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Abstract 
Our central question is: how accurate are laypeople’s 
statistical intuitions about probability distributions within the 
domain of health? Specifically, can participants produce 
entire probability distributions for the duration of illnesses? 
While a large body of decision making research has suggested 
that people use a flawed process to arrive at decisions, we 
posit that participants may be using an optimal process, but 
with flawed information. To this end, we assess accuracy in 
terms of both the mean and form of distributions for both 
acute illnesses for which people might have experience, and 
chronic conditions for which people are less likely to have 
experience. We find that participants can accurately estimate 
the mean and form of distributions for acute illnesses.  
Keywords: Decision-making; Probability; Health; Cognition 

Introduction 
How accurate are laypeople’s statistical intuitions about 
probability distributions within the domain of health? 
Decision processes are assumed to originate with a person’s 
experience with the world, meaning that when someone 
makes a suboptimal decision, one of two things is at play: 
the person is using a flawed process to arrive at the answer, 
or the person is working with faulty information. In this 
paper, we focus on the latter: that is, how accurate are 
people’s prior expectations? 
Biased vs. Optimal use of Expectations 
Decision making research often focuses on people’s 
apparent inability to make rational choices. People have 
discounted future outcomes (Koopsman, 1960) and 
anchored their judgments to irrelevant starting points 
(Tversky & Kahneman, 1974). While it has been assumed 
that this is due to a flawed decision process, it is also 
conceivable that people are working with flawed 
information.  
 While much of the Tversky and Kahneman work suggests 
that decision processes are flawed (e.g. 1974, 1992), there is 
also evidence that people use their expectations optimally 
(Griffiths & Tenenbaum, 2006; Robbins & Hemmer, 2017). 
For example, people’s predictions for life spans and movie 
run times are quite accurate in the aggregate. This suggests 
not only that judgments are optimal, but that people’s 
expectations are consistent with real-world statistics. 
However, it is not clear whether people hold accurate 
expectations for the full probability distributions for events.  
Normative Model 
An alternative explanation for biased decision making is 
that people are using a normative model, but with flawed 
information. Assuming that the decision process is rational 
(Bayesian), decisions are based on a combination of 
observed noisy data and an accurate probabilistic model of 
the environment (i.e. expectations). However, if those 

expectations are incorrect, it can lead to flawed decisions. 
This framework can account for flawed decisions under an 
optimal framework by assuming differences in prior 
expectations, or mapping expectations from a known 
domain to an unknown domain. Each time a person 
experiences a new event, they should update their prior 
probability for that event by integrating the new 
information. This should result in events that are 
experienced more often having very accurate prior 
expectations. For those that are less commonly experienced, 
people might adjust their prior expectations using events for 
which they have more knowledge, when making inferences.  
Probability Distributions Underlying Health Decisions 
In this paper, we specifically investigate people’s ability to 
produce the entire probability distribution for illness 
durations. There are many situations where understanding 
only the descriptive statistics (e.g. the mean) of a probability 
distribution is inadequate, and knowledge of the full 
probability distribution is required. Imagine you have a 
cough and high fever, and think you have the flu. The mean 
duration of the flu is 3 days, and the range is between 1 and 
7 days. Additionally, there is a diminishing likelihood of the 
flu after 3 days. If you are applying the wrong probability 
distribution, you might misestimate the rate of improvement 
you should be expecting, i.e. the decrease after the mean. 
Conversely, if you have an accurate understanding of this 
distribution and find yourself still sick after 7-10 days, you 
might begin to believe you have a different illness. Not only 
are you outside the range, but also, you have reached a point 
in the distribution where the likelihood of having the flu is 
very small. This estimation can be critical, as illness 
durations outside the true distribution of durations might 
signal an urgent need to seek care. 

