sections. Thus the above equation

can be reduced to

η = BS ∗
βP
βS

+BNS ∗
1

βS
(5.23)

Analysis The notation BNS and BNS are the same as used in the previous section.

To get an insight into the equation, we will use some of the β values we found. By

implementing the strategy given in [49], we found βP = 1.3647. βS was found to be

3290.944423. Due to such a high numeric value of βS, η was found to be less than one.

48

It should be taken into consideration that SystemP by itself leaks correlation and size

information. So, without bucketization technique, SystemP cannot be completely

secure. On the the other hand SystemS has higher notion of security, albeit at a

higher value of βS.By using such a hybrid approach, we can get security as well as

acceptable time complexity. The graph is drawn in the figure 5.3.

1000 2000 3000 4000 5000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
= 1
= 0.1
= 0.3
= 0.5
= 0.7
= 0.9

Figure 5.3: Hybrid Model.

49

Chapter 6

Experiments

6.1 Setup

In this section, we compare the performance of our proposed solution against the

standard techniques for retrieving tuples from existing systems. We explicitly do not

want to reveal the name of the system due to legal issues, and hence we name these

systems as A, B, C and so on. We will give more details about the system, as we

introduce them for each case.

We conducted our experiments on a in-home cloud. For setting up the system, we

spin up a Virtual Machine(VM) and install the required guest operating system on

top of the VM. We have used the recommended operating system for each database.

The VM has a 2.6 GHz and 4 core processor. The memory has been configured to be

16 GB, while the physical disk has a capacity of 1 TB.

We used TPC-H benchmark to generate the dataset for our experiments. We ran-

domly mark some tuples as sensitive and the rest as non sensitive. The sensitivity

50

factor(α) is varied from 0.1 to 0.9 for our experiments. Once we have partitioned

the data into two sets, we store the sensitive data in the system under consideration,

which should support encryption and the non sensitive data in plain text. Please

note, that we create non-clustered B+ tree index on the plain text data. Buckets

are created as per the data present in sensitive and non sensitive data. This marks

the end of the initialization phase. Based on the keyword to be searched, we select a

bucket created in the previous state, one for sensitive and one for sensitive as per the

Algorithm 2. We note the time taken to retrieve both the buckets. To compare the

effectiveness of our technique, we store the entire dataset as encrypted in the system

under consideration and find out the time taken to retrieve records based on the same

keyword. We repeat the experiment fifty times, to minimize the effect of outliers.

6.2 Non Indexable Technique

We consider two popular databases, which support non deterministic encryption. Lets

us call them System A and B. The Beta(β) values for the systems were found to be

1117.73 and 9500.268 respectively. As both the systems do not support any indexable

search on encrypted data and further as the data is encrypted in non deterministic

fashion, we have to download the entire data from the encrypted table and filter

out the required tuples. While the plain text data can be retrieved using the index

created. We compare the time taken to fetch a bucket from the sensitive side and the

non sensitive side in figure 6.1 and 6.2 for System A and B respectively for different

levels of sensitivity. We denote the time taken as S and NS. As the time taken by

non sensitive is orders of magnitude less than the sensitive side,we have used log to

show the time taken.

We then sum up the time taken to retrieve the two buckets and compare that with

51

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

1

2

3

4

5

6

Ti
m

e
in

 lo
g 1

0(
m

s)

S
NS

Figure 6.1: Comparison of Sensitive vs Non-Sensitive Time in System A.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

1

2

3

4

5

Ti
m

e
in

 lo
g 1

0(
m

s)

S
NS

Figure 6.2: Comparison of Sensitive vs Non-Sensitive Time in System B.

the time taken when the entire data was sensitive. This fact is shown in figure 6.3

for System A and in figure 6.4 for System B. As we see that as the level sensitivity

52

increase the time taken to retrieve data from the sensitive side increase. The reason

being that we need to download the entire dataset and filter our required tuples which

is linear in time to the size of data set. We then calculate effective cost as per the

definition given in equation 5.5. The effective cost increase as the sensitivity increases

primarily due to the increase in cost of processing a larger encrypted data set. The η

values are plotted in fig 6.5 and 6.6 for System A and B respectively, which is below

the value of 1. The results show that our technique is efficient till α = 0.8 for System

A and α = 0.9 for System B.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

2500

5000

7500

10000

12500

15000

17500

Ti
m

e
in

 m
s

Bucketization
No Bucketization

Figure 6.3: Bucketization vs No Bucketization in System A.

6.3 Indexable Technique

To exploit indexing we use the technique given in [49] on System A and System B.

