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Abstract

Pangenomics is emerging as a powerful computational paradigm in bioinformatics. This field uses
population-level genome reference structures, typically consisting of a sequence graph, to mitigate refer-
ence bias and facilitate analyses that were challenging with previous reference-based methods. In this
work, we extend these methods into transcriptomics to analyze sequencing data using the pantranscrip-
tome: a population-level transcriptomic reference. Our toolchain, which consists of additions to the vg
toolkit and a standalone tool rpvg, can construct spliced pangenome graphs, map RNA-seq data to these
graphs, and perform haplotype-aware expression quantification of transcripts in a pantranscriptome. We
show that this workflow improves accuracy over state-of-the-art RNA-seq mapping methods, and that it
can efficiently quantify haplotype-specific transcript expression without needing to characterize a sam-
ple’s haplotypes beforehand.

Introduction

Transcriptome profiling by RNA-seq has matured into a standard and essential tool for investigating
cellular state. Bioinformatics workflows for processing RNA-seq data generally begin by comparing
reads to a reference genome or reference transcriptome [1–4]. This is an expedient method that makes
it practical to analyze the large volume of data produced by high-throughput sequencing.

Reference-based methods also have costs. When a sample’s genome differs from the reference, bioin-
formatics tools must account for the resulting mismatches between the sequencing data and the reference.
This results in reduced ability to correctly identify reads with their transcript-of-origin, with larger ge-
nomic variation leading to a greater reduction in accuracy. This problem is known as reference bias [5].

Computational pangenomics has emerged as a powerful methodology for mitigating reference bias.
Pangenomics approaches lean heavily on abundant, publicly-available data about common genomic vari-
ation for certain species (notably including humans). These methods incorporate population variation
into the reference itself, usually in the form of a sequence graph [6]. Mapping tools for pangenomic
references have demonstrated reduced reference bias when mapping DNA reads [7, 8]. This facilitates
downstream tasks that are frustrated by mapping biases, such as structural variant calling [9, 10].

The sequence graph formalism used in pangenomics has an additional attractive feature for RNA-seq
data: it can represent splice junctions with little modification. Without this benefit, RNA-seq mappers
for conventional references must make use of sometimes elaborate algorithmic heuristics to align over
known splice junctions [2]. Alternatively, they can map to only known isoforms, but this technique
introduces mapping ambiguity due to the re-use of exons across isoforms [11].

The current methodological landscape in pangenomics is ripe to be extended to pantranscriptomics:
using populations of reference transcriptomes to inform transcriptomic analyses. There is some precedent
in previous transcriptomic methods that have used sequence graphs. AERON [12] uses splicing graphs
and GraphAligner [13] to identify gene fusions. ASGAL [14] uses splicing graphs to identify novel
splicing events. Finally, the pangenomic aligner HISAT2 [15] is built on the RNA-seq aligner HISAT [16]
and retains many of its features for RNA-seq data.
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One transcriptomic analysis that is particularly prone to reference bias is allele-specific expression
(ASE). ASE seeks to identify differences in gene expression between the two copies of a gene in a
diploid organism. These differences are indicative of various biological processes, including cis-acting
transcriptional regulation, nonsense-mediated decay, and genomic imprinting [17, 18]. The differences
are identified by measuring the ratio between RNA-seq reads containing each allele of a heterozygous
variant. However, the reads containing the non-reference allele are systematically less mappable because
of reference bias, which can confound signals of ASE [5]. Several approaches have been developed to
deal with reference bias for ASE detection. WASP filters reads that show allele-biased mapping prior to
ASE estimation [19]. Others can mitigate bias at the read mapping stage, but require variant calls, often
with phasing, for the individual being analyzed [20, 21]. The variant information is either incorporated
into the mapping algorithm to reduce reference bias or used to create a sample-specific diploid reference
to map against.

Pantranscriptomic approaches using existing haplotype panels for inferring haplotype-specific expres-
sions in smaller regions have also been developed specifically for the HLA region. AltHapAlignR and
HLApers both align reads to a set of HLA haplotypes [22, 23]. The alignments are then used to infer
haplotype-specific gene or transcript expression.

In this work, we present a bioinformatics toolchain for genome-wide pantranscriptomic analysis, which
consists of additions to the vg toolkit and a standalone tool, rpvg. First, vg rna can combine genomic
variation data and transcript annotations to construct a spliced pangenome graph. Next, vg mpmap can
align RNA-seq reads to these graphs with high accuracy. Finally, rpvg can use vg mpmap’s alignments
to quantify haplotype-specific transcript expression. The population variation that is embedded in the
pantranscriptome reference makes it possible to do so without first characterizing the sample genome
and without restricting focus to single-nucleotide variants (SNVs).

Results

Haplotype-aware transcriptome analysis pipeline

In short, our pipeline works as follows. First, we construct a spliced pangenome graph and a pantran-
scriptome using vg rna, a tool developed as part of the vg toolkit [7] (Figure 1a). The pantranscriptome
consists of a set of haplotype-specific transcripts (HSTs) and is constructed by projecting (lifting over)
the transcripts in a transcript annotation onto a set of known haplotypes. vg rna uses the Graph
Burrows-Wheeler Transform (GBWT) to efficiently store the HST paths, allowing the pipeline to scale
to a pantranscriptome with millions of transcript paths [24]. Next, RNA-seq reads are mapped to the
spliced pangenome graph using vg mpmap, a new splice-aware graph mapper that can align across both
annotated and unannotated splice junctions (Figure 1b). vg mpmap produces multipath alignments that
capture the local uncertainty of an alignment to different paths in the graph (Extended Data Figure 1).
Lastly, the expression of the HSTs are inferred from the multipath alignments using rpvg (Figure 1c).
rpvg uses a nested inference scheme that first infers the most probable underlying haplotype pairs and
then estimates the HST expression using expectation maximization.

RNA-seq mapping benchmark

We compared vg mpmap against three other mappers: STAR [2], HISAT2 [15] and vg map [7]. STAR
and HISAT2 can both use splicing information to guide mapping. However, of the two, only HISAT2
is able to also utilize genomic variants. vg map is not a splice-aware mapper, but it is still able to map
to spliced pangenome graphs, which contain both splicing and genomic variation edges.

We used two different references for the comparison: the standard reference genome with added
splice junctions (spliced reference) and a spliced pangenome graph containing both splice junctions and
variants (spliced pangenome graph). For STAR, only the spliced reference was used. In addition, to
assess alignment across unannotated splice junctions, we constructed references with a random 20% of
transcripts removed before construction (based on recent estimates of the fraction of novel transcripts in
a sample [25]). For all of the tools besides STAR, this reference included variation (80% spliced graph),
whereas STAR’s reference did not (80% spliced reference).
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Simulated sequencing data

Paired-end reads were simulated from HSTs derived from the GENCODE transcript annotation set [26]
and the NA12878 haplotypes from the 1000 Genomes Project (1000GP) [27] using vg sim. The CEU
population was excluded from the spliced pangenome graph, as NA12878 is from that population, and
we wanted to estimate performance for an individual who may not be closely-related to the 1000GP
populations.