Furthermore, this investigation is important in the domain 
of health for three reasons: (1) health decisions have been 
assumed to be irrational, for example, people fail to adhere 
to medication regimens with up to 50% non-adherence 
(Baroletti & Dell’Orfano, 2010), neglect preventative care 
(Peters, McCaul, Stefanek, & Nelson, 2006), and fail to seek 
care when necessary (Finnegan et al., 2000). However, it is 
unclear whether this is due to a flawed process or a flawed 
understanding of illness statistics. (2) Little work has been 
done to assess people’s expectations for illness durations. 
(3) Illnesses provide a simple way to assess the normative 
model, as different illnesses have different degrees of 
experience (e.g. between acute and chronic illnesses). For 
instance, while you have probably personally experienced 
the cold many times, you may not have experienced heart 
disease, and therefore you would need to use a different 
approach when making inferences about heart disease. 
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People may have different representations of the underlying 
probability distributions in cases where they do or do not 
have personal experience. We use this to motivate our 
experimental task, in which we ask participants to construct 
illness distributions for both acute and chronic illnesses, to 
evaluate how their prior expectations might differ between 
the two. While participants are being asked a different 
question about chronic illnesses (as they are evaluating time 
until death) previous work in this area has illustrated that 
people do, in fact, understand that these chronic illnesses 
terminate in death (Robbins & Hemmer, 2017).  

In addition to an influence of experience, there might also 
be individual differences in the representation of probability 
distributions. To measure both individual differences, and 
differences between acute and chronic illnesses, we adapt 
this Distribution Builder of Goldstein, Johnson, & Sharpe 
(2003), to measure people’s prior expectations for illness 
duration probability distributions. This paradigm has 
previously been used to measure people’s ability to 
reproduce data they have recently experienced (e.g. numbers 
on balls in a bag), finding that people can accurately 
represent the mean and form of probability distributions.  

In this experiment, we sought to answer the following 
questions: (1) can people accurately represent the form of 
illness distributions? (2) can people accurately represent the 
mean of illness distributions? (3) are there differences in 
accuracy between acute and chronic illnesses? (4) are there 
individual differences in the strategies people use to 
generate these distributions?  

Methods 
Participants  
Twenty Mechanical-Turk workers participated in exchange 
for $1 (based on the number of participants used by 
Goldstein et al. (2014) in the same task). The task lasted 
8.75 minutes on average. 
Materials  
Illnesses We selected six illnesses, including both acute 
(appendicitis, seasonal flu, and the common cold) and 
chronic (COPD, type-II diabetes, and chronic heart disease) 
illnesses. An acute illness is defined as one which can be 
cured with treatment, while a chronic illness is defined as 
one that can be managed but not cured. The illnesses were 
also intended to span a range of duration and familiarity. 
Familiarity was determined based on prevalence statistics 
for people diagnosed with that illness each year (see Table 
1). Lastly, the ground truth for illness durations, against 
which participant accuracy was measured, was determined 
from clinical data (see Table 1 and Figures 3 and 4).  
Distribution Builder We use a variation of the Distribution 
Builder of Goldstein et al. (2003). See Figure 1. Participants 
were asked to indicate how many people out of fifty would 
have an illness for a given period of time. They were given 
fifty ‘virtual people’ to build their distribution. The number 
of bins in each column corresponded to the number of 
‘virtual people’ (represented as red circles) the participants 
needed to place (i.e. the question was to indicate how many 

Table 1: Sources for Clinical Data (in order of 
prevalence) 
Illness  
(Prevalence/10,000) 

Source of Clinical Data 

Acute (in order of prevalence) 
Appendicitis (9) Atema et al. (2015) 
Seasonal Flu (1250) Kohno et al. (2010) 
Common Cold (2360) Gwaltney (1967) 

Chronic (in order of prevalence) 
COPD (4.5) Oswald-Mammosser et 

al. (1995)  
Type II Diabetes (860) https://taliarobbinsrutgers

.wordpress.com/empirical
-data 

Chronic Heart Disease 
(1130) 

Proudfit et al. (1983) 

 
Figure 1: Sample distribution builder as seen by the 
participants. Participants could add or remove ‘virtual 
people’ from each bin (which represented an amount of 
time with an illness) using the plus and minus signs 
below that bin. Here, the circles are white because they 
have not been filled with ‘virtual people’, if the plus 
button is selected the empty bin is filled with a red circle. 
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people out of 50 would have an illness for a particular 
period of time). These 50 bins allowed participants to assign 
all ‘virtual people’ to one column if they chose to.  

Below each column were plus and minus buttons that 
could be used to add or remove ‘virtual people’ from each 
bin. Below the plus and minus signs was the unit of time, in 
either hours, days, or years. The columns of the distribution 
builder correspond to the periods of time that participants 
could use to respond. For each illness, we used the most 
common reporting unit of time and the range of available 
durations from the clinical data (see results for information 
on the clinical distributions). We chose the amount of time 
and number of columns to be equivalent within the chronic 
and acute illness categories. Each column corresponded to 
12 hrs. for appendicitis (12 col.), 1 day for seasonal flu and 
common cold (14 col.), 1 year for COPD (18 col.), and 2 
years for chronic heart disease and type-II diabetes (18 col.).  
Procedure 
Participants were first given instructions on how to read and 
understand the distribution builder (e.g., what the number of 
circles above the durations mean), as well as how to read a 
sample graph with a distribution of movie grosses. They 
were then randomly shown one of two check questions, to 
evaluate whether they understood the probability 
distributions. For example, they were shown a distribution 
of cake baking times and asked: “The graph below shows 
how many of 50 cakes will bake for each amount of time (in 
minutes). According to this graph, how many cakes out of 
50 will bake for 40 minutes?” If they answered the first 
question incorrectly, they were corrected and given a second 
check question. If they first received the cake question, they 
received a question about movie run times. After these 
questions, participants saw task-specific instructions, 
explaining how they would use the distribution builder to 
create illness duration distributions (e.g. how to add and 
subtract ‘virtual people’ by using the plus and minus 
buttons). They were then given two questions to evaluate 
whether they read the instructions (i.e., “do you need to use 
all 50 people when answering a question?”, and “do the 
units of time change between questions?”). 

Lastly, participants were directed to the task. For each of 
six illnesses, presented in random order, participants were 
asked “how many people out of 50 have illness x for each 
period of time?” Participants could not continue to the next 
trial until all 50 ‘virtual people’ had been assigned to bins.  

Results 
Ground Truth 
For each of the six illnesses we assumed a functional form 
of Erlang. Illness durations have been found to be well 
modeled by a type of distribution known as a survival 
function, which includes Gamma, Exponential, and Weibull. 
The Erlang distribution is a special case of the Gamma 
distribution, where 𝛼	must be an integer, which is often used 
to model illness duration and illness stages in transmission 
models of infectious disease, and to infer parameters from 
clinical data (Krylova & Earn, 2013). See Figure 3 for the 
clinical duration distributions for the six illnesses in this 
experiment, with corresponding Erlang distribution fits. The 
clinical data provides a ground truth for the distributions of 
durations (see Table 1 for clinical data sources). 
Accuracy and Range of Responses 
We first assess participant accuracy as a whole. We 
calculated the fractiles for the distributions of all 6 illnesses. 
A fractile is defined as the value of a distribution for which 
some fraction of the sample lies below (e.g. the 90th fractile 
is the value 90% of the sample lies below). We performed a 
quantitative analysis of the accuracy for each of the six 
illnesses, for the seven key fractiles: 1st, 11th, 26th, 50th, 75th, 
90th, and 100th in the same way as Goldstein et al. (2014). 
Figure 2 shows the subjective estimates as a function of 
normative values of the fractile, where correct answers fall 
on the solid black line. The figure shows that participants 
are more accurate for the acute illnesses, i.e., their responses 
lie closer to the black line than for the chronic illnesses, 
which show a systematic pattern of overestimation. The 
figure further shows that participants, on average, did not 
use all the available units of time for any of the illnesses, as 
evidenced by the fact that the 100th percentile is not the 
maximum available unit of time. 

 
Figure 2: Accuracy for the 1st, 11th, 26th, 50th, 75th, 90th, and 100th fractiles. Light grey squares are individual responses, sized 
proportionately to number of responses. Black squares and error bars represent the mean of individual responses and standard 
errors for a given normative value. Dashed lines are linear trends of individual responses with standard error in dark grey. 
Axes are scaled for the y axis to include all responses in light grey squares. Normative 100th fractile can be read off the x axis.  
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Figure 3: The first and third rows show histograms of clinical data for six illnesses with best fitting Erlang 
distributions (excluding diabetes, which could not be fit by the Erlang distribution). Grey bars show the frequency of 
each illness duration, black lines show the Erlang fit to clinical data. M gives the distribution mean. The second and 
fourth rows (red bars) show histograms of participant data displayed in the same manner as the clinical data. 
 

 
Figure 4: Samples of strategies used by participants in our task. Each pair of panels shows two samples, one from an 
acute (seasonal flu) and one from a chronic illness (type-II diabetes). See figure 2 for clinical data (ground truth). From 
top left to bottom right: 1. correctly estimate the distribution for all illnesses (2 pps.) 2. correctly estimate the 
distribution for acute but not chronic (6 pps.) 3. consistently use the normal distribution (3 pps.) 4. consistently use the 
uniform distribution (3 pps.) 5. consistently overestimate (5 pps.) 6. show no consistent pattern (1 pps.). 
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Understanding of distributional form 
We then evaluated participants’ ability to represent the form 
of the illness distributions. To compare participant 
responses to the true clinical data, we simply aggregated 
participant responses to reveal the aggregate probability 
distributions for each of the six illnesses (see Figure 3). We 
first performed a qualitative evaluation of whether 
participant responses reflected the distributional form, 
specifically the Erlang. For five of the six illnesses 
(excluding type-II diabetes) participant responses appear to 
be well fit by an Erlang distribution (see Figure 3). 
 To evaluate whether the Erlang distribution provided a 
good fit to participant data, a chi square goodness of fit test 
was calculated comparing the observed data to the Erlang 
distributional fits. For the five illnesses for which we could 
calculate an Erlang fit (excluding type-II diabetes) there was 
no significant deviation from the Erlang distribution fits, 
meaning that the Erlang provided a good fit to the data. To 
evaluate whether another distribution might also provide a 
good fit, we checked whether people were using the normal 
distribution, as it is a common distribution in the 
environment, and one for which there is a standardized test. 
We use the Kolmogorov-Smirnov test of normality, and all 
distributions were found to significantly deviate from 
normality: appendicitis: D(359)=.86, p<.001, seasonal flu: 
D(359)=.85, p<.001, common cold: D(359)= .72, p<.001, 
COPD: D(359)=.76, p<.001, chronic heart disease: 
D(359)=.89, p<.001, type-II diabetes: D(359)=.93, p<.001.  

Understanding of the mean 
Next, we sought to evaluate participant accuracy for the 
mean of illness duration distributions. A qualitative 
comparison illustrates that the means calculated from 
participant data closely aligned with the clinical means for 
all the acute illnesses, while overestimating for the chronic 
illnesses. See Figure 3 for means.  

To perform a quantitative evaluation of whether mean 
responses were accurate relative to the clinical mean, we 
used a two-one-sided t-test approach (TOST; e.g. Limentani 
et al., 2005). This approach allows us to test for practical 
equivalence (e.g. Lakens et al., 1993). A one-sample t-test 
might find a significant difference between a population 
mean of seven days and a participant response mean of eight 
days. This places too rigid a standard for our purposes, 
leading to an inaccurate conclusion that participants do not 
understand the mean illness duration. Another advantage of 
the TOST approach is its utility for large data sets like ours 
(20 participants x 50 estimates) so that the null hypothesis 
can be supported in situations where a one sample t-test 
might indicate a significant difference (Lakens, 2017). 

 For this reason, we set a criterion for accuracy to be two 
bins from the true illness duration distributions (see 
procedure and Figure 3 for bin sizes). We then conducted a 
t-test on either end of this threshold to determine if 
participant responses were significantly greater than the 
lower threshold, and less than the upper threshold.  

Given that we showed our data is not normally 
distributed, to perform a t-test (which assumes normality), 

we log transform our data. We found that for appendicitis, 
seasonal flu, the common cold, and type-II diabetes, 
responses were within threshold of the true mean, i.e. 
practically equivalent to the true mean (upper threshold: 
appendicitis: t(999)=25.5, p<.001; seasonal flu: t(999)=46.5, 
p<.001; Common cold: t(999)=19.9, p<.001; type II 
diabetes: t(999)=7.3, p<.01; lower threshold: Appendicitis: 
t(999)= -23.1, p<.001; seasonal flu: t(999)= -10.1, p<.01; 
common cold: t(999)= -24.5, p<.001; Type II diabetes: 
t(999)= -10.2, p<.01). For the other two illnesses, responses 
were found to be greater than the lower end of the threshold, 
but not less than the higher end of the threshold, suggesting 
a pattern of overestimation, (COPD: t(999)=41.5. p<.001, 
chronic heart disease: t(999)=63.5, p<.001).   

Individual differences in strategy 
To examine how participants approached this task on an 
individual level, we examined each participant’s 
distributions, and divided them into 6 strategies: participants 
that 1. correctly estimate the distribution for all illnesses (2 
participants (pps.)) 2. correctly estimate the distribution for 
acute but not chronic illnesses (6 pps.) 3. consistently use 
the normal distribution (3 pps.) 4. consistently use the 
uniform distribution (3 pps.) 5. consistently overestimate (5 
pps.) 6. show no consistent pattern (1 pp.). Figure 4 
provides examples of these strategies. It is important to note 
that for those who used a strategy of overestimation 2 out of 
5 still used an approximation of the Erlang distribution.  

Discussion 
The primary question we sought to answer was: how 
accurate are people’s statistical intuitions for probability 
distributions in the domain of health? We found that, on 
average, people have accurate mental representations of 
probability distributions for illness duration, and can 
produce the full probability distribution.  

Recall that this investigation had four central questions, 
the first of which was: can people accurately reproduce the 
form of illness distributions? We found that for five out of 
the six illnesses participant data in the aggregate accurately 
reflected the correct form of the distribution (see Figure 3).  
 Our second question was: can people accurately 
reproduce the mean of illness distributions? We found that 
for acute illnesses, participants accurately reproduced the 
mean, while overestimating for 2 of the 3 chronic illnesses. 
Importantly, we limited the range of responses for each 
illness, meaning participants could not overestimate as 
significantly as they might have, had a wider range of values 
been available. However, as illustrated by Figure 3, they 
appear to understand that these illnesses have a limited 
range, as their mean subjective estimate at the 100th fractile 
was less than the maximum available value for all illnesses.  

Our third question was, are there differences in accuracy 
between acute and chronic illnesses? It is clear that 
differences exist, such that participants could reproduce the 
mean and form for all three acute illnesses but could only 
reproduce the mean of one and form of two chronic 
illnesses. High accuracy for the distributional form of 
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chronic illnesses illustrates that participants used their 
understanding of how illness durations are generally 
distributed, and apply this to their understanding of illnesses 
they had less experience with.  

Our fourth question was, are there individual differences 
in the strategies people use to generate these distributions? 
While participants used the appropriate Erlang distribution 
in the aggregate, we identified six strategies that participants 
used on an individual level. Importantly, 8 out of 20 
participants used the Erlang distribution as their main 
strategy, which was the most popular. Some of the 
participants who used a strategy of overestimation also 
produced Erlang distributions, meaning a total of 10 
participants could produce the correct distributional form.  

Taken together, these results help to answer a central 
question of this investigation: when a person makes poor 
decisions, is the process flawed, or are the prior expectations 
flawed? Our results indicate that people’s prior expectations 
are, on average, accurate for acute illnesses, but may be 
flawed for chronic illnesses. This result helps to inform 
research showing that medication adherence for chronic 
illnesses is worse than for acute illnesses (Baroletti & 
Dell’Orfano, 2010). If people are using the right process to 
make decisions about their health, poor decisions for 
chronic illnesses may be caused by flawed information. 

Future work should focus on how those expectations 
might be corrected. For instance, doctor’s expectations for 
the knowledge of their patients are often misaligned (Street 
& Haidet, 2011). Doctors could use this method to 
understand and improve their patient’s expectations. This 
direction is further supported by work in which eliciting full 
probability distributions allowed financial planners to gain 
improved insight into the monetary expectations of people 
when planning for retirement (Goldstein et al., 2008).  

The work presented here illuminates how people 
internally represent real-world statistics, illustrating that 
people can produce entire probability distributions. Eliciting 
these distributions can help us gain important insight into 
the information people are using when making decisions.  
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