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Summary

DNA sequencing has identified recurrent mutations that drive the aggressiveness of prostate 

cancers. Surprisingly, the influence of genomic, epigenomic and transcriptomic dysregulation on 

the tumor proteome remains poorly understood. We profiled the genomes, epigenomes, 

transcriptomes and proteomes of 76 localized, intermediate-risk prostate cancers. We discovered 

that the genomic subtypes of prostate cancer converge on five proteomic subtypes, with distinct 

clinical trajectories. ETS fusions, the most common alteration in prostate tumors, affect different 

genes and pathways in the proteome and transcriptome. Globally, mRNA abundance changes 

explain only ~10% of protein abundance variability. As a result, prognostic biomarkers combining 

genomic or epigenomic features with proteomic ones significantly outperform biomarkers 

comprised of a single data-type.

Abstract

Sinha et al. determine the proteogenomic landscape of localized, intermediate-risk prostate cancers 

and show that the presence of ETS gene fusions has one of the strongest effects on the proteome. 

Prognostic biomarkers that integrate multi-omics significantly outperform those comprised of a 

single data-type.

Graphical Abstract
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Introduction

Prostate cancer remains the most common non-skin malignancy in men world-wide. In 

many regions, its incidence is increasing because of demographic shifts in population 

structure and increased life-expectancy (Canadian Cancer Statistics Advisory Committee, 

2017; Center et al., 2012; Torre et al., 2016). Prostate cancer is most often diagnosed while 

still localized, largely through screening with digital rectal exams and quantitation of serum 

levels of prostate specific antigen (PSA). As a result, ~75% of patients receive definitive 

local treatment with either surgery or radiotherapy. The combination of these morbid 

treatments and the large number of indolent tumors diagnosed has led to significant over-

treatment, creating an urgent need for more appropriate prognostic assays (Cooperberg et al., 

2009).

The genome and epigenome of prostate cancer have been well-studied. Large consortia have 

cataloged genomic and transcriptomic aberrations, including driver events (Baca et al., 2013; 

Fraser et al., 2017; Hopkins et al., 2017; The Cancer Genome Atlas Research Network, 

2015). Subclonal reconstructions have discovered dramatic intra-tumoral heterogeneity and 

subclonal selection during disease evolution (Boutros et al., 2015; Cooper et al., 2015; 

Espiritu et al., 2018; Gundem et al., 2015). The epigenome of localized disease has been 

analyzed, both for CpG methylation and chromatin marks (Brocks et al., 2014; Kron et al., 

2017). Candidate prognostic biomarkers have been developed using copy number and 

transcriptome data (Blume-Jensen et al., 2015; Cuzick et al., 2011; Den et al., 2015; Klein et 

al., 2014; Lalonde et al., 2014). Consequently, many mutations are known to drive the 

tumorigenesis and aggressivity of localized prostate cancer, with alteration of pathways 
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including hypoxia response, androgen signaling and DNA repair (The Cancer Genome Atlas 

Research Network, 2015).

However, the ways in which the proteome of localized prostate cancer is shaped by genomic, 

epigenomic and transcriptomic aberrations is almost entirely unknown. Recent studies in 

breast, ovarian and colorectal cancer have suggested that the transcriptome is a poor proxy 

for the proteome, with only 10–20% of variation in protein abundance explained by mRNA 

abundance (Mertins et al., 2016; Zhang et al., 2014, 2016). Previous studies of the prostate 

cancer proteome have focused on cohorts of patients with inconsistent clinical features 

(Drake et al., 2016; Iglesias-Gato et al., 2016, 2018; Latonen et al., 2018; The Cancer 

Genome Atlas Research Network, 2015), and indeed no tumor type has yet integrated whole 

genome, epigenome and transcriptome data. Improved understanding of the dysregulation of 

the prostate cancer proteome can enhance interpretation of driver aberrations and facilitate 

development of rapidly-implementable clinical assays based on immunohistochemistry 

techniques. To fill this gap, we performed a proteogenomic analysis of a richly annotated 

cohort of localized prostate cancers.

Results

The proteome of curable prostate cancers

To understand the flow of biological information in prostate tumors, we assembled a 

clinically-homogeneous cohort of 76 patients diagnosed with sporadic, localized, treatment-

naive intermediate-risk prostate cancer (Table 1). All patients were treated by radical 

prostatectomy, with a median follow-up of 6.8 years (Figure 1A; Table S1). The 

histologically most representative regions (i.e. the index lesion - used for initial diagnosis 

and treatment, see STAR Methods) were subject to array-based copy number aberration 

(CNA) profiling and whole-genome sequencing (WGS) to detect genomic rearrangements 

(GRs), single nucleotide variants (SNVs), chromothripsis and kataegis. The epigenome was 

evaluated with methylome profiling and for 35 cases, the cis-regulatory element landscape 

was assessed using histone H3K27Ac ChIP-Seq (Kron et al., 2017). The transcriptome was 

quantified with both RNA-Seq and microarrays. Finally, the proteome was quantified via 
mass spectrometry-based shotgun proteomics, with each sample analyzed in duplicate. 

Globally, replicate analyses demonstrated high correlation both in terms of detection (>85% 

detected in both replicates) and quantification (Pearson’s correlation >0.95; data not shown). 

In Data S1, we provide a proteogenomic fingerprint for every analyzed patient tumor, 

including data for the replicate proteome analyses demonstrating high correlation. Tumors 

were sequenced to a mean coverage of 79x ± 28x and normal blood reference samples to a 

mean coverage of 46x ± 17x. To ensure detection of low-abundance transcripts and accurate 

quantitation of the full dynamic range, ultra-deep RNA-Seq was performed (median 382 M 

± 138 M reads per tumor).

We detected 7,054 protein groups (Table S2), corresponding to 6,924 protein coding genes. 

Of these, 3,397 protein groups were detected and quantified in all 76 patients (Figure 1B, 

top), including those corresponding to classic prostate cancer-associated genes like the 

prostate serum antigen (PSA) gene KLK3 and the DNA damage repair gene ATM, for which 

both germline polymorphisms and somatic SNVs are associated with patient outcome 
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(Fraser et al., 2017; Pritchard et al., 2016). We separated the 7,054 protein groups into 

deciles based on their median abundance (Figure 1B, bottom). As expected, high-abundance 

proteins were observed in a larger fraction of samples, replicating previous mass 

spectrometry results (Kislinger et al., 2006; Liu et al., 2004). Proteins encoded by most 

prostate cancer driver genes were detected in over 70% of the analyzed tumors, including 

MED12, FOXA1, NKX3–1 and PTEN, amongst others.

To understand the global proteomic patterns of primary localized prostate cancer, we 

performed subtype discovery, identifying four clusters of proteins (i.e. P1, P2, P3 and P4) 

and five clusters of patients (i.e. C1, C2, C3, C4 and C5; Figure 1C). Protein clusters P1 and 

P3 are enriched for products of immune-related genes (Sallari et al., 2016) whereas no 

significantly enriched pathways were detected in P2 and P4 (Table S3). Of the five distinct 

patient subgroups, C2 and C3 are associated with an increased rate of biochemical 

recurrence (BCR; Figure 1D). Because CNAs are tightly associated with patient outcome 

(Hieronymus et al., 2014), we compared these five proteomic clusters to our previously 

described genomic subtypes and to the TCGA prostate cancer subtypes (Lalonde et al., 

2014; The Cancer Genome Atlas Research Network, 2015). Genomic and proteomic 

subtypes were largely independent (Adjusted Rand Index (ARI) = −0.004; Figure S1A; ARI 

= 0.037; Figure S1B). This suggests that nucleotide features are poor proxies for proteomic 

diversity. Proteomic subtypes were also independent of androgen receptor activity signatures 

(Stelloo et al., 2015), as expected for treatment-naïve, hormone-sensitive tumors (Figure 

S1C).

