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Abstract 

Large Language Models (LLMs), which match or exceed 

human performance on many linguistic tasks, are nonetheless 

commonly criticized for not “understanding” language.  These 

critiques are hard to evaluate because they conflate 

“understanding” with reasoning and common sense—abilities 

that, in human minds, are dissociated from language processing 

per se. Here, we instead focus on a form of understanding that 

is tightly linked to language: mapping sentence structure onto 

an event description of “who did what to whom” (thematic 

roles). Whereas LLMs can be directly trained to solve to this 

task, we asked whether they naturally learn to extract such 

information during their regular, unsupervised training on 

word prediction. In two experiments, we evaluated sentence 

representations in two commonly used LLMs—BERT and 

GPT-2. Experiment 1 tested hidden representations distributed 

across all hidden units, and found an unexpected pattern: 

sentence pairs that had opposite (reversed) agent and patient, 

but shared syntax, were represented as more similar than pairs 

that shared the same agent and same patient, but differed in 

syntax. In contrast, human similarity judgments were driven by 

thematic role assignment. Experiment 2 asked whether 

thematic role information was localized to a subset of units 

and/or to attention heads. We found little evidence that this 

information was available in hidden units (with one exception). 

However, we found attention heads that reflected thematic 

roles independent of syntax. Therefore, some components 

within LLMs capture thematic roles, but such information 

exerts a much weaker influence on their sentence 

representations compared to its influence on human judgments. 
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Introduction 

Large Language Models (LLMs) have achieved 

unprecedented success at natural language processing. Their 

success demonstrates the power of statistical learning over 

strings of linguistic forms (Contreras Kallens et al., 2023;  

Piantadosi, 2023): by merely learning to predict the next 

word in a text, LLMs develop the ability to produce texts that 

conform to the syntactic rules of a language (e.g., McCoy et 

al., 2023). Indeed, the internal representations and next-word 

predictions of LLMs suggest that these systems have 

acquired many complex grammatical generalizations (for a 

review, see: Linzen & Baroni, 2021). Nonetheless, humans 

do not use grammar as an end, but rather as an intermediate 

step in mapping linguistic input forms onto meaning 

(semantics). Can LLMs extract meaning from their input? 

More specifically: what kinds of meaning can be acquired 

merely from learning to predict the next (or a missing) word? 

Whereas the behavior and internal activity of LLMs exhibit 

some signatures of semantic representations (for a review, see 

Pavlick, 2022), these models are often criticized for not truly 

“understanding” language (e.g., Bender & Koller, 2020). The 

critiques use various definitions of “understanding”: Some 

critics claim that LLMs do not have “grounded” knowledge 

that links linguistic meaning to non-linguistic experience 

(Bender & Koller, 2020; Bisk et al., 2020); others claim that 

LLMs lack common sense, i.e., intuitive theories about how 

the world works (Sinha et al., 2019; Ullman, 2023); yet others 

claim that LLMs do not reason logically (Ettinger, 2020; Wu 

et al., 2023). All such criticisms conclude that LLMs do not 

understand language like humans do.  

However, these critiques are valid only to the extent that 

they rely on accurate notions of language comprehension in 

humans. Whereas humans can relate linguistic input to non-

linguistic experiences, evaluate it against prior knowledge, 

and use it for logical inferences, all these capacities are kinds 

of “thinking”, not language (Mahowald, Ivanova, et al., 

2024): in the human mind, the cognitive systems that support 

sensorimotor or affective processes, common sense 

reasoning, and logical inferences are functionally distinct 

from the system that analyzes linguistic input (Fedorenko et 

al., 2024; Fedorenko & Varley, 2016). Whereas linguistic 

processing is a prerequisite for, e.g., evaluating whether a 

sentence is consistent with common sense, these two steps are 

dissociable, and a failure to carry out the latter does not 

demonstrate a failure to carry out the former. Given that the 

mind dedicates a system to linguistic processing per se, a fair 

yet critical bar for LLMs to pass is semantic processing that 

is language-internal or, at least, closely tied to language (e.g., 

Piantadosi & Hill, 2022, but see Jackendoff, 2012). 

Here, we test such a case of understanding: using the 

structure of a sentence to figure out “who did what to whom”, 

a process called “thematic role assignment” (Rissman & 

Majid, 2019). The mapping of grammatical positions (e.g., 

subject, object) onto thematic roles (e.g., an action’s agent, 

patient) is variable across syntactic structures: in an active 

sentence like “the pilot punched the chef", the mapping is 

subject (pilot)=agent, object (chef)=patient; but in a passive 

sentence, like “the pilot was punched by the chef”, the roles 

are reversed: the grammatical subject is still the pilot, but it 
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is now the patient being punched. Thus, two sentences with 

different constructions (active vs. passive) can have the same 

thematic role assignments. Alternatively, two sentences with 

the same construction can have opposite assignments, e.g., 

“the pilot punched the chef” vs. “the chef punched the pilot”. 

Therefore, inferring who did what to whom requires 

combining several types of syntactic information (linear 

order, construction), at least in the absence of prior 

knowledge about which noun is a more plausible agent 

(Caramazza & Zurif, 1976; Mahowald et al., 2023).  

Thematic role assignment is an important component in 

psycholinguistic theories (for a review, see: Rissman & 

Majid, 2019), unlike many tasks used to test LLMs, such as 

logical entailment or common-sense reasoning. However, it 

appears to be dissociable from syntactic processing per se 

(Caramazza & Miceli, 1991; Chatterjee et al., 1995), so 

evidence for syntactic abilities in LLMs does not trivially 

predict successful thematic role assignment. In the human 

brain, thematic role assignment engages the Core Language 

Network (Ivanova et al., 2021), a system selective for high-

level language processing (Fedorenko et al., 2011, 2024), 

including the extraction of sentence meaning (Fedorenko et 

al., 2016). Whereas this process also recruits a-modal regions 

outside the Core Language Network, their involvement relies 

on task demands because those regions are overall not 

sensitive to linguistic meaning (Ivanova, 2022; see also 

Frankland & Greene, 2020; Wang et al., 2016). Thus, 

understanding “who did what to whom” in a sentence appears 

to predominately rely on linguistic computations, and thus 

provides an appropriate test for LLMs. 

In two experiments, we test whether training LLMs on 

word prediction results in representations that reflect 

thematic roles. We use LLMs that are pre-trained on this 

objective, without any further fine-tuning on other objectives. 

Four matters about this rationale are worth emphasizing. 

First, LLMs can be directly trained on thematic role 

assignment via supervised learning. However, our question is 

whether the broader objective of word prediction suffices for 

this purpose. Word prediction is the consensus objective for 

(pre-)training LLMs and such LLMs are treated as “general 

language processors” that are compared to human behavior 

and brain activity (e.g., Schrimpf et al., 2021). 

Second, many state-of-the-art LLMs, like ChatGPT 

(OpenAI, 2022) or GPT4 (OpenAI, 2023), are not only 

(pre)trained on word prediction but are also fine-tuned using 

“reinforcement learning from human feedback” (RLHF; 

Christiano et al., 2017; Ouyang et al., 2022). In RLHF, an 

LLM receives input about human preferences and learns to 

align its responses with those preferences. Such input about 

human preferences constitutes non-linguistic information, so 

LLMs trained with RLHF are outside the scope of this work. 

Third, prior work has demonstrated that LLMs represent 

thematic role information (e.g., Tenney, Das, et al., 2019; 

Tenney, Xia, et al., 2019). Yet, this ability is often tested 

using corpora derived from natural text (e.g., Carreras & 

Màrquez, 2005; Pradhan et al., 2013), which likely contains 

few challenging examples: in most sentences, thematic roles 

might be assigned based on heuristics (Mahowald et al., 

2023). We instead specifically design stimuli that are less 

susceptible to heuristics: "reversible" sentences where both 

agent and patient are equally likely to produce an action, and 

(in Experiment 2) in a wide range of constructions. We chose 

this approach because other linguistic capacities that seem 

robust when tested on corpora “from the wild” can break 

down when tested on carefully crafted stimuli (e.g., Chaves 

& Richter, 2021; Glockner et al., 2018; McCoy et al., 2019; 

Rosenman et al., 2020; Sinha et al., 2021). 

Fourth, testing whether LLMs map syntax onto thematic 

roles assumes that a syntactic representation is available to 

LLMs. However, syntactic processing in LLMs still falls 

short of humans (Marvin & Linzen, 2018); and even when 

LLMs do capture the structure of sentences, they might rely 

on “tricks” that differ from the rich, systematic linguistic 

principles guiding humans (Chaves & Richter, 2021; McCoy 

et al., 2019; Sinha et al., 2021). Still, such characterizations 

of LLMs are often based on sentences with quite complex 

structures. There is wide implicit agreement that LLMs do 

capture the structure of simple sentences like “the pilot 

punched the chef”, which are the stimuli used in Experiment 

1. Additionally, LLMs appear to be able to represent syntactic 

information “when it matters” (Papadimitriou et al., 2022). 

Our approach is therefore appropriate for testing whether 

LLMs implicitly assign roles like “agent” and “patient” to 

event participants. All our analyses rely on the following 

paradigm: we feed sentences to LLMs, extract the resulting 

representations—i.e., activity patterns in hidden layers—and 

quantitively characterize to what extent they are influenced 

by thematic role information. Specifically, we generate 

sentences that either (i) share thematic role assignments but 

differ in syntax, or (ii) have opposite thematic role 

assignments but share syntax. We test whether sentence pairs 

of type (i) are more similar to one another than pairs of type 

(ii), which would be expected if word prediction suffices for 

LLMs to learn something akin to thematic roles. This is akin 

to representational similarity analyses in fMRI (Kriegeskorte 

et al., 2008; Norman et al., 2006). We also test to what extent 

human similarity ratings of the same sentence pairs reflect 

thematic role assignments. If LLMs are good models of 

human language processing, then the influence of thematic 

role information on their representations should be as strong 

as its influence on human judgments.  

Experiment 1 

Methods 

Stimuli. Stimuli were based on Fedorenko et al., (2020) and 

generated in two steps: First, we created 94 “base” active, 

transitive sentences describing a two participant event, such 

as “the lawyer saved the author”. Then, we edited each base 

sentence to create four versions that changed its thematic role 

assignments (and hence the meaning) and/or its structure: (A) 
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same meaning, same structure (SEMs-SYNTs): a “control” 

version where nouns and verbs are replaced by near-

synonyms, maintaining the active structure and the thematic 

role assignments (the attorney rescued the writer); (B) same 

meaning, different structure (SEMs-SYNTd): the sentence is 

converted to passive while maintaining its base words and 

thematic role assignments (the author was saved by the 

lawyer); (C) different meaning, same structure (SEMd-

SYNTs): the agent and the patient are swapped, thus changing 

thematic role assignments while maintaining the base words 

and active structure (the author saved the lawyer); and (D) 

different meaning, different structure (SEMd-SYNTd): 

another “control” version with different words (near-

synonyms), reverse thematic role assignments, and a passive 

structure, i.e., a sentence that is maximally different from the 

base (the attorney was rescued by the writer). 

If LLMs represent sentence structure and use it to assign 

thematic roles, they would represent sentence pairs with the 

same thematic role assignments as more similar to one 

another than pairs with opposite assignments: the base 

sentence would be most similar to condition SEMs-SYNTs, 

followed by SEMs-SYNTd, then SEMd-SYNTs , then SEMd-

SYNTd. The critical comparison is between the similarity of 

the base to SEMs-SYNTd vs. its similarity to SEMd-SYNTs. 

If, however, LLMs fail to infer event meaning, similarities 

would only / mostly reflect whether sentences share structure, 

regardless of “who did what to whom” (i.e., similarity of the 

base to SEMd-SYNTs would be higher than to SEMs-SYNTd). 

Large language models. We used BERT and GPT-21 

(Devlin et al., 2018; Radford et al., 2019) as implemented in 

HuggingFace. These LLMs are frequently studied and, unlike 

more recent LLMs, their hidden representations are 

accessible. The versions of these LLMs we studied each have 

12 layers, each with 768 hidden units and 12 attention heads.  

Evaluating representational similarities. For each layer in 

each LLM, we extracted a representation of each sentence: 

this was the distributed patterns of activity across hidden 

units for the [CLS] token in BERT, and the ‘.’ token in GPT-

2 (Schrimpf et al., 2021). Then, for each sentence set, we 

compared the representation of the base sentence and each 

other condition via the cosine similarity measure. Because 

such similarities might be influenced by a small subset of 

units with, e.g., very high activations across all sentences 

(Timkey & van Schijndel, 2021), we first normalized each 

hidden unit’s activations relative to that unit’s average and 

standard deviation across a large set of sentences (COCA; 

Davies, 2009). Similarities were Fisher-transformed to render 

their distribution closer to Gaussian and ameliorate bias in 

averaging them across stimuli (Silver & Dunlap, 1987). We 

contrasted the four conditions in terms of their similarity to 

 
1 Analysis of more recent, larger models, Llama 2-7B and 

Persimmon-8B yielded qualitatively the same pattern of results. 

the base sentence using a non-parametric, one-way repeated-

measures ANOVA (Friedman test). Significant results were 

followed by pairwise post-hoc, two-tailed Wilcoxon signed 

rank tests (Bonferroni corrected).  

Behavioral judgments. Human judgments about our stimuli 

are required as a standard against which to evaluate LLMs 

(Arana et al., 2023). It remains unclear how automatically 

and accurately we can infer thematic roles based on 

grammatical cues alone (versus e.g. plausibility cues) without 

careful contemplation or explicit instructions to closely 

attend to sentence structure (Ferreira & Lowder, 2016). 

We collected behavioral judgments from 120 participants, 

recruited via UCLA’s participant recruitment system (n=3 

removed due to missing responses). The study was approved 

by UCLA’s Institutional Review Board. 

In an online experiment, participants rated pairs of 

sentences for their similarity, using a sliding scale between 1 

(completely different) and 100 (identical). To minimize the 

chances that participants detect the distinctions between our 

conditions and use an artificial strategy for solving the task, 

each participant made only one judgment per condition (i.e., 

rated the similarity between a single sentence from that 

condition and its corresponding base sentence). Stimuli 

across the four conditions came from distinct sets (no base 

sentence was read more than once by a participant). We 

created 24 experimental lists, each consisting of 4 sentence 

pairs and shown to 5 participants. To mask the purpose of the 

study, these pairs were interleaved among 5 other pairs where 

similarity did not require close attention to sentence structure 

and event roles, and could instead be derived from general 

common sense (e.g., sentences on a shared topic vs. distinct 

topics). We z-scored similarities within each participant. 

Both humans and LLMs may succeed in this task. 

Alternatively, LLMs and humans might err in similar ways, 

with both failing to reliably assign thematic roles. But if 

machines and humans diverge in their performance patterns, 

it would suggest that linguistic representations in LLMs are, 

in some crucial ways, different from those in human minds.  

Results 

We report results for the last layer in each model, but the 

critical findings hold across layers. Below, we use “similar” 

to mean “similar to one another”.  

 

BERT. We found a significant difference between cosine 

similarities across conditions (χ²(3)=223.0, p<10-47; Figure 

1A). Post-hoc tests revealed that: (1) the two control 

conditions differed from one another as expected (SEMs-

SYNTs > SEMd-SYNTd, z=5.11, p=10-5); (2) a pair with 

different syntax but shared meaning was more similar than 

the maximally different control pair (SEMs-SYNTd > SEMd-
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SYNTd, (z=8.34, p = 10-15) but, surprisingly, also more 

similar than the maximally similar control pair (SEMs-

SYNTd > SEMs-SYNTs, z=6.34, p = 10-8); (3) a pair with the 

same syntax but different meaning was surprisingly more 

similar than the maximally similar pair (SEMd-SYNTs > 

SEMs-SYNTs,  z=8.41, p = 10-15) but, as expected, also more 

similar than the maximally different pair (SEMd-SYNTs > 

SEMd-SYNTd, z=z=8.41, p = 10-15); and (4) most critically, a 

pair with the same meaning (but different syntax) was less 

similar than a pair with opposite meanings (but the same 

syntax) (SEMs-SYNTd < SEMd-SYNTs, z=8.34, p = 10-15). 

Thus, syntax exerts a stronger influence on BERT 

representations than thematic roles do. 

 

GPT-2. We found a significant difference between cosine 

similarities across conditions (χ²(3)=243.17, p<10-51; Figure 

1B). Post-hoc tests revealed that: (1) the two control 

conditions differed from one another as expected (z=4.50, 

p<10-4); (2) a pair with different syntax but shared meaning 

was more similar than the maximally different control pair 

(SEMs-SYNTd > SEMd-SYNTd, z=8.33, p<10-16) but, 

surprisingly, also more similar than the maximally similar 

control pair (SEMs-SYNTd > SEMs-SYNTs, z=8.19, p<10-14); 

(3) a pair with the same syntax but different meaning was 

surprisingly more similar than the maximally similar pair 

(SEMd-SYNTs > SEMs-SYNTs,  z=8.33, p<10-15) but, as 

expected, also more similar than the maximally different pair 

(SEMd-SYNTs > SEMd-SYNTd, z=8.32, p<10-15); and (4) 

most critically, a pair with the same meaning (but different 

syntax) was less similar than a pair with opposite meanings 

(but the same syntax) (SEMs-SYNTd < SEMd-SYNTs, 

z=8.23, p<10-14). Thus, syntax exerts a stronger influence on 

GPT-2 representations than thematic roles do. 

 

Human Judgments. We attempted to fit a linear, mixed-

effects model predicting sentence similarity from condition 

with random intercepts by participant and/or stimulus set. 

These models did not converge and showed little variance 

across participants (due to z-scoring) and across sets. We 

therefore ran a fixed-effects model predicting similarity 

between sentences from condition. This model had an 

adjusted R2 of 0.25, F(4,458)=40.01, p<.001 (Figure 1C). Post-

hoc tests found that: (1) the two control conditions differed 

from one another in the expected direction (z=7.83, p<10-12) 

(2) a pair with the same meaning but different syntax was 

more similar than the maximally different control pair 

(SEMs-SYNTd > SEMd-SYNTd, z=8.13, p<10-15), and did not 

differ from the maximally similar control pair (SEMs-SYNTd 

vs. SEMd-SYNTd, z=0.29, p=1); (3) unlike in LLMs, but 

consistent with a strong influence of thematic roles, a pair 

with different meanings but shared syntax was less similar 

than the maximally similar pair (SEMd-SYNTs < SEMs-

SYNTs, z=8.96, p<10-15). Despite sharing syntax, this pair did 

not differ from the maximally different pair (SEMd-SYNTs 

vs. SEMd-SYNTd, z=1.15, p=1); and (4) most critically, a pair 

with the same meaning (but different syntax) was more 

similar than a pair with opposite meanings (but the same 

syntax) (SEMs-SYNTd > SEMd-SYNTs, z=9.27, p<10-15). 

This pattern is the opposite of what was found for LLMs, and 

demonstrates that thematic roles exert a stronger influence on 

human similarity judgments than syntax does.  

We did not directly compare human to LLM data, because 

the similarity judgments in these two datasets are on different 

scales (Likert vs. cosine). However, we analyzed LLM data 

for the subset of 24 stimulus sets for which we collected 

behavioral data, and the comparison between the two critical 

conditions was still significant (p<.001 for both models). 

Even without a direct comparison, we emphasize that human 

similarity judgments are governed by thematic role 

assignments and go in the opposite direction from LLM 

representational similarities, which are governed by syntax. 

 

Figure 1: Similarity of the base sentences to sentences in each 

condition for (A) BERT, (B) GPT-2, and (C) humans. For 

LLMs, similarities are Fisher-transformed. Each dot 

represents one item (panel C averages across the five 

participants who saw each item). 

Experiment 2 

Any cognitively plausible representation of sentences should 

feature thematic roles as a main component; for this reason, 

Experiment 1 quantified LLM representations as distributed 

activity patterns across all hidden units. However, thematic 

roles might instead be encoded by a small subset of units 

(with others representing unrelated information, e.g., lexical 

semantics). Thus, although LLMs do not emphasize thematic 

roles, perhaps they still extract this information, i.e., possess 

similar representational capacities to those of humans.  

Experiment 2 thus asked: are thematic roles represented 

anywhere among LLM units, even in a small subset of them? 

We extracted activity patterns across all units for pairs of 

sentences and fed them to an algorithm that tried to find any 

information, in any set of units, that could classify whether 

that pair shared common thematic role assignments or not. 

We also asked whether thematic role information was 

available in components of LLMs other than hidden units, 

namely, in the attention heads. We thus extracted attention 

weights between content words from pairs of sentences and 

followed the same classification procedure. 

Methods 

Stimuli. Classifying whether two sentences share common 

thematic role assignments cannot be done with sentences 
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from Experiment 1, where a solution might rely on simple 

“tricks” due to the limited number of syntactic structures. 

Therefore, we created ditransitive sentences with a variety of 

structures (e.g., “the man gave the milk to the woman”, “it 

was the woman that was given the milk by the man”), where 

no global “trick” can infer whether sentences share meaning 

or not. A single stimulus set used 12 structures, each with the 

two versions having opposite agent-patient assignments, for 

a total of 24 sentences. Structures varied in whether they were 

active or passive, double- or prepositional-object, and had or 

did not have a cleft. We generated 50 sets of these 24 

sentences, for a total of 1,200 sentences.  

Evaluating LLM representations. Prior to training a 

classifier on pairs of sentences, we performed the same 

analysis as in Experiment 1, computing cosine similarities for 

every pair of sentences within each stimulus set. We tested 

whether similarities for pairs that shared a meaning was 

higher than for pairs with different meanings, and split the 

analysis by whether their respective structures differed in 0, 

1, 2, or 3 of the syntactic features described above.2   

For the main analysis, we trained a support vector machine 

(SVM) to distinguish between “same meaning” vs. “different 

meaning” sentence pairs based on their distributed 

representations (each layer analyzed separately). In one 

analysis the representations of the two sentences were 

concatenated; in another, they were subtracted. In a 66-fold 

cross-validation, a separate SVM was trained on each 

combination of 20 of the 24 sentence structures, holding out 

the two versions of each of the remaining 2 structures for 

testing. Training excluded pairs consisting of two versions of 

the same structure, as they always had different meanings. 

Behavioral judgments. 120 participants were recruited 

online through UCLA’s participant recruitment system. They 

rated pairs of sentences for their similarity as in Experiment 

1. Each participant judged only two critical pairs of sentences 

that either had the same or different thematic role 

assignments. These two trials were from different sets. Filler 

trials were included as in Experiment 1. Due to a coding error, 

we only sampled 12 out of the 50 stimulus sets. 

Evaluating attention heads. For each attention head in each 

layer, we studied attention patterns assigned between entities 

in each sentence. The relative position of words varied across 

sentence structures, which sometimes necessitated “forward-

looking” attention (i.e., from a previous to a future word). 

However, attention in GPT-2 is only backward-looking, so 

our analysis was limited to BERT, which has bidirectional 

attention. We extracted each sentence’s attention weights 

between every pair of the following words: subject (which, 

 
2 An example pair of sentences with 0 changes and the same 

thematic role assignments: “it was the lawyer who assigned the 

depending on sentence structure, was the agent or patient), 

indirect object (patient or agent), verb, and direct object; we 

excluded attention from the verb to the direct object and vice 

versa because these involved neither agent nor patient. Using 

these vectors of 10 attention weights per sentence, the same 

SVM analyses described above were conducted to classify 

sentences pairs with same vs. different meaning. 

Results 

BERT. We found limited evidence of robust representation 

of thematic roles: for sentence pairs differing in one syntactic 

feature, pairs with the same meaning were more similar than 

pairs with different meanings (z=2.42, p<.05). However, 

pairs with no differences in syntactic features showed the 

opposite pattern (z=15.17, p<.001). For pairs differing in 2 or 

3 features, similarity did not differ as a function of whether 

the pair had the same meaning (z=0.71, p=.47; z=.85, p=.39). 

GPT-2. We found limited evidence of robust representation 

of thematic roles: for sentence pairs differing in one syntactic 

feature, pairs with the same meaning were more similar than 

pairs with different meanings (z=10.21, p<.001). However, 

pairs with no differences in syntactic features, as well as pairs 

different in 2 or 3 features, showed the opposite pattern 

(z=12.79, p<.001; z=8.17, p<.001; z=10.29, p<.001). 

SVM. Figure 2 shows the SVM accuracies across layers for 

SVMs trained on either concatenated or subtracted 

representations of sentence pairs. Most SVMs fail to reach 

significance above 50% chance level except, notably, when 

trained on subtracted GPT-2 activations. In one case, an SVM 

reached above 60% accuracy (layer 5).  

 

Figure 2: Classification accuracies for SVMs predicting 

whether two sentences had the same vs. different meanings. 

SVMs were trained per layer of BERT and GPT-2, on 

representations of pairs of sentences that were either 

concatenated or subtracted. 

Human Judgments. We attempted to fit a linear, mixed-

effects model predicting sentence similarity from condition 

(same vs. different meaning) with random intercepts by 

participant and/or stimulus set, but encountered the same 

issues as in Experiment 1. Therefore, we ran a fixed-effects 

architect the homework” and “it was the homework that the lawyer 

assigned the architect” (both are active + direct object  + cleft). 
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model: adjusted R2=0.299, F(2,228)=48.63, p<.001. 

Specifically, sentence pairs that shared meaning were rated 

as more similar than pairs that did not (z=4.391, p<.001). 

Attention heads. SVM classification of sentence pairs (same 

vs. different meaning) had high accuracy for several attention 

heads. We highlight here head 5 in layer 11, which had an 

accuracy of 79% (when concatenating attention weights for a 

pair of sentences). To characterize this head’s function 

(Figure 3), we contrasted its attention patterns (1) from the 

verb to the agent vs. patient; (2) from the direct object to the 

agent vs. patient; and (3) from agent to patient vs. vice versa. 

Each comparison was carried out in a linear, mixed-effects 

model. Attention weights, which are restricted between [0,1], 

were logit-transformed (this did not change the results) and 

modeled with a fixed effect of direction (towards the agent 

vs. patient) and random intercepts and slopes by stimulus set 

and by structure. The verb (t(51.48)=13.76, p<10-16) and direct 

object (t(36.48)=5.18, p<10-5) both allocated more attention to 

the agent than to the patient, and patients directed more 

attention to agents than vice versa (t(35.60)=7.76, p<10-8). 

These patterns held across most sentence structures 

regardless of the grammatical positions of agents and 

patients, so they reflect thematic roles, not syntax. 

 

Figure 3: Attention patterns for BERT's head 5 in layer 11 for 

each of the 24 sentence types, averaged across stimulus sets. 

Notably, the classification accuracy of this attention head 

exceeds humans: only 56.9% of participants rated sentence 

pairs that shared thematic role assignments as more similar 

than pairs that did not (and 11.7% rated both pairs equally). 

On the sentence structures that participants viewed, this 

attention head was 83% accurate (compared to an average 

accuracy of 49.79% across all other attention heads). 

Discussion 

This study asked whether LLMs understand sentences in the 

minimal sense of representing “who did what to whom”. In 

Experiment 1, we found that the overall geometry of LLM 

distributed activity patterns failed to capture this information, 

as similarities between sentences reflected whether they 

shared syntax more than whether they shared thematic role 

assignments. Human judgments, in contrast, were strongly 

driven by this aspect of meaning. In Experiment 2, we found 

limited evidence that thematic role information was available 

even in a subset of hidden units (with one exception). 

However, it was available in some attention heads, even for 

sentences that human participants struggled with. 

These results are important because event semantics are 

tightly linked to understanding linguistic input as such, unlike 

aspects of comprehension like common-sense reasoning or 

logical inference which, while frequently studied in LLMs, 

reflect non-linguistic thinking (Mahowald, Ivanova, et al., 

2024). Even in our relatively simple task of mapping sentence 

structure onto thematic roles, LLMs do not give meaning the 

prominent role that humans do, despite possessing the 

capacity to extract this information. Training LLMs on word 

prediction is sufficient for learning what thematic roles are, 

but perhaps not for representing them in a human-like way.  

Our findings are consistent with the broader claim that the 

success of LLMs in syntactic processing does not guarantee 

similar success in semantic processing (Weissweiler et al., 

2022). Indeed, despite the impressive syntactic capabilities of 

LLMs (e.g., Manning et al., 2020; McCoy et al., 2023; 

Wilcox et al., 2021; for a review, see: Linzen & Baroni, 2021) 

prior work has demonstrated that LLMs trained on word 

prediction alone have limited understanding: they struggle 

with tracking the state of entities in a text (Kim & Schuster, 

2023), sometimes refer to entities that do not exist (Schuster 

& Linzen, 2022), and make predictions that are only weakly 

sensitive to event roles (Ettinger, 2020). 

As stated in the introduction, LLMs can perform thematic 

role assignment if they are directly fine-tuned on this task. 

However, our study asked whether robust representations of 

thematic roles could result from training on word prediction 

exclusively, to understand how a general linguistic objective 

affects LLM capabilities. Our work thus complements the 

existing literature characterizing models that lack fine-tuning 

(for a review, see: Chang & Bergen, 2023). Probing such 

models is crucial as they are the ones that are commonly 

compared to human behavior and brain activity (e.g., 

Schrimpf et al., 2021). For instance, our findings suggest that 

whatever brain activity can be predicted from the hidden 

activations of LLMs, it does reflect thematic roles. 

Our study used a specific similarity metric (cosine) and 

rather simple classifiers. It is possible that a different metric, 

or an algorithm that can learn more complex classifiers, could 

detect a stronger representation of thematic roles in LLMs. 

We leave such investigations for future work. We also do not 

wish to suggest that LLMs could never represent thematic 

roles in more human-like ways (which might be the case for 

larger models, other architectures, other training corpora, or 

models exposed to reinforcement learning from human 

feedback). Nonetheless, our findings emphasize that it is vital 

to test the ability of LLMs to understand language (cf. exhibit 

thinking) using carefully crafted materials inspired by 

psycholinguistics, in order to ensure that the seemingly 

meaningful text that LLMs generate reflects comprehension 

rather than non-linguistic “tricks” that have little to do with 

human language processing (McCoy et al., 2019).  
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