As the scheme of processing encrypted data is now modified, we call this system as

System C and System D. Further we test another system which supports indexable

53

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

2000

4000

6000

8000

10000

Ti
m

e
in

 m
s

Bucketization
No Bucketization

Figure 6.4: Bucketization vs No Bucketization in System B.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0.5

0.6

0.7

0.8

0.9

1.0

Ef
fe

ct
iv

e
C

os
t

 at each
= 1

Figure 6.5: Effective Cost in System A.

54

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
C

os
t

 at each
= 1

Figure 6.6: Effective Cost in System B.

search over encrypted data. We have named this as System E. The value of β(s)

for the three system are 12.58, 1.364 and 3290.94 for System C, D, E respectively.

We follow the same methodology, as we did for non-indexable search. The difference

being that the sensitive data can now be processed in time which is sub-linear. We

have compared the time taken to fetch sensitive and non sensitive bucket in figure 6.7

, 6.8 and 6.9 for System C, D and E respectively. Then we sum up the time taken

to fetch both the buckets and compare the time taken to fetch the required tuples

when the entire data set is encrypted. This fact is represented in figures 6.10, 6.11

and 6.12. We see that the time take by our Bucketization technique is very high as

compared to straight forward retrieval. This is also represented by the graphs for η in

6.13, 6.14 and 6.15. The reason being in these system cannot fetch a bucket in which

the processing cost is amortized among the individual cost of fetching each tuple. So,

we end up paying the security overhead of retrieving each tuple BS number of times,

55

where BS is the size of each bucket for sensitive data. As a note, we must mention

that, although we lose out in efficiency, we gain additional security as our model is

immune to size attack while the base model is not.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

1

2

3

4

5

Ti
m

e
in

 lo
g 1

0(
m

s)

S
NS

Figure 6.7: Comparison of Sensitive vs Non-Sensitive Time in System C.

6.4 Hybrid Approach

In the hybrid approach, we store and process the sensitive data using the approach

given in [49] along with our bucketization scheme, while the non sensitive data is

stored in plain text. We consider another highly secure indexable search solution,

in which we store the entire data set. Let this overall setup be known as System E.

We have a highly efficient setup which can retrieve a bucket very fast due to index

and secure as well due to and secured due to bucketization. We follow our normal

strategy to compare the system and plot the values in figure 6.16 and 6.17. As we

can see that we are efficient by a fair margin, with η remaining way less than 1, even

56

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0.0

0.5

1.0

1.5

2.0

2.5
Ti

m
e

in
 lo

g 1
0(

m
s)

S
NS

Figure 6.8: Comparison of Sensitive vs Non-Sensitive Time in System D.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

2

4

6

8

10

Ti
m

e
in

 lo
g 1

0(
m

s)

S
NS

Figure 6.9: Comparison of Sensitive vs Non-Sensitive Time in System E.

if the sensitivity is increased. The reason behind this lies in equation 5.23.

57

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

1000

2000

3000

4000

5000

Ti
m

e
in

 m
s

Bucketization
No Bucketization

Figure 6.10: Bucketization vs No Bucketization in System C.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

20

40

60

80

100

120

140

Ti
m

e
in

 m
s

Bucketization
No Bucketization

Figure 6.11: Bucketization vs No Bucketization in System D.

58

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000
Ti

m
e

in
 m

s
Bucketization
No Bucketization

Figure 6.12: Bucketization vs No Bucketization in System E.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

10

20

30

40

50

Ef
fe

ct
iv

e
C

os
t

 at each
= 1

Figure 6.13: Effective Cost in System C.

59

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

10

20

30

40

50

60

Ef
fe

ct
iv

e
C

os
t

 at each
= 1

Figure 6.14: Effective Cost in System D.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

200

400

600

800

1000

1200

1400

Ef
fe

ct
iv

e
C

os
t

 at each
= 1

Figure 6.15: Effective Cost in System E.

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0

1000

2000

3000

4000

5000

Ti
m

e
in

 m
s

Bucketization
No Bucketization

Figure 6.16: Bucketization vs No Bucketization in System F.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Sensitivity

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e
C

os
t

 at each
= 1

Figure 6.17: Effective Cost in System F.

61

6.5 Effect of Size of Data

To show that our methodology is immune to size of data set, we conducted our

experiment on data set of size one hundred thousand, one and half million and fi-

nally on four and half million tuples. Each of them was tested for various values of

sensitivity(α). The results show that the effective cost is less that 1, which signifies

that the effectiveness of our scheme on the face huge data set.