While patient clusters were generally not significantly associated with mutational burden in 

either SNVs or GRs (Table S3), the abundances of specific proteins were associated with 

clinical phenotypes. Percent genome altered (PGA), a biomarker of aggressive disease 

(Lalonde et al., 2014) was found to be associated with 421 proteins, where the most 

significant associations included a protein involved in Wnt signaling, FZD7 (Spearman’s ρ 
= −0.59; FDR = 6.18 × 10−4), and a deubiquitinase, USP11 (Spearman’s ρ = −0.58; FDR = 

6.18 × 10−4) (Figure S1D, Table S4). Tumor size was associated with the abundance of eight 

proteins, while presence of the aggressive intraductal carcinoma/cribriform architecture sub-

pathology was associated with seven, including PTEN (Δmedian_protein = −12.96; FDR = 

0.227), recapitulating previous findings (Bhandari et al., 2019; Chua et al., 2017).

ETS gene fusions are linked to cell migration and lipid metabolism

One of the strongest effects on the proteome was the presence of ETS gene fusions. These 

fusions are the most frequent somatic aberration in prostate cancer, and are not associated 

with clinical outcome (Dal Pra et al., 2013; Minner et al., 2011). We focused on 245 mRNAs 

and 68 proteins significantly associated with ETS gene fusion status (Table S4; mRNA Q < 

0.01; protein Q < 0.05; 36 overlapping genes, 277 genes in total). To be conservative we 

excluded 22 genes with a high proportion of missing protein abundance measurements. 

Overall changes in mRNA and protein abundances were well correlated (Spearman’s ρ = 

0.72, p < 2.2 × 10−16; Figure 2A), but protein abundances showed larger dynamic range than 

mRNA abundances. The median differentially abundant mRNA differed 1.50-fold between 

ETS fusion-positive and ETS fusion-negative tumors, while the median protein differed 
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1.66-fold (p = 4.63 × 10−6; paired Mann-Whitney U test). The many genes showing only 

mRNA or protein abundances associations with ETS fusions, but not both, may be attributed 

to biological factors like translational and post-translational regulation, as well as to 

technical factors.

For some individual genes, mRNA and protein abundances diverged dramatically. The 

transcription factor EB (TFEB) was almost unchanged at the RNA level (1.46 fold higher in 

tumors with an ETS gene fusion) but was 1,012-fold higher at the protein level. Similarly, 

Lysyl Oxidase (LOX) was 1.88-fold higher at the RNA level in tumors with an ETS gene 

fusion, but had 21,031-fold higher protein abundance. While relative quantification by label-

free proteomics is well-established, the presence of missing values (i.e. protein not detected 

and quantified in a sample) are caveats for binary comparisons. More accurate, absolute 

quantitation via targeted proteomics assays and stable isotope labeled standards, are needed 

to better understand these divergences.

To better understand the differences in ETS fusion associated genes in the transcriptome and 

proteome, we expanded our analysis to methylation, histone status (H3K27Ac) and copy 

number (CN) data (Figure 2B). Only a single gene, ARHGDIB was associated with ETS 

gene fusions at the protein, mRNA, methylation and acetylation levels. One gene contained 

in the deletion region between TMPRSS2 and ERG on chromosome 21, FAM3B, showed 

correlated copy number aberrations, methylation changes and mRNA abundance changes. 

By contrast, 630 genes showed differential methylation associated with ETS gene fusions, 

while 124 showed differential H3K27 acetylation. These interactions do not fully explain the 

modest overlap between ETS-associated proteins and ETS-associated mRNAs, and 

highlights the importance of post-transcriptional regulatory factors not easily quantified by -

omic studies.

To determine if functional inference from RNA and protein data would yield similar 

conclusions, we performed pathway analysis separately on ETS fusion-associated genes 

identified at each biological level (i.e. CNAs, methylation, H3K27Ac, RNA abundance and 

protein abundance). No pathways were associated with CNAs, and only one with H3K27Ac 

(Figure 2C), although genes associated with differential H3K27 acetylation were enriched 

for ETS binding motifs (Hypergeometric test; p = 3.5 × 10−2). Genes associated with 

carboxylic acid metabolism were enriched at the mRNA, protein and methylation level, 

corroborating links between ERG fusions and lipid metabolism (Hansen et al., 2016; Wu et 

al., 2014). Genes associated with intra- and extracellular vesicles were enriched in the 

mRNAs and proteins associated with ETS gene fusions. At the mRNA level, we identified 

enrichment in cell migration, actin binding and phospholipid binding while at the protein 

level, there was an enrichment in lysosomal genes. These data suggest that a myriad of 

genomic mechanisms may differentiate the ETS-associated transcriptome from the ETS-

associated proteome.

Interestingly, one patient showed ERG over-expression through immunohistochemistry with 

ERG antibodies, but no ETS gene fusion was detectable by either WGS or RNA Seq (Figure 

S2A). This tumor exhibited neither the mRNA nor protein signatures of ETS gene fusions 

(Figure S2B), suggesting not all cases of ERG over-expression validated by IHC will impact 
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a tumor’s transcriptional and proteomic repertoire, or potentially reflecting the large spatial 

heterogeneity of prostate tumor genomes (Boutros et al., 2015). Critically, divergences in 

signaling pathway detected by transcriptome and proteome data suggest caution when 

interpreting the effects of genomic aberrations on the basis of the transcriptome alone. 

Enhanced study of protein abundances in such analyses is key to fully understand the effects 

of genomic aberrations.

Quantifying transcriptome-proteome discordance

These large discordances between differences in ETS gene fusion-associated mRNA 

abundance and protein abundance led us to systematically quantify their relationship across 

all genes. Globally, mRNA and protein abundances are weakly correlated (median 

Spearman’s ρ = 0.21) indicating that mRNA abundance is poorly predictive of protein 

abundance (Figure 3A). RNA-protein correlations varied with protein abundance – the 10% 

most abundant proteins were much better correlated (median: 0.32) than the bottom 10% 

(median: 0.07).

One specific example of this phenomenon is ATM, where we detected relatively low protein 

abundance (8th decile), but higher RNA abundance (3rd decile) and a weak correlation 

between them (Spearman’s ρ = 0.10; Figure S3A). ATM SNVs are associated with patient 

outcome, but there was no significant difference in biochemical relapse rate between patients 

with and without ATM loss (Figure S3B). This poor correlation between transcript and 

protein abundance may reflect differing rates of mRNA degradation, translation or protein 

degradation, and mirrors recent reports in breast, ovarian and colorectal cancers (Mertins et 

al., 2016; Zhang et al., 2014, 2016).

RNA-protein correlations were generally less-dependent on transcript abundance than on 

protein abundance (Figure S3C). This may reflect some combination of larger translational 

regulation or increased measurement error for low abundance biomolecules (i.e. both 

transcripts and proteins). Indeed, the 10% most abundant proteins were enriched for 

localization to membrane-bound organelles and extracellular proteins, and these trends held 

in an independent, clinically diverse validation cohort (Figure S3D) (Iglesias-Gato et al., 

2016).

In extreme cases, either protein or RNA for a gene is detected but the other is not. We 

examined these cases, focusing on the 10% most abundant transcripts and proteins to 

minimize the possibility of technical false-negatives. Of the 4,694 most abundant transcripts, 

1,342 did not have a detected protein, including 1,070 from known coding genes. By 

contrast, only 68 of the most highly-abundant proteins had low or undetected transcript 

abundance (Table S5). Coding transcripts without a detected protein represent a diverse 

collection of genes preferentially localized to the nucleus, while proteins without detected 

transcripts are enriched for immune-related genes (Table S5).

cis and trans effects of genomic and transcriptomic changes

Prostate cancer is driven by CNAs more than single nucleotide variants: it is a C-class tumor 

(Fraser et al., 2017). We therefore investigated the role recurrent CNAs play in modulating 

mRNA and protein abundance, both in cis and in trans (Figure 3B–C). While genes may be 
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lost or gained as part of a larger segment, the effect on mRNA or protein abundance may 

vary per gene, therefore we investigate differences per gene and not per segment. To increase 

statistical power, we generated 210 array-based transcriptomes from localized prostate 

tumors. To identify cis effects, for each gene we compared mRNA and protein abundances 

between tumors with and without a CNA at that gene (6,607 genes with all three types of 

data available). We detected strong cis effects in RNA, which can be seen along the diagonal 

of Figure 3C as influencing ~10% of all genes (592/6,607; FDR < 0.05; t-test). These effects 

were present, but weaker at the protein level, with ~2% of proteins having their abundance 

associated to CNAs (133/6,607; Figure S4A). We validated this result in TCGA data, which 

contained 491 samples with matching RNA and CNA data and found that 35% of genes 

show cis effects, highlighting the importance of sample size and, potentially, clinical 

diversity of the patient cohort, in multi-omic studies (Figure S4B).

Next, to identify trans effects where a CNA on one chromosome is associated with mRNA 

changes of a gene on another chromosome, we repeated our earlier analysis transcriptome- 

and proteome-wide. For each of the 23,068 genes with copy number information, we 

identified which of the 6,636 genes with both mRNA and protein abundance data and 

changed abundance with CNA status. On average, each gene-specific CNA had 593 ± 528 

trans effects, where it was associated with statistically significant changes in RNA 

abundance. By contrast, trans effects were rarer for protein abundance, influencing 10 ± 31 

genes (Figure S4A). For example, deletion of PTEN alters abundance in 52% of the genes 

investigated at the RNA level (3,416/6,607) but only 2.7% at the protein level (179/6,607), 

all of which showed RNA changes. To be conservative, we removed genes that were 

themselves frequently copy number altered (>5% of samples) to exclude confounding effects 

of genomic subtypes. Even after this control, PTEN showed trans effects on 54% of genes at 

the RNA level and 2.8% at the protein level (113/4,086; Figure 3D).

Other genes with substantial trans effects included NXK3–1, a tumor suppressor deleted in 

almost half of prostate tumors and CD68, which mediates macrophage recruitment (Figure 

3D). Overall, 694 genes had large trans effects: defined as influencing the RNA levels of at 

least 10% of all genes. Of these, 67.4% (468/694) also exhibited trans effects at the protein 

level (affecting 0.2% - 40% of proteins); the smaller effect-sizes reflects the small number of 

samples with protein abundance measurements. Genes with large trans effects included 

CMAS, an immune related gene, ATAD1, a gene related to ATPase activity, and MINPP1, a 

gene previously implicated in cancer. Interestingly, these three genes were associated with 

poor prognosis at both the CNA and RNA levels (Figure S4C). Consistent with our 

observations of ETS gene fusion-associated genes, protein abundances showed a much 

higher dynamic range for trans effects than transcript abundances (e.g. Spearman’s ρ = 0.87 

for PTEN; Figure 3D).

Not all genes were influenced by CNA trans effects at the same frequency. For example 

CRISP3, which plays a role in sperm function and is upregulated in prostate tumors (Ribeiro 

et al., 2011), shows RNA trans effects with 9.2% (2,123/23,068) of genes and protein trans 
effects with 0.4% (85/23,068) – in some cases with large magnitudes. CRISP3 RNA and 

protein are both more abundant in samples with either CD68 deletion or PTEN deletion 

(Figure 3D). Thus, a large network of trans CNA effects exists, highlighting interconnections 
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between specific somatic mutations and consequent transcriptome and proteome 

dysregulation.

Multi-layer information flow in prostate cancer

To better quantify this complex flow of information from the cancer genome to its proteome, 

we performed an information-content analysis. For each gene, we calculated the mutual 

information (MI) between the five classes of molecular data in our prostate cancer study: 

CNAs, methylation, histones (H3K27 acetylation), RNA abundance and protein abundance 

(Figure 4A). MI measures, in bits, the knowledge of one variable when a second variable 

becomes known. MI values of zero indicate independent variables: knowing one variable 

gives no information on the other. MI is related to classic correlations, but lacks some of 

their assumptions about linearity and ordering, making MI useful for complex relationships. 

To standardize analyses, we median-normalized MI separately for each dataset.

As expected, different pairs of molecules have varying amounts of redundancy in their 

information content. For example, CNAs were weakly predictive compared to other 

molecular datatypes. CNAs were modestly more tightly associated with protein than with 

mRNA abundance (median MICNA-Protein = 0.055 vs. median MICNA-RNA = 0.048). 

Similarly, methylation status was more strongly linked to protein than mRNA abundance 

(median MIMethylation-Protein = 0.43 vs. median MIMethylation-RNA = 0.32). Intriguingly, the 

highest mutual-information across genomic regions was between H3K27Ac and RNA 

(median MIH3K27Ac-RNA = 0.652), while the lowest was between CNAs and methylation 

(median MICNA-Methylation = 0.032). This may suggest a prominent role for epigenomic 

features, independent of the frequent subclonal CNAs (Espiritu et al., 2018).

To determine if the regulatory relationships between pairs of biomolecules distinguish 

specific functional groups of genes, we performed consensus clustering and identified six 

subgroups (labeled MI1–6; Figure 4B). Individual subgroups were not enriched for MSigDB 

hallmark gene sets, but rather more specific features (Liberzon et al., 2015) (Table S6). 

Subgroup MI6 was characterized by genes with higher CNA-H3K27Ac, CNA-protein, 

CNA-RNA and CNA-Methylation links, and was enriched for genes related to cellular 

response to stress, suggesting tight regulatory networks (FDR = 0.005; Table S6; Figure 4B). 

By contrast, MI1 harbored genes with strong H3K27Ac-Protein, RNA-Protein, and 

Methylation-Protein links and are enriched in extracellular exosomes (FDR = 3.87 × 10−15; 

Table S6). These results are compelling, but further exploration will be required to fully 

elucidate the biological mechanisms and implications underlying these links in mutual 

information.

To validate our mutual information findings in an independent dataset, we calculated 

normalized MI in 245 intermediate risk TCGA samples. For each pair of molecular 

datatypes, we considered genes with significant MI in the discovery cohort (defined as MI > 

0.05). We then calculated the MI for these genes in the TCGA cohort, if the same molecular 

datatype was collected within that cohort. MI values validated strongly, with 99% of genes 

with significant Methylation-RNA and 75% of genes with significant CNA RNA MI 

validating (Figure 4C). To quantify the validation of the MI analyses, we created a ROC 
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curve for each molecular datatype by iteratively increasing the MI threshold used for 

significance in both datasets (Figure S4D).

We followed by calculating the percent variance explained (PVE) by upstream cis-
information from CNA, methylation and RNA. This analysis was performed on genes 

present in most samples with a known link to prostate cancer: TGM2, NDRG3, KLK3, 

AKT1, PTEN, NKX3–1, KRAS and ATM (Figure 4D). A strong association was detected 

between methylation and protein abundances for TGM2 and AKT1 in which almost 40% 

and 30% of the protein variance, respectively, can be explained by methylation. Both 

NDRG3 and PTEN show relatively high PVE by CNAs when compared to the other genes 

examined (17% and 6.2% respectively), but while 60% of variability NDRG3 protein 

abundance can be explained by CNA, methylation and RNA, less than 10% of variability in 

PTEN abundance was captured by the model. Curiously, despite its high abundance, only 

33% of the variance in KLK3 was explained by RNA (21%) and methylation (11%). KLK3 
is generally copy number neutral (Figure 4E) and protein abundance is univariately 

correlated with RNA (ρ = 0.48; p = 2.53 × 10−4) and methylation (ρ = −0.34; p = 3.3 × 

10−3). In contrast, PTEN is dominated by CN losses (42%; 31/74, 2 missing; Figure 4F) and 

its protein abundance was univariately correlated with RNA (ρ = 0.29; p = 2.6 × 10−2) and 

methylation (ρ = −0.29; p = 1.3 × 10−2), but its low RNA values (medianPTEN = 4.76; 

medianGAPDH = 11.8) and low and narrow methylation values (Q1,Q3PTEN = 0.075,0.086; 

Q1,Q3KLK3 = 0.12,0.13) may explain the low PVE.