Using the set of simulated reads we first compared the overall mapping performance of each method.
Figure 2a shows the mapping error (1− precision) and recall for different mapping quality thresholds.

Reads are considered correctly mapped if one of their multi-alignments covers 90% of the true reference
sequence alignment. As can be seen in Figure 2a, vg mpmap achieves both a low error and high recall,
while the other methods either had a high error or low recall. The same pattern is observed among
primary alignments, ignoring multi-alignments (Extended Data Figure 2). The results also show that
the spliced pangenome graph generally improves mapping performance. In addition, vg map and vg
mpmap show substantially better calibration in their estimated mapping qualities, especially among the
most confidently mapped reads (Supplementary Figure 1).

On the 80% spliced references, all of the tools’ performance decreases relative to the corresponding
reference constructed with the full transcript set. As expected, vg map’s performance decreases dra-
matically, since it can only align over splice junctions represented in the graph. vg mpmap’s reduction
in performance is larger than STAR and HISAT2’s. This reduction is concentrated on reads containing
unannotated splice junctions (Supplementary Figure 2), but vg mpmap’s performance is still competitive
with both of the other tools in the aggregate read set.

Using a fixed mapping quality threshold, we evaluated how the methods perform for different edit
distances between the simulated reads and the reference. Extended Data Figure 3 shows this analysis
for unique (mapping quality of at least 30) and multi alignments. vg mpmap achieves a high recall even
for reads with an edit distance above 3. HISAT2’s recall, and to a lesser extent STAR’s, markedly
decreases for the same distance.

Next, we evaluated whether using a variant-aware approach reduces reference bias. Figure 2b shows
the mean fraction of reads mapped to the alternative allele for different allele lengths. When using the
spliced reference genome, all methods exhibit a bias towards the reference allele, with vg map and mpmap
showing less bias than the other methods. Using the spliced pangenome graph results in substantially
reduced bias for all methods. We also analyzed the mapping error and recall on reads stratified by the
number of variants they contain (Extended Data Figure 4). This analysis corroborates the allele bias
results; vg mpmap and vg map retain high recall in the presence of variants, whereas HISAT2 and
STAR’s performance decreases substantially, especially in the presence of indels.

Previous research has pointed out that allelic bias can also result from differential uniqueness be-
tween two alleles [19]. The WASP tool combats this bias by filtering out potentially biased reads. We
compared allelic bias between the four mapping tools and a pipeline consisting of WASP and STAR.
Using simulated data with no allelic bias, we identified heterozygous variant sites with coverage at least
20 and measured 1) the number of such sites and 2) the proportion of sites with a statistically significant
allele skew (two-sided binomial test, α = 0.01) (Extended Data Figure 5). Both HISAT2 and STAR
show an increase in falsely significant tests above the nominal false positive rate of 0.01, especially for
insertions and deletions. The WASP (STAR) pipeline, vg map, and vg mpmap all show approximately
the expected rate of false positives for all variant types. In addition, compared to the WASP (STAR)
pipeline, vg mpmap retains 5,670 more variant sites with coverage at least 20.

The mapping results were corroborated by alternative evaluation methodologies. First, we used an
alternate correctness criterion based on aligning within 100 bases of the correct position on the paths in
the graph (Supplementary Figure 3), which gave qualitatively similar results. Second, we used RSEM as
an alternative read simulator (Supplementary Figure 4). All mapping tools showed similar performance
with the alternative simulator except HISAT2, which had relatively higher recall.

The set of simulated reads used for the mapping evaluation presented in Figure 2a,b was not used
to optimize the algorithmic design or parameters of vg map and vg mpmap. Thus, these reads can be
considered a “test set”. Supplementary Figure 5a-c shows the results on one of the simulated “training
sets” that were used to optimize the method. Simulated data from RSEM was also used during the
development of vg mpmap.
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Real sequencing data

We used RNA-seq reads from the ENCODE project (ENCSR000AED) to benchmark the methods on
real data [28,29]. We first looked at the fraction of aligned reads for each method (Figure 2c). As can be
seen in the figure, all methods have comparable overall mapping rates. When only looking at alignments
with a mapping quality value of at least 30, both STAR and HISAT2 show noticeably higher rates
compared to vg map and vg mpmap. However, it seems that the cost of these higher mapping rates is
lower precision (Figure 2a) and poorly estimated mapping qualities (Supplementary Figure 1).

Ground-truth alignments are not available for real data, so instead we use a proxy based on Pacific
Biosciences (PacBio) Iso-Seq read alignments generated by the ENCODE project (ENCSR706ANY),
which are from the same cell line. We expect the transcript expression to be similar despite some technical
biases due to the different sequencing protocols, and long reads can be mapped more confidently than
short reads. Thus, higher correlation in coverage between the mappings should be indicative of more
accurate short read mappings. Figure 2d shows the estimated Pearson correlation in the coverage of
each exon as a function of mapping quality threshold. Exons were defined by the Iso-seq alignments. As
can be seen, both vg map and vg mpmap achieves higher correlation than STAR and HISAT2, with
the spliced pangenome graph resulting in even higher correlation for both (see Supplementary Figure 6
for the full scatter plot).

Finally, we compared the methods’ computational requirements. Figure 2e shows the number of
read pairs mapped per second per thread. Conversion from SAM to BAM was included in the HISAT2
time estimate to be more comparable to the output type of the other methods. vg mpmap is 3.1-4.6
times slower than HISAT2, depending on the graph, but 10.3 times faster than vg map on the spliced
pangenome graph. vg mpmap uses slightly more memory than STAR on the spliced reference and
somewhat more memory than HISAT2 on the spliced pangenome graph (Figure 2f).

Results on additional datasets used during the development of vg mpmap can be seen in Supple-
mentary Figure 5d,e and 7. The same data were also used to optimize the parameters of vg map for
RNA-seq mapping.

Haplotype-specific transcript quantification

We compared rpvg to three other transcript quantification methods: Kallisto [3], Salmon [4], and
RSEM [1]. We stress that none of these methods were developed to work on pantranscriptomes with
millions of HSTs. However, they serve as a point of reference for what accuracy is achievable without
new methods development. rpvg’s inference model includes both a diplotype and HST expression,
conditioned on the diplotype. However, to facilitate the comparison to other tools, we report here the
marginal expression over all HSTs, which is directly comparable to the output of the other tools that
lack a diplotype model.

Three different pantranscriptomes were generated for the evaluation using different sets of 1000GP
haplotypes (Supplementary Table 3): 1) all European haplotypes excluding the CEU population (“Eu-
rope (excl. CEU)”, 2,515,408 HSTs) 2) all haplotypes excluding the CEU population (“Whole (excl.
CEU)”, 11,626,948 HSTs) and 3) all haplotypes (“Whole”, 11,835,580 HSTs). The CEU population
was excluded for the same reason as in the mapping benchmark. In addition, we created a personal
sample-specific transcriptome consisting of NA12878 HSTs (“Personal (NA12878)”, 235,400 HSTs). This
transcriptome corresponds to the ideal case where a sample’s haplotypes are known beforehand. HSTs
with a haplotype probability below 0.8 were filtered from the rpvg output (Supplementary Figure 8).