0 1 2 3 4
Data Set size in milions

0.2

0.4

0.6

0.8

1.0

= 1
= 0.1

= 0.2
= 0.3

= 0.4
= 0.5

= 0.6
= 0.7

= 0.8
= 0.9

Figure 6.18: Effective Cost vs Size of data set.

62

Chapter 7

Conclusion and Future Work

We have tried to present a scheme which achieves a two-fold benefit. On the one

hand the technique can enhance the security of databases which have a fairly small

time for retrieval, but leak information. On the other hand, our scheme reduces the

time for databases which are completely secure but have a high cost of processing.

We have also developed a model to examine the efficiency of a database in terms of

β; the order of β needed to have a technique which is more effective than our scheme.

Currently, our system supports key-word search only. The next logical course of

action is to support range queries and joins. Another aspect which we would like to

explore, is given a data set which is completely sensitive, to come up with an effective

amount of non-sensitive data which can be added to the data set, so that we can

apply our technique.

63

Bibliography

[1] http://www.computerworld.com/article/2834193/cloud-computing/

5-tips-for-building-a-successful-hybrid-cloud.html.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order-preserving encryption for
numeric data. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, Paris, France, June 13-18, 2004, pages 563–574, 2004.

[3] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy,
and R. Venkatesan. Orthogonal security with cipherbase. In CIDR 2013, Sixth
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
January 6-9, 2013, Online Proceedings, 2013.

[4] A. Arasu, K. Eguro, R. Kaushik, D. Kossmann, R. Ramamurthy, and R. Venkate-
san. A secure coprocessor for database applications. In 23rd International Con-
ference on Field programmable Logic and Applications, FPL 2013, Porto, Por-
tugal, September 2-4, 2013, pages 1–8, 2013.

[5] A. Arasu and R. Kaushik. Oblivious query processing. In Proc. 17th International
Conference on Database Theory (ICDT), Athens, Greece, March 24-28, 2014.,
pages 26–37, 2014.

[6] S. Bajaj and R. Sion. Correctdb: SQL engine with practical query authentica-
tion. PVLDB, 6(7):529–540, 2013.

[7] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In Advances in Cryptology - CRYPTO 2007, 27th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2007,
Proceedings, pages 535–552, 2007.

[8] C.-P. Bezemer and A. Zaidman. Multi-tenant saas applications: maintenance
dream or nightmare? In Proceedings of the Joint ERCIM Workshop on Soft-
ware Evolution (EVOL) and International Workshop on Principles of Software
Evolution (IWPSE), pages 88–92. ACM, 2010.

[9] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword
searching and browsing in databases using BANKS. In Proceedings of the 18th
International Conference on Data Engineering, San Jose, CA, USA, February
26 - March 1, 2002, pages 431–440, 2002.

64

http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-building-a-successful-hybrid-cloud.html
http://www.computerworld.com/article/2834193/cloud-computing/5-tips-for-building-a-successful-hybrid-cloud.html

[10] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In Advances in Cryptology - EUROCRYPT 2004, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings, pages 506–522, 2004.

[11] E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In Advances in
Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April
26-30, 2015, Proceedings, Part II, pages 337–367, 2015.

[12] D. Cash, J. Jaeger, S. Jarecki, C. S. Jutla, H. Krawczyk, M.-C. Rosu, and
M. Steiner. Dynamic searchable encryption in very-large databases: Data struc-
tures and implementation. Citeseer, 2014.

[13] Y.-C. Chang. Single database private information retrieval with logarithmic com-
munication. In Australasian Conference on Information Security and Privacy,
pages 50–61. Springer, 2004.

[14] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In
International Conference on the Theory and Application of Cryptology and In-
formation Security, pages 577–594. Springer, 2010.

[15] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information re-
trieval. In Foundations of Computer Science, 1995. Proceedings., 36th Annual
Symposium on, pages 41–50. IEEE, 1995.

[16] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information re-
trieval. J. ACM, 45(6):965–981, 1998.

[17] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: improved definitions and efficient constructions. Journal of Computer
Security, 19(5):895–934, 2011.

[18] T. T. A. Dinh, P. Saxena, E. Chang, B. C. Ooi, and C. Zhang. M2R: enabling
stronger privacy in mapreduce computation. In 24th USENIX Security Sympo-
sium, USENIX Security 15, Washington, D.C., USA, August 12-14, 2015., pages
447–462, 2015.

[19] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[20] F. Emekçi, A. Metwally, D. Agrawal, and A. El Abbadi. Dividing secrets to
secure data outsourcing. Inf. Sci., 263:198–210, 2014.

[21] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold. Keyword search and
oblivious pseudorandom functions. In Theory of Cryptography, Second Theory
of Cryptography Conference, TCC 2005, Cambridge, MA, USA, February 10-12,
2005, Proceedings, pages 303–324, 2005.

65

[22] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity, 2009.

[23] C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology - EUROCRYPT 2011 - 30th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Tallinn, Estonia, May 15-19, 2011. Proceedings, pages 129–148. 2011.

[24] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. E. Lauter, M. Naehrig, and J. Werns-
ing. CryptoNets: Applying neural networks to encrypted data with high through-
put and accuracy. In Proceedings of the 33nd International Conference on Ma-
chine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages
201–210, 2016.

[25] N. Gilboa and Y. Ishai. Distributed point functions and their applications. In Ad-
vances in Cryptology - EUROCRYPT 2014 - 33rd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Copenhagen,
Denmark, May 11-15, 2014. Proceedings, pages 640–658, 2014.

[26] E.-J. Goh et al. Secure indexes.

[27] O. Goldreich. Towards a theory of software protection and simulation by obliv-
ious rams. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, pages 182–194, 1987.

[28] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious
rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

[29] M. T. Goodrich. Randomized shellsort: A simple oblivious sorting algorithm.
In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 1262–1277. Society for Industrial and Applied Mathematics,
2010.

[30] H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra. Executing SQL over encrypted
data in the database-service-provider model. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, Madison, Wiscon-
sin, June 3-6, 2002, pages 216–227, 2002.

[31] V. Hristidis and Y. Papakonstantinou. DISCOVER: keyword search in relational
databases. In VLDB 2002, Proceedings of 28th International Conference on Very
Large Data Bases, August 20-23, 2002, Hong Kong, China, pages 670–681, 2002.

[32] Y. Ishai and E. Kushilevitz. Private simultaneous messages protocols with appli-
cations. In Fifth Israel Symposium on Theory of Computing and Systems, ISTCS
1997, Ramat-Gan, Israel, June 17-19, 1997, Proceedings, pages 174–184, 1997.

[33] Y. Ishai, E. Kushilevitz, S. Lu, and R. Ostrovsky. Private large-scale databases
with distributed searchable symmetric encryption. In Topics in Cryptology -

66

CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference 2016, San
Francisco, CA, USA, February 29 - March 4, 2016, Proceedings, pages 90–107,
2016.

[34] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Batch codes and their ap-
plications. In Proceedings of the thirty-sixth annual ACM symposium on Theory
of computing, pages 262–271. ACM, 2004.

[35] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill. Generic attacks on secure
outsourced databases. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October 24-28, 2016,
pages 1329–1340, 2016.

[36] S. Y. Ko, K. Jeon, and R. Morales. The HybrEx model for confidentiality and
privacy in cloud computing. In 3rd USENIX Workshop on Hot Topics in Cloud
Computing, HotCloud’11, Portland, OR, USA, June 14-15, 2011, 2011.

[37] I. Komargodski and M. Zhandry. Cutting-edge cryptography through the lens
of secret sharing. In Theory of Cryptography - 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II, pages
449–479, 2016.

[38] E. Kushilevitz and R. Ostrovsky. Replication is not needed: Single database,
computationally-private information retrieval. In Foundations of Computer Sci-
ence, 1997. Proceedings., 38th Annual Symposium on, pages 364–373. IEEE,
1997.

[39] W. Li and L. Ping. Trust model to enhance security and interoperability of cloud
environment. In IEEE International Conference on Cloud Computing, pages 69–
79. Springer, 2009.

[40] H. Lipmaa. An oblivious transfer protocol with log-squared communication.
In International Conference on Information Security, pages 314–328. Springer,
2005.

[41] W. Lueks and I. Goldberg. Sublinear scaling for multi-client private information
retrieval. In Financial Cryptography and Data Security - 19th International Con-
ference, FC 2015, San Juan, Puerto Rico, January 26-30, 2015, Revised Selected
Papers, pages 168–186, 2015.

[42] C. Mavroforakis, N. Chenette, A. O’Neill, G. Kollios, and R. Canetti. Modular
order-preserving encryption, revisited. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pages 763–777. ACM, 2015.

[43] P. Mell. The nist definition of cloud computing.

[44] M. Naor and B. Pinkas. Oblivious polynomial evaluation. SIAM J. Comput.,
35(5):1254–1281, 2006.

67

[45] M. Naveed, S. Kamara, and C. V. Wright. Inference attacks on property-
preserving encrypted databases. In Proceedings of the 22nd ACM SIGSAC Con-
ference on Computer and Communications Security, Denver, CO, USA, October
12-6, 2015, pages 644–655, 2015.

[46] K. Y. Oktay, M. Kantarcioglu, and S. Mehrotra. Secure and efficient query
processing over hybrid clouds. In 33rd IEEE International Conference on Data
Engineering, ICDE 2017, San Diego, CA, USA, April 19-22, 2017, pages 733–
744, 2017.

[47] K. Y. Oktay, S. Mehrotra, V. Khadilkar, and M. Kantarcioglu. SEMROD: se-
cure and efficient MapReduce over hybrid clouds. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data, Melbourne,
Victoria, Australia, May 31 - June 4, 2015, pages 153–166, 2015.

[48] P. Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 223–238. Springer, 1999.

[49] R. Poddar, T. Boelter, and R. A. Popa. Arx: A strongly encrypted database
system. IACR Cryptology ePrint Archive, 2016:591, 2016.

[50] M. O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187, 2005.

[51] J. Rittinghouse and J. Ransome. Cloud computing: Implementation, manage-
ment, and security. 2009.

[52] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G. Mainar-Ruiz,
and M. Russinovich. VC3: trustworthy data analytics in the cloud using SGX.
In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose, CA,
USA, May 17-21, 2015, pages 38–54, 2015.

[53] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[54] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[55] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with o ((logn) 3)
worst-case cost. In International Conference on The Theory and Application of
Cryptology and Information Security, pages 197–214. Springer, 2011.

[56] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on
encrypted data. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000
IEEE Symposium on, pages 44–55. IEEE, 2000.

[57] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas.
Path oram: an extremely simple oblivious ram protocol. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, pages
299–310. ACM, 2013.

68

[58] Q.-C. To, B. Nguyen, and P. Pucheral. Private and scalable execution of SQL
aggregates on a secure decentralized architecture. ACM Trans. Database Syst.,
41(3):16:1–16:43, Aug. 2016.

[59] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia. Splin-
ter: Practical private queries on public data. In 14th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2017, Boston, MA, USA,
March 27-29, 2017, pages 299–313, 2017.

[60] S. Wang, X. Ding, R. H. Deng, and F. Bao. Private information retrieval using
trusted hardware. IACR Cryptology ePrint Archive, 2006:208, 2006.

[61] Z. Xia, X. Wang, X. Sun, and Q. Wang. A secure and dynamic multi-keyword
ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib.
Syst., 27(2):340–352, 2016.

[62] A. C. Yao. Protocols for secure computations. In Foundations of Computer Sci-
ence, 1982. SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982.

[63] A. C.-C. Yao. How to generate and exchange secrets. In Foundations of Computer
Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

[64] S. Yu, C. Wang, K. Ren, and W. Lou. Achieving secure, scalable, and fine-
grained data access control in cloud computing. In INFOCOM, pages 534–542,
2010.

[65] S. Yu, C. Wang, K. Ren, and W. Lou. Attribute based data sharing with at-
tribute revocation. In Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, ASIACCS 2010, Beijing, China, April
13-16, 2010, pages 261–270, 2010.

[66] C. Zhang, E. Chang, and R. H. C. Yap. Tagged-MapReduce: A general frame-
work for secure computing with mixed-sensitivity data on hybrid clouds. In 14th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2014, Chicago, IL, USA, May 26-29, 2014, pages 31–40, 2014.

[67] K. Zhang, X. Zhou, Y. Chen, X. Wang, and Y. Ruan. Sedic: privacy-aware
data intensive computing on hybrid clouds. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS 2011, Chicago,
Illinois, USA, October 17-21, 2011, pages 515–526, 2011.

[68] W. Zheng, A. Dave, J. Beekman, R. A. Popa, J. Gonzalez, and I. Stoica. Opaque:
An oblivious and encrypted distributed analytics platform. In NSDI, 2017.

69

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE THESIS
	Introduction
	Cloud Computing
	Security in Cloud Computing
	Existing Techniques
	Motivation
	Problem Statement and Contribution

	Related Work
	Encryption Based Techniques
	Secret Sharing Techniques

	System Setting
	Adverserial Model
	Security Definition and Correctness

	Query Bucketization
	The Base Case
	A Simple Extension of the Base Case
	General Case: Multiple Values with Multiple Tuples

	Effective Cost Model
	Motivation
	Non-Indexable Technique
	Indexable Technique
	Hybrid Technique

	Experiments
	Setup
	Non Indexable Technique
	Indexable Technique
	Hybrid Approach
	Effect of Size of Data

	Conclusion and Future Work
	Bibliography

