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Abstract.

Breiman (2001a,b) has recently developed an ensemble classification and regression approach
that displayed outstanding performance with regard prediction error on a suite of benchmark
datasets. As the base constituents of the ensemble are tree-structured predictors, and since
each of these is constructed using an injection of randomness, the method is called ‘random
forests’. That the exceptional performance is attained with seemingly only a single tuning pa-
rameter, to which sensitivity is minimal, makes the methodology all the more remarkable. The
individual trees comprising the forest are all grown to maximal depth. While this helps with
regard bias, there is the familiar tradeoff with variance. However, these variability concerns
were potentially obscured because of an interesting feature of those benchmarking datasets
extracted from the UCI machine learning repository for testing: all these datasets are hard to
overfit using tree-structured methods. This raises issues about the scope of the repository.

With this as motivation, and coupled with experience from boosting methods, we revisit the
formulation of random forests and investigate prediction performance on real-world and simu-
lated datasets for which maximally sized trees do overfit. These explorations reveal that gains
can be realized by additional tuning to regulate tree size via limiting the number of splits
and/or the size of nodes for which splitting is allowed. Nonetheless, even in these settings,
good performance for random forests can be attained by using larger (than default) primary
tuning parameter values.

Keywords: Prediction error, Regression, UCI Repository

1. Introduction

The purpose of Figure 1 is to display two very distinct prediction error (PE)
profiles. Identifying consequences of modeling procedures, in particular ran-
dom forests, as deriving from this distinction is the objective of this paper.
Both profiles are obtained from fitting regression trees, with prediction error
being estimated via cross-validation and standardized by outcome variance.
In the left panel, minimum prediction error is achieved at the first split, after
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which there is an appreciable rise in error. This increase is such that the pre-
diction error at the maximal number of splits is “significantly” greater than
the minimum prediction error; the vertical segments represent � 1 standard
error. Such profiles where, as a function of increasing model size/complexity
(here number of splits), prediction error initially decreases, plateaus, and
then increases are common. Indeed, prototypic depictions have this form; see
Breiman et al., (1984, p. 87) and Hastie et al., (2001, p. 38). The presence of
noise covariates is one factor that can contribute to such profiles.
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Figure 1. Contrasting prediction error profiles.

The right panel differs in that the prediction error at the maximal number
of splits is (essentially) minimal. That is to say, no matter how large a tree-
structured predictor we fit, we don’t overfit the data. This behavior is arguably
unusual. The (servo) data, whose PE is profiled in the right panel, were ob-
tained from the UCI Repository of Machine Learning Databases; see
http://www.ics.uci.edu/ mlearn/MLRepository.html,
as extracted and converted to R (Ihaka and Gentleman, 1996), and available
from mlbench, the Machine Learning Benchmark Problems package; see
http://cran.r-project.org/src/contrib/PACKAGES.html#mlbench.
What is remarkable, and seemingly not appreciated, is that almost every dataset
in the mlbench package exhibits this same behavior. Thus, benchmarking us-
ing this package, and indeed the UCI repository, may not be as generalizable
as would be desirable.
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Benchmarking Random Forest Regression 3

In a series of recent papers, Breiman has demonstrated that consequential
gains in classification or prediction accuracy can be achieved by using ensem-
bles of trees, where each tree in the ensemble is grown in accordance with the
realization of a random vector. Final predictions are obtained by aggregating
(voting) over the ensemble, typically using equal weights. Bagging (Breiman,
1996) represents an early example whereby each tree is constructed from a
bootstrap (Efron and Tibshirani, 1993) sample drawn with replacement from
the training data. The simple mechanism whereby bagging reduces prediction
error for unstable predictors, such as trees, is well understood in terms of vari-
ance reduction resulting from averaging (Breiman, 1998; Hastie et al., 2001).
Such variance gains can be enhanced by reducing the correlation between the
quantities being averaged. It is this principle that motivates random forests.

Random forests seek to effect such correlation reduction by a further injection
of randomness. Instead of determining the optimal split of a given node of a
(constituent) tree by evaluating all allowable splits on all covariates, as is
done with single tree methods or bagging, a subset of the covariates drawn
at random, is employed. Breiman (2001a,b) argues that random forests (a)
enjoy exceptional prediction accuracy, and (b) that this accuracy is attained
for a wide range of settings of the single tuning parameter employed. In the
next section we further detail the formulation of random forests, and reveal
a potential role for a second tuning parameter. In section 3 we overview the
contents of the mlbench package in light of Figure 1 and the above claims.
Section 4 contains some additional analyses of prediction error for some
expanded versions of UCI repository and other datasets. Section 5 provides
some concluding discussion.

Throughout our focus is on regression, as opposed to classification, problems.
The reasons for this are (i) Random forest classification has been shown to
perform poorly in instances of class imbalance (Dudoit and Fridlyand, 2003).
This has led to the introduction of additional class weighting parameters
(Version 4) that, while overcoming deficits, complicate evaluation; and (ii)
Overfitting in classification problems is profoundly influenced by the loss
function employed. Indeed, it is difficult to overfit with ”0-1” loss (Friedman
et al., 2000). However, it is important to note that the behavior exhibited in
the right panel of Figure 1 extends to all classification datasets in mlbench
and all additional datasets examined from the UCI repository when binomial
log-likelihood loss is employed. This is despite the possibility for substantial
overfitting with this loss criterion (Friedman et al., 2000).
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2. Random Forests

A random forest is a collection of tree predictors h�x;θk�� k� 1� � � � �K where
x represents the observed input (covariate) vector of length p with associated
random vector X and the θk are independent and identically distributed (iid)
random vectors. As mentioned, we focus on the regression setting for which
we have a numerical outcome, Y , but make some points of contact with
classification (categorical outcome) problems. The observed (training) data
is assumed to be independently drawn from the joint distribution of �X�Y �
and comprises n �p�1�-tuples �x1�y1�� � � � ��xn�yn�.

For regression, the random forest prediction is the unweighted average over
the collection: h̄�x� � �1�K� ∑K

k�1 h�x;θk�.

As k� ∞ the Law of Large Numbers ensures

EX�Y �Y � h̄�X��2� EX�Y �Y �Eθh�X;θ��2� (1)

The quantity on the right is the prediction (or generalization) error for the
random forest, designated PE�

f . The convergence in (1) implies that random
forests do not overfit.

Now define the average prediction error for an individual tree h�X;θ� as

PE�

t � EθEX�Y �Y �h�X;θ��2� (2)

Assume that for all θ the tree is unbiased, i.e., EY � EXh�X;θ�. Then

PE�

f � ρ̄PE�

t (3)

where ρ̄ is the weighted correlation between residuals Y � h�X;θ� and Y �
h�X;θ

�

� for independent θ�θ
�

.

The inequality (3) pinpoints what is required for accurate random forest re-
gression: (i) low correlation between residuals of differing tree members of
the forest, and (ii) low prediction error for the individual trees. Further, the
random forest will, in expectation, decrease the individual tree error, PE �

t , by
the factor ρ̄. Accordingly, the randomization injected strives for low correla-
tion.

The strategy employed to achieve these ends is as follows:

1. To keep individual error low, grow trees to maximum depth.
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Benchmarking Random Forest Regression 5

2. To keep residual correlation low randomize via

a) Grow each tree on a bootstrap sample from the training data.

b) Specify m� p (the number of covariates). At each node of every tree
select m covariates and pick the best split of that node based on these
covariates.

However, the central point of this paper is that the strategy in 1 controls
bias but not variance: such maximal trees may be highly unstable and this
instability will be reflected in inflated prediction errors. That this was not
observed in empirical evaluations of random forests using the UCI repository
is potentially attributable to the abovementioned properties of the repository
constituents.

As operationalized by the random forest software, available from
http://www.stat.Berkeley.EDU/users/breiman/rf.html,
the size of the individual trees constituting the forest is controlled by a tuning
parameter, nthsize. This specifies the number of cases in a node below
which the tree will not split, and so determines maximal tree size. For re-
gression forests the default value is nthsize = 5, and this is claimed to give
generally good results. For classification forests, the default is nthsize = 1,
asserted to always give good results. However, the user manual asserts that, in
large datasets, larger values can be employed for memory and speed consider-
ations with little loss of accuracy. We investigate impact of varying nthsize
as well as the primary tuning parameter, m, in Section 4. Further, we introduce
and evaluate a further tuning parameter, anticipated to be helpful in situations
where deep trees overfit. This parameter, nsplit, governs how many splits
per tree are allowable. Note that we could try to achieve such control by
adaptively setting nthsize, however, this is clearly more awkward. Further,
identically sized trees obtained from the two approaches can differ in terms
of split covariates and/or cut-points.

Further motivation for constraining the number of allowable splits comes
from boosting (Freund and Schapire, 1997). There are some claims that boost-
ing represents an instance of a random forest (Breiman, 2001a) and others
that the ”resemblance of boosting to such ensemble approaches is at best
superficial and that boosting is fundamentally different” (Hastie et al., 2001).
If we adopt the perspective of the former with some results of the latter, then
there is a basis for investigating limiting the splits per tree. The results in
question are given in Hastie et al., (2001, Section 10.11) and show dramatic
gains from curtailing allowable tree size.
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In addition to excellent prediction performance, random forests possess a
number of features. These include measures of covariate importance, distin-
guishing forests from so-called black-box predictors (e.g., neural nets), and
accurate, internal estimates of test set prediction error. The latter, so-called
out-of-bag (oob) estimates, are used in our evaluations (Section 4) and are
based on the fact that, for every tree, approximately 1�e � 1�3 cases are not
in the bootstrap sample, i.e., are oob. Test set prediction error estimates are
simply obtained:

1. Run each oob case down the corresponding tree and get the associated
response prediction.

2. For each case, i, average these response estimates over trees for which i
was oob, giving ŷi.

3. For regression forests under squared error loss �1�n�∑n
i�1�yi� ŷi�

2 is a
test set estimate of PE�

f . For classification problems, the same approach
is used substituting an appropriate loss function.

3. UCI Repository

We have asserted that nearly all the datasets in the R package mlbench ex-
tracted from the UCI Repository exhibit the prediction error : model complex-
ity behavior illustrated in the right panel of Figure 1. Indeed, this remains
so for all additional datasets from the repository but not extracted that we
examined. This set contains those datasets examined in Breiman (2001b).
Some representative plots for regression are presented in Figure 2, while a
similar series for classification are displayed in Figures 3 to 5.
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Figure 2. UCI Repository: Regression tree prediction error profiles. Note that the upper
left plot corresponds to modification of a synthetic repository dataset in order to achieve a
non-monotone error profile; see Section 4.
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Figure 3. UCI Repository: Classification tree prediction error profiles, I.
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Figure 4. UCI Repository: Classification tree prediction error profiles, II.
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Figure 5. UCI Repository: Classification tree prediction error profiles, III.

Of course the error profiles depend on the class of model being fitted. While
it is appropriate to utilize tree-structured models in dissecting the random
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Benchmarking Random Forest Regression 9

forest mechanism, it is also purposeful to assess whether the datasets can’t
be overfit under other model classes. To that end we investigate error profiles
corresponding to least angle regression (lars). LARS represents a recently
devised (Efron et al., 2003) technique that includes as special cases L1 pe-
nalized regression, called the lasso, and forward stagewise regression (see
Hastie et al., 2001), and further admits a highly computationally efficient
implementation; see
http://www-stat.stanford.edu/ hastie/Papers/LARS/.
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Figure 6. UCI Repository: LARS prediction error profiles.

Once again, the prediction error profiles reveal that all mlbench regression
datasets cannot be overfit using LARS. Representative error profiles are given
in Figure 6. Here “Step” (the x-axis) corresponds to stepwise addition of new
covariates to the model and so model complexity increases with increasing
Step.

4. Prediction Error Results

In order to evaluate whether a distorted view of the performance of random
forest regression arose from the use of the mlbench datasets, in view of
their characteristics as oultined above, we conducted a limited investigation
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Table I. Prediction Errors: Friedman 1, n� 200� p� 510

# Splits per Tree Minimun # Covariates per Split (m)

Node Size 25 170 350 510

Unrestricted 1 20.31 13.79 11.68 10.95

5 19.90 11.62 9.85 9.47

25 19.80 11.87 10.17 9.50

10 1 21.48 12.38 10.27 9.96

5 20.38 12.42 10.32 9.83

25 19.77 11.87 10.17 9.50

in two settings where individual tree models do overfit. The first of these
modifies one of the mlbench simulated datasets while the second uses the
data displayed in the right panel of Figure 1. We explore the impact of tuning
parameter specification for both the original primary tuning parameter (m) as
well as the parameters controlling node size and number of splits.

The first synthetic dataset is designated “Friedman 1” and has been pre-
viously employed in evaluations of MARS (Friedman, 1991) and bagging
(Breiman, 1996). Originally, there were 10 independent covariates, uniformly
distributed on (0,1) and only five of these were related to the outcome via

y � 10sin�πx1 x2��20�x3�0�5�2�10x4�5x5� ε

where ε� N�0�σ2�. The random forest evaluations use this formulation with
n � 200 cases and σ� 1. One modification that yields the potential for over-
fitting by individual tree-based predictors is to increase the number of noise
variables. The effect can be appreciated by examining the first column of
Figure 2: the upper panel displays cross-validated error profiles for the aug-
mented version with 500 noise variables while the lower panel is for the
original data with 5 noise variables.

Results from applying random forests with varying combinations of tun-
ing parameters are presented in Table I. Data generation made recourse to
mlbench.friedman1 with n�σ as above. The most striking trend in PE is
with respect to m, the number of covariates that are candidates for split vari-
ables at each node. PE is decreasing with increasing m, with the minimum
being attained at m � p � 510. That is, all covariates are candidates at all
nodes which coincides with bagging. The PE value obtained under default
parameter settings is 11.62 (bold in Table I); we note that this exceeds the
optimal PE for a single pruned (to 7 splits) regression tree of 10.11. There
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Benchmarking Random Forest Regression 11

Table II. Prediction Errors: Replication Capacity, n� 336� p� 282

# Splits per Tree Minimun # Covariates per Split (m)

Node Size 10 20 100 282

Unrestricted 5 589.7 590.4 608.2 602.9

25 589.2 586.7 587.5 593.8

50 594.0 583.7 582.1 584.2

5 5 602.9 592.9 575.6 578.6

25 598.5 587.4 576.2 577.1

50 592.4 588.4 581.2 581.6

are no clear trends with regard to total number of splits allowed or minimum
node size.

The second example derives from a study of the replication capacity of HIV.
Replication Capacity (RC) can loosely be considered as a measure of viral
fitness. There is interest in predicting RC based on sequence level data. Here
we have amino acid sequence information for positions 4 to 99 of the HIV
protease gene and positions 38 to 223 of the HIV reverse transcriptase gene
for a total of p� 282 positions (covariates). 336 viral samples were available
for analysis (Segal et al., 2003). Random forest PE results are given in Table
II.

Here trends are less apparent. For both the recommended default value of
m�� p�3� and for bagging (m � p), substantial improvement in PE can be
achieved by restricting the number of splits (nsplit = 5). For those forests
grown without such restriction, gains are realized by increasing the minimum
node size (nthsize) for which splitting is allowed. Controlling nthsize
proves unnecessary, or even counterproductive, for the split restricted forests.
This example illustrates the previously mentioned interplay between nsplit
and nthsize and arguably shows that the former provides a more expedient
means for exploring a range of models.

It is of interest to note that the best PE achieved by the suite of random forests
examined coincides with the PE attained from a single pruned tree. Such
an optimally pruned tree features just a single split. In the “modified Fried-
man 1” example above, bagging and forests proved effective in reducing PE
(compared to a single pruned tree) despite the large number of noise inputs.
However, such gains are not evidenced for the RC - amino acid sequence
data. One contributing factor relates to the nature of sequence data. For a
variety of biological reasons we anticipate strong between position depen-
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dencies. Indeed, applying the likelihood ratio / permutation testing approach
developed by Bickel et al., (1996) for assessing correlation when dealing
with categorical (e.g. amino acid levels) covariates reveals that, for reverse
transcriptase positions, approximately 40% of all possible pairwise position
correlations are simultaneously significant (p � 0�01). It is this strong be-
tween position correlation that thwarts the effectiveness of the random forest
variance reduction strategy: ρ̄ in (3) will be large.

5. Discussion

This paper was motivated by the observation that all regression (and indeed
classification) datasets in the mlbench package were not overfit by maximally
grown trees. This had potential implications for random forests, since (i) eval-
uation of random forests made recourse to these datasets, and (ii) individual
trees comprising the forest are grown to maximal depth. Thus, a more wide-
ranging evaluation featuring datasets for which maximal trees did overfit, was
indicated.

The results from the attendant investigation admit several interpretations.
Firstly, even in such settings, random forests can achieve good prediction
performance. This performance is either comparable or superior to the opti-
mally pruned single tree and can also improve on bagging. However, not all
fitted random forests attained such good performance. Further, not only was
performance modest at the recommended default settings of tuning parame-
ters, but it also seems difficult to provide precise guidelines for chosing these
parameters so as to ensure good performance. One recommendation would
be to take m large in these situations where there are many noise inputs. The
introduced parameter, nsplit, also appears useful. Finally, if the prediction
accuracy gains realized by random forests are not substantial then, from both
a computational and interpretational standpoint, the additional work does not
seem warranted.

Of course, these suggestions are based on a limited study of a specialized
situation wherein there are relatively very few important inputs. Breiman
(2001b) demonstrated the effectiveness of random forests for settings with
large numbers of weak inputs. But, such a framework is distinct from set-
tings with large numbers of noise inputs. That such latter datasets arise is
exemplified by the replication capacity – amino acid sequence study. Many
microarray datasets will also be of this flavor.
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Returning to the mlbench package and the UCI repository it is important to
note that the experience with maximal tree and LARS models not overfitting
will not necessarily generalize to other models. As LARS fits (L1) penalized
regression models there are built in safeguards against overfitting. Nonethe-
less, an expansion of the package/repository to include datasets that broaden
the range of signal to noise inputs seems desirable.
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