Simulated sequencing data

We first looked at the method’s ability to accurately predict whether an HST was expressed or not.
Figure 3a shows the recall and precision using simulated data. The results were stratified by different
expression thresholds up to a value of 10 TPM (transcripts per million). Note that we were not able
to run RSEM on the two largest pantranscriptomes used in the analysis. rpvg exhibits a much higher
precision than the other tools for all pantranscriptomes. This illustrates the importance of having a
diplotyping model when inferring HST expression using a pantranscriptome reference, which is one
of the major differences between rpvg and the other methods. Importantly, only a minor difference
is observed between the pantranscriptomes without the CEU population (excl. CEU) and the whole
pantranscriptome (“Whole”), which contains NA12878. This could be explained by the fact that less
than 2% of HSTs are on average unique to a specific sample when compared to all samples in other
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populations using the 1000GP data (Extended Data Figure 6). This suggests that haplotype panels like
the 1000GP are a good alternative when a sample’s haplotypes are not available.

We compared how well the different methods could predict the correct expression value. Figure 3b
shows the mean absolute relative expression difference (MARD) between the expression values of the
simulated reads and the estimated values. On the personal set, rpvg performs comparably to the other
methods. However, as the size of the pantranscriptome grows, the MARD on the NA12878 transcript set
only increases slightly for rpvg. Supplementary Figure 9 shows the full scatter plots of the simulated and
estimated expression values for the NA12878 HSTs. The lower error for all methods when using all HSTs
can be explained by the larger number of unexpressed HSTs. Comparing Spearman correlations gives
similar conclusions, except that Kallisto and RSEM perform comparably to rpvg when restricting
focus to NA12878’s haplotypes (Supplementary Figure 10). This suggests that Kallisto and RSEM
accurately rank these transcripts’ expression but do not accurately estimate the absolute quantity. Using
only the HSTs estimated to be expressed by each method, we see similar results for MARD and Spearman
correlation (Supplementary Figure 11). However, when looking at reference transcript-level expression
estimates by summing over HSTs, the other methods exhibit overall better MARDs (Supplementary
Figure 12).

rpvg can optionally use Gibbs sampling to quantify the uncertainty in the expression estimates. To
evaluate this procedure’s accuracy, we estimated 90% credible intervals from 1000 samples per HST
(Supplementary Figure 13); 86.4% of the intervals contained the simulated expression value, which is
close to the expected proportion.

We also compared the vg mpmap-rpvg pipeline’s ability to estimate ASE to a pipeline of WASP
[19] with STAR [2] alignments. This analysis focused on allele-specific read counts over heterozygous
variants. We converted the simulated HST expression values to read counts and defined true positives as
variants with significant ASE using a two-sided binomial test with p-values adjusted using the Benjamini-
Hochberg procedure with false discovery rate (FDR) α = 0.1. We converted rpvg’s estimates into
read counts similarly and then called ASE with both pipelines’ read counts using the same statistical
procedure as with the simulated values (Extended Data Figure 7). The vg mpmap-rpvg pipeline
achieves a markedly higher true positive rate with the same false positive rate as the WASP-STAR
pipeline. Moreover, vg mpmap-rpvg had similar performance for indels, whereas WASP excludes these
variants.

Real sequencing data

Next, we evaluated the accuracy of the HST expression estimation using real sequencing data from the
ENCODE project (ENCSR000AED) [28, 29]. Since we do not know which transcripts are expressed in
real data, we focus instead on the haplotype estimation. We can indirectly measure accuracy by ask-
ing whether the HSTs that are estimated to be expressed are in fact from NA12878. Figure 3c shows
that rpvg predicts markedly fewer HSTs from non-NA12878 haplotypes than the other methods. Also,
we see again only a minor difference between pantranscriptomes. Next, we compared the fraction of
transcript expression (in TPM) that was attributed to NA12878 haplotypes for simulated (left) and real
(right) data (Figure 3d). rpvg attributes more than 98.8% and 94.0% of the expression to NA12878
haplotypes when using simulated and real data, respectively. Furthermore, rpvg’s prediction accuracy
only decreases slightly when the size of the pantranscriptome increases from 2.5M HSTs in “Europe
(excl. CEU)” to 11.6M in “Whole (excl. CEU)”.

To assess the vg mpmap-rpvg pipeline’s robustness to samples with recently admixed ancestry, we
applied it to two samples from a recent study [30]: one of European American ancestry and one of
African American ancestry (Extended Data Figure 8). We expect that the African American individual
has a more admixed ancestry due to the greater genomic diversity present in Africa and the United States’
history of widespread slave rape by slave owners of European ancestry [31]. As a proxy for accuracy,
we quantify how frequently rpvg can identify two or fewer HSTs for a transcript (if none of the HSTs
match the individual, the posterior will tend to diffuse onto multiple similar HSTs). Consistent with
expectations from Extended Data Figure 6, we see somewhat lower accuracy on the African American
individual, but the difference is small.

To show the advantage of multipath alignments for inference, we repeated the simulated and real data
evaluations using single-path alignments from vg mpmap (taking the best-scoring path in each multipath
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alignment) and vg map (Extended Data Figure 9). For all pantranscriptomes and data sets, rpvg gave
the best results using the multipath alignments.

Results on additional simulated and real datasets used when developing rpvg, including selecting its
default parameters, can be seen in Supplementary Figure 14 and 15.

Evaluating HLA typing

We evaluated the vg mpmap-rpvg pipeline’s ability to infer diplotypes for genes in the highly-polymorphic
human leukocyte antigen (HLA) region. To do so, we created two HLA-specific pantranscriptomes using
the IPD-IMGT/HLA database [32] (see Supplementary Table 3). We ran the pipeline on RNA-seq data
for three parent-child trios from the 1000GP sequenced in the Human Genome Structural Variation Con-
sortium (HGSVC) [33] (see Supplementary Table 4). Figure 4a shows the number of predicted expressed
transcripts for each child and the Mendian concordance of the inferred parent and child diplotypes. The
same results are also summarized by proportion of inferred expression. With the exception of B and
DRB5, almost all of the genes’ expression is assigned to concordant transcripts.

We also ran the pipeline on ten randomly selected CEU samples from Geuvadis [34] for which HLA
typing results are available from other studies of genomic sequencing data [35, 36]. The results were
similar to the trios: A, DQB1, and DRB1 had correct typing in all samples, and B was incorrect in
some of the samples (Supplementary Figure 16). However, typing of C was also incorrect in some of the
Geuvadis samples.

While the results look promising, other HLA typing methods have shown similar or somewhat higher
accuracy, depending on the gene, although the small sample size makes it challenging to determine the
exact difference [37]. However, one major advantage of the vg mpmap-rpvg pipeline compared to these
methods is that it also provides HST expression estimates in addition to the typing.

