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ARTICLE

Epigenome-wide meta-analysis of BMI
in nine cohorts: Examining the utility
of epigenetically predicted BMI

Whitney L. Do,1 Dianjianyi Sun,2,3 Karlijn Meeks,4,11 Pierre-Antoine Dugué,5,6,7 Ellen Demerath,8

Weihua Guan,9 Shengxu Li,10 Wei Chen,3 Roger Milne,5,6,7 Abedowale Adeyemo,4 Charles Agyemang,11

Rami Nassir,12 JoAnn E. Manson,13 Aladdin H. Shadyab,14 Lifang Hou,15 Steve Horvath,16

Themistocles L. Assimes,17 Parveen Bhatti,18 Kristina M. Jordahl,19 Andrea A. Baccarelli,20

Alicia K. Smith,21 Lisa R. Staimez,22 Aryeh D. Stein,22 Eric A. Whitsel,23 K.M. Venkat Narayan,22,25

and Karen N. Conneely24,25,*
Summary
This study sought to examine the association between DNAmethylation and bodymass index (BMI) and the potential of BMI-associated

cytosine-phosphate-guanine (CpG) sites to provide information about metabolic health. We pooled summary statistics from six trans-

ethnic epigenome-wide association studies (EWASs) of BMI representing nine cohorts (n ¼ 17,034), replicated these findings in the

Women’s Health Initiative (WHI, n ¼ 4,822), and developed an epigenetic prediction score of BMI. In the pooled EWASs, 1,265 CpG

sites were associated with BMI (p < 1E�7) and 1,238 replicated in the WHI (FDR < 0.05). We performed several stratified analyses to

examine whether these associations differed between individuals of European and African descent, as defined by self-reported race/

ethnicity. We found that five CpG sites had a significant interaction with BMI by race/ethnicity. To examine the utility of the significant

CpG sites in predicting BMI, we used elastic net regression to predict log-normalized BMI in the WHI (80% training/20% testing). This

model found that 397 sites could explain 32% of the variance in BMI in the WHI test set. Individuals whose methylome-predicted BMI

overestimated their BMI (high epigenetic BMI) had significantly higher glucose and triglycerides and lower HDL cholesterol and LDL

cholesterol compared to accurately predicted BMI. Individuals whose methylome-predicted BMI underestimated their BMI (low epige-

netic BMI) had significantly higher HDL cholesterol and lower glucose and triglycerides. This study confirmed 553 and identified 685

CpG sites associated with BMI. Participants with high epigenetic BMI had poorer metabolic health, suggesting that the overestimation

may be driven in part by cardiometabolic derangements characteristic of metabolic syndrome.
Introduction

Globally, the prevalence of obesity is rising with an esti-

mated 650 million adults obese, representing 19.5% of

the adult population.7,8 Obesity has been found to accom-

pany a multitude of molecular and metabolic perturba-

tions including impaired cell signaling, insulin resistance,

hyperlipidemia, and hypertension.9–11 Ultimately these

perturbations can lead to the early onset of chronic

diseases; an individual living with obesity has a 37%
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increased risk of type 2 diabetes12 and 67%–85% increased

risk of cardiovascular disease compared to individuals

living without obesity.13 With a growing population of

individuals living with obesity, it is increasingly

important to understand the molecular mechanisms

dysregulated by obesity to further elucidate both early

markers of disease progression and novel therapeutic

targets.

Epigenetic mechanisms are molecularly mediated

changes in gene function which do not change the
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DNA sequence. DNA methylation, the most widely char-

acterized epigenetic mechanism, occurs when a methyl

group attaches to the cytosine in a cytosine-guanine

nucleotide (CpG) pair.14 DNA methylation has been

shown to influence gene expression by blocking transcrip-

tion factor binding and recruiting chromatin remodel-

ers.15 As a functional mechanism influencing gene expres-

sion, DNA methylation may be on a disease pathway and

could provide insight into important therapeutic targets.

DNA methylation has also become an important

biomarker of health, for example with the development

of epigenetic clocks, which can provide accurate estimates

of individual age based on the methylation status of a

representative set of CpG sites.16 Individuals whose

DNA methylation deviates from their actual chronological

age, such that their epigenetically predicted age is higher

than their actual age, have been shown to have higher

rates of cancer, cardiovascular disease, diabetes, and mor-

tality.17 We hypothesized that DNA methylation-based

prediction of obesity measures could provide another use-

ful metric of health, particularly metabolic health.

Several studies have examined the relationship between

DNA methylation and body mass index (BMI), a

commonly used measure of obesity.1–6,18–21 Obesity has

been significantly associated with differential DNA

methylation, and Mendelian randomization analyses

have suggested that while this differential methylation

appears to be a consequence of the state of obesity at

many CpG sites, some CpGs show evidence consistent

with causal roles in obesity.18,3 While several large-scale

studies have identified sites associated with obesity, it is

likely that additional sites will be detectable only with

large sample sizes, because observed DNA methylation

differences are often subtle.22 Thus, a goal of this study is

to conduct a well-powered epigenome-wide association

study (EWAS) meta-analysis of BMI in nine population-

based cohort studies to detect previously unidentified sites

associated with obesity. The identification of novel sites

can reveal unique molecular signatures of various BMI

phenotypes (including metabolically healthy/unhealthy

BMI) and may enable improved prediction of BMI.

Previous studies have reported that a collection of methyl-

ation-based predictors can explain between 4.7% and 18%

of the variance in BMI.18,6,23,24 In conducting this EWAS of

BMI, we may have better predictive capacity by incorpo-

rating the novel CpG sites identified in the EWAS meta-

analysis. As such, a secondary aim of this study is to

examine whether BMI-associated CpG sites can predict

BMI. As with epigenetic age, deviations from epigenetically

predicted BMI may be associated with several relevant

health outcomes and could be used as an informative

metric of overall health and/or a predictor of future cardio-

vascular disease. Thus, we examined whether individuals

whose BMI was poorly predicted by DNA methylation

(DNA methylation overpredicts their actual BMI or DNA

methylation underpredicts their actual BMI) have differen-

tial metabolic health status.
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Subjects and methods

Participants
Our discovery analysis used data from 17,034 participants from six

published EWASs of individuals of European descent (n¼ 11,220),

African descent (n ¼ 3,134), and South Asian descent (n ¼ 2,680,

Table 1). The six studies were based on nine cohorts: Atheroscle-

rosis Risk in Communities study (ARIC),25 Melbourne Collabora-

tive Cohort Study (MCCS),26 Lifelines DEEP,27 Lothian Birth

Cohort (LBC) 1921 and 1936,28 Bogalusa Heart Study (BHS),29

the Research on Obesity and Diabetes among African Migrants

(RODAM),30 the Kooperative Gesundheitsforschung in der Region

Augsburg (KORA),31 the London Life Sciences Prospective Popula-

tion Study (LOLIPOP),32 and Italian cardiovascular component of

the European Prospective Investigation into Cancer and Nutrition

(EPICOR).33 Replication analyses were conducted in three ancil-

lary studies from the Women’s Health Initiative (WHI)34: Epige-

netic Mechanisms of Particulate Matter-Mediated Cardiovascular

Disease (EMPC, a.k.a. AS315), the Integrative Genomics for Risk

of Coronary Heart Disease and Related Phenotypes in WHI cohort

(BAA23), and Bladder Cancer and Leukocyte Methylation (AS311).

All studies used procedures in accordance with ethical standards of

the responsible committee on human experimentation and ob-

tained informed consent from all participants. More information

can be found in the individual study references. In the WHI, indi-

viduals were excluded if BMI and blood samples for DNA methyl-

ation were not measured within the same year. Extreme levels of

BMI (<17 kg/m2 and >75 kg/m2) were excluded. Further descrip-

tion of the discovery and replication cohorts is described in sup-

plemental methods.
BMI, DNA methylation, and covariates
BMI was defined as weight in kg/(height in m)2. Methodologies

obtaining weight and height differed among the studies, but all

used standard methods. One study transformed BMI values to

obtain a normal distribution.5 Relevant variables in our replication

analysis included race/ethnicity, age, physical activity, and smok-

ing status, which were all based on self-report. Smoking status was

defined as current, former, or never.