These data provided detailed maps of the complex ways in which information flows from 

the germline and somatic genome, epigenome and transcriptome and finally to the proteome. 

By improving quantitation of regulatory data, as by miRNA-profiling or histone ChIP-Seq, 

specific functional classes of genes can be delineated.

Protein abundances may predict prostate cancer relapse

Finally, to evaluate the potential clinical importance of proteomic profiling of primary 

prostate tumors, we quantified the association of each gene with disease relapse after 

definitive local therapy with curative intent. We used time to biochemical relapse (BCR) as 

our outcome, which reflects rising serum PSA levels, which can trigger administration of 

salvage therapy. For each gene, we fit Cox proportional hazards (Cox PH) models to patient 

groups dichotomized by both median protein and median mRNA abundance. Hazard ratios 

(HRs) from protein abundances were weakly correlated to those from mRNA abundances for 

the same genes (Spearman’s ρ = 0.25; Figure 5A). Thus, some individual genes were 

associated with aggressive disease at the RNA level, others at the protein level, and a subset 

of 53 at both. Proteins exhibited a wider dynamic range of HRs (range: 0.22 – 4.23) than 

mRNAs (range: 0.33 – 2.73).

In some cases, mRNA and protein abundances showed divergent associations with patient 

outcome. For example, increased abundance of PUS1, a gene not previously implicated in 

cancer, was associated with increased risk of BCR, but unexpectedly, increased mRNA 

abundance was associated with a reduced risk (Figure 5B). In total, six genes showed 

divergent mRNA-protein associations with patient outcome, which may represent complex 

regulatory loops, translational dysregulation, post-translational modifications, or post-
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transcriptional processes that participate in driving aggressive disease. For validation, we 

focused on the 53 genes whose mRNA and protein abundances were both associated with 

disease aggressivity. We first considered ACAD8 (Figure 5C) as it has high protein 

abundance (3rd decile) and has not been strongly linked to prostate cancer previously. We 

validated the association of low ACAD8 protein abundance with poor outcome using 

immunohistochemistry on a tissue microarray of 73 intermediate-risk prostate tumors 

(Figure 5D; Figure S5A). Validating these candidate prognostic markers in larger cohorts 

will be key.

Multi-omic integration improves prediction of patient outcome

Clinically-used biomarkers are derived from many different classes of biomolecules, with 

DNA- and RNA-based assays being particularly prominent in prostate cancer (Fraser et al., 

2015). It is unknown whether a particular class of biomolecules is generally superior for a 

given biomarker question. To quantitatively address this question, we again focused on 

prediction of BCR. We performed a null distribution (information content) analysis, 

generating 10-million gene-sets, each comprising 100 genes randomly selected without 

replacement (Boutros et al., 2009; Lalonde et al., 2014). This gene-set size was chosen to 

match that of several validated prognostic biomarkers (Lalonde et al., 2014). For each gene-

set, we used supervised machine-learning (random forests) to train and validate CNA, 

methylation, RNA and protein biomarkers, resulting in 40-million trained biomarkers. For 

each biomarker, we assessed their accuracy assessed via the area under the receiver-

operating characteristic curve (AUC).

The resulting null distributions showed that random biomarkers generated from CNA or 

methylation data had similar performance (Figure 5E; blue curves, median AUC = 0.60). By 

contrast, biomarkers generated from mRNA and protein abundances were significantly 

superior, improving mean AUC by 0.03 for mRNA and 0.04 for protein (p < 2.2 × 10−16; t-

test). These results were independent of gene-set size (range: 5–100; Figure S5B). Thus, 

proteomic features are significantly more informative for BCR prediction than genomic, 

epigenomic or transcriptomic ones.

These data provided us a unique opportunity to consider the synergy of constructing 

biomarkers from multiple distinct datatypes. Pair-wise comparison of matched mRNA and 

protein biomarkers show a classic long-tail distribution, suggestive of potential synergy 

(Figure S5C). To test this explicitly, we created biomarkers from pairwise combinations of 

biomolecules and evaluated them using the AUC (Figure S5D). Pairs of data-types produced 

biomarkers significantly better than genomic-features only. For example, methylation-

protein biomarkers were on-average the best combination, with a median AUC of 0.66 

(Figure 5E), reflecting their low MI (Figure 4A). Thus, low mutual information amongst 

different biomolecules may facilitate explicit complexity-accuracy trade-offs in the 

construction of multi-modal biomarkers, but these are incremental in magnitude and require 

further validation in the future.
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Discussion

Cancer is a disease of the genome. The accumulation of point and structural mutations, 

along with epigenomic changes, which dysregulates the transcriptome, leads to a 

dysregulated proteome and ultimately to the hallmark phenotypes of cancer cells (Hanahan 

and Weinberg, 2011). Proteins are the most abundant class of functional molecules in the 

cell, and the central dogma guides information flow from the genome and epigenome to the 

proteome. We therefore created a unique cohort of the most commonly treated form of 

prostate cancer: localized, intermediate-risk disease. Our compendium of whole genome, 

epigenome, transcriptome and proteome profiles reveals patterns of information exchange 

across levels of the central dogma whose biological implications are uncertain, but 

intriguing.

Previous studies in other tumor types have shown low correlations between the abundances 

of specific RNA transcripts and the abundances of the resulting proteoform (Mertins et al., 

2016; Zhang et al., 2014, 2016). We confirm that the weak transcriptome-proteome 

relationships in other tumor types (Shao et al., 2017) also exist in prostate cancer, and 

generalize this to a broad range of genomic and epigenomic features, including cis-

regulatory elements. These weak correlations are reflected in a large network of trans effects 

across data-types, which differentially affect RNA and protein abundances and are correlated 

to specific functional sets of genes. These networks may provide an avenue for 

understanding the influences of specific genomic features on specific aspects of the 

proteome, and subsequently on downstream pathways, cellular and clinical phenotypes.

The proteomic subtypes of prostate tumors are only weakly related to their genomic ones. 

This suggests strong post-transcriptional regulatory mechanisms that are not easily detected 

in genomic data. This observation is mirrored by the differences in specific genes and 

pathways associated with ETS gene fusion status at the RNA and protein levels. The 

proteomic characteristics of ETS-positive tumors indicate an extensive dysregulation of their 

metabolic profile (Bose et al., 2017), which is not reflected in the transcriptional changes 

seen. Indeed, these data highlight the drawbacks of studies that implicitly infer changes in 

functional protein directly from mRNA abundance data. The assumption that transcriptional 

profiles are a reliable surrogate for proteomic ones is incorrect for most genes. Only ~10% 

of variation in protein abundances is explained by changes in the transcriptome, suggesting 

an urgent need for statistical models that better predict protein abundances from more 

readily available nucleotide-based data.

The clinical potential of proteomic biomarkers is high – proteins harbored more information 

on patient relapse than any other data type, and multi-modal biomarkers consistently out-

performed those generated from individual data-types. Yet multi-modal biomarkers are 

inherently complex, highlighting the need for improved technologies to accurately profile 

multiple analytes from individual tumors, especially considering that high-throughput 

proteomics clinical tests have not been implemented in routine practice to date. Larger 

patient cohorts and complementary validation studies will be key to reaching the 

translational potential of multi-modal data. This suggests an opportunity for expansion of 
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existing cancer genomics consortia to pair their high-quality, deeply-analyzed genomes and 

transcriptomes to unbiased proteomic surveys.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Paul C. Boutros (pboutros@mednet.ucla.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Selection of patient cohort and tumor sections—Patient selection, tissue collection 

and sample processing was performed as previously described (Fraser et al., 2017). 

Informed consent, consistent with local Research Ethics Board (REB) and International 

Cancer Genome Consortium (ICGC) guidelines, was obtained at the time of clinical follow-

up. Previously collected tumor tissues were used, following University Health Network 

REB-approved study protocols (UHN 06–0822-CE, UHN 11–0024-CE, CHUQ 

2012-913:H12-03-192). All patients were treated surgically via radical prostatectomy 

(RadP). Primary treatment failure was defined as PSA levels at or above 0.2 ng/mL three 

months after surgery; no patients in this cohort experienced primary treatment failure. 

Biochemical recurrence (BCR) after RadP was defined as two consecutive measurements of 

PSA > 0.2 ng/mL or the administration of salvage radiotherapy. All patients were National 

Comprehensive Cancer Network (NCCN) intermediate-risk based on pre-surgical 

parameters. ISUP Scores and tumor cellularity were evaluated by two genitourinary 

pathologists (T.v.d.K., and B.T.) on scanned haematoxylin- and eosin-stained slides as 

described previously (Fraser et al., 2017). Adjacent 10 serial sections (10 μm thickness of 

each section) from each patient tumor were used for acquiring each of the multi-omic 

dataset. All sections were pathologically inspected by our co-author (T.v.d.K.) and tumor 

tissue was macro-dissected to reach ~70% cellularity. As a validation, cellularity was 

calculated in silico from OncoScan array data using qpure (v1.1) (Song et al., 2012). 

Additionally, for all multi-omic analyses, we analyzed the index lesion - the lesion that led 

to the initial diagnosis and treatment of the patient. Given our focus on biomarkers, this 

allowed a consistent analysis that avoids conflating information available post-operatively 

with that available during initial staging and management.

METHOD DETAILS.

Tumor tissue preparation for shotgun proteomics—Fresh-frozen RadP specimens 

were obtained from the University Health Network (UHN) Pathology BioBank or from the 

Genito-Urinary BioBank of the Centre Hospitalier Universitaire de Québec (CHUQ). Ten 

pathologically inspected, optimal cutting temperature compound (OCT) embedded tissue 

sections (10 μm each) were processed for each prostate cancer sample (i.e. sections are in 

close proximity to previously used sections for genomics, epigenomics and transcriptomics, 

but not identical). Tissues were scraped from the glass slides and transferred to a 1.5 mL 

conical tube. Removal of the OCT compound was performed using various dilutions of 

ethanol with water as follows. Initially, 1 mL of 70% (v/v) ethanol was added to each 

conical tube, followed by 30 s of vortex at high speed. The tubes were centrifuged at 14,000-
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rcf for 3 min, and the supernatant was discarded. Subsequently, tissue pellets were treated 

with 100% ethanol, 70% ethanol, 85% ethanol and lastly in 100% ethanol with an additional 

5 min incubation at room temperature and rigorous high-speed vortexing. The obtained 

tissue pellet was then processed for shotgun proteomics.

Shotgun proteomics—Tissue pellets were resuspended in 100 μL of 50% (v/v) 2,2,2-

Trifluoroethanol in phosphate buffered saline (pH 7.4) and incubated for one hr at 60°C. 

Subsequently disulphide bonds were reduced by incubation for 30 min at 60°C with 5-mM 

dithiothreitol. Afterward, alkylation of reduced disulphide-bridges was performed using 25 

mM iodoacetamide for 30 min at room temperature in the dark. Samples were diluted 1:5 

using 100 mM ammonium bicarbonate with 2 mM CaCl (pH 8.0). Proteins were digested 

with 5 μg of trypsin at 37°C overnight. Pe ptides were desalted using C18-based solid phase 

extraction. Subsequently, eluted peptides were lyophilized and solubilized in mass 

spectrometry-grade water with 0.1% formic acid. Peptide concentration was quantified using 

a NanoDrop Lite (at 280 nm) and a constant aliquot of 2 μg of peptides were injected onto 

the column for chromatography and proteomics analysis. LC-MS/MS data was acquired 

using an Easy nLC 1000 (Thermo) nano-flow liquid chromatography system with a 50 cm 

EasySpray (Thermo) column coupled to a Q Exactive (Thermo) tandem mass spectrometer. 

Data was acquired using a four hr chromatographic gradient with the mass spectrometer 

operating in data dependent mode. MS1 data was acquired at resolution of 70,000, while 

MS2 data was acquired at resolution of 17,500 with a top 15 method (Michalski et al., 2011; 

Sinha et al., 2014). The acquired data was searched using MaxQuant (v1.6.1.0) (Cox and 

Mann, 2008) and a UniProt protein sequences database (complete human proteome; 

v1-27-2015, number of sequences 42,041). Searches were performed with a maximum of 

two missed cleavages, cabamidomethylation of cysteine as fixed modification and oxidation 

of methionine as variable modification. False discovery rate (FDR) was set to 1% for peptide 

spectral matches and protein identification using a target-decoy strategy (Kislinger et al., 

2006). The ProteinGroup.txt file was used for all subsequent analysis. Proteins identified 

with two or more peptides were carried forward. Relative quantification was performed 

using MS1 signal intensity for label-free quantification, following a standard MaxQuant 

analysis strategy MaxLFQ (Cox et al., 2014), which uses an aggregate of all MS1 peptide 

intensities of a reported protein.

Proteomic data batch correction and missing value imputation—Four batch 

correction methods were evaluated: ComBat (v3.20.0) (Johnson et al., 2007), limma 

(v3.28.21) (Ritchie et al., 2015) and the removal of one and two surrogate variables using 

sva (v3.20.0) (Leek et al., 2012). ComBat batch correction was performed using the null 

model. Correction with limma was performed using the removeBatchEffect command with 

no additional covariates included. For surrogate variable analysis, biochemical recurrence 

was used as the endpoint of the model to preserve associated variance. The number of 

nuisance variables was automatically estimated using the num.sv command, and a data 

matrix was regenerated following removal of one or two nuisance variables. Metrics used to 

evaluate the correction methods included examining the variance of GAPDH, SDHA and 

GPI post correction, fitting a linear model between batch and the protein abundance for each 

gene as the response and calculating the 90th percentile of percent variance explained by the 
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batch term, and by calculating Spearman’s correlation between a duplicated sample in two 

of the batches. We ranked each method based on these criteria, calculated the rank product 

and arrived at ComBat as the highest ranked batch correction method for this dataset. 

Missing values were imputed from the lower half of a Gaussian distribution around a mean 

of the protein intensities from the 0.01th percentile of all protein intensities. The imputation 

of missing values can potentially lead to an overestimation for binary comparisons (i.e. 

ratios).

DNA and RNA-Sequencing—Whole genome sequencing of DNA was performed as 

previously described (Fraser et al., 2017). RNA samples were sent to BGI Americas and 

underwent QC and DNAse treatment. For each sample, 200 ng of total RNA was used to 

construct a TruSeq strand specific library with the Ribo-Zero protocol (Illumina), and all 

samples were sequenced on a HiSeq2000v3 to a minimal target of 180 million paired-end 

reads. Reads were mapped using the STAR aligner (v2.5.3a) (Dobin et al., 2013) to GRCh17 

with Gencode v24lift37 (Harrow et al., 2012). RSEM (v1.2.29) was used to quantify gene 

abundance (Li and Dewey, 2011).

mRNA microarray data generation—Total RNA was extracted using the mirVana 

miRNA Isolation Kit (Life Technologies), according to the manufacturer’s instructions and 

assayed on Affymetrix transcriptome arrays as previously described (Fraser et al., 2017). All 

mRNA analysis was performed using R (v3.2.1). Background correction, normalization 

algorithms and annotation were implemented in the oligo (v1.32.0) package (Carvalho and 

Irizarry, 2010) from the BioConductor (v3.0) open-source project. The Robust multichip 

average (RMA) algorithm was applied to the raw intensity data. Annotations were 

performed using hugene20sttranscriptcluster.db (v2.13.0) and hta20sttranscriptcluster.db 

(v8.3.1). The sva package (v3.14.0) was used to correct for batch effects between different 

arrays. Annotated data from HuGene 2.0 ST and HTA 2.0 were combined into one data set 

based on Entrez Gene IDs. The mRNA abundance values were averaged amongst duplicated 

Entrez Gene IDs.

SNP microarray data generation and CNA calling—SNP microarrays were 

performed with 200 ng of DNA on Affymetrix OncoScan FFPE Express 3.0 arrays as 

previously described (Fraser et al., 2017). BioDiscovery’s Nexus Express™ for OncoScan 3 

Software was used to call CNAs using the SNP-FASST2 algorithm with default parameters 

except that the minimum number of probes per segment was changed from 3 to 20. When 

necessary, samples were re-centred using the Nexus Express™ software, choosing regions 

that showed diploid log2 ratios and B allele frequency profiles. Gene level CNAs for each 

patient were identified by overlapping copy number segments, with RefGene (2014-07-15) 

annotation, using BEDTools (v2.17.0) (Quinlan and Hall, 2010). To account for technical 

noise, a gene level CNV blacklist was created from matched normal blood samples. Genes 

were added to the blacklist if they were seen in at least 75% of normal samples and filtered 

from downstream analyses. Percent genome altered (PGA) was calculated for each sample 

by dividing the number of base pairs that were involved in all copy number segments by the 

total length of the genome.
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Somatic variant calling—Single nucleotide variants (SNVs) and genomic 

rearrangements (GRs) were called using pipelines that have been described in detail 

elsewhere (Fraser et al., 2017). Briefly, lane-level WGS reads for blood normal and tumor 

samples were aligned against human reference build hg19 with BWA (v0.5.7) (Li and 

Durbin, 2009) before being merged. SNVs were called using SomaticSniper (v1.0.2) 

(Larson et al., 2012) and annotated using ANNOVAR (v2015-06-17) (Wang et al., 2010) 

with the RefGene database. Somatic GRs were called using Delly (v0.5.5) (Rausch et al., 

2012) and filtered for mapping quality (>20) or pair-end evidence (>4 reads) before being 

filtered against their corresponding normal sample and a consolidated set of normal calls. 

Kataegis was called using the SeqKat (v0.0.1) (Yousif et al., 2018) R package. 

Chromothriptic regions were identified using Shatterproof (v0.14) (Govind et al., 2014) with 

default settings.

Methylation microarray data generation—Illumina Infinium HumanMethylation 450k 

BeadChip kits were used to assess global methylation, using 500 ng of input genomic DNA, 

at McGill University and the Genome Quebec Innovation Centre (Montreal, QC). All 

samples used in this study (n = 54) were processed from fresh-frozen prostate cancer tissue 

and can be found on GEO under the accession GSE107298. Methylation pre-processing 

were performed in R statistical environment (v3.4.0). The IDAT files were loaded and 

converted to raw intensity values with the use of wateRmelon package (v1.15.1) (Pidsley et 

al., 2013). Quality control was conducted using the minfi package (v1.22.1) (Aryee et al., 

2014). No outlier samples were detected. Raw methylation intensity levels were then pre-

processed using Dasen (Pidsley et al., 2013). Probe filtering was conducted after the 

normalization, as previously described (Fraser et al., 2017). Annotation to chromosome 

location, probe position, and gene symbol was conducted using the 

IlluminaHumanMethylation450kanno.ilmn12.hg19 package (v0.6.0).

Epigenetic data annotation—H3K27Ac peaks were annotated to the closest genes using 

the annotatePeak function from the ChIPseeker (v1.12.1) (Yu et al., 2015) R package. The 

tssRegion was set as: - 5000 to +5000) as proximal promoters can be up to 5 kbp away from 

transcription start site (Woo and Li, 2012).

Rather than using the full complement of CpG methylation sites, the probes with the greatest 

negative correlation to their corresponding mRNA abundance from the TCGA prostate 

cancer methylation dataset (Broad Institute TCGA Genome Data Analysis Center, 2016) 

were used, irrespective of their proximity to the gene. If there were no correlated probes 

associated with the gene, but the gene had annotated probes, a probe with the greatest 

variance was selected with the following priority: proximity to transcription start site, 5’ 

UTR, 3’ UTR and gene body. If a probe was not annotated to the gene, we retrieved the 

closest probe within 10 kbp. Genes that were not assigned a probe were denoted as missing 

(NA). Gene names from each biomolecule type were intersected to identify genes present in 

all data types.

Consensus clustering of proteomic data—Consensus clustering (max_k = 20; 

Spearman’s ρ as the similarity metric; pItem = 0.8, pFeature = 0.8; seed = 17; reps = 1000; 

ConsensusClusterPlus v1.38.0) (Wilkerson and Hayes, 2010) was performed using a divisive 
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algorithm on the 25% most variable proteins to cluster the patients and the proteins. 

Adjusted Rand Index (ARI) was calculated on patient classification using the protein 

subtypes and subtypes defined by copy number aberrations (Fraser et al., 2017) to determine 

if there is an overlap. Associations between patient subgroups and mutation burden were 

performed using a Mann-Whitney U test. Survival analysis was performed on the protein 

subtypes with the R package Survival (v2.40–3) by fitting a Cox PH model between patients 

in subtypes two, three, four and five against subtype one as the baseline, which was the 

largest group with BCR as the end point. Proportional hazards assumptions were evaluated 

using the cox.zph function (p < 0.1). Androgen receptor signature scores were created by 

identifying the top 100 genes that are positively correlated to AR (Spearman’s ρ), converting 

their abundances to z-score before taking the mean. For the signature from the literature, the 

abundances of the genes used in the signature were retrieved, converted to z-scores, and then 

averaged. ANOVA was used to test for an association between the subtypes and the scores.

Clinical associations and ETS analysis—To identify proteins that may be associated 

with clinical features, univariate association tests (Spearman’s ⍴ for continuous values, 

Mann-Whitney U test for binary values) were performed with each protein group against the 

following clinical covariates: percent genome altered (PGA), ETS gene fusion status, 

clinical T-category, presence of intraductal carcinoma or cribriform architecture, 

biochemical recurrence (BCR), age at treatment, pre-treatment prostate specific antigen 

levels, kataegis score, chromothripsis score and ISUP scores (dichotomized by ISUP 1 and 2 

vs. ISUP 3). P values were adjusted for multiple comparisons using FDR. Mann-Whitney U 

tests were performed on mRNA abundances and ETS gene fusion status to identify mRNAs 

that are associated with the presence of ETS gene fusions and p values were corrected using 

FDR. Spearman’s ⍴ was calculated on the difference in fold-change between mRNA and 

protein abundances in genes that were significantly associated with ETS gene fusion status 

at either the mRNA or protein level.

ETS fusion associated gene intersection—Mann-Whitney U tests were performed to 

identify H3K27Ac peaks, methylation and copy number aberrations associated with ETS 

gene fusions. P values were corrected using FDR. The VennDiagram (v1.6.19) (Chen and 

Boutros, 2011) package was used to identify the genes and number of genes found at all 

possible intersections amongst the genes significantly associated with ETS gene fusions in 

the protein, mRNA, methylation, H3K27 acetylation, and copy number data.

Pathway enrichment analysis—Gene sets of interest were processed using g:Profiler 

(Reimand et al., 2011) (v r1732_e88_eg35; significant only; query ordered by significance 

when applicable; the list of all proteins detected as the background; significance threshold 

set to FDR; output set to generic enrichment map; gene ontology and REACTOME 

databases), which was subsequently visualized in Cytoscape (v3.6.1) (Shannon et al., 2003) 

using the Enrichment Map App (Merico et al., 2010). For the ETS associated genes (at FDR 

< 0.05) g:Profiler was ran on all gene sets separately, but visualized in the same instance to 

better show potential overlaps in pathways.
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Correlation analysis between mRNA and protein abundances—To determine the 

strength of the correlation between mRNA and protein abundances for each gene, 

overlapping genes (n = 6,946) were identified between the two data types using 55 matched 

samples. Correlation between the mRNA and protein abundance values for each of these 

gene was determined using Spearman’s ρ.

Identification of proteins with undetected transcripts and vice versa—High 

abundance mRNA transcripts were identified by filtering out transcripts that appeared in two 

or fewer samples and then selecting transcripts with a median abundance in the top 10%. 

The high abundance transcripts were filtered against the detected proteins to identify RNAs 

without a protein counterpart. Similarly, to identify proteins without an RNA transcript, 

proteins were intersected with transcripts that have a median abundance of zero in the 

cohort. Pathway enrichment analysis was performed on both sets of genes using g:Profiler. 

To quantify number of coding and non-coding transcripts, the transcript sets were annotated 

using information from Gencode v24lift37 (Harrow et al., 2012).

Association analyses of CNAs on mRNA and protein abundances—FDR 

adjusted p values from a two-sided t-test and fold changes were calculated for each gene (n 

= 6,607, microarray) by CNA locus (n = 23,068) testing the difference in mean mRNA 

abundance between samples with a copy number aberration against those without (n = 210 

samples). CNA status was quantified from OncoScan SNP arrays and mRNA abundance 

data was measured from Affymetrix transcriptome arrays. The same analysis was performed 

using protein abundance data (n = 55).

Mutual information analysis—For each pairwise combination of mRNA abundance, 

protein abundance, CNA state, methylation β value and H3K27Ac score, mutual information 

was calculated in bits for each gene using 21 bins, and the entropy function from the 

Entropy R package (v1.2.1) (Hausser and Strimmer, 2008). I(X;Y) = H(X) + H(Y) – 

H(X,Y), where H(X) and H(Y) are the marginal entropies and H(X,Y) is the joint entropy. 

MI was normalized over the mean entropy of the two input vectors. Consensus clustering 

was performed on the z-scored normalized MI using a maxK of 15, Spearman’s correlation 

as the similarity metric and with 1,000 replicates. Hallmark enrichment analysis was 

performed using a hypergeometric test. P values were FDR-adjusted to control for multiple 

comparisons. Agreement of normalized MI between our dataset and TCGA was assessed 

using the area under the receiver operating characteristic curve. For each gene, normalized 

MI was binarized within each dataset based on whether it was above or below a threshold. 

True positive and false positive rates were calculated using whether normalized MI was 

greater than the threshold in our dataset as a True Positive.

Percent variance analysis—Sum of squares were extracted from an ANOVA on a linear 

model of protein abundances to CNA, RNA, and methylation R for the following genes: 

TGM2, NDRG3, KLK3, AKT1, PTEN, NKX3–1, KRAS and ATM. Percent variance 

explained was calculated as the sum of squares for each of the input variables divided by the 

total sum of squares. For KLK3 and PTEN, Spearman ρ was used to determine if protein 

abundances are correlated with their corresponding mRNA abundances and methylation. For 
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PTEN, a Mann-Whitney U test was used to determine if the CNAs are associated with 

protein abundances.

Univariate survival analysis—Survival analysis was performed on the top 25% of 

proteins whose abundance had the highest variance, and their mRNA counterparts, to 

determine if the protein abundance or the mRNA abundance of each gene were univariately 

associated with biochemical recurrence. Hazard ratios were calculated by fitting Cox PH 

models to patient groups dichotomized using the median of the protein intensity or mRNA 

abundance against BCR as the endpoint. Assumptions for the Cox PH models were tested 

using the cox.zph function in the R Survival package (v2.41–3). Genes were considered to 

have divergent association with outcome if they were significantly associated with BCR, but 

log2 hazard ratios had opposite signs. For genes that failed the assumptions for a Cox PH 

model (p < 0.1), a log-rank test was used and p values were adjusted for multiple 

comparisons using FDR. Spearman’s ρ was used to calculate the relationship of hazard 

ratios between mRNA and proteins. For proteins that were detected in 15% to 85% of the 75 

samples (one sample was removed due to lack of clinical information), patients were 

dichotomized based on protein presence and absence before being fitted with a Cox PH 

model to determine if presence or loss of that protein group was associated with biochemical 

recurrence. P values were adjusted for multiple comparisons using FDR. Kaplan-Meier 

curves were generated for specific genes of interest. Validation of prognostic proteins was 

performed through immunohistochemistry on 79 additional prostate cancer samples in tissue 

microarrays. Antibodies for ACAD8 were obtained from Sigma-Aldrich (Prestige 

Antibodies - HPA040689 for ACAD8; Lot #A114184). A pathologist (M.M.) scored each 

core in comparison with the internal positive control using a semi-quantitative scoring 

system based on the intensity of the staining (cytoplasmic for ACAD8): 0 (No reactivity), 1 

(mild intensity), 2 (moderate) and 3 (high intensity, equivalent to positive control cells). 

Staining intensity was recorded per TMA core. A Cox PH model for the validation set was 

fit to patients’ groups, dichotomized by whether they have any cores scored with a ‘3 - high 

intensity staining’.

Biomarker null distribution analysis—To assess the performance of biomolecules at 

predicting patients with BCR at 10 years, a null distribution analysis was performed using 

10 million areas under the receiver-operating characteristic curves (AUC) for each 

biomolecule (40 million AUCs total). To calculate each AUC, 100 genes were randomly 

selected without replacement from the intersection of the genes present in each biomolecule 

data matrix. A random forest classification model with 4-fold cross validation 

(randomForest v4.6–12) (Svetnik et al., 2003) was then built for each gene set in each 

biomolecule. The hyper-parameters mtry and sampsize were tuned through a grid search 

based on lowest out-of-bag errors while nTrees was set to 10,000 to reduce grid search time 

since having too few trees will negatively impact model performance, but having more trees 

only incurs more computational time (Huang and Boutros, 2016). For protein, mRNA and 

CNA, there were 7,042 matched protein-groups to genes. Methylation data was set to one 

probe per gene as described above. For both the RNA-Seq and protein, random gene sets of 

5, 10, 25, 50 and 100 were used for the random forest model to determine if gene set 

numbers will change the conclusions, whereas the CNA and methylation null distributions 
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was generated using a gene set size of 100. To evaluate the predictive power of using two 

biomolecules at the same time, 100 genes were randomly selected and values for both 

biomolecules were used as features in the same random forest model.

QUANTIFICATION AND STATISTICAL ANALYIS

The specific statistical tests used are indicated in the figure legends or appropriate methods 

section and were performed within the R statistical environment (v3.3.1).

Visualization in R was performed through the BoutrosLab.Plotting.General package (v5.9.2) 

(P’ng et al., 2019). Pathway network graphs were generated using Cytoscape (v3.6.1) with 

the Enrichment Map App (Merico et al., 2010). Study outline was produced with Inkscape 

(v0.48) for Ubuntu.

DATA AND SOFTWARE AVAILABILITY

MS data was deposited in UCSD’s MASSive database under the accession MSV000081552 

at ftp://massive.ucsd.edu/MSV000081552. Oncoscan CNA microarray data can be found in 

the European Genome-Phenome Archive (EGA) at https://www.ebi.ac.uk/ega/studies/

EGAS00001000900. Whole genome DNA sequencing and RNA-Seq data can also be found 

on EGA, under accession EGAS00001000900. H3K27Ac CHiP-Seq data are in the Gene 

Expression Omnibus under GSE96652. RNA microarray data is available under the 

accession GSE107299. Methylation data is available under the accession GSE107298.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• A comprehensive proteomic analyses of localized prostate cancers

• Integration of all levels of the central dogma (DNA-> RNA-> protein)

• ETS fusions have divergent effects on transcriptome and proteome

• Combining genomics and proteomics improves biomarker performance
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Significance

Our data demonstrate that the prostate cancer proteome is shaped by the complex 

interplay of genomic, epigenomic, transcriptomic and post-transcriptional dysregulation. 

Integration of data along the central dogma enables both a deeper biological insight and 

the development of multi-omic biomarkers with improved performance.
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Figure 1. Proteomic landscape of curable prostate cancer
(A) Study overview showing the clinical characteristics of the cohort (n = 76) and the 

number of samples with whole genome sequencing, RNA-Sequencing, methylation data and 

CHiP-Seq data. Mass spectrometry yielded 7,054 protein groups, whose abundance was 

corrected for batch effects, and missing values were imputed prior to downstream analyses.

(B) Distribution of protein quantitation measured as median intensity by the number of 

samples they are detected in. Bar plot on top shows the total counts of proteins quantified in 

various number of samples. Missing values were omitted when calculating the median.

(C) Consensus clustering of 76 patients (K=5) using the top 25% most variable genes 

(n=1,800, K=5). Clinical covariates are shown in the heatmap above, indicating for each 

patient; biochemical relapse (BCR), clinical ISUP grade (cISUP), PSA levels, clinical T 

category (cT), and age at treatment (years).
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(D) Subtypes identified from consensus clustering were evaluated to determine their 

association with BCR. A Cox PH model was fitted for subtype C2, C3, C4 and C5 against 

the baseline group of subtype C1. Hazard ratios and p values are shown with confidence 

intervals in parentheses.

Abbreviations: International Society for Urological Pathology (ISUP), prostate specific 

antigen (PSA), hazard ratio (HR)

See also Figure S1, Tables S1–S4, and Data S1.
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Figure 2. Transcriptomic and Proteomic Consequences of ETS fusions
(A) Comparison of the difference in protein and mRNA abundance observed between 

samples with an ETS gene fusion and those without. Analysis includes 55 samples with 

matched RNA-Seq and protein data in 255 genes as 22 genes were removed due to a high 

proportion of missing protein data. Color indicates which protein abundance decile the gene 

is in, where purple indicates the most abundant.

(B) Number of overlapping ETS gene fusion associated genes between protein, mRNA, 

methylation, H3K27Ac, and copy number status. Barplot on the left indicates the total 

number of associated genes in that data type. Barplot on top shows number of genes in the 

singleton or intersection groups as indicated by the dots below.

(C) Pathway enrichment analysis performed using g:Profiler on the five sets of genes 

associated with ETS gene fusions in the different data types. Large clusters of similar 

pathways are outlined in yellow and labeled. Singleton nodes were omitted. No pathway 

enrichment was detected in copy number changes associated with ETS gene fusions.

See also Figure S2.
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Figure 3. Trans proteomic effects of somatic CNAs
(A) Distribution of RNA-protein Spearman’s ρ in each decile of protein abundance. Median 

correlations of each decile are indicated in red along the x-axis. Known genes of interest are 

highlighted and labeled in red. Boxplots depict the upper and lower quartiles, with the 

median shown as a solid line; whiskers indicate 1.5 times the interquartile range (IQR). Data 

points outside the IQR are shown.

(B) The proportion of samples that contain copy number amplifications (red) and deletions 

(blue) in 210 samples with mRNA data.

(C) The heatmap displays a global overview of the difference in mRNA abundance for each 

CNA locus comparing abundance from samples with a CNA to those without. Positive fold 

changes (i.e. higher abundance in samples with an amplification) are shown in red, negative 

fold changes (i.e. lower abundance in samples with a deletion) are shown in blue (FDR < 
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0.05). The x-axis plots 23,068 CNAs and the y-axis plots 6,636 mRNA genes. Genes are 

ordered by chromosome location on both axes.

(D) The fold change in mRNA and protein abundances in 55 matched samples (RNA Seq) 

comparing abundances in samples with a deletion and those without for PTEN, CD68, and 

NKX3–1. Only genes that show significant fold changes at the mRNA (Mann-Whitney U 

test; p < 0.05) and protein level (Mann-Whitney U test; p < 0.05) are plotted.

See also Figures S3–S4, and Table S5.
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Figure 4. Integrated clustering of multi-omics data
(A) Distribution of the normalized mutual information (MI) for each data-type pair. 

Boxplots depict the upper and lower quartiles, with the median shown as a solid line; 

whiskers indicate 1.5 times the interquartile range (IQR). Data points outside the IQR are 

shown.

(B) Consensus clustering of normalized mutual information for each data-type pair. 

Biomolecules are indicated in the covariates along the top. Each row represents a gene (n = 

6,484) comparison for which all data-types exist. Adjacent plots indicate if genes are known 

to be associated with the selected pathways. Normalized MI are plotted as z-scores for 

visualization purposes.

(C) Correlation of normalized mutual information between our cohort and TCGA in genes 

with MI above 0.05. Red dots indicate genes that had normalized MI about 0.05 in both our 

dataset and TCGA.
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(D) Percent variance explained of protein abundance modeled using copy number status, 

methylation, and mRNA abundance for a select set of genes known to be associated with 

prostate cancer.

(E and F) Integrated distribution plots of KLK3 (E) and PTEN (F) showing CN state and z-

scored protein, mRNA, and methylation abundances for each of the 76 samples ordered by 

increasing protein abundance.

Abbreviations: Cellular Response to Stress (CRS), Extracellular Exosomes (ExExo)

See also Figure S4 and Table S6.
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Figure 5. Protein abundance robustly predicts patient survival
(A) Hazard ratios were calculated using a Cox model on patient groups determined using 

median-dichotomized protein and RNA abundances. Shading of dots indicates statistical 

significance with selected genes labeled in red.

(B) Kaplan-Meier (KM) plot for PUS1 protein (solid lines) and mRNA (dashed lines). A 

Cox model was fit with patients stratified into high and low abundance of PUS1 protein (75 

patients) and mRNA (209 patients).

(C) KM plot showing 10-year biochemical recurrence-free survival of patient groups as 

dichotomized by high and low protein abundance of ACAD8.

(D) KM plot for ACAD8 in 73 tissue microarrays. Three slides were evaluated per sample, 

and patients were grouped into ‘low’ protein abundance if at least two slides reported 

heterogeneous or faint staining. Significance of association was calculated using a log-rank 

test between high and low abundance patient groups.
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(E) Null distribution of predictive accuracy for different biomolecules obtained from 10 

million replicates of 100 randomly selected genes. For each replicate, a value for the area 

under the receiver-operator curve (AUC) was calculated using classification results from 

four-fold cross-validation in random forest.

See also Figure S5.
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Table 1.

Clinical characteristics of patient cohort

BCR

Yes No

(36) (39)

Clinical ISUP Group

1 1 3

2 28 30

3 7 6

Age at treatment (years)

40 – 50 2 2

50 – 65 24 25

65 – 70 8 7

≥ 70 2 5

Pre-Treatment PSA (ng/mL)

< 10 27 27

≥ 10 9 12

Clinical T Category

T1 12 21

T2 24 18

ETS-Fusion

Present 21 17

Absent 15 22

Data Type

WGS 36 38

CNA 36 37

H3K27AC 16 19

Methylation 34 38

RNA 25 30

Proteomics 36 39
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