Investigating variant genotyping and effect prediction

To illustrate the vg mpmap-rpvg pipeline’s ability to genotype variants in a pantranscriptome from
RNA-seq data, we ran the pipeline on five different tissue samples from the same individual, sequenced
by the ENCODE project [28,29] (see Supplementary Table 4). Figure 4b shows the number of expressed
variant alleles for different expression thresholds. As expected, markedly more SNVs are predicted to be
expressed than indels. A similar number of insertions and deletions are predicted to be expressed.

For validation, we looked at whether the inferred alleles were concordant across tissues. An allele
was considered concordant if it was either consistently expressed or consistently not expressed across all
tissues for which the corresponding variant is expressed (see Extended Data Figure 10 for a graphical
description). To account for allelic dropout for lowly expressed exons, we calculated the concordance for
different thresholds of total variant expression. Figure 4c shows the results of this analysis for alleles in
all expressed exons (including unexpressed alleles of expressed variants; top) and alleles expressed in at
least two tissues (bottom). Across all expressed exons, the concordance rate reaches 0.95 for insertions,
with higher values for deletions and SNVs. For alleles expressed in at least two tissues, the rates are lower
but still over 0.95 for SNVs and 0.85 for indels. After removing variants in homopolymers longer than
five bases, the performance on insertions improves substantially, although, surprisingly, the performance
for deletions was largely unchanged.

Finally, we investigated the effect of the predicted variants on functional elements using the Ensembl
Variant Effect Predictor (VEP) toolset [38] (Supplementary Figure 17). Among variants in exons with
TPM of at least five, the number of predicted protein truncating variants (frameshift, splice donor,
splice acceptor and stop gain) is comparable to or lower than what has been described in previous
studies [39,40]. A lower number is expected, since unexpressed variants are not assayed by RNA-seq.

Assaying isoform-specific genomic imprinting

To demonstrate the utility of the vg mpmap-rpvg pipeline on a biological problem, we performed an
exploratory analysis of genomic imprinting: a phenomenon in which some genes are expressed only
from the copy inherited from a specific parent, regardless of its genomic sequence [41]. Several previous
studies have studied imprinting genome-wide by quantifying ASE in RNA-seq data. These studies have
demonstrated that imprinting varies across tissues [41] and varies in intensity across genes, with many
genes showing biased expression but not complete silencing [17,42]. In addition, a handful of genes have
been identified in which the polarity of imprinting depends on the isoform: some isoforms of the same
gene are biased toward the paternal copy and others toward the maternal copy [17].
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The previous genome-wide studies have methodological limitations that diminish their ability to de-
tect isoform-level imprinting. Some have aggregated ASE across all isoforms of the gene, which precludes
isoform-level analysis [41,42]. The largest study, by Zink, et al. [17], performed tests on individual SNVs.
This method can detect isoform-level differences in unshared exons. However, in shared exons, the ASE
signal from the highest-expressed isoforms can drown out the signal of lower-expressed isoforms. Depend-
ing on the configuration of exons, this can make it very challenging to identify imprinting of opposite
polarity.

Figure 5 shows results from our exploratory demonstration of isoform-level imprinting analysis using
vg mpmap and rpvg. We ran the entire pipeline using RNA-seq data from a lymphoblastoid cell line
derived from 1000GP sample NA12878, which was sequenced as part of the ENCODE project [28]. As
a confirmatory analysis, we looked at the 20 ASE genes with the most significant p-values from Zink’s,
et al. study [17]. Mirroring that study’s methods, we derived variant-specific ASE by summing over
HSTs that contain a given allele. Figure 5a shows that the vg mpmap-rpvg pipeline detects ASE at
heterozygous variants in these imprinted genes at a markedly higher rate than in background across all
genes.

The vg mpmap-rpvg pipeline is also capable of detecting isoform-dependent genomic imprinting.
Figure 5b shows an illustrative example in the gene NAA60. The isoforms show a complex pattern of
imprinting polarity. Given the large differences in expression of these isoforms, the SNV-based analysis
would have had difficulty identifying imprinting in the lowly-expressed isoforms, and indeed this gene
was reported as imprinted but not as having isoform-dependent imprinting [17]. However, this gene
has been identified as having isoform-dependent imprinting using RT-PCR in patients with uniparental
disomies [43]. Nevertheless, it should be emphasized that this exploratory analysis, while suggestive, is
insufficient to conclusively demonstrate isoform-dependent imprinting. Doing so would require further
biological replicates and more rigorous controls for cis-regulation and cell line clonality [42].

Discussion

The pace of development in the field of eukaryotic pangenomics has surged in recent years. Improve-
ments in sequencing technology have made it practical to characterize the genomes of increasingly many
samples. As a result, pangenomes made from tens to hundreds of reference-quality genome assemblies
have been constructed for many agricultural organisms [44, 45], and recently also for humans by the
Human Pangenome Reference Consortium [46] and others [47]. Simultaneously, the bioinformatics tools
to do pangenomic analyses have matured to the point of practicality for many applications [9, 48, 49].
We anticipate that pangenomic methods will continue to expand to inform increasingly many areas of
genomics .

In this work, we have presented one step in this expansion: generalizing transcriptomics into pantran-
scriptomics. Our bioinformatics pipeline provides a full stack of tools for pantranscriptomic analysis. It
can construct pantranscriptomes, map RNA-seq reads to these pantranscriptomes, and quantify tran-
scription with haplotype-resolution. The construction takes advantage of efficient pangenome data struc-
tures, the mapping achieves a desirable balance of accuracy and speed, and the quantification can infer
haplotype-specific transcript expression even when the sample’s haplotypes are not known beforehand.

Some downstream applications are already apparent. For one, the pipeline can be used to study
causes of haplotype-specific differential expression. We demonstrated one such example by investigating
genomic imprinting, uncovering suggestive evidence of complex patterns of imprinting at the isoform level.
The pipeline could be similarly used to study other sources of haplotype-specific differential expression,
such as nonsense-mediated decay and cis-regulation.

Another application is characterizing genotypes and haplotypes in coding regions from RNA-seq data.
We demonstrated this capability by calling genotypes and HLA diplotypes. However, work is still needed
to improve computational efficiency and accuracy in the HLA region. One of the major complications is
that the dense variation in this region produces complicated graph topologies that lead to uncertainty
in alignments.

For all of these applications, the vg mpmap-rpvg pipeline increases the information that is available
from RNA-seq data without paired genomic sequencing. This will enable low-cost study designs and
deeper reanalyses of existing data.

The pipeline also has limitations. We have developed it to have good performance on pantranscrip-
tomes constructed from phased variant calls. This is presently the most available data resource for
constructing pangenomes. However, as increasingly many haplotype-resolved assemblies are produced,
we predict that the emphasis in pangenomics will shift to pangenome graphs constructed from whole
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genome alignments. Constructing these graphs is currently an area of active research [50, 51]. Such
graphs have more complicated topologies. Experience suggests that pantranscriptomic tools will require
further methods development to use these data resources effectively. This includes handling multi-
mapping reads in rpvg, which will be crucial for inferring HST expression for genes in the more complex
repetitive regions of these graphs.

Additional work on downstream analyses will be necessary to fully utilize HST expression inference.
For example, current differential expression methods rely on comparing transcript counts between the
same transcript of different individuals [52]. This is difficult at the HST level, since different individuals
may not share a haplotype. While HST expression estimates can be marginalized to produce allele
or transcript expression estimates, more general statistical frameworks will need to be developed to
avoid information loss between these steps in transcriptomic pipelines. A similar point holds for ASE
estimation as well. Typical ASE pipelines include downstream statistical methods that assume known
sample haplotypes. These do not readily accommodate haplotyping uncertainty that is inherent to
rpvg’s HST expression inference problem.

Our pipeline is optimized for short-read RNA-seq data. Long-read RNA-seq technologies require
specifically-tailored algorithms for efficient analysis [25]. Pantranscriptomic analyses of long-read RNA-
seq data will likewise require further development. Nevertheless, the cost-effectiveness of short-read
sequencing ensures that it will remain an important part of the sequencing landscape into the near
future.

Finally, our pipeline also relies on having a comprehensive pantranscriptome that contains many of
the sample’s haplotype-specific transcripts. The pantranscriptomes used in this study (based on the 1000
Genome Project) provided good results in the three samples analyzed, but this performance may not
extend to all other samples. Here—and throughout pangenomics—there is a compelling case to improve
the completeness of data resources through more diverse sampling.
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Figure Legends/Captions

Figure 1: Diagram of haplotype-aware transcriptome analysis pipeline
The three major steps in the pipeline. a vg rna adds splice junctions derived from a transcript anno-
tation to a pangenome graph to create a spliced pangenome graph. It simultaneously creates a pantran-
scriptome composed of a set of haplotype-specific transcripts (HSTs) using a panel of known haplotypes
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(not shown). b vg mpmap aligns RNA-seq reads to subgraphs of the spliced pangenome graph repre-
sented as a multipath alignment. c rpvg uses the alignments from mpmap to estimate the expression
of the HSTs in the pantranscriptome.

Figure 2: Mapping benchmark using RNA-seq data from NA12878
RNA-seq mapping results comparing vg mpmap and three other methods using simulated and real
Illumina data. a Mapping error and recall for different mapping quality thresholds (colored numbers)
using simulated data. Reads are considered correctly mapped if one of their multi-alignments covers 90%
of the true reference sequence alignment. b Mean fraction of mapped reads supporting the non-reference
allele for variants of different lengths in simulated data. Negative lengths correspond to deletions and
positive to insertions. The colored numbers are the mean fraction for SNVs. c Mapping rate using real
data. d Pearson correlation between Illumina and Iso-Seq exon coverage using real data as a function
of mapping quality threshold. e Number of read pairs mapped per second per thread using real data on
an AWS m5.4xlarge instance. f Maximum memory usage for mapping in gigabytes using real data.

Figure 3: Haplotype-specific transcript quantification benchmark using RNA-seq data
from NA12878
Haplotype-specific transcript (HST) quantification results comparing rpvg against three other meth-
ods using simulated and real Illumina data. It should be noted that the other methods were primarily
designed for reference transcript quantification and not millions of HSTs. For details on the pantran-
scriptomes used see Supplementary Table 3. a Recall and precision of whether a transcript is correctly
assigned nonzero expression for different expression value thresholds in transcripts per million (TPM;
colored numbers for “Whole (excl. CEU)”) using simulated data. b Mean absolute relative expression dif-
ference (MARD) between simulated and estimated expression (in TPM) for different pantranscriptomes
using simulated data. MARD was calculated using either all HSTs in the pantranscriptome (solid bars) or
using only the NA12878 HSTs (shaded bars). “Personal (NA12878)” is a sample-specific transcriptome.
c Number of expressed transcripts from NA12878 haplotypes against the number from non-NA12878
haplotypes for different expression value thresholds (colored numbers) using real data. d Fraction of
transcript expression (in TPM) assigned to NA12878 haplotypes for different pantranscriptomes using
simulated (left) and real (right) data.

Figure 4: HLA typing and allele concordance evaluation using RNA-seq data from trios
and different tissues
a Mendelian concordance of HLA typing results using Illumina data from 3 trios and a pantranscriptome
containing ten HLA genes. Results are summarized by the number of transcripts (left) and proportion of
expression in transcripts per million (TPM) (right) predicted to be expressed for each child and gene. The
concordance is labeled unknown when a transcript is not expressed in one of the parents. b & c Variant
genotyping analyses using Illumina data from 5 tissues from the same individual and a pantranscriptome
containing the 1000 Genomes Project haplotypes. b Number of variant alleles predicted to be expressed
in at least one (solid lines) or two tissues (dashed lines) for different expression thresholds. c Fraction of
alleles predicted to be concordant across tissues for alleles in all expressed exons (including unexpressed
alleles of expressed variants; top) and alleles expressed in at least two tissues (bottom). The results
are shown for different variant expression thresholds and homopolymer lengths. See Extended Data
Figure 10 for a graphical description of concordance.

Figure 5: Exploratory demonstration of analyzing genomic imprinting using data from
NA12878 lymphoblastoid cell line
Results of the vg mpmap-rpvg pipeline on RNA-seq data from a lymphoblastoid cell line from the
ENCODE Project, focusing on genes previously identified as imprinted in blood. a The proportion of
expression attributed to the higher-expressed allele of heterozygous variants among the 20 most signifi-
cantly imprinted genes from Zink’s, et al. study [17] compared to all genes. The axes are scaled so that
both histograms have the same area. b Isoform-level haplotype-specific expression in NAA60, which
was identified as imprinted but not as having isoform-dependent reversals in the polarity of imprinting
in genome-wide studies. Isoforms with expression less than 0.25 transcripts per million (TPM) are not
shown. Intervals indicate equal-tailed 90% credible intervals computed from 1000 Gibbs samples.
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Methods

Sequencing data, transcript annotations, and variation databases

GENCODE v29 (primary assembly) was used as a transcript annotation set [26]. All transcripts with
either the mRNA start NF or mRNA end NF tag were removed in order to only keep confirmed full-
length transcripts. Furthermore, a transcript subset containing 80% of the GENCODE transcripts was
created by randomly removing 34,490 of the 172,449 transcripts in the annotation. The fraction removed
was based on recent estimates of the fraction of novel transcripts in a sample using long reads [25].

Genomic variants on GRCh38 from the 1000 Genomes Project (1000GP) were downloaded from EBI
(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/)
[27]. The variants were first normalized using bcftools [53] and four different sets containing variants
from differently-sized collections of samples were created (Supplementary Table 1). Two of these sets
were constructed so as to not include variants unique to the CEU population. This was because we
benchmarked the pipeline on NA12878, who is from this population, and we wanted our evaluations to
approximate an expected use-case of sequencing a sample from a population that is not represented in the
reference haplotype panel. For all of the variant sets, the intronic and intergenic variants were further fil-
tered using bcftools, keeping only variants with an alternative allele frequency of at least 0.002 or 0.001
depending on the set. This was done to decrease the complexity of the graph in regions where fewer reads
are expected to map. The GRCh38 (primary assembly) reference genome used throughout the study was
downloaded from Ensembl (ftp://ftp.ensembl.org/pub/release-94/fasta/homo_sapiens/dna/).

A list of all sequencing data used can be found in Supplementary Table 4.

Spliced pangenome graph construction

We developed a method in the vg toolkit, vg rna, for constructing spliced pangenome graphs from a
transcript annotation and an existing pangenome graph. vg rna begins by identifying the path in the
graph that corresponds to each exon in the annotation. These exon paths can start or end internally in
a node rather than only at boundaries between nodes, as with other paths in vg. Next, vg rna divides
nodes as necessary to expose exon boundaries as node boundaries and then adds edges (splice-junctions)
to the graph connecting adjacent exons within each transcript. The transcript paths are then labeled
in the resulting spliced pangenome graph. Lastly, the spliced pangenome graph’s node ID space is com-
pacted and reordered in topological order to make graph compression more efficient [54].

Different combinations of transcript annotations (full and an 80% random subset) and variant sets
(Supplementary Table 1) were used as input to create the graphs used in the mapping and expression
inference evaluation.

Pantranscriptome construction

Alongside spliced pangenome graphs, vg rna can simultaneously generate pantranscriptomes consisting
of haplotype-specific transcripts (HSTs) created from transcript and haplotype annotations. It creates
pantranscriptomes by projecting the reference transcript paths onto haplotypes paths indexed using the
Graph Burrows-Wheeler transform (GBWT) [24], a data structure for efficiently storing thousands of
paths in a graph, such as haplotypes or transcripts. If nodes are split during the spliced pangenome
graph construction (see above), vg rna first updates the haplotypes in the input GBWT. Next, the
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flanking positions of the exon boundaries on the reference chromosome path are used as anchors for
projecting exons between the reference and haplotype paths. Anchoring on the positions adjacent to
exon boundaries allows for genomic variation at the distal ends of exons.

To find all possible haplotype paths between two exon anchors, we use an exhaustive depth-first
search (DFS) initialized at the start anchor. Branches in the DFS (branch) are queried against the
GBWT index and terminated if they are not a subpath of any haplotype. A search is also terminated if
none of the haplotypes in the branch contain the end anchor node. The output from the search is a list
of unique projected haplotype-specific (HS) exon paths and the set of haplotypes consistent with each of
them. The final HST paths are constructed one exon at a time by connecting HS exon paths that share
at least one haplotype for each transcript. The fact that all the HS exon paths are unique makes the
approach scale well with the number of haplotypes, as it can take advantage of the fact that haplotypes
are often identical locally.

A list of all pantranscriptomes created for this study including the transcript annotations and vari-
ant sets used as input can be seen in Supplementary Table 3. The HSTs were written both as nucleotide
sequences in FASTA format (for inputs to other expression inference tools) and as paths to a GBWT.
A bidirectional GBWT, where each path is stored in both directions, was also created. rpvg uses this
index to decrease computation time when reads are not strand-specific. For each GBWT, a correspond-
ing r-index was constructed, which significantly decreases the computation time it takes to query path
IDs in the GBWT [55].

Read simulation model

Most of the simulated reads were generated using vg sim, a read simulator in the vg toolkit that is
designed primarily for next-generation sequencing (NGS) reads. Its model consists of three components:
a Markov model for base quality strings, a path frequency model, and a fragment length model (when
sampling paired-end reads).

The model for base quality strings is fit to replicate the base quality strings in a user-provided FASTQ.
A separate Markov transition distribution is fit for each base position in the read. The state of each
Markov distribution consists of two components: the Phred base quality at that base and whether that
base is an N. If a paired-end FASTQ is provided, vg sim will fit a separate model for each read end.
In addition, the first states of each read in the pair are modeled with a single joint distribution, which
allows for some dependence between the quality of both reads in the pair. The probabilities of the
Markov transitions and the initial states are estimated by their empirical frequency in the FASTQ.

vg sim determines the base sequence of each read by following random walks through the pangenome
graph. These walks may optionally be restricted to specific paths through the graph, such as paths of
transcripts in a spliced pangenome graph. The sampling frequency of a transcript path is proportional
to the product of its effective length [4] and its expression value measured in transcripts per million
(TPM), as determined by a user-provided expression profile. Once the path has been chosen, the starting
location of the read is selected uniformly at random along the transcript. The sequence of the walk is
then extracted, and sequencing errors are introduced according to the probability distribution implied
by the base quality string. A user-specified fraction of these errors are produced as indel errors rather
than substitution errors.

When simulating paired-end sequencing, the fragment length is modeled with a normal distribution.
The user provides the mean and standard deviation for this distribution. For a given path, the normal
distribution is truncated to between 1 and the path length. Both reads are sampled from a single walk
through the graph with length equal to the sampled fragment length. If this length is shorter than the
read length, the read is truncated to the fragment length.

Simulating RNA-seq reads from haplotype-specific transcripts

Reads were simulated from haplotype-specific transcript (HST) paths derived from the haplotypes of
NA12878 in the 1000 Genomes Project (1000GP) and the GENCODE transcript annotation. The cor-
responding spliced pangenome graph was created using vg rna.

In total, we created five different simulated read sets: four using vg sim and one using RSEM [1].
Two different read sets were used to fit the simulations’ error model: SRR1153470 and ENCSR000AED,
replicate 1. For both real read sets, we used vg sim to create two simulated read sets. One set of reads
was simulated with an expression profile derived from the real data, and the other set was simulated
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with uniform expression across transcripts. The single RSEM simulation used the uniform approach.
Supplementary Table 5 lists all of the simulated read sets. Each was used in different parts of the
benchmarking. The uniform expression data sets were used to benchmark mapping whereas the data-
based expression read sets were used to benchmark expression inference. We used a uniform expression
profile for the mapping benchmark to not bias the analyses towards easily-mappable transcripts.

To ensure balanced expression between the two haplotypes for all transcripts, only transcripts that
were successfully projected to both haplotypes were given a positive expression for the uniform expression
set. For the simulated read sets with data-derived expression, we generated the expression profile by
mapping the reads using Bowtie2 [11] with default parameters and then quantifying using RSEM, also
with default parameters. For all five read sets, we simulated 25M 101 base-pair read pairs from each
haplotype. For vg sim, we used an indel probability error of 0.001 and the base quality distribution was
trained on 10M randomly sampled read-pairs of the training data. The read-pairs were sampled using
seqtk (https://github.com/lh3/seqtk). RSEM was given the estimated training data model file and
the background noise fraction was set to zero.

Mapping and multipath alignment with vg mpmap

Like most read mappers, vg mpmap’s mapping algorithm is designed using the “seed-cluster-extend”
paradigm. First, it locates exact matches “seeds” between the read and the graph. Next, the seeds are
“clustered” together to identify regions of the graph that the read could align to. Finally, the seeds are
“extended” into an alignment of the entire read. Because these operations occur in the context of a
pangenome graph, they use several specialized algorithms and indexes.

Seeding

vg mpmap seeds alignments with maximal exact matches (MEMs) against the graph, which it finds
using a GCSA2 index [56]. MEMs are exact matches between an interval of the read and a walk in the
graph such that the match cannot be extended further in either direction at that location in the graph.
The MEMs are found using a two-stage algorithm, which has also been described previously [7].

In the first stage, the algorithm finds super-maximal exact matches (SMEMs), which are MEMs for
which the read interval is not contained within the read interval of any other MEM (Supplementary
Algorithm 1). This algorithm also relies on a longest common prefix (LCP) array. The second stage of
the algorithm finds the longest MEMs that are shorter than each SMEM but have their read interval
contained in the SMEM’s read interval, subject to a minimum length (Supplementary Algorithm 3).

Clustering

The clustering algorithm in vg mpmap is built around the distance index described in Chang, et al. [57].
In brief, this index can query the minimum distance between two positions in the pangenome graph by
expressing the distance as the sum of a small number of precomputed distances. This is accomplished
by taking advantage of the common topological features of pangenome graphs, namely that they tend to
contain long chains of bubble-like motifs that result from genomic variation [58].

The clustering algorithm begins by constructing a directed acyclic graph (DAG) in which the nodes
correspond to MEM seeds. The edges are added whenever 1) there is a path connecting two seeds in
the graph, and 2) the seeds are collinear along the read. We use the distance index to determine the
existence of a path that connects the seeds in the graph, and the edges are also labeled by the distance.
Edges that are much longer than the read length are not added; this avoids treating distal elements on
the same chromosome as part of the same cluster. In addition, we accelerate this process using Algorithm
3 from Chang, et al. [57], which partitions seeds into equivalence classes based on the distance between
them. The equivalence relation is the transitive closure of the relation of being connected by a path of
length less than d, which is a tunable parameter. By choosing d correctly, we can ensure that all of the
edges we would include occur between seeds in the same equivalence class. This significantly reduces the
number of distance queries we need to perform.

Once the DAG of seeds has been constructed, we approximate the contribution of each seed and edge
to the score of an alignment that contains them. Seeds are scored as a short alignment of matches, and
edges between seeds may be scored as an insertion or deletion if the distance in the graph does not match
the distance on the read. We then use dynamic programming to compute the heaviest path defined by
the node and edge weights (scores) within each connected component and take the seeds along this path
as a candidate cluster. Clusters are passed through to the next stage of the algorithm if their weight is
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within a prespecified amount of the heaviest-weight cluster, subject to a hard limit on the total number
of clusters.

Multipath alignments

Most existing sequence-to-graph aligners, including vg map [7], produce an alignment of the sequence
to a particular walk through the graph. vg mpmap uses a different alignment formalism, which we call a
multipath alignment. In a multipath alignment, the sequence can diverge and reconverge along different
walks through the graph (Extended Data Figure 1). Thus, the read can align to a full subgraph rather
than to a single path. This allows the alignment object to carry within itself the alignment uncertainty at
known variants or splice-junctions. This information can be used in downstream inference applications,
including rpvg.

More formally, a multipath alignment of read R is itself a digraph with the following properties:

1. Each node corresponds to an alignment of some substring of R to a path in the pangenome

2. An edge between u and v exists only if u and v align adjacent substrings of R to adjacent paths in
the pangenome.

3. Every source-to-sink path through the multipath alignment can be concatenated into a complete,
valid alignment of R to a path in the pangenome.

vg mpmap additionally annotates each node’s partial alignment with its alignment score. The align-
ment score of any particular sequence-to-path alignment expressed in the multipath alignment can be
computed efficiently by simply adding the partial alignments scores along the path.

While sequence alignments have well-established optimization criteria, there is no such criterion for
optimizing the topology of a multipath alignment. In lieu of one, we adopt heuristics that are motivated
by the common topological features of pangenome graphs. Our high-level strategy is to use exact match
seeds to anchor alignments. We then align between seeds and within sites of variation in the graph.

Anchoring alignments

To use a cluster of exact match seeds to anchor a multipath alignment, it is first necessary to compute
the reachability relationships between the seeds. This is a non-trivial problem.

We begin by converting the local graph around a cluster into a directed acyclic graph using an
algorithm that has been described previously [7]. In brief, we identify small feedback arc sets within
each strongly-connected component using the Eades-Lin-Smyth algorithm [59], and then we duplicate
the strongly-connected components with the feedback arcs linking successive copies. Using dynamic
programming over the DAG as we construct it, we can preserve all cyclic walks up to some prespecified
length, which is based on the read length.

After creating the DAG, we inject the seeds into the new graph. Since the DAG conversion algorithm
can expand the node space of the original graph, seeds can now correspond to multiple locations in the
DAG. In this case, we duplicate the seeds to all of the corresponding locations in the DAG. We then use
a three-stage algorithm that computes the transitive reduction of a graph in which the nodes correspond
to seeds, and two seeds have an edge between them if they are collinear along the read and reachable
within the pangenome graph (Supplementary Algorithm 4).

1. Compute the reachability relationships between the seeds, ignoring collinearity on the read.

2. Rewire the reachability edges between the seeds to respect collinearity on the read.

3. Compute the transitive reduction of the resulting graph.

This algorithm is designed to have linear run time in the number of seeds and the size of the DAG,
but only in the typical case where the seeds line up along a walk through the pangenome graph. In the
general case, the run time can be quadratic.
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Dynamic programming with multiple traceback

The alignments between anchors are computed using a banded implementation of partial order alignment
[60]. The alignments of the read tails past the end of anchors are computed using a SIMD-accelerated
POA implementation from the gssw library (https://github.com/vgteam/gssw).

We use a specialized traceback algorithm to obtain the alignments to multiple paths through the
pangenome graph from a single dynamic programming problem (Supplementary Algorithm 8). The
algorithm returns the k highest-scoring alignments, and we choose k to be the number of paths through
the subgraph we are aligning to, subject to a hard maximum. The key insight behind the algorithm is
that the next highest-scoring traceback can be determined by checking local properties of the dynamic
programming matrix while computing the highest-scoring traceback. In addition, for each anchor that
crosses a snarl (bubble-like graph features that often indicate variation [58]), we remove the interior of
snarl before performing alignments. This way, the multiple traceback algorithm can align to multiple
paths at sites of variation.

Quantifying mapping uncertainty

The method that vg mpmap uses to compute mapping quality is largely shared with vg map (see
Garrison, et al. [7] Supplementary Note). As in vg map, base qualities are incorporated into alignment
scores (essentially downweighting low-quality bases), and the alignment scores are subsequently used to
compute a mapping quality. The formulas used to compute mapping quality rely on the conversion of
alignment scores into the log-likelihood of a hidden Markov model (HMM).

vg mpmap also uses a concept of a mapping’s “multiplicity” to model errors introduced by the
mapping algorithm itself. In particular, at certain points in the algorithm, we enforce hard caps on
certain algorithmic behaviors, such as the number of alignments that will be attempted. If we run up
against these hard caps, we expect that not all high-scoring alignments will be found. We incorporate this
information into the mapping quality formula by treating alignments as if multiple equivalent alignments
actually were found. For example, if we attempted alignments for 10 of 30 promising clusters and found
1 high-scoring alignment, we would estimate its multiplicity to be 3. We then compute the mapping
quality as if 2 additional copies of the alignment had been found.

Multiplicities allow vg mpmap to aggregate information about sources of algorithmic inaccuracy
over different steps in the algorithm. The central entities in each step of the mapping algorithm (seeds,
clusters, alignments, and read pairs) are each associated with a multiplicity. When combining orthogonal
pieces of information (seeds in a cluster, or single-end alignments in a paired alignment), the new entity
receives the minimum of its constituents’ multiplicities. When layering on a new source of algorithmic
uncertainty (a further hard cap), an entity’s multiplicity is multiplied by its estimated multiplicity in
that step of the algorithm.

Determining statistical significance

vg mpmap uses a frequentist hypothesis test to assess the statistical significance of a read alignment.
The test statistic that we use is the alignment score. The null hypothesis is that the alignment score was
obtained by a uniform random sequence of the same length as the read. By default, we set the type-I
error rate to 0.0001. If an alignment score’s p-value is not significant at this level, the read is reported
as unmapped.

Modeling the null hypothesis of the test is not entirely straightforward. In general, we expect higher
local alignment scores from longer reads or larger pangenome graphs. However, there are subtleties. A
large pangenome graph may consist of many repeats of the same sequence so that its effective size is
smaller than its total sequence length. Alternatively, a small graph may have a complex topology that
admits a combinatorially large set of walks. For these reasons, we take an empirical approach that fits a
model to match the pangenome graph. At the start of every mapping run, we map a sample of uniform
random sequences of varying lengths and use the scores to fit the parameters of a distribution using
maximum likelihood.Those parameters are then regressed against the read length. The regression allows
us to query the p-value for a read of any length.

The parametric distribution we use can be derived as the maximum of ν independent, identically
distributed exponential variables with rate λ, which has the following probability density function:

f(x|λ, ν) = λν(1− e−λx)ν−1e−λx. (1)
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The fitting algorithm alternates between maximizing the likelihood with respect to each of the two
parameters with the other fixed until convergence. ν is fit using the Newton-Raphson method, and λ is
fit using golden-section search.

The motivation for this model is that the length of the match starting at position of a uniform random
sequence (the read) and position of a fixed sequence (the reference) is approximately Geometric(1/4).
The optimal local alignment score is closely related to the longest match at any position on the read
sequence to any position on the pangenome graph. We use an exponential distribution because it closely
approximates a geometric distribution and is easier to fit.

Paired-end mapping

At the beginning of each paired-end mapping run, vg mpmap uses a sample of the first 3,000 uniquely
mapped pairs to fit parameters of a fragment length distribution. The distance between the reads in each
pair is computed with the distance index. Non-uniquely mapped pairs are buffered and then remapped
after the fragment length distribution has been fit.

The fragment distribution is modeled as a normal random variable with mean µ and variance σ2.
We use a method of moments estimator for a truncated normal distribution so that the parameter
estimation is robust to erroneous distances from possible mismappings or unannotated splice junctions.
In particular, we discard the largest and smallest 1−γ

2 fraction of fragment length measurements (default
γ = 0.95). The remaining γ fraction of measurements correspond to a sample from a truncated normal
distribution with the same µ and σ2. The following estimators can be derived using method of moments
on this truncated normal distribution:

µ̂ = x̄

σ̂2 = s2
(

1− 2αφ(α)

γ

)−1
,

(2)

where φ is the density function of a standard normal distribution, x̄ and s2 are the empirical mean
and variance among the retained measurements, and α = Φ−1

(
1−γ
2

)
is the left truncation point on a

standard normal distribution.
When mapping paired-end reads, the clustering stage of the algorithm adds an additional step. First,

each read in the pair’s seeds are clustered as in the single-end algorithm. Next, the clusters from the two
reads are paired by checking which pairs imply a fragment length within 10 standard deviations of the
mean, as estimated by the algorithm in the previous section. The implied fragment length connecting
two clusters is estimated using the distance index, with the position of a cluster taken to be the position
of its longest seeds. Pairs of clusters are prioritized by a sum of an estimated alignment score (interpreted
as a log-likelihood) and the log-likelihood of the normal distribution that we model the fragment length
distribution with.

It sometimes happens that the mapping heuristics fail on only one of the two reads of a fragment.
When this occurs, it is sometimes possible to “rescue” the alignment of the other read by aligning it to
the region of the pangenome graph where we expect to find it relative to the mapped read. vg mpmap
employs this strategy whenever the pair clustering procedure fails to produce a pair of clusters consistent
with the fragment length distribution, or when all of the clustered alignment pairs have at least one end
without a statistically significant alignment. We also perform a limited number of rescues even when
a consistent cluster pair is found, if there are clusters of at least one of the ends that are equally as
promising as the one in the cluster pair. We place a hard cap on the number of rescues performed to
control run time. The fraction of eligible rescues that were actually performed becomes a component in
the multiplicity of an alignment.

The multipath alignment algorithm is slightly different when computing rescue alignments, because
there are no exact match seeds to use as anchors. Instead, we first perform a single path alignment using
gssw. Then we remove any sections of the alignment that lie inside snarls, and realign those segments of
the read as when connecting anchors in the standard multipath alignment algorithm.

Spliced alignment

Because spliced pangenome graphs include annotated splicing events as edges, it is usually unnecessary
to use specialized alignment algorithms to obtain spliced alignments. However, transcript annotations
are incomplete, so it is still important to be able to produce spliced alignments. vg mpmap includes a
spliced alignment algorithm but applies it conservatively: only when an alignment includes a moderately
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long soft-clip on at least one end. A long soft-clip is suggestive that the clipped end of the read might
align to a part of the graph that was too distant to be included in the primary seed cluster, as would
be expected with an unannotated splice event. One common exception to this pattern are adapter
sequences, which can be captured in a read when the sequenced fragment is shorter than the read length.
To avoid the computational burden of attempting to find nonexistent spliced alignments for these cases,
common adapter sequences are specifically excluded from this subroutine.

The spliced alignment algorithm begins by finding candidate regions to align the clipped read end to.
These regions are selected by scanning over secondary mappings, unaligned seed clusters, and unclustered
seeds. For paired reads, spliced alignments can also be found by rescuing the soft-clipped portion of the
read from the other read in the pair. This is only possible when the soft-clip is on the side of the read
that faces inward on the fragment. Spliced alignment rescue is only attempