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A review on mechanistic understanding of MnO2 in aqueous electrolyte for
electrical energy storage systems
Jaewook Shin a, Joon Kyo Seoa,b, Riley Yayliana,b, An Huanga,b and Ying Shirley Menga

aDepartment of NanoEngineering, University of California, San Diego, La Jolla, CA, USA; bMaterials Science & Engineering Program,
University of California, San Diego, La Jolla, CA, USA

ABSTRACT
The demand for the large-scale storage system has gained much interest. Among all the criteria
for the large-scale electrical energy storage systems (EESSs), low cost ($ k Wh−1) is the focus
where MnO2-based electrochemistry can be a competitive candidate. It is notable that MnO2

is one of the few materials that can be employed in various fields of EESSs: alkaline battery,
supercapacitor, aqueous rechargeable lithium-ion battery, and metal-air battery. Yet, the
technology still has bottlenecks and is short of commercialisation. Discovering key
parameters impacting the energy storage and developing systematic characterisation
methods for the MnO2 systems can benefit a wide spectrum of energy requirements. In this
review, history, mechanism, bottlenecks, and solutions for using MnO2 in the four EESSs are
summarised and future directions involving more in-depth mechanism studies are suggested.
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Introduction

A large-scale energy storage system in a grid-scale
power generator provides a substantial benefit to the
electric power grid by lowering the need for generating
constant and excessive power [1]. Because the power
consumption fluctuates throughout the day, the excess
power is wasted without the energy storage systems to
level the load. The load levelling is to store and utilise
the excess energy when needed. Currently, less than
2.5% of the total electric power delivered in the United
States uses energy storage systems [2]; the need for a
large-scale energy storage system is evident. As an
energy storage device, the pumped hydroelectric sys-
tem is the dominant system, however, it suffers from
a geometric constraint and a low efficiency [3]. To
gain flexible installation with higher efficiency, the elec-
trical energy storage system (EESS) is favoured. While
hydroelectricity stores the energy in a form of water
displacement and converts it to electricity, the EESS
stores the energy in the form of electricity. The stored
energy can be directly utilised to the grid.

One of the major difficulties in installing an EESS is
the cost of the materials. For a large-scale EESS, the
material cost has to stay low and MnO2 is a promising
candidate in terms of the cost. Manganese is the 12th
most abundant element in the Earth’s crust [4]; it is a
significant component in soil [5–7]; thus, making it
one of the cheapest materials available. However,
MnO2 has intrinsic issues that hinder its rechargeable
application. Since EESS is in dire need of improvement,
we propose the MnO2 system to study. There has been

an extensive history of academic and industrial
research on MnO2. Academic approach and under-
standing of the MnO2 in EESS research are summar-
ised and discussed in this review.

The electrochemical activities of MnO2 have been
reported for more than a century. The ancient MnO2

system deserves the spotlight because of its complexity.
The recent development of characterisation techniques
and knowledge broadened the understanding of the
MnO2 system and left room to improve in addition to
the study done over the last few decades. First of all,
MnO2 does not refer to a single material. It is necessary
to understand that there are a few polymorphs ofMnO2

and they should be considered differently [8,9]. Due to
the difference in the crystal structure of the MnO2, a
redox reaction kinetic is completely disparate [10].
There are six polymorphs of manganese dioxide this
review discusses in detail: (1) α-MnO2 (2 × 2 tunnel
or hollandite), (2) β-MnO2 (1 × 1 tunnel or pyrolusite),
(3) R-MnO2 (2 × 1 tunnel or Ramsdellite), (4) γ-MnO2

(mix of 2 × 1 and 1 × 1 tunnels or nsutite), (5) δ-MnO2

(layered or birnessite), and (6) λ-MnO2 (3-dimensional
pores or spinel) (Figure 1). The polymorphs have dis-
tinctive atomic arrangements that result in various
types of pores or tunnels within the crystal structure.
Due to the distinctive crystal structure, the selectivity
towards different ions or electron transfer kinetics is
immense. Since most EESS utilises ions in the electro-
lyte and electron transfer kinetics on the electrode sur-
face, it is expected that the crystal structures and the
applications are closely related.
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There are four major types of EESS in which
MnO2 has been adopted: alkaline battery, lithium-
ion battery (LIB), supercapacitor, and metal-air bat-
tery (MAB). All EESS in discussion focuses on aqu-
eous electrolyte systems because of their low cost
compared to their counterpart, organic electrolyte
systems. Great interest in these systems has exponen-
tially grown over the years (Figure 2(a)). Especially,
the alkaline battery system has the longest history
of the four systems with more academic research
papers published than the other three systems. On
the other hand, although the supercapacitor, LIB,
and MAB systems have a shorter history, a growing
number of papers are being published recently.
Gathering the large literature, the four EESS have
distinctive mechanisms, which fill different areas on
the Ragone plot (Figure 2(b)) can be learned. The
alkaline battery has high energy, but low power,
whereas the supercapacitor has high power and low
energy. The LIB performances sit in between the
two and the metal-air has a wide range of energy,
but narrow power. In the large-scale energy storage,
the power required by the consumers fluctuates in
seconds to hours. It is vital to have complimentary
EESS to compensate for the wide range fluctuation.
For instance, an alkaline battery with low power
but high energy is favoured in the hour-range of
fluctuation and a supercapacitor with high power
but low energy is suitable for the second-range of
fluctuation. In the real world with dynamic ranges
of the fluctuation, the varying EESS performances
will complement each other. In this review, the per-
formance, mechanism, bottleneck, and solutions of
MnO2 in the four EESS are discussed.

Alkaline battery

MnO2 in alkaline battery

Utilising MnO2 in an electrochemical system among
the four EESS, an alkaline battery has the longest

Figure 1. Crystal structures of MnO2 polymorphs (Mn: magenta and O: red). The structure of γ-MnO2 consists of an intergrowth
between 1 × 1 and 2 × 1 tunnels. The ratio of 1 × 1 tunnel over 1 × 1 and 2 × 1 tunnels is called Pr (0% < Pr < 100%) [11]. The
shown γ-MnO2 compound has Pr = 50%. Water molecules and guest cations are omitted for clarity.

Figure 2. (a) Accumulated papers (articles and review) pub-
lished on various EESS systems. Source: Web of Science data-
base. (b) A Ragone plot comparing alkaline battery, LIB,
supercapacitor, and a MAB that utilise manganese dioxide.
Source: Web of Science database. Data is updated in June 2019.
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history. Since it was first commercialised in the 1950s,
the MnO2/Zn alkaline chemistry has been widely
applied to operate household goods as well as small
portable devices [12]. Recently, adopting alkaline bat-
teries into grid-scale EESS is emerging especially in
load levelling and stabilising intermittent renewable
energy from solar and wind power [13]. MnO2 in alka-
line batteries has several advantages: low cost, high
energy density, and safety. Specifically, the MnO2/Zn
alkaline battery has a capital cost of $ 10–65 per
kWh [14–16], the theoretical energy density of MnO2

reaction is 308 Wh kg−1 for a single electron reaction
[17] and the chemistry of MnO2 alkaline battery is rela-
tively safe as it operates under aqueous media. The
MnO2/Zn alkaline chemistry has been predominantly
utilised for primary batteries (non-rechargeable), how-
ever, it is receiving much attention to develop a second-
ary battery (rechargeable) recently [18–20].

History

In the early stage of MnO2 electrochemistry research,
the research focused on primary batteries. MnO2 was
first introduced as a cathode material in a depolariser
in Leclanche cell in 1866 [21]. The MnO2 cell powered
early telegraphs to signal and ring an electric bell where
the intermittent current was needed [22]. The first use
of MnO2 in an alkaline media is developed by Leuchs in
1882 [23] where NaOH solution was used for the cell.
In 1903, KOH based alkaline electrolyte was intro-
duced by Yai [24]. Later, KOH and NaOH were used
by Achenback et al. to make the first gelatinous alkaline
cell [25] where they used starch to form gelatinous
filling. With a powdered Zn gel anode, the revolution-
ary alkaline that provided enough power was devel-
oped by Urry in 1950s [26]. His alkaline battery
adopted a paste electrolyte, which operated in any
orientation because it has no free liquid, making it an
appropriate energy source for portable equipment.
Later, the demand for the alkaline MnO2/Zn batteries
increased as functional cameras and portable music
players were developed in 1960–80s. In order to meet
the market needs, considerable studies have been con-
ducted to make breakthroughs by understanding the
reaction mechanisms [21,27–29], enhancing perform-
ance including modifying electrode materials [17,30–
35] and adjusting alkaline electrolytes [30,36,37].

Since Urry introduced a successful commercial pri-
mary MnO2/Zn alkaline battery in the 1950s, a signifi-
cant amount of work has focused on the reduction
reaction mechanism of MnO2 polymorphs. In this
alkaline battery section, we discuss g-MnO2 or electro-
lytic manganese dioxide as it is the predominant poly-
morph adopted in commercial alkaline batteries. A
number of reports found characteristic mechanisms
of g-MnO2 in alkaline batteries and then Chabre
et al. summarised and compared the reports [21].

The mechanism proposed by Chabre is discussed in
the following section.

Reaction mechanisms

Among the polymorphs of MnO2, γ-phase is used for
commercial alkaline batteries due to its ability to facili-
tate proton intercalation [38–40]. Numerous papers
have reported reaction mechanisms of γ-MnO2 in the
alkaline batteries, which are highly dependent on con-
ditions including the current density, electrolyte, addi-
tive, and doping materials [21,37,41,42]. The
complexity of the structural evolution of γ-MnO2 has
been found depending on conditions, however, Chabre
et al. outlined its general reaction mechanism [21]. It
was demonstrated that there are two types of reactions
(Figure 3) [43]: (1) a homogeneous reaction (solid-sol-
ution reaction) showing continuous voltage change and
(2) a heterogeneous reaction (multi-phase reaction)
with a voltage plateau. The homogeneous process is
associated with the minimised lattice change and the
maintained single phase of g-MnO2. Upon the reaction,
the protons are introduced into the MnO2 structure.

g-MnO2 + xH+ + xe− � g-HxMnO2 (1)

The continuous reduction/proton insertion results
in a heterogeneous reaction [27,44]. The heterogeneous
process is a multi-phase transformation, which
involves the co-existence of two different phases:
MnOOH and Mn(OH)2 [27–29].

Bottleneck

Recently, the γ-MnO2/Zn alkaline battery is revisited as
a secondary battery. Ingale et al. in 2015 demonstrated
that the battery is highly reversible if cycled at a
reduced depth of discharge (DOD) [39]. At 10%
DOD, the phase of cathode remains as pristine γ-

Figure 3. General discharge profile of g-MnO2 summarised by
Chabre et al. in 1995 [21].
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MnO2, which enables the homogeneous reaction with
high reversibility. At higher DOD, however, the cath-
ode forms irreversible phases including Mn3O4 and
ZnMn2O4, which limit the rechargeability of the bat-
tery. Figure 4 summarises the irreversible reaction of
γ-MnO2 in an alkaline γ-MnO2/Zn alkaline battery
when cycled at the full DOD of theoretical two-electron
reaction.

During the first discharge, the proton from an elec-
trolyte intercalates in the 2 × 1 and 1 × 1 tunnels of γ-
MnO2 to form α-MnOOH and γ-MnOOH phases at
the end of the first electron reaction. The ratio between
α-MnOOH and γ-MnOOH phases is expected to be
dependent on the intergrowth feature of the γ-MnO2

structure. A bottleneck to point out is that Mn3+ ions
in MnOOH polymorphs could undergo a disproportio-
nation reaction, forming Mn4+ and Mn2+ species. The
capacity loss could occur owing to Mn2+ species since it
dissolves as OH- coordinated-complex ions in a highly
concentrated basic solution [46]. As the discharge goes
through the second electron, Mn3O4 [28,29] and Mn
(OH)2 [27,28] are generated. Mn3O4 is a spinel struc-
ture where Mn is mixed with Mn2+ and Mn3+ oxi-
dation states. The phase consists of tetragonal and
octahedral Mn-O polyhedra. Mn(OH)2, a layered
structure with a Mn2+ oxidation state, is created at
the end of the first discharge. It is important to note
that Mn3O4 has poor electrical conductivity (108 ohm
cm), which leads to the capacity fading of the γ-
MnO2 alkaline cell [13,39]. This phase is described as
a non-active phase in the electrochemical cell [28]
and it only partially reduces to Mn(OH)2. This

intermediate reduction product remains in the cathode
after the full discharge as well as full charge during
cycles. Mn(OH)2 phase, on the other hand, participates
in the subsequent oxidation reaction and contributes to
the partial reversibility. The cell capacity, however,
decreases significantly after the first cycle because of
the increased amount of Mn3O4.

In addition, ZnMn2O4 or hetaerolite is another irre-
versible phase formed in the cathode [44,47,48]. This
side product is the result of the chemical reaction
between Zn(OH)4

2− and MnOOH. The Zn(OH)4
2− or

Zincate ion is a redox couple with Zn anode. Once
formed, it transports and reacts to the cathode where
MnOOH is formed after γ-MnO2 is reduced. ZnMn2-
O4 possesses severe electrochemically inert features
which show a similar resistivity with a Mn3O4 phase
[13]. In order to make a reversible two-electron
MnO2 alkaline cell, it is essential to prevent Mn3O4

and ZnMn2O4 from forming.

Solutions

Electrolyte salt
Leuchs and Yai have reported the alkaline battery using
different electrolyte salt [19,20]. The electrolyte salt has
an effect on the electrochemical performance of MnO2

in alkaline batteries. For instance, Kozawa et al.
reported the performance at various levels of KOH
concentration in the electrolyte [36]. Although the
higher concentration shows higher reduction capacity,
it also shows more Mn dissolution, because OH− ion
binds to the Mn3+ to form Mn(OH)6

3− [13,36]. To

Figure 4. The reaction mechanism of γ-MnO2 alkaline battery [45].
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keep the stability from Mn dissolution, LiOH can be
utilised in the electrolyte [37]. Unlike the KOH, utilis-
ing LiOH only exhibits less than half of the capacity,
however, it promotes that Li+ from LiOH intercalates
in the γ-MnO2 structure and forms the LixMnO2 spinel
phase. This reaction is reversible and contributes to
enhancing the cyclability. Recently, Hertzberg et al.
reported that the combination of LiOH and KOH
adopted in an aqueous solution of Zn/MnO2 alkaline
battery enhanced the rechargeability as shown in
Figure 5. A reversible single-electron reaction was
enabled for over 60 cycles [49]. It was proposed that
a reversible reaction proceeds between reduced phases
(Mn(OH)2 and LiMn2O4) and oxidised phase (δ-
MnO2).

In addition, the calcium hydroxide (Ca(OH)2) sheet
was reported, which improves the rechargeable reac-
tion of a Zn/MnO2 alkaline battery [50]. Instead of
being used as salt in the electrolyte, the Ca(OH)2 was
mixed with Teflon to fabricate a sheet. The sheet is
layered between a Zn anode and a separator in the bat-
tery. It is interesting to note that the concentration of
zincate ion was substantially decreased during the bat-
tery’s cycle when the sheet was layered. A large amount
of zincate ions was confined in the Ca(OH)2 interlayer
and the insoluble complex calcium zincate was gener-
ated without disturbing the transport of hydroxide
ions. More importantly, undesirable ZnMn2O4 was
not observed, which contributes to the rechargeability
of the Zn/MnO2 alkaline battery.

Electrode additive
Additives are effective in improving cycling perform-
ance; for example, alkaline earth oxides such as MgO
and BaO [17]. The oxides could be physically mixed
with the γ-MnO2 cathode. Compared with the pristine
γ-MnO2 cathode, BaO added γ-MnO2 cathode shows
improved cycle performance, however, its capacity
over prolonged cycles decays due to the formation of

irreversible ZnMn2O4 phase. Adding MgO demon-
strates more stable cycling capacity than adding BaO
and hinders the ZnMn2O4 formation. The combi-
nation of MgO and BaO may help in gaining a high
retention capacity and alleviating the formation of
ZnMn2O4. Furthermore, Ba(OH)2 has shown to inhibit
the Mn3+ dissolution and suppresses undesirable δ-
MnO2 and Mn2O4 formations [51]. Ba(OH)2 additive
significantly decreases the charge-transfer resistance
of the γ-MnO2 electrode [34]. It is suggested that Mg
and Ba compounds generate ZnO·Mn2O3. When Zn2
+ ions migrate from the anode to the cathode side, it
reacts with the MnO2 to form a resistive and irrevers-
ible ZnMn2O4 phase. The Mg and Ba compounds alle-
viate the formation of this ZnMn2O4 phase.

Similarly, Bi2O3 additive is widely utilised as a
MnO2 additive due to its ability to improve cycle reten-
tion. The Bi2O3 improves the retention by suppressing
the unwanted birnessite (δ-MnO2) and hausmannite
(Mn3O4) phases from forming [52–54]. Additional
reports utilising BaBi2O3 [52], NaBiO3 [53], Ag4Bi2O5

[55], and Bi2O3-Cu [56] additives further proves the
effectiveness of the Bi2O3. Minakshi and Mitchell in
2008 suggested that the Bi3+ permits a deeper DOD
by reducing the magnitude of structural changes in
γ-MnO2 cathode during cycling [57]. The exact reason
for causing such a favourable phase transformation in
the γ-MnO2 cathode is still unclear. The Bi2O3 additive
is also known to improve the Zn anode cycle retention
by forming more planar and less dissolvable Zn
[48,58]. Preventing the Zn2+ ions from reacting with
the cathode may also allow deeper DOD and formation
of more favourable phase formations.

There are several additives that affect the phase
transformation of the γ-MnO2 reacting with H+ ion.
On the other hand, additives such as TiB2 and B4C sup-
press the γ-MnO2 reaction with H+ ion. Minakshi et al.
in 2010, demonstrated Zn/MnO2 alkaline battery with
LiOH electrolyte [59,60]. A small amount of B4C was
added to the cathode to observe improved first cycle
discharge capacity but lowered reaction voltage. They
claim that the ‘boron broadens the pathway between
the structural chains of MnO6 octahedra for the diffu-
sion of lithium in the MnO2 host and stabilise the
structure [60].’ They have also shown that in KOH
electrolyte, the K+ ions do not effectively diffuse in
the MnO2 host. The B4C additive promotes Li+ ion
insertion reaction but not H+ nor K+ ion insertion.
Similarly, TiB2 additive has also demonstrated to be
able to promote Li+ ion insertion in the LiOH electro-
lyte [30,61]. Due to the Li+ ion insertion reaction, Min-
akshi et al. in 2008, has shown that the initial discharge
capacity increases from 150 mAh g−1 to 220 mAh g−1,
but with considerably worse rechargeability [61]. The
interesting feature here is that in KOH electrolyte,
TiB2 promotes K+ ion insertion as well [30]. These
boron containing cathode additives are effective in

Figure 5. Discharge capacity of Zn/MnO2 alkaline battery using
the mixture LiOH and KOH electrolyte [45].
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increasing the initial discharge capacity by promoting
alkali metal cation diffusions. However, these additives
lack the ability to improve the cycle retention. On the
other hand, with the addition of another additive,
such as Bi2O3 to stabilise the MnO2 phase transform-
ation, the cycle retention can be optimised [30,62,63].

pH of the electrolyte
Under the high concentration of hydroxide ion at
pH > 7, the Zn anode has a redox couple with the zin-
cate ion, which eventually generates the irreversible
ZnMn2O4 phase regardless of adopting any materials
in the alkaline battery to prevent its formation. In the
past few years, several studies have reported high per-
formed Zn/MnO2 aqueous batteries in weak acidic
electrolytes [19,64,65]. Lee et al. demonstrated that a
Zn/α-MnO2 aqueous cell in ZnSO4 electrolyte under-
goes Zn/Zn2+ and α-MnO2/Mn2+ reaction at the
anode and the cathode, which are reversible [65].
Another reversible reaction contributes to the
enhanced cyclability; Zn4(OH)6(SO4)⍰5H2O (zinc
hydroxide sulphate) was found to precipitate on the
surface of cathode due to Zn2+ and SO4

2+ in aqueous
electrolyte. In addition, Pan et al. described that
MnSO4 salt in the ZnSO4 electrolyte significantly
improves the rechargeability of Zn/α-MnO2 aqueous
battery [19]. The same redox reactions in cathode/
anode proposed by Lee et al. [65] was characterised
by an undefined hydration number for the zinc
hydroxide sulphate. The significant difference is ana-
lysed, however; adding MnSO4 salt in the electrolyte

alleviates Mn2+ dissolution, which allows the life span
of over 5000 cycles. Also, Pan et al. described that the
stability and reversibility of Zn in the weak acidic elec-
trolyte is improved compared with Zn in the base elec-
trolyte in Figure 6. Their Zn/Zn symmetric cell in the
weak acidic solution exhibited a smooth and dense
Zn surface during cycles, however, the one in the
base solution displayed a loose and powder-like Zn sur-
face due to the formation of irreversible phase.

Morphology
Rechargeable alkaline battery undergoes not only con-
version reactions but also intercalation reactions
[54,66,67]. To be able to access deep DOD, it is impor-
tant to utilise both the reactions. However, unlike the
highly reversible intercalation reaction, the conversion
reaction is prone to forming unwanted phases those
lead to low cycle retention. Therefore, to improve the
cycle retention, synthesising a MnO2 that promotes
intercalation reaction can be a good solution. Tompsett
et al. reported that the direction perpendicular to (001)
surface in β-MnO2 shows small Li diffusion barrier
compared to (010) and (111) surfaces [68]. [001] direc-
tion possess low migration barrier owing to less distor-
tion of the MnO6 polyhedron along that direction.
Exposing a large area of (001) surface on β-MnO2

facilitates cation intercalations since the surface possess
metallic states promoted by spin-polarised surface oxy-
gen [69]. Synthesising (001) surface-oriented β-MnO2

morphology can facilitate the intercalation reaction
and improve the cycle retention.

Figure 6. Zn stripping/plating from Zn/Zn symmetrical cells in the 40% alkaline electrolyte and in the 2 M ZnSO4 with 0.1 M MnSO4

weak-acid electrolyte, respectively. The inset images are cycled Zn anodes in alkaline and weak-acid electrolytes [19].

6 J. SHIN ET AL.



In addition to the importance of surface-oriented
morphology, nanoscale MnO2 synthesis is another fac-
tor affecting the performance of alkaline batteries.
Cheng et al. demonstrated that 1-D nano-structured
α- and γ-MnO2 exhibit favourable electrochemical per-
formance in alkaline batteries [70]. Large surface area
to volume ratio in nano MnO2 provides more active
sites compared to the bulk MnO2 resulting in better
electrode performance. Zhang et al. summarised
synthesis methodologies for various nano mor-
phologies and concluded that high surface area of
nanoscale MnO2 ameliorates contact between MnO2

surface and the electrolyte leading to low internal
resistance, fast cation diffusivity, and high utilisation
efficiency [71].

Outlook

The rechargeable γ-MnO2/Zn alkaline battery with
high DOD is one of the promising large-scale EESS
in the near future, yet this battery still needs to be
refined for the commercial market. The one-electron
reaction is higher in voltage than the two-electron reac-
tion. If the DOD of the one-electron reaction can be
improved, the capacity of the alkaline battery would
dramatically increase. Aside from the additives, simply
optimising the DOD can also elevate the capacity and
cycle retention. In addition, it is evident that the use
of LiOH, KOH, and Ca(OH)2 predominates the field.
While these types of salt have a great influence on
the battery mechanism, another electrolyte salt also
can be proposed. More characterisation and mechanis-
tic studies of possible salt in the alkaline battery are
necessary. In the case of additives, mechanistic studies
conducted on the oxide additives show possibilities in
stabilising the cycling capacity. Such a mechanism
has guided to mix different metal oxides together.
The two additives serve a different and complementary
purpose and together, boosting the cycle performance.
The control of pH could be also considered to improve
the reversible reaction in cathode/anode. The charac-
terisations of the unwanted and wanted phases have
been conducted only recently. Further understanding
of the structural evolution to propose plausible ways
to make breakthroughs is needed.

Supercapacitor

MnO2 in supercapacitor

The EESS technology, especially LIBs, has been greatly
developed over the past decade to solve the issues of
intermittent power generations [1,72]. LIBs dominate
the EESS market as they currently offer the best combi-
nation in terms of specific energy, power, cost, and
device lifetime [73–76]. Nevertheless, there is signifi-
cant attention drawn to EESS devices that can charge

in a second-to-minute regime rather than an hour
regime (Figure 7). The second-to-minute regime is
where supercapacitors thrive, although such devices
are currently impeded from larger market adoption
due to low energy density [78–80]. As such, much
research in the past 15 years has been focused on
improving the energy density of supercapacitors; the
bulk of these endeavours have been directed towards
pseudocapacitive materials such as RuO2 or MnO2

[81,82]. The pseudocapacitors are supercapacitors,
which undergo both surface and bulk reactions. Conse-
quently, the energy density of pseudocapacitors is
remarkably higher in the category of capacitor technol-
ogies [83,84–86]. RuO2 possesses high theoretical
capacitance of approximately 1450 F g−1 and electronic
conductivity of 104 s cm−1 [87,88]. However, RuO2

suffers from being extremely expensive, not earth-
abundant, and somewhat toxic [77]. MnO2, on the
other hand, also has a high theoretical capacitance of
1250 F g−1, yet the conductivity of MnO2 is much
lower; ranging from 10−7–10−3 S cm−1 [89–91].
Another benefit of MnO2 is cheap material cost, plenti-
ful in the earth’s crust, and environmentally benign. It
is clear that advances in a pseudocapacitor technology
should be made to take advantage of those benefits
towards the large-scale applications.

History and mechanism

Present-day supercapacitor technology relies heavily
on the electric-double-layer capacitance (EDLC) mech-
anism. The first obtained patent in 1957, the charge
storage in an EDLC device is explained by the Helm-
holtz model [92–95]. At the discharged state of the
cell, the net charge on the electrode surface is created.
Cations (K+, Na+, Li+, etc.) and anions (SO2−

4 , OH−,
etc.) are surrounding each other in aqueous electrolyte
and are randomly arranged. At the discharged state,
cations are electrostatically attracted to the anode sur-
face and so are the anions to the cathode surface. The
resultant layers of charge are separated everywhere
from a monolayer to a few molecules-thick layers of

Figure 7. The region where supercapacitors outperform bat-
teries, about 10 s [77].
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solvent molecules. This near-molecular dielectric layer
provides a small charge separation distance and results
in a high capacitance (C), governed by C = (1A/d),
where A is the area of the electrode, 1 is the permittivity
in vacuum, and d is the dielectric layer thickness [92].
EDLC utilises little to none faradaic reactions between
the electrode and the electrolyte. EDLC yields fast kin-
etics and little disruption of the electrode structure,
resulting in high power but limited in the energy
[89–91,94]. Charge storage is largely determined by
the surface area, thus activated carbon electrodes with
the high surface area are commonplace [89–91,94].
However, it is shown that enlarged surface area does
not necessarily translate into elevated capacitance,
because pore sizes and surface defects also play an
important role [96]. Regardless, the lack of bulk charge
storage in EDLC electrode material limits specific
capacitance up to 200 F g−1 [89–91,94].

A pseudocapacitive material undergoes fast faradaic
reactions to store charge on and beyond the electrode
surface. A pseudocapacitive material has the character-
istic electrochemical behaviour: a linear increase or
decrease of voltage with respect to charge or discharge
of capacitance (Figure 8) [98]. The ideal supercapacitor
has rectangular cyclic voltammetry (CV) behaviour
governed by the EDLC [77,97,99–101]. The CV of
the ideal pseudocapacitor also acts in a rectangular
manner while the rectangle is originated not only
from the EDLC but also from the capacitance beyond
the surface. The battery has asymmetric faradaic

peaks with minimum rectangular behaviour
[77,97,99–101]. Thus, pseudocapacitor operates under
charge storage mechanisms similar to that of the bat-
tery materials and the thermodynamic relation
between charge and voltage gives rise to a capacitive
behaviour. There is only a subtle difference between
the battery and pseudocapacitor materials. For
instance, LiCoO2, a common LIB cathode material
exhibits a pseudocapacitance behaviour when it is
nano-sized (Figure 8(d)) [77,97]. Additional CV analy-
sis at various sweep rates can be taken to fit the data to
an equation: i = aνb where i is current, ν is voltage
sweep rate, and a and b are constants. For a battery
material, b = 0.5 and for a pseudocapacitive material
b = 1.0 [77,97].

MnO2 is a pseudocapacitive material. The advantage
of these materials is that charge can be stored on the
surface and in the bulk of the material [87,102–104].
The reactions are as follow:

(MnO2)surface + C+ + e− ↔ (MnOOC)surface (2)

(MnO2)+ C+ + e− ↔ (MnOOC), (3)

where C+ = Na+, Li+, K+, etc. The pseudocapacitors
such as MnO2s utilise both the surface EDLC and
bulk intercalation. They result in higher specific capaci-
tance than solely EDLC-based supercapacitors [89–
91,94]. However, the bulk storage kinetic is slower
than the EDLC charge storage mechanism because of
the slow diffusion of cations. The power is stronger
than that of batteries and the energy density is greater
than EDLC-based supercapacitors. There is a trade-off
in switching to pseudocapacitive materials; much
higher energy density is achieved at the expense of
power. Therefore, pseudocapacitors enable a second-
to-minute scale load levelling on the electrical grid. A
supercapacitor refers to a device or material exhibiting
pseudocapacitive characteristics for the remainder of
this review.

Bottleneck

Although MnO2 is an ideal material, it has three main
problems: (1) low electronic conductivity, (2) dissol-
ution of Mn into the electrolyte, and (3) unstable
volume expansion [89–91]. First, MnO2 has very low
electronic conductivity [89–91]. As a result, the diffu-
sion of ions throughout the material is slow and dras-
tically reduces the power density. The sluggish
diffusion brings out poor ion percolation across the
electrodes and inhibits the amount of energy that can
be stored in a bulk electrode [89–91]. Toupin et al.
demonstrated that the bulk charge storage only takes
place in a thin layer on the surface of the electrode
[102]. This causes thick composite electrodes to fall
short of the theoretical capacity of 1250 F g−1, achiev-
ing merely about 200 F g−1 [104,105]. Such property

Figure 8. (a) Shows the rectangular cyclic voltammogram of an
intrinsic pseudocapacitor compared to (b) the asymmetric
redox peaks of battery material. (c) Illustrates the constant vol-
tage profile of a true pseudocapacitive material in both bulk
and nanosized regimes. (d) Displays that nanoscale battery
material exhibits a sloping voltage profile in contrast to the
constant voltage of bulk battery material, giving a prime
example of an extrinsic pseudocapacitive material behaving
as an intrinsic pseudocapacitor [97].
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is one of the main reasons for utilising the supercapa-
citor as a load leveller in the high-frequency region not
the main energy storage device. Much of the research
on MnO2 has focused on enhancing the power density
through increasing conductivity and surface area. The
second hurdle of utilising MnO2 is that manganese
slowly dissolves into the electrolyte via a disproportio-
nation reaction [83,84,106]:

2Mn3+ � Mn4+ +Mn2+(aq), (4)

The capacity of the electrode decreases at a steady
rate as Mn2+ enters the electrolyte, subsequently lower-
ing the lifetime of the pseudocapacitor device. Lastly,
MnO2 structures experience volume expansion of vary-
ing degrees, which causes the loss of electrical contacts
between MnO2 particles, increasing resistivity, and
lowering capacitance over time [85,86,107,108]. These
issues have a direct negative effect on the power density
and cycle life of pseudocapacitors.

Solutions

Nano particles
One way to boost the power density is nanostructuring
the particle and expanding the surface area. Nanostruc-
turing MnO2 electrodes to create a wider specific sur-
face area is a promising method of enhancing two
aspects of MnO2: First, the enlarged surface area pro-
duces a broader electrolyte/electrode interface, which
increases surface charge storage. Second, because
nanostructures have short diffusion pathways, nanos-
tructuring can largely obviate the inherently low con-
ductivity of MnO2. For example, 2 nm × 8 nm sized
α-MnO2 nanoneedle (400 F g−1) has higher capaci-
tance compared to 10 nm × 100 nm sized α-MnO2

nanoneedle (297 F g−1) [109,110]. Besides making the
nanoparticle MnO2, a common method to improve
the electric conductivity of the electrode is by simply
mixing in some conductive carbon [111]. Although
adding conductive carbon allows the electron to be
evenly distributed throughout the whole composite
electrode, there are tradeoffs: the active mass loading
decreases and the conductive carbon covers the active
surface. Furthermore, increasing the composition of
low-density materials such as conductive carbon
leads the electrode to be thicker. The thick electrodes
force the electrons to travel farther distance. In a
way, the addition of conductive carbon works against
the power density because the electrons have to travel
farther distance. There is an optimum amount of the
carbon between increasing electrical conductivity and
covering too much of the active surface [110].

Nano electrodes
It is noted that the nanoparticle enhances the superca-
pacitor performance, however, for the smaller particles,

more conductive carbon needs to be utilised to electro-
chemically link wider surface area. Further research has
focused on fabricating free-standing MnO2 on the con-
ductive substrate instead of fabricating the composite
electrode with the powder MnO2. A nanowire of
MnO2 was deposited on a smooth conductive substrate
and the capacitance has increased to >400 F g−1 [112].
However, with the smooth substrate, the areal active
mass loading is low compared to that of the composite
electrodes, which leads to smaller areal energy density.
Yet, the free-standing MnO2 electrodes are consistently
superior to the composite electrodes in terms of the
gravimetric energy density [88,112–122].

Porous substrates can be utilised to broaden the
areal substrate surface instead of the smooth substrate
to fabricate the free-standing MnO2 (Figure 9) [123].
The areal loading of the MnO2 is drastically increased.
When MnO2 is deposited on a 350 μm-thick film of
multi-walled carbon nanotubes via Lu et al.’s method,
gravimetric capacity exceeds 1250 F g−1 [124].
Although the active mass loading is not reported, sig-
nificantly higher mass loading is anticipated than that
of the single flat substrate. This work deposited
MnO2 at 70 nm in thickness and achieved the theoreti-
cal capacitance of MnO2 [124]. There are multiple
similar reports utilising thin MnO2 deposition to
obtain both high capacitance values and full energy
density [125–127]. The thin deposition of MnO2 on
porous substrates to increase the areal loading is a
good strategy to increase the energy density without
compromising the power density. However, it is
important to keep in mind the manufacturing cost.
The material cost is low due to utilising MnO2 but if
the cost of substrate increases, the MnO2 supercapaci-
tor system may not be cost effective.

Doping
While the physical alterations via nanosizing and
deposition methods are effective, doping alters the
intrinsic chemistry of the MnO2. Computational
methods are extremely valuable in proposing a poten-
tial material. For instance, Au ion can be doped into
MnO2 [128]. Computationally, the presence of Au
ion near the Mn ions bridges the band gap and
enhances the conductivity. Experimentally, the capaci-
tance increases by 65%, however, utilising Au as a
dopant may work against the use of low-cost Mn.
Although more work is needed, it can be assumed
that a similar effect can be expected with Cu and Ag
ion in the place of Au ion [129]. Recently, Liu et al.
doped δ-MnO2 with cost-effective vanadium [130].
The V5+ ions substituted K+ ions in the interlayer pos-
ition and Mn4+ ions were placed in the MnO6 octa-
hedral layer. As a result, the interlayer distance is
shortened while lowering the charge transfer
resistance.
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Phase distinction
Although much of the research on supercapacitor has
focused on nanostructuring, it is notable that poly-
morphs of MnO2 store different amounts of capaci-
tance. Ghodbane et al. conducted a study on the
performance of various MnO2 polymorphs, including
1-D tunnel structures, 2-D layered structures, and 3-
D spinel structures (Figure 10) [131]. The general
trend is that conductivity, surface area, and specific
capacitance increase as network dimensions expands
[131]. More specifically, the cryptomelane structure
has a smaller surface area than that of the Ni-todoro-
kite structure, yet its capacitance is higher. This arises
from cations utilised in the synthesis or other mol-
ecules blocking ionic conduction pathways. The crystal

structure, which affects the accessibility of the electro-
lyte, has more influence on the capacitance than the
surface area. The surface area data for exceptionally
porous materials must be taken cautiously because
the adsorbent gas used in measurement may not access
all regions. The work by Brousse shows that the wider
the surface area is, the larger the capacitance becomes
[132]. However, Brousse’s work also includes the low
capacitance/high surface area outliers, highlighting
the need for investigating beyond the surface area
and considering polymorphs. A wide array of poly-
morphs and morphologies are found in the literature
and their disparate range of performances requires
careful consideration of the polymorphs used in
experimentation.

Figure 10. Compares specific capacitance, ionic conductivity, and Brunauer-Emmett-Teller surface areas of various MnO2 poly-
morphs with varying dimensions of conductivity (left to right is 1-D to 3-D) [131].

Figure 9. Images of (a and b) nanowire MnO2. Inset of a is the nanowire under low magnification showing the homogeneous dis-
tribution of the wires on a carbon fibre. (c) AFM 3D image of a single nanowire. (d and e). The as-synthesised free-standing MnO2

electrode and (f) after annealing [123].
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Electrolyte
Lastly, the pseudo-capacitive reactions are governed by
the surface and bulk intercalation reaction between the
cation of the electrolyte and the MnO2 active material.
There are numerous reports on various cation (Li+, Na+,
K+, Ba2+, Mg2+, and Ca2+) insertions into theMnO2 lat-
tice [133–138]. These cations vary in their ionic radius,
which affects the diffusion of cations from the surface to
the bulk of the MnO2. For instance, with the δ-MnO2,
0.5 M Na2SO4 electrolyte exhibits higher capacitance
than 0.5 M Li2SO4 at 30 mV s−1 rate. At a slower rate,
the Li2SO4 electrolyte shows higher capacitance [138].
In addition to the ionic radius, unlike the monovalent
alkaline metal ions, the alkaline-earth metal ions are
divalent. The ionic radius is similar to that of the mono-
valent Li+ ion and Mg2+ ion has a twofold charge. The
divalent electrolyte with ion consistently has the
superior capacitance to the monovalent electrolyte
with ion [134,138]. However, when the divalent cation
diffuses into MnO2 and reduces the Mn4+ into Mn2+,
the Mn2+ ion is prone to dissociate. Because forming
Mn2+ diminishes capacitance in prolonged cycles, all
α-, γ-, and δ-MnO2 have more stable electrochemical
cycles in 0.5 M Li2SO4 electrolyte than in 1.0 M Mg
(NO3)2 electrolyte [138].

Outlook

Since the specific capacitance over 1000 F g−1 is achiev-
able with an energy density of 49–135 Wh kg−1 and
power density of 1.0–17.4 kW kg−1 [124], further
effort needs to focus on the often-neglected shelf-life
and self-discharge. Although it is often ignored in the
MnO2 supercapacitor research, a shelf-life is a vital per-
formance parameter [139]. Research on the shelf-life of
EDLC capacitors exhibits that 5–15% of capacity is lost
after 48 h on standby and over 20% after 200 h
[140,141]. Barely any extensive research has been
done on the self-discharge of MnO2 supercapacitors.
Among some mechanisms for self-discharge, a popular
mechanism is the charge redistribution and activation-
controlled self-discharge [142]. Much more research is
needed to understand the self-discharge in MnO2

supercapacitors and self-discharge properties need to
be discussed with other properties such as specific
capacitance.

Various nanoparticles of MnO2 are reported in the
literature, yet MnO2 nanoparticles incorporated into
binder/carbon black composites with high loading pro-
vide little benefit. This is due to the necessity of exces-
sive addition of carbon and/or binder, which brings
down the active mass loading. These additives block
the active surface area of the MnO2. Numerous forms
of MnO2 electrodes exist and thin-film MnO2 depo-
sition onto a high surface area substrate offers the high-
est capacitance. Doping methods are also promising
that they facilitate the possibility to intrinsically

eliminate the disadvantages. The conductivity is
enhanced by altering the electronic structure of
MnO2 allowing higher loading and more commercial
applicability. The nature of doping or coating’s
positive effect still remains unclear, thus more
parameters such as crystal structure, surface area,
loading, and electronic structure are to be observed
and reported.

Lithium-ion battery

MnO2 in LIB

Aside from alkaline batteries, LIBs predominantly
employ reversible intercalation of Li+ in and out of
the host structure. They have become the alternative
energy supply for portable devices [143]. They have
excellent energy density and cyclability because of the
electrode materials hosting Li+ without a significant
change of its crystal structure [143]. Despite the excel-
lent advantages in performance, it still suffers from its
high fabrication cost and safety. A commonly known
LIB system makes use of organic electrolytes that are
stable in a wide voltage window. Beck and Ruetschi
highlighted the ‘Three E’ criteria; energy, economics,
and environment to determine the suitable energy sto-
rage system [144]. Utilising the organic electrolyte
allows the batteries to produce high power and energy
due to its high voltage, however, the organic electro-
lytes are expensive because they require high purity
and are sensitive to moisture. Such electrolytes are
highly flammable which raise safety concerns. Repla-
cing the organic electrolyte with aqueous electrolyte
can drastically reduce the cost of the battery and elim-
inate the safety concern from flammability. This sec-
tion focuses on the progress of the aqueous
rechargeable LIB.

A spinel phase, LiMn2O4, intercalates Li+ ion. As
mentioned above, the mechanism involves Li+ ion
intercalation in the interstitial sites of the host material.
Since using aqueous electrolyte, the possibility of pro-
ton intercalation needs to be discussed. The intercala-
tion of proton often results in degrading cycling
capacity. When the protons are generated as a result
of electrolyte oxidation, it can replace the electrochemi-
cally extracted Li+ in the structure [145]. The capacity
decays because the interstitial sites for Li+ are occupied
by the proton and it hinders Li+ intercalation. Besides
the presence of protons in the site for Li+ insertion, it
creates sheer stress between the oxygen layers due to
strong O–H–O bonding. Eventually, the protons alter
their crystal structure [146]. Thus the proton insertion
makes the structural changes associated with the poorly
electroactive hausmannite Mn3O4 phase [147]. The
crystal structure has a major role in the selectivity
towards proton intercalation. It is notable that not all
structures allow such intercalations; the proton
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insertion is less favourable in both spinel and olivine
structures compared to the layered structures [148].

History and mechanism

The concept of LIB involving the Li+ ion intercalation
is introduced by Dahn et al. in 1994 [149]. The Li+ ion
intercalation is the diffusion of Li+ ions in and out of
the interstitial sites of the electrode material. When
the Li+ ion is inserted into the host structure, the oxi-
dation state of the host changes, but the crystal struc-
ture change is minimum because the Li+ ion is
relatively small. This results in good cycling retention.
As mentioned earlier, there are three major types of
cathode materials for LIB: layered, spinel, and olivine.
The spinel structure, especially the LiMn2O4 benefits
from the abundance, low cost, and environmental
friendliness of Mn. Li+ ions occupy tetrahedral 8a
sites and Mn3+/4+ ions occupy octahedral 16d sites in
a cubic close-pack array of oxygen anions (Figure
11). During the intercalation, Li+ ion diffuses through
vacant tetrahedral and octahedral interstitial sites in
the 3-D structure. With the spinel LiMn2O4, Li can
be etched out of the spinel structure using acid without
destructing the spinel structure, known as λ-MnO2

[150]. Since the discovery of LIB system, a number of
papers have been published (Figure 2(a)), yet the
amount of research on the aqueous rechargeable LIB
was limited due to its lower power density than the
organic LIB until 2006. The rising concern for the
safety and cost of the organic electrolyte has driven
researchers to conduct more research on the aqueous
electrolyte. Initially, it was considered that the aqueous
LIB has poor cycling performance, however, after more
than a decade of research and development, the per-
formance has greatly improved with longer cyclability
and higher rate capability [151].

Bottleneck

The spinel LiMn2O4 structure is an insulating material
[149]. Due to its lack of electrical conductivity, the con-
ductive additive or other forms of treatment are
required for the spinel LiMn2O4 to function as an elec-
trode material. At its pristine state, there is an equal
amount of Mn3+ and Mn4+. Depending on the

direction of the Li+ intercalation, Mn3+ can oxidise to
Mn4+ or Mn4+ can reduce to Mn3+ [152]. Unfortu-
nately, utilising Mn-based redox in a LIB has a major
intrinsic disadvantage. While the advantage of LiMn2-
O4 is the minimum structural deformation, the disad-
vantage is the use of Mn redox. Mn3+ has Jahn–
Teller distortion [153] which largely changes the
bond length between the axial and equatorial Mn–O
bond of the Mn octahedral coordination. This change
can introduce a strain that derives local plastic defor-
mation and 5.6% of volume distortion [85,86]. Mn
should not be further reduced from trivalency, because
of Mn2+ dissolving in the electrolyte [30,41,154,155].
Furthermore, Mn ion at trivalent state can undergo a
disproportionation reaction forming Mn2+ and Mn4+

[83,156,157]. Due to the soluble nature of Mn2+,
when it is dissolved into the electrolyte, the active
material gets lost. Subsequently, Mn4+ species forms
on the surface. Since the Mn4+ cannot be electrochemi-
cally oxidised/charged, this leads to a loss of coulombic
efficiency. Furthermore, on the anode, the dissolved
Mn2+ ions can migrate to the anode side. The Mn2+

ions on the anode will reduce further down to the met-
allic state or form unwanted solid products and deposit
on the anode surface. The deposited Mn species add
electrochemical impedance that compromises battery
performance.

Solution

Morphology
In spite of the difficult control of the particle mor-
phology via the solid-state method, the LiMn2O4 is
synthesised via solid-state method at the early stage
of the research [149]. Since then, a wider range of
wet-chemical approaches has been reported such as
sol–gel and coprecipitation methods [158–160].
Employing the wet-chemical approach, the published
particles are uniform in morphology and size and
nano-sized particles improve the performance [161–
166]. They have a large surface area for ion intercala-
tion and short diffusion pathways for ion diffusion.
While much effort has been made to synthesise the
nanoscale LiMn2O4, only a few have studied the chemi-
cal implications of such morphologies. Zhao et al.
adapted the hydrothermal reaction to synthesise nano-
wire morphology and coated the nanowire with a car-
bon material [167]. The bare nanowire exhibited faster
performance decay in the low power cycling, however,
it showed a good performance in the high power
cycling. This study clearly indicated the instability of
LiMn2O4 nanowires. The Mn-containing systems are
prone to undergo degradation involving lower oxi-
dation states. Promoting high surface area can foster
high-power performance while long-term stability
can be compromised.

Figure 11. Crystal structure of LiMn2O4 (left) and λ-MnO2

(right) after Li has been either etched or diffused out.

12 J. SHIN ET AL.



Electrolyte
Unlike an organic electrolyte, an aqueous electrolyte
behaves differently under electrochemical bias. Organic
electrolyte molecules often decompose on the surface
of the active materials upon electrochemical biasing.
The decomposed molecules deposit on the surface of
the active materials and form the solid-electrolyte
interphase (SEI). The aqueous electrolyte, on the
other hand, does not form such kind of layer (Figure
12). Instead, when the water electrolyses, it generates
gas phases, which do not deposit on the surface of
the active material [158]. In the organic LIB, the SEI
layer has two main contributions: adding charge trans-
fer resistance and electrode protection from the elec-
trolyte. The charge transfer is hindered because Li+

from the electrolyte has to diffuse further distance to
reach the redox active host. The advantage of the pro-
tective coating is that SEI creates a conformal coating
around the active material. When Li+ ion is in the elec-
trolyte, the ion is solvated and intercalates into the
active material at the solvated stage. They can create
strains in the crystal lattice that distort the crystal
structure. Having the SEI layer can prevent unwanted
ions from intercalating. Various ions can intercalate
besides the Li+ including H+, K+, Na+, NH4

+, Mg2+,
and Zn2+ [168–171]. To protect the active material,
conformal coating keeps Mn ion from dissolving into
the electrolyte. The conformal coating provides protec-
tion for the active material and allows the electrode to
last longer. Having the SEI layer increases the resist-
ance to the electrode and helps to maintain the quality
of the electrode longer.

The augmentation of the operating voltage span of
aqueous electrolytes renders the aqueous LIB to be clo-
ser to real applications as a substitute for the high-
power organic LIB (Figure 13(a)) [173]. Although the
thermodynamic voltage stability window is only
about 1.23 V, due to slow kinetic of water electrolysis,
a practical voltage window is often wider than 1.23 V.

There are ways to expand the voltage stability window;
One of them is employing a different type of Li salt
because the kinetic of water electrolysis can be affected
by the salt [174]. Some Li salt allows water to be stable
in a broad voltage window. Compared to Li2ClO4,
Li2SO4 exhibits better voltage stability of the electrolyte
[173]. Both LiNO3 and Li2SO4 are commonly used Li

Figure 12. Schematic of (a) SEI formed active material in ORLB and (b) an active material in LIB [158].

Figure 13. (a) Cyclic voltammetry of the LiNO3 electrolyte
(green), LiMn2O4 cathode (red), and LiV3O8 anode (blue) in a
LIB [172]. (b) Performance comparison of a LIB utilising either
LiNO3 or Li2SO4. Source: Web of Science database. Data are
updated on Jan 2018.
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salt for the aqueous electrolyte. Li2SO4 shows better
cyclability compared to LiNO3 (Figure 13(b)). In
addition to the single salt system, a mixed salt system
demonstrated to foster the performance as well
[175,176]. The literature suggests various Li salts
apply to the LIB, however, the mechanism of certain
Li salt with different behaviour is not well explained.
Understanding the role of Li salt in the kinetics of
the electrolysis will help enlarge the water voltage
window.

Additive
Besides the active materials and the electrolyte with Li
salt, there are additives that serve certain purposes to
improve the performance overall. Because most of
the intercalation active materials have low conduc-
tivity, the conductive additive is essential in many of
the LIB electrodes [143]. One of the conductive addi-
tives is a conducting carbon material with a large sur-
face area for electrical contact between the active
materials and the current collector. Another way to
implement the conductive additive is conformal coat-
ing around the active material. Having a layer on the
surface of the active material helps to protect the Mn
dissolution [172]. For example, when the nano-sized
LiMn2O4 is synthesised, it demonstrates a high rate
electrochemical performance. In 2011, Zhao et al.
proved that the sample quickly degraded when they
conducted a low rate electrochemical test [177]. This
indicates the material in the electrolyte is unstable.
They coated the active material via the sucrose
decomposition [178]. As a result, the carbon-coated
sample had a longer cycle life and better electrochemi-
cal performance. It is widely accepted that those con-
ductive additives do not participate in the
electrochemical reactions, however, they act as a pro-
tective layer for an active material.

While some additives do not participate in the elec-
trochemical reactions, there are other additives that
actively engage in the electrochemical reactions. For
instance, vinylene carbonate (VC), which can be
added into the electrolyte, decomposes onto the surface
of the active material and forms a stable solid coating
layer [179]. The VC decomposition is kinetically pre-
ferred over the electrolyte decomposition [180]. Since
the VC is more favourable to decompose, it quickly
develops a stable coating layer before any damage is
done to the active material. Mentus et al. have reported
the use of VC in LIB in 2010 [181]. By applying the VC
additive, they successfully stabilised the active material
over prolonged cycles.

Anode
For an electrochemical device, the full-cell property
needs to be explained. The research in a half-cell is ben-
eficial to gauge the intrinsic property of isolated elec-
trode, however, a practical commercial cell should be

a full-cell with both electrodes of the electrochemical
cell. Earlier in this section, optimising Li salt to
widen the voltage window of the aqueous electrolyte
was reviewed. If the voltage window was wider, it is
possible to utilise a lower reduction potential anode,
which brings out the stronger full-cell voltage, higher
power, and greater energy output of the battery. Thus
developing the electrolyte stability window must be
accompanied with anode research. Much of the LiMn2-
O4 cathode is countered with the vanadium-based
anode. For example, the average voltage output was
only about 1.1 V when it was utilised with vanadium-
based anode [182]. Liu et al. successfully fabricated a
LIB with TiO2 as an anode in 2011 [176]. They sup-
pressed the electrolysis of water by mixing Li salt and
utilising LiCl and Li2SO4. They achieved a high dis-
charge voltage plateau of 2 V. Recently, even 4 V dis-
charge voltage was reached by combining the concept
of coating and voltage stability to the anode [183]. Nor-
mally, Li metal reacts spontaneously to water molecules
to produce hydrogen gas, however, by coating Li with a
Li+ ion conducting and water non-permeating solid
film, Li metal can be used as an anode. Since Li/Li+

has −3.05 V (vs. standard hydrogen electrode)
reduction potential, the full-cell voltage dramatically
rises.

Na-ion battery
Aside from Li+ ion intercalation, there have been other
cation intercalation mechanisms utilised in the manga-
nese oxide system [184–186]. Especially, aqueous
sodium-ion battery (NIB) has been studied extensively
[187–192]. Among various NIB systems, NaTi2(PO4)3/
Na0.44MnO2 (NTP/NMO) full cell is known to have the
highest specific and volumetric energy density
[193,194]. The NMO has an orthorhombic lattice
with Pbam space group. It has double-tunnel crystal
structure with corner sharing of edge-linked MnO5

square pyramids chains and MnO6 octahedral chains.
The two types of tunnels are large S-shape tunnels,
which are half-filled by Na+ ions, and small pentagonal
tunnels that are fully occupied by Na+ ions. The Na
ions located in S-shape tunnels can reversibly interca-
late, projecting a theoretical capacity of ∼50 mAh g−1

(Figure 14(a)) [195]. This crystal structure greatly
facilitates Na+ ion mobility while stabilising Na+ ions
to prevent crystal phase transition to the spinel phase
[196–198].

NMO cycling performance display drastically differ-
ent phenomenon in non-aqueous to the aqueous elec-
trolyte. In the non-aqueous electrolyte, Sauvage et al.
describe that there is a drastic capacity fading at a
rate higher than C/20 due to the sluggish phase tran-
sition kinetics [199]. Furthermore, Cao et al. calculated
the Na+ ion diffusion coefficient to be around 10−15–
10−16 cm2 s−1 [200]. On the other hand, in the aqueous
electrolyte, the problem is in the low rates. Li et al.
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showed that the capacity fades at a rate lower than 1C
due to the dissolution, oxidation of anodes, or oxi-
dation of the electrolyte by the charged cathode
[195]. Kim et al. also experimentally showed that the
diffusion coefficient is two to three orders of magnitude
higher in the aqueous electrolyte (aqueous: 1.08 ×
10−13–9.18 × 10−12 cm2 s−1 to non-aqueous: 5.75 ×
10−16–2.14 × 10−14 cm2 s−1 [201]). NMO in the aqu-
eous electrolyte is capable of exceptionally high rates
over 100C and stable cycling to >1000 cycles with
materials only energy density of 127 Wh L−1 and
cell-level density of ∼65 Wh L−1 [195]. NMO has
abundant vacancies of Na+ ion diffusion in the S-
shaped tunnel and possible strain accommodation
during the intercalation reactions. Due to such high
rate capability, NMO has been considered and utilised
in the supercapacitor systems as well (Figure 14(b))
[193,202–205].

Outlook

In this review, the current understanding of using
LiMn2O4 and λ-MnO2 as a cathode material in LIBs
is explained. Much of the work in this field concen-
trates on synthesising the nano-sized materials. As it
turns out, the nano-sized materials have instability
concern at the interphase with the electrolyte. Instead

of the nano-sized materials, various forms of coating
around the active material mechanistically enhance
the stability of the material. Since this material can be
potentially used in the large-scale EESS, the stability
of the material is essential. Although the literature pro-
vides several solutions: nano-sizing, expanding the
water voltage window, coating, applying additives,
and optimising anode, a systematic study to provide
the optimum solution is scarce. Among numerous
routes to improve the LiMn2O4 performance, protect-
ing the active materials from the electrolyte cannot be
overlooked. It is needed to probe how these protections
are mechanistically beneficial and propose the optimal
material with the minimum charge transfer resistance
while successfully protecting the active material. A dee-
per understanding of the mechanism will encourage
the application of LiMn2O4.

An air catalyst for metal-air batteries

Introduction

There is a strong global incentive in developing EESS to
alleviate the oil depletion and mitigate the greenhouse
gas emission. LIBs have flourished in a variety of appli-
cations, however, high cost of manufacturing LIBs and
limited energy density have kept LIBs from fully repla-
cing fossil fuels. This motivates the research towards
metal-air batteries (MAB). There are various metals
(Zn, Li, Al, Ge, Ca, Fe, Mg, K, Na, Si, and Sn) that
can be adopted as an anode for MABs [206,207]. Zn
stands out in terms of safety, rechargeability, and the
cost among a number of other candidates. The devel-
opment of Zinc-air battery (ZAB) is relatively mature
compared to other MABs with energy storage up to
1080 Wh kg−1 [208]. In fact, ZABs existed in the com-
mercial market for over 40 years as a primary battery
for hearing aid applications [22]. In MABs where O2

is employed as a cathode, oxygen reduction reaction
(ORR) occurs during discharge and oxygen evolution
reaction (OER) occurs at the cathode during charge.
However, due to the sluggish nature of the oxygen reac-
tions, there is a large overpotential (Figure 15(a)) [209].

The overpotential is related to the O2 adsorption
onto the electrode surface and the cleavage of the
O=O bond [211]. The overpotential greatly impedes
the commercialisation of MABs because it lowers the
energy efficiency of the battery [212]. To reduce the
overpotential, cathode requires catalysts for reactions.
There are many catalysts proposed in the literature,
by and large, there are two main categories: metals
and metal oxides. The volcano plot is a well-known
method to represent the activity of an electrocatalyst,
which reflects the Sabatier principle. This explains
the optimal catalytic activity that can be achieved by
the catalyst surface with respect to the appropriate
binding energy for reactive intermediates [210].

Figure 14. (a) Rietveld refinement of X-ray diffraction pattern
of NMO and schematic illustration of crystal structure. (b)
Ragone plot based on discharge energy and power obtained
from NMO based full cell [195].
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Optimum binding energy is required for a suitable elec-
trocatalyst [213]. Among the catalysts, metals such as
Pt, Pd, Ag, and Ir show high catalytic activity, but
they are expensive [213]. On the other hand, metal
oxides including Co3O4, LaNiO3, AB2O4 spinel struc-
ture (A is the divalent ions: Mg, Fe, Co, Ni, Mn, Zn,
and B is the trivalent ions: Al, Fe, Co, Cr, and Mn),
and Mn oxides with various oxidation states also
show promising catalytic activities (Figure 15(b))
[210, 214–217]. MnO2 is advantageous to other oxides
because it has a high oxidation state and inexpensive to
produce. In addition to MnO2, MnOOH, Mn5O8, and
Mn2O3 have also demonstrated ORR catalytic activity
in Mn oxide family [218,219].

History and mechanism

The invention of a ZAB originates in the nineteenth
century [22]. Zoltowski et al. in 1973 proposed a mix-
ture of Mn3+ and Mn2+ oxide compound [220]. At
the early stage, the battery suffered from an electrolyte

leakage and evaporation on the cathode side. With the
development of highly controlled porosity of the
teflon supportive hydrophobic film, the catalyst well
adhered to the film surface while inhibiting the leak-
age [221]. Afterward, λ-MnO2 was used in the ZAB
cell for the first Duracell hearing aid. By 1980s,
ZABs have replaced carbon/zinc batteries and have
become the majority of hearing aid’s batteries [22].
ZABs are implemented into public transportation in
2012 after decades of efforts to prevent the dendritic
growth of zinc to improve the catalytic activity and
to package the cell safely. With the effort of scientists
at Lawrence Livermore National Laboratory (LLNL),
six 7 V ZABs empowered a bus to drive 75 miles
without refueling [222].

There are three main types of ZABs: a primary bat-
tery, a mechanically rechargeable battery, and an elec-
trochemically rechargeable battery. The primary
battery utilises zinc as fuel until it is depleted [221].
The mechanism of the mechanically rechargeable
ZAB is similar to the primary ZAB. The only difference

Figure 15. (a) Schematic polarisation curves of a zinc-air battery [209]. Reprinted with permission. Copyright 2011 Advanced Energy
Materials. (b) Volcano plot of ORR activity designed as a function of the oxygen binding energy of metal oxides [210].
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is that the Zn anode can be replaced once Zn is con-
sumed. The electrochemically rechargeable ZAB can
electrochemically restore Zn after depletion. For such
kind of batteries, the catalyst on the cathode must be
able to catalyse OER during charging. A typical ZAB
encountering ORR and OER is summarised in Figure
16. The cell is comprised of a porous cathode, a mem-
brane separator, and a zinc anode in an alkaline elec-
trolyte. The Zn on the anode is oxidised during
discharging. Zn2+ reacts to OH- to form electrolyte
and eventually stabilises to ZnO. The anode elementary
reactions are as follows:

Zn � Zn2+ + 2e− , (5)

Zn2+ + 4OH− � Zn(OH)2−4 , (6)

Zn(OH)2−4 � ZnO +H2O+ 2OH− , Eo

= − 1.25 (V vs. SHE) , (7)

Simultaneously, oxygen on the cathode surface is
reduced to hydroxide species via ORR. The cathode
reaction is as follows:

O2 + 2H2O + 4e− � 4OH−, Eo

= 0.4 (V vs. SHE), (8)

On the other hand, during charging, ZnO is reduced
back to Zn at the anode and the hydroxide species is
oxidised back to oxygen at the cathode via OER
[223–225]. The overall reaction is as follows:

2Zn + O2 ↔ 2ZnO, Eo = 1.65 (V vs. SHE) , (9)

The overall oxygen reactions can be described in
Equation (8) in which H2O acts as a proton donor.
The oxygen reduction mechanism can be broken
down into two types [25]. The first type is called a

direct reduction reaction. The catalytic reduction of
oxygen begins with inserting proton into MnO2. This
leads Mn4+ to partially reduce to Mn3+. The oxygen
molecule is adsorbed onto the MnO2 surface. Then
the adsorbed oxygen molecule binds with hydrogen
to form OH- ions and diffuse back into the electrolyte.
The elementary steps of the direct reduction reactions
are as follows:

MnO2 + xH2O+ xe−↔MnOOHx + xOH− , (10)

2MnOOH+ O2 ↔ 2(MnOOH . . .O, ads), (11)

(MnOOH)2 · · ·O2, ads�MnOOH · · ·Oads

+ OH− +MnO2, rds , (12)

MnOOH · · ·O ads + e− ↔MnO2 + OH− , (13)

The other oxygen reduction mechanism is called an
indirect reduction reaction. When the oxygen molecule
is reduced with an electron without the presence of
MnO2, HO2

−, hydroperoxyl ion forms. The hydroper-
oxyl ion is an intermediate phase, which reduces to
the hydroxide ion. However, the presence of hydroper-
oxyl ions in the electrolyte results in an unwanted cor-
rosive effect on the cell. The elementary reaction steps
are as follows:

O2 + 2e− +H2O↔HO−
2 + OH−, (14)

HO−
2 + 2e− +H2O ↔ 3OH−, (15)

2HO−
2 ↔ 2OH− + O2 , (16)

On the other hand, OER occurs while the ZAB is
being electrochemically recharged. OER catalytic reac-
tion is induced by the interaction between metal ions
and oxygen intermediates. The geometry of the metal
cation site influences the catalysis process. It changes

Figure 16. Graphical representation of the ORR (left) and OER (right) reactions of a ZAB during discharging and electrochemically
charging with the reactions involved.
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the adsorption energy of the oxygen species and the
activation energy of the cation oxidation state
[224,226]. For a rechargeable ZAB, OER occurs in alka-
line solution with the following reaction [227]:

Mm+ −O2− + OH− ↔ M(m−1)+ −OOH−

+ e−, (17)

M(m−1)+ − OOH− +OH−

↔ Mm+ −O−O2− +H2O+ e−, (18)

2Mm+ −O− O2− ↔ 2Mm+ −O2− + O2, (19)

M refers to the cation ion of an OER catalyst. RuO2

and IrO2 have very high activity toward OER reactions
due to their relatively low reduction potentials, 1.39
and 1.35 V vs. SHE, respectively and the high intrinsic
conductivity [210,228]. MnO2 is not being widely
reported as an OER catalyst, yet α-Mn2O3 is reported
as a good bifunctional catalyst among the Mn oxides
family [229].

Bottleneck

A ZAB suffers from the high overpotential resulting
from the sluggish oxygen reactions, which reduces
power and energy efficiency [230]. Ample effort has
been made to lower the overpotential by finding a
proper catalyst and MnO2 is considered as the most
rewarding electrocatalyst, especially in the ORR (char-
ging). However, MnO2 still needs to be refined in two
areas: enhancing the catalytic activity and stabilising
against the corrosion for a battery to last longer.
First, to boost the catalytic activity, an intrinsic prop-
erty such as low electronic conductivity (10−5–
10−6 S cm-1) needs to be improved. The slow electronic
transfer hinders a fast catalytic activity. Second, to
stabilise against the corrosion, the indirect catalytic
reaction should be suppressed. This reaction leads to
H2O2 and HO2

- formations and damages the catalyst.
The corroded catalyst causes Mn ions to dissolve into
the electrolyte and lose catalyst.

Solutions

Polymorphs
The catalytic reaction occurs with the oxygen adsorp-
tion on the MnO2 surface. The local environment for
the oxygen adsorption varies depending on different
polymorphs and it affects the catalytic activity. The
local environment for oxygen adsorption varies for
different polymorphs. There are reports comparing
the various polymorphs to determine the optimum
phase. The crystalline structures, chemical compo-
sition, morphology, and particle sizes are examined
as a function of the electrocatalytic activity [231,232].
The ORR activity with respect to the various phases

of MnO2 is in the following order:
b , l , g , a � d-MnO2 [219,233]. It is suggested
that α-MnO2 has the largest tunnel size than the rest
of the MnO2 polymorphs. The hydrogen insertion,
which initiates the oxygen reduction, is promoted
due to the large pore size. In addition, α-MnO2 has a
larger –OH terminated surface compared to the other
polymorphs. This termination encourages the oxygen
adsorption and dissociation of O–O bonds
[9,234,235]. Upon the hydrogen insertion, oxygen
begins to adsorb. It is also suggested that (310) surface
has the highest affinity towards water adsorption [236].
By preferentially growing the crystal to expose more
part of the (310) surface, the catalytic activity can be
enhanced. [236–238].

Composite electrode
Although MnO2 shows promising ORR activity, it is
still limited to fully apply MnO2 due to its low electrical
conductivity. To overcome this problem, conductive
carbon materials, such as carbon black, graphene, car-
bon nanotube, and katjen black are commonly mixed
to make the composite electrode [211,229,239–243].
Aside from these electrochemically inactive and con-
ductive carbon materials, there are composite materials
actively involved in the electrochemistry. Most of the
catalytic activities of MnO2 focus on the ORR, thus
the OER has not been highlighted until recently. The
OER is enabled by utilising composite electrodes.
When MnO2 is mixed with another spinel, perovskite,
or pyrochlore structure (CO3O4, La2O3, LaNiO3, or
LaMnO3), the ORR and OER activity and the stability
improved [244–247]. Goujun et al. demonstrated 60
cycles of ORR/OER retention with a nanotube of
MnO2/Co3O4 composite electrode [248]. Co–Mn–O
spinel compound synthesised from δ-MnO2 nanopar-
ticle as a precursor facilitated the ORR/OER [249].
An electrode made by Golin et al. adopted only Mn
oxide [229] whereas the assistance of none-Mn-based
oxides facilitated the OER activity. Their Mn oxide
electrode is a mixed phase of Mn3+ and Mn4+. Regard-
less, this electrode, namely bifunctional electrode,
shows both ORR and OER activities.

Doping
Fabricating the composite electrode enhances ORR and
OER activity by mixing an ORR catalyst and an OER
catalyst. On the other hand, doping encourages both
reactions with a single catalyst and directly alters the
intrinsic catalytic activity of MnO2 without inserting
extra additives [250,251]. There are two doping pos-
itions in MnO2: (1) doping lower-valent ions in the
place of Mn ions and (2) doping alkali metal cations
in the pores of MnO2. In the first doping position,
MnOx doped with Ni2+ and Mg2+ exhibited better cat-
alytic performance than the pristine MnO2 in alkaline
medium [241]. Roche et al. suggested that with the
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presence of Ni2+ and Mg2+, the peroxide production is
significantly suppressed [241]. This is accomplished by
keeping Mn at a higher oxidation state. At the same
time, Mn3+ dissolution is prevented because of main-
taining Mn at a higher oxidation state. Quimei et al.
demonstrated that the Ni2+ doped MnOx/C composite
delivered the power density of 122 mW cm−2 in a pri-
mary ZAB, which is comparable to Pd/C and Pt/C cat-
alysts [252]. However, not all the divalent dopants
make a positive impact on the catalytic activity of the
MnO2 compound. Ca2+, as an example, leads to a
lower ORR current. With the presence of Ca2+,
MnO2 reduces to Mn5O8, which is an electrochemically
unfavourable compound. Further studies are required
to understand the optimum dopants.

Another doping position dopes alkali metal cations
inside the pores of MnO2. Lee et al. introduced Na to α-
MnO2 nanowire through a hydrothermal synthesis and
introduced defects to the structure through acid leach-
ing. The defects in the Na0.44MnO2 nanowire dimin-
ished the OER overpotential [253]. In addition to Na,
α-MnO2 can be doped with Li and K cations [254].
Doping these alkali metal cations alters the electronic
structure of Mn. Doping MnO2 can bridge the band
gap, which allows a faster electronic transfer. The
same doping can also be applied to δ-MnO2: K, Na,
Bi, Ni, and Al cations [255–257]. The doping effect of
those cations is accomplished by changing the stacking
structure, lowering the band gap, and decreasing the
charge transfer resistance.

Structural defect
The formation of the Mn5O8 phase is not favoured in
the electrochemical performance. Mao et al. suggested
that the rate of electrochemical activity of MnOx com-
plexes is as follows: Mn5O8 <Mn3O4 <Mn2O3 <
MnOOH [218,219,258]. Among the mixed valent Mn
oxides, MnOOH produces the highest catalytic activity.
Furthermore, Matsuki et al. enhanced the activity by
heat treating MnOOH and distorting the crystal struc-
ture [258], which enlarges the activation sites and
boosts the activity. For MnO2, it is pointed out that
the phase of MnO2 plays a crucial role in adsorbing
oxygen. Distorting the crystal structure of MnO2 also
helps to adsorb the oxygen. When the pristine β-
MnO2 is heat treated in both Ar and air, an oxygen
vacancy is created [259]. Introducing an oxygen
vacancy is another way to absorb more oxygen. An
oxygen vacancy implemented to β-MnO2 structure
helps the catalytic activity, however, the vacancy is
compensated by reducing Mn4+. They also claimed
that the hydrogen peroxide formation was suppressed
during the ORR.

Morphology
The difference in morphology can play important roles
in ORR and OER activity of a MnO2 catalyst due to the

related surface area and the exposed facets of a catalyst,
which in turn can tune the catalytic behaviour. The
morphology of the end-product typically depends on
the chemical reaction conditions such as temperature,
the concentration of reactants, and the reaction time
[219]. Cheng et al. show that the catalytic activity of
α-MnO2 can be different with different morphology
of the synthesised product. The nanoflower structure
shows higher catalytic activity than the nanowire struc-
ture and the bulk structure. This is due to the
nanoflower structure processes more defects and has
more hydroxyl groups, leading to the high exposed sur-
face area. As a result, induced higher oxygen reduction
potential and larger current density (as shown in
Figure 17) [260]. Moreover, the same group fabricated
nanocrystalline CoxMn3–xO4 spinel with amorphous
MnO2 precursors with a hope to tune the morphology
to a broader range such as nanowires, nanoflakes, and
nanoflower structures and to result into a higher cata-
lytic activity [249]. Later on, Li et al. show that through
a co-precipitation method can lead to different disperse
of MnO2/CNT/Co3O4 structure and it influences the
catalytic activity as well. Generally, a more discrete syn-
thesised powder can lead to a better ORR/OER activity
[261]. Meng et al. also shows that with different syn-
thesis routes, the resulting behaviour of MnO2/CNT
will be different. They show that with a small width
but larger length MnO2/CNT can results in a higher
ORR/OER efficiency than the bulk α-MnO2. It is due
to the improved thermostability and bonding efficiency
to O2 due to the solvent-free synthesis [262].

Electrocatalytic applications
The ZAB has demonstrated promising ORR and OER
activity of a MnO2 catalyst. Utilising the OER activity,
the MnO2 catalyst can have a number of additional
applications. For instance, fuel cells that utilise ORR
reactions suffer from high Pt catalyst cost. By replacing
the Pt catalyst with MnO2 catalyst can dramatically
drive down the cost of fuel cells [263,264]. Further-
more, the hydrogen, fuel for the fuel cell, can be gener-
ated via electrolysing water molecules. This sluggish
electrolysis reaction also requires an efficient catalyst.
The MnO2 has been shown to assist in the hydrogen
evolution reaction (HER) and OER which improves
the electrolysis systems [265,266]. Besides the reactions
involving oxygen, MnO2 catalyst has been utilised in
various other fields including CO oxidation [267],
methanol oxidation [268], photocatalyst [269], etc.

Outlook

In this section, adopting MnO2 as a MAB catalyst is
discussed. The majority of the work in this field mainly
focuses on mixing or doping foreign elements to
enhance the catalytic activity, however, the durability
of those catalysts in a practical ZAB remains unclear.
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Most of the optimum performances originate from
nano-sized and thin film electrodes. With such kind
of electrodes, the stability of the electrode at the elec-
trolyte interphase can be a concern. Golin et al.
reported that after the catalytic activity, their Mn
oxide electrode did not turn back to its pristine state
[270]. A catalyst material is a critical issue for a ZAB
since it influences the overpotential. When the integrity
of the catalyst is compromised, the overall performance
of ZAB is sacrificed.

Future directions

In this review, we have provided extensive reports on
comprehensive mechanistic understanding of MnO2

in alkaline batteries, supercapacitors, LIB, and MAB
systems. Despite the long history and an enormous
number of reports, the MnO2 systems are still far
from commercialisation. We have described the alka-
line system as the system with the longest history and
the others as the systems with exponential interest.
Due to intense crystallographic research before 1995,
the phase transformation of MnO2 in the alkaline sys-
tem has been well understood [43]. Various additive
research has identified some key functional materials
to promote reversible phase formations and hinder
irreversible phase formations. On the other hand, the
other systems have exponential growth of interest. Var-
ious nanostructures are synthesised and materials are

coated through novel techniques. Nevertheless, much
of the reports are missing some key information such
as phase identification, hydrogen location, the role of
additives, etc. For further developing the MnO2 sys-
tems as the EESSs and ultimately commercialising,
more efforts should be paid to characterisation. In
the authors’ perspective, several promising directions
can be generalised as follows.

Hydrogen involvement

We have repeatedly emphasised that phase differen-
tiation is one of the starting stages of comprehensive
research in MnO2 systems. Although an in-depth
understanding of the phase transformation in the alka-
line system is available, with the recent advancement of
the characterisation tools, further information can be
obtained. Especially when the systems utilise aqueous
electrolyte, there are hydrogen atoms involved in the
electrochemical reactions. Although much of the avail-
able reports obtained crystal information through X-
ray source, the X-ray source is not an adequate source
to detect hydrogen. To identify the exact crystallo-
graphic location of the hydrogen atom, the neutron
source must be utilised [271]. Identifying the hydrogen
location achieves true phase identification and ulti-
mately assists in the kinetic understanding of the
phase transformation. Furthermore, applying neutron
source can also identify the location of the Li+ ions.

Figure 17. Morphology change with different preparation conditions and resulted in (a) bulk particles (b) nanowires (c) flower-like
a-MnO2 structures. The catalytic activity is shown in (d) LSV comparison and (e) the corresponding K–L plot [260]. Reprinted with
permission. Copyright 2009 Chemistry of Materials.

20 J. SHIN ET AL.



For the LIB, it is crucial to distinguish the lithium inter-
calation from the hydrogen intercalation.

In situ characterisation

To comprehend a full phase transformation during the
electrochemical cycle, the pristine characterisation
does not provide a sufficient amount of information.
Reports on ex situ studies are available and they ident-
ify thermodynamically stable phases. On the other
hand, in situ or operando studies are scarce, yet these
experimental settings provide kinetically stable phases
[272,273]. Kinetically stable phases provide infor-
mation on the intermediate reactions. When a phase
transformation occurs, the intermediate phase allows
us to understand how atoms are rearranging. This
helps to identify which phase transformations impose
higher atomic strain or stress and relate this to Mn2+

dissociation. MAB system can obtain vital information
because an enormous number of MAB studies report
improved catalytic activity, but the degradation mech-
anism is scarce. In situ characterisation during chron-
oamperometry experiment can shed light on the
durability of the MAB system. Constructing such a
sophisticated experimental setting is especially
involved for supercapacitor systems. Because superca-
pacitor charge and discharge processes take only a
few seconds to finish, common characterisation tools
are not suitable to capture the kinetic information. As
an example, quick-scanning X-ray absorption fine
structure (QXAFS) is one of the few characterisation
tools that can detect chemical information within
seconds [274]. QXAFS coupled with operando charge
and discharge of the supercapacitor system can provide
true redox mechanism.

Computation assisted novel materials

Based on the thorough interpretation of the mechan-
ism, numerous methods are applied to improve elec-
trochemical performance. The routes discussed in
this review are additives, coating/deposition, and dop-
ing/defect. While novel materials need to be applied,
exploring these routes require screening [275]. Since
searching every possible solution can take too much
time and effort, first principles high-throughput com-
putation methods should be utilised to find promising
materials [276,277]. In order to perform the high-
throughput screening, different traits of the potential
property need to be established. For instance, the
exact location of hydrogen needs to be known to con-
struct a proper model and intermediate phases
should be considered in the reaction scheme. Through
considering these parameters, new materials can be
proposed minimising the unnecessary syntheses
[277,278].

Conclusion

MnO2 is an extremely inexpensive material and it is
suitable for large-scale EESS. The four fields in discus-
sion complement each other in the EESS as they output
different range of power and energy performances.
Current understanding and progress of four EESS sys-
tems using MnO2 are discussed in this review. Both
alkaline battery and the LIB systems utilise intercala-
tion reactions, yet different ions are intercalated to
each of them. The alkaline battery field shows that
additives selectively form desirable phases. The LIB
field protects active materials through a surface coat-
ing. A supercapacitor and the MAB both utilise the sur-
face of MnO2, yet the surface reactions are different.
The supercapacitor field exhibits various nano electro-
des with a wide surface area and mass loading. The
MAB field shows doping and defects to alter the elec-
tronic structure. The approaches in four EESS systems
are diverse due to their differences in mechanisms,
however, there are research pathways that share some
common grounds. They all share two bottlenecks: (1)
lack of conductivity and (2) an unwanted dispropor-
tion reaction, which leads to dissolution. By probing
exact material properties of EESS, comprehensive
mechanisms can be developed. Although MnO2 has
been studied for a long time and a lot of it is under-
stood, with the recent advancement in the characteris-
ation tools, new insights are waiting to be discovered.
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