DNA methylation was measured in several cell types including

CD4þ T cells, mononuclear cells, and whole blood. DNA methyl-

ation in all studies was measured using the Illumina 450K Infin-

ium Methylation BeadChip. DNA methylation was estimated as

the proportion of methylated signal relative to combined unme-

thylated and methylated signal for a specific CpG site, defined as

the b value. Quality control procedures of the previous studies

have been reported in detail and they did not differ substantially

across studies. In the WHI, all methylation data were quality

controlled and normalized using beta-mixture quantile normaliza-

tion. In replication analyses, chip and row on chip were included

as technical covariates in all models to adjust for batch effects. Cell

composition was estimated using methods derived by Houseman

et al.35
Statistical analysis
A summary of our analyses is included in Figure 1A. Our primary

method was weighted sum of Z score meta-analysis.36 This

method utilizes Z scores from individual study summary statistics

computed from inverse-normal p values and the direction of effect

to determine significant sites. This was chosen as the primary

method for meta-analysis since the studies did not all have
y 2, 2023



Table 1. Study characteristics of discovery analyses

Reference Study population n Exposure Outcome Sample Covariates

Demerath
et al.1

Atherosclerosis Risk in
Communities (ARIC)

2,097 BMI DNA methylation
b-value

leukocytes age, sex, study center, total white blood
cell differentials, education,
household income, cigarette smoking,
current alcohol use, leisure physical
activity, cell composition,35 top 10
PCs of genetic relatedness and batch
effects (row, plate number and
chip number)

Geurts et al.5 Melbourne Collaborative
Cohort Study (MCCS)

5,361 BMI Z score DNA methylation
M-values

dried blood spot,
mononuclear
cells, buffy coats

age, sex, smoking status, country of
birth, sample type, cell composition,35

and study, plate and chip included
as random effects

Meeks et al.2 Research on Obesity and
Diabetes among African
Migrants (RODAM) study

547 BMI DNA methylation
M-values

whole blood age, sex, recruitment site, cell
composition,35 hybridization
batch, array position and first
PC of genetic relatedness

Shah et al.6 Lothian Birth Cohort (LBC)
and Lifelines DEEP

2,116
DNA
methylation
M-values

BMI Z score whole blood age, sex, batch effects, complete
blood cell count adjusted for
in sensitivity analyses

Sun et al.4 Bogalusa Heart Study (BHS) 1,485 BMI DNA methylation
b-value

whole blood age, sex, current smoking status,
cell composition35 included as
fixed effects with batch array
as a random effect

Wahl et al.3 KORA, LOLIPOP, EPICOR 5,458 DNA
methylation
b-value

BMI whole blood top 20 PCs of control probes, cell
composition,35 age, sex, smoking
status, physical activity index and
alcohol consumption
equivalent exposure-outcome definition (DNA methylation was

defined as exposure in two studies and outcome in four studies)

and BMI was transformed in one study. The EWAS was adjusted

for genomic inflation via the method of genomic control37 (l ¼
1.89) and significance was defined as p < 1 3 10�7. To annotate

CpG sites, we used the Illumina HumanMethylation450K annota-

tion file.

The significant sites were examined for replication within WHI.

Models were stratified by ancillary study. Covariates in this

analysis included age, race/ethnicity, cell composition, the top

three principal components of genetic relatedness, row on chip,

smoking status, clinical trial arm, and case-control status (BAA23

and AS311). To account for potential chip-to-chip differences in

measurement and to adjust for batch effects, chip was included

as a random effect for each BeadChip in our model. Stratified an-

alyses were combined using inverse-variance weighted (IVW)

meta-analysis.38 Significance was defined by false discovery rate

(FDR) q value < 0.05.

BMI prediction score
To examine the degree to which methylation can predict BMI and

the secondary cardiometabolic outcomes associated with BMI, we

used elastic net regression models with the significant sites to

predict log-normalized BMI. The WHI cohorts were randomly

divided into a training and test set (80% and 20%, respectively)

with an equal BMI distribution. We used elastic net regression

on the training set with 10-fold cross validation to select a predic-

tive model, which we subsequently tested in the test set. Using the

significant sites and coefficients selected by the model, a DNA

methylation prediction score was developed by multiplying the

coefficient by the individual b-value and summing over all the

sites for each individual. We then evaluated the performance of

the DNA methylation score in the test set, both in terms of how
The America
accurately it predicted BMI (metrics: R2 and median absolute

deviation) and how well it predicted obesity status (BMI R

30 kg/m2) (metrics: sensitivity and specificity).

Using the predicted BMI values, we examined the patterns

among outliers in the prediction model. Individuals were split

into categories based on regressing the predicted BMI on the actual

BMI. Accurately predicted individuals were defined as those with

residuals between �0.04 and 0.04 (accurate epigenetic BMI).

Individuals outsideof this rangewere split into twogroups: residual

below�0.04 (lowepigeneticBMIor individualswhosemethylome-

predicted BMI underestimated their BMI) and residual above 0.04

(high epigenetic BMI or individuals whose methylome-predicted

BMIoverestimated their BMI). These thresholdswere definedbased

on the 10% and the 90% distribution of the residuals. Using these

categories, we examined cardiometabolic differences including

waist circumference, triglycerides, HDL cholesterol, LDL choles-

terol, and blood glucose among these categories using linear regres-

sionmodels regressing log-normalized cardiometabolicmarkers on

DNA methylation prediction category adjusted for age, race/

ethnicity, smoking status, and physical activity. To aid interpret-

ability, results were reported based on the change in average value

in the text. In sensitivity analyses, we further examined results us-

ing thresholds defined by the 20% and 80% distribution of resid-

uals and using continuous residuals.

Functional annotation
To examine how individual CpG sites associate with gene expres-

sion,weused summary statistics from twoEWASsof gene expression

in the Grady Trauma Project (GTP) and Multi-Ethnic Study of

Atherosclerosis (MESA) studies.39 Summary statistics on the CpG-

transcript associations were extracted for relevant sites identified in

primary and secondary analyses. We conducted gene ontology

(GO) analysis of the genes identified in the CpG-transcript
n Journal of Human Genetics 110, 273–283, February 2, 2023 275
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Figure 1. BMI associates with differential methylation
(A) Description of study analyses, created in BioRender.com.
(B) Manhattan plot of the association between DNAmethylation and BMI. Each dot represents a CpG site, with genomic location on the
x axis and –log10(p value) on the y axis.
(C) Top pathways identified in gene ontology analysis.
associationsusingthePANTHERdatabase (www.pantherdb.org). Sig-

nificant pathways were defined as those with FDR < 0.05.

Sensitivity analyses
We conducted several sensitivity analyses. In the discovery meta-

analysis, we examined the influence of specific studies on the results
276 The American Journal of Human Genetics 110, 273–283, Februar
using leave-one-out analyses to examine the degree that each study

is influencing the results. We also compared results from the

weighted sum of Z score meta-analysis with results that would be

obtained using an IVW meta-analysis in studies with the same

exposure-outcome definition. We examined CpG sites which were

exclusively found to be significant in models including individuals
y 2, 2023

http://www.pantherdb.org
http://BioRender.com


Table 2. Interaction between BMI and race/ethnicity in WHI

CpG Site Main effect estimate (BMI) Interaction effect estimate Interaction SE Interaction Z score
Interaction
p value

cg25652701 �8.00E�5 �5.8E�04 1.4E�04 �4.29 1.8E�05

cg25212453 �1.91E�4 5.01E�04 1.6E�04 3.05 0.0022

cg08122652 �2.30E�2 8.9E�04 3.6E�04 2.47 0.014

cg27113059 8.87E�5 �2.3E�04 9.59E�05 �2.36 0.018

cg15391590 �1.29E�4 �2.4E�04 1.1E�04 �2.18 0.029

Interaction term reflects increase or decrease in slope for African Americans compared to non-Hispanic White individuals.
of African descent versus European descent (defined by self-reported

race/ethnicity) for interaction by self-reported race/ethnicity and

BMI. We used linear mixed-effect models adjusting for age, cell

composition, smoking status, WHI study randomization arm,

case-control status, and row with a random effect for chip. In our

replication analysis in WHI, models were additionally adjusted for

diet quality, physical activity level, and socioeconomic status.
Results

Our discovery analysis included 17,034 participants from

six EWASs (Figure 1A, Tables 1 and S1). The definition of

BMI and DNA methylation differed, with several studies

transforming these values in the models (Table 1). The

covariates in themodel also differed with all studies adjust-

ing for age and sex and the majority adjusting for cell

composition and smoking status. Most studies were con-

ducted in ancestrally homogeneous populations. However,

among studies including mixed ethnicities, analyses were

stratified by self-reported race/ethnicity. When pooling

results from all studies, 1,265 CpG sites were associated

with BMI (Figure 1B, Table S2, p < 1E�7) with 498 of the

sites having a consistent direction of effect in all the

cohorts meta-analyzed. More than half of the significant

sites (726 CpG sites) were positively associated with BMI.

In the WHI, 367 women were excluded due to missing

BMI, extreme levels of BMI, or overlap, leaving 4,822

women included in the replication cohort (Table S3). Of

the 1,265 sites identified in the discovery analysis, 1,254

were analyzed after QC. In the WHI, 1,238 CpG sites

were significantly associated with BMI (Table S4, FDR q

value < 0.05). These 1,238 CpG sites annotated to 742

unique genes. Additionally, 147 of these genes were anno-

tated to more than one BMI-associated CpG site, with 382

CpG sites annotated to these 147 genes. With the large

sample size, our meta-analysis confirmed 553 CpG sites

previously reported in the literature40 and discovered 685

novel CpG sites (defined as not previously identified in

EWASs of BMI). We examined how the replicated sites

associated with differential gene expression based on pre-

viously published analyses of the GTP and MESA cohort.39

Of the 1,238 CpG sites, 317 sites associated with 35 genes

in MESA (1,103 CpG-transcript associations; Table S5) and

35 sites associated with 45 genes in GTP (79 CpG-

transcript associations; Table S6). One site associated
The America
with the same mRNA transcript in both cohorts,

cg25653947, which was positively associated with expres-

sion of TOP1MT. We performed a GO analysis of the differ-

entially expressed genes and found enrichment in path-

ways related to the adaptive immune system with

regulation in B and T cell pathways (Figure 1C, Table S7).

We next re-performed our discovery EWAS stratified by

European vs. African descent (defined by self-reported

race/ethnicity). We found 936 and 130 CpG sites that

were associated with BMI in the analyses restricted to

individuals from European (n ¼ 11,220) and African

(n ¼ 2,587) descent, respectively. Of the 130 significant

CpG sites in the analysis of individuals of African descent,

43 unique sites were significant only in that population

(Tables S8 and S9). We examined these sites for interaction

in the WHI non-Hispanic white and African American in-

dividuals. We found that five CpG sites had a nominally

significant interaction with BMI by race/ethnicity (Table 2,

Figure S1). In three CpG sites (cg15391590, cg27113059,

cg25652701), we excluded one outlier and tested whether

the interaction remained. Results remained significant

after the exclusion of individual outliers (cg15391590

pinteraction ¼ 0.032, cg27113059 pinteraction ¼ 0.011,

cg25652701 pinteraction ¼ 0.020), though none were signif-

icant after Bonferroni adjustment for 43 tests. Two of these

sites were quantitative trait methylation loci in the GTP

cohort: cg25212453 negatively associated with expression

of TNFRSF13B and COCH and cg08122652 negatively asso-

ciated with expression of LGALS3BP and OTOF (Table S10).

We next explored the potential of DNA methylation to

predict BMI using the 1,238 CpG sites from the replication

analysis. After model tuning using elastic-net regression in

a training set (n ¼ 3,858), 398 sites were selected for the

model (Table S11). These sites accounted for 32% of the

variance in BMI in the test set (median absolute

deviation ¼ 0.040, n ¼ 964). The addition of age, race/

ethnicity, physical activity, and cell composition as predic-

tors only marginally improved the adjusted R2 (Table 3). In

the combined training and test set (n ¼ 4,822), these sites

accounted for 36% of the variance in BMI. For comparison,

we constructed a similar predictor in our WHI training set

using the 83 CpG sites identified byMendelson et al.18 and

examined its performance. In the combined training and

test set, a prediction score based on these 83 CpG sites ac-

counted for 29% of the variance in BMI.
n Journal of Human Genetics 110, 273–283, February 2, 2023 277



Table 3. Predicting BMI from DNA methylation using elastic net regression

Predictors Root-mean-square error (RMSE) Adjusted R2 Median absolute deviation

398 CpG sites 0.0702 0.3169 0.0401

398 CpG sites þ age 0.0699 0.3229 0.0355

398 CpG sites þ age þ ethnicity 0.0699 0.3474 0.0354

398 CpG sites þ age þ ethnicity þ cell
composition

0.0699 0.3473 0.0356
We next assessed the potential of this DNAmethylation-

based BMI score to predict obesity, defined as BMI > 30. In

our test set (n ¼ 964), the area under the curve was 0.79,

and using a cutoff of 30 for our BMI score, the sensitivity

was 0.82 and the specificity was 0.62 (Figure 2A). Individ-

uals were then categorized based on how well methylation

predicted BMI. On average, DNA methylation tended to

underpredict BMI in the test set (Figure 2B). Individuals

with high epigenetic BMI had 20.5 mg/dL higher blood

glucose (SE ¼ 2.0, p ¼ 2.7E�24), 31 mg/dL higher triglyc-

erides (SE ¼ 4.3, p ¼ 6.9E�13), 4.3 mg/dL lower HDL

cholesterol (SE: 0.68, p ¼ 1.4E�10), and 3.3 mg/dL lower

LDL cholesterol (SE ¼ 2.0, p ¼ 0.047) compared with

accurate predicted BMI. In contrast, individuals with low

epigenetic BMI had 5.2 mg/dL lower blood glucose

(SE ¼ 2.2, p ¼ 0.02), 23.7 mg/dL lower triglycerides

(SE¼ 4.8, p¼ 1.4E�08), and 3.0mg/dL higher HDL choles-

terol (Figure 2C, Table 4, SE¼ 0.8, p¼ 0.0004) compared to

accurate predicted BMI. We found consistent results in two

sensitivity analyses. Significant results remained when

using the 80% and 20% distribution of the epigenetic score

to define groups. We also examined whether the residual

between predicted BMI and actual BMI associated with car-

diometabolic markers and found consistent results with

two exceptions: LDL cholesterol did not associate with

the residual value and waist circumference positively asso-

ciated with the residual value (Table S12).

We conducted several sensitivity analyses. We first exam-

ined how the results changed in a leave-one-out meta-anal-

ysis (Table S13). Excluding the results from Wahl et al.3 led

to the largest reduction in significant sites resulting in 536

significant CpG sites, likely due to a reduction in power.

We next compared results obtained using Z score vs. IVW

meta-analysis in cohorts with the same exposure-outcome

relationship (ARIC, RODAM, BHS White, and BHS Black).

In the IVW and Z score meta-analysis of these four studies,

1,939 CpG sites and 1,433 CpG sites, respectively, were

significantly associated with BMI (p< 1E�7) with 935 over-

lapping sites amongmethods.Among the sites identified sig-

nificant in either analysis, the correlation between the test

statistics obtained using Z score vs. IVW meta-analysis was

0.98. Themeta test statistics tend to be smaller when identi-

fied usingweighted sumofZ scoremeta-analysis, suggesting

ourmain resultsmaybemore conservative thanwhatwould

be obtained using IVW meta-analysis. Finally, in the main

EWAS,we examinedhow the results changedwhen adjusted
278 The American Journal of Human Genetics 110, 273–283, Februar
for diet, physical activity, and income status. Overall, 1,161,

1,167 and 1,160 CpG sites remained associated with BMI

when additional covariates were included to adjust for diet

quality, physical activity, and income, respectively.
Discussion

We performed a large meta-EWAS of BMI, identifying a

unique methylomic signature of BMI. The majority of the

sites associated with BMI in the discovery cohort (99%)

were replicated in the WHI and were found to associate

withgenes enriched for severalmetabolic and inflammatory

pathways.Moreover, we found fiveCpG sites that are differ-

entially associated with BMI between non-Hispanic White

individuals and African Americans, two of which may play

a role in gene expression. Finally, we constructed a score

based on 398 CpG sites that had reasonable predictive abil-

ity for BMI and was associated with several cardiometabolic

risk factors. Individuals whose measured BMI was higher

than predicted by their methylome were found to have

poorer metabolic health including higher blood glucose

and triglycerides and lowerHDLcholesterol compared to in-

dividuals whose BMI was accurately predicted.

In this study we identified 1,238 CpG sites that were

significantly associated with BMI in several race/ethnicity

groups. 329 of the 1,238 CpG sites were associated with

differential gene expression in Kennedy et al.,39 and the

differentially expressed transcripts were highly enriched

for immune response pathways, particularly the adaptive

immune response, with the top pathways regulating B

and T cell signaling. This is consistent with previous

studies reporting that genes near BMI-associated CpG sites

are enriched for immune pathways.18,41 Low-grade inflam-

mation is a hallmark of obesity and can lead to significant

metabolic dysregulation.42 Mechanistic studies have iden-

tified DNA methylation as a key player in promoting

macrophage polarization in response to obesity, with

more M1 macrophages associated with obesity.43

WealsoexaminedhowassociationsbetweenDNAmethyl-

ation and BMI differed when stratified by race/ethnicity.

Racial and ethnic differences in adiposity have been well es-

tablished.While AfricanAmericanshavebeen found tohave

higher risk for cardiovascular diseases compared to non-His-

panicWhite individuals, theyhave consistently been shown

to have lower visceral adipose tissue and lower body fat
y 2, 2023
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Figure 2. Epigenetic BMI accurately pre-
dicts BMI
(A) Receiver operating characteristic curve
showing the performance of the DNA
methylation prediction score identifying
obesity. AUC denotes area under the curve.
Y axis is the sensitivity (true positive rate)
and the x axis is specificity (1-false positive
rate).
(B) Scatterplot of predicted BMI from
elastic net regression of 398 CpG sites by
actual BMI. Individuals categorized based
on the residual of predicted BMI regressed
on actual BMI. MAD denotes median abso-
lute deviation between predicted and actual
BMI.
(C) Boxplot of the association between
epigenetic prediction category and blood
glucose (mg/dL), high-density lipoprotein
(HDL-C, mg/dL), low-density lipoprotein
(LDL-C, mg/dL), and triglycerides (mg/dL).
Significance defined as *p < 0.05, **p <
0.01, ***p < 0.001.
percentage compared to non-Hispanic White individ-

uals.44,45 Of the five CpG sites with a significant interaction

between BMI and race/ethnicity, two sites were associated

withdifferential expression in fourmRNA transcripts related

to inflammatory pathways and hearing. Two of these genes,

TNFRSF13B and LGALS3BP, have been found to regulate NF-

kB signaling and to be upregulated with obesity,46–48 and

methylation of CpG sites near LGALS3BPwas highly associ-

ated with increased BMI both in our study and another.18

Our study found a positive and less negative association be-

tween BMI and methylation in cg25212453 and

cg08122652, respectively (in WHI African Americans

compared to non-Hispanic White individuals) and a nega-

tive association between methylation in these two sites

and expression in LGALS3BP and TNFRSF13B (in GTP).

This could be consistentwith a scenariowhere the upregula-

tion of these genes typically accompanying obesity is not as

severe in African Americans compared to non-Hispanic

White individuals, suggesting a potentially advantageous ef-

fect on inflammatory profiles in African Americans. Low-

grade inflammation in obesity leads to significantmetabolic

dysregulation.42 However, there is some epidemiological
The American Journal of Human Ge
data that suggests individuals of African

descentmaynot be asprone to increased

inflammatory profiles when living with

obesity.49,50 Noting that our interaction

analysis was limited in sample size, our

study may help provide some mecha-

nistic explanation to these differences

in the relationship between inflamma-

tion and adiposity in individuals of Afri-

can descent. Investigation in larger sam-

ples is warranted to further explore

this idea.

We also found that DNA methyl-

ation was predictive of BMI, with the
score we developed based on 398 CpG sites explaining

32% of the variance in BMI in an independent test set. Pre-

vious studies constructing scores based on smaller samples

have been able to explain between 4.7% and 18% of the

variance in BMI.6,18,23,24 DNAmethylation has been found

to be an accurate predictor of current BMI and a poor pre-

dictor of future BMI.24 Outliers in the epigenetic BMI

model predicted a unique phenotype. Individuals with

high epigenetic BMI or whose BMI was overpredicted by

the epigenetic markers had poorer cardiometabolic

markers compared to accurately predicted BMI. Because

this occurs across the full range of BMI, this may suggest

that epigenetic BMI prediction may be identifying individ-

uals with poor health regardless of their BMI and that these

sites may be useful biomarkers to examine further. Our

findings related to LDL cholesterol were inconsistent

with other cardiometabolic markers. We found that indi-

viduals with high epigenetic BMI had lower LDL choles-

terol as compared to individuals with accurate epigenetic

BMI; however, these results were only nominally signifi-

cant (p ¼ 0.0497) and so should be interpreted with

caution.
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Table 4. Association between epigenetic BMI groups and log-normalized cardiometabolic risk factors

Estimate SE p value

Waist circumference (cm, n ¼ 4,356)

High epigenetic BMI 5.88E�03 4.07E�03 0.14

Low epigenetic BMI 9.04E�04 3.98E�03 0.82

Blood glucose (mg/dL, n ¼ 3,823)

High epigenetic BMI 6.00E�02 5.80E�03 2.7E�24

Low epigenetic BMI �1.86E�02 6.48E�03 0.002

Blood triglycerides (mg/dL, n ¼ 3,829)

High epigenetic BMI 7.63E�02 1.04E�02 6.9E�13

Low epigenetic BMI �6.34E�02 1.15E�02 1.4E�08

HDL cholesterol (mg/dL, n ¼ 3,832)

High epigenetic BMI �3.75E�02 5.39E�03 1.4E�12

Low epigenetic BMI 2.46E�02 5.99E�03 4.0E�04

LDL cholesterol (mg/dL, n ¼ 3,740)

High epigenetic BMI �1.19E�02 6.05E�03 0.050

Low epigenetic BMI �239E�03 6.71E�03 0.72

Model adjusted for race/ethnicity, smoking status, age, and physical activity.
Our study had several important limitations. We focused

on BMI as a measure of adiposity due to its availability in

many large datasets. However, examining more sensitive

measures of adiposity such as body fat percentagemay pro-

vide greater insight into relevant pathways and could

ameliorate our analysis of outliers since these results may

be due to limitations of BMI. Our discovery analysis was

stratified based on race/ethnicity based on self-report.

Thus, it is unclear whether we are identifying molecular

differences due to ancestry or social construct. Addition-

ally, while we were able to explore stratified analyses based

on self-reported race/ethnicity, our analyses in individuals

of African descent (n ¼ 3,134) were substantially smaller

compared to those of European descent (n ¼ 11,220),

further highlighting a well-known issue of genomic

research under-representing African populations.51

Moreover, these populations, which include African

Americans, Ghanaians, and European-residing Ghanaians,

are not homogeneous in genetic ancestry, living environ-

ment, lifestyles, and other factors. Our interaction and

expression analyses were conducted in African American

populations from the WHI and GTP, so these results may

be generalizable only for this population. In particular,

the racial disparities in the US may be an underlying cause

of these results, as opposed to differences in ancestry. For

example, in the US, African Americans are much more

likely to live in poverty compared to non-Hispanic White

individuals.52 In our results, we may be identifying

compensatory mechanisms of structural racism which

may be driven by environmental exposures, for example,

ambient particulate matter exposure, stress, and lack of

access to health care, as well as obesity. Another potential
280 The American Journal of Human Genetics 110, 273–283, Februar
limitation is that the training and test set in our prediction

analyses come from the same population (WHI). Future

research efforts could test this model in another

population to examine the reproducibility of these

findings.

Overall, this study yields several important discoveries.

We identified novel sites associated with BMI and found

suggestive evidence for a unique molecular profile

associated with obesity in individuals of African descent.

We additionally found that epigenetic markers can predict

BMI well and may be able to distinguish individuals

whose metabolic health does not align with their

BMI. Future studies should examine whether BMI-associ-

ated methylation is differential by metabolic health

status.
Data and code availability

Summary statistics analyzed in our discovery meta-analysis were

previously generated in six previously published EWASs.1,2–6

Summary statistics from Wahl et al.3 were accessed from the

European Genome-Phenome Archive (accession number

EGAS00001001922). For the other five EWASs, summary statis-

tics for top sites in each study are available as supplemental

data in the relevant publications,1,2,4–6 and complete summary

statistics were obtained from the corresponding author of each

study. For the three WHI ancillary datasets (AS311, AS315, and

BA23) analyzed in our replication study, data are available

through WHI via paper proposals (https://www.whi.org/md/

working-with-whi-data), and data from BA23 are also available

via dbGaP (accession code phs001335.v2.p3). The code used

to generate these findings is available from the corresponding

author upon reasonable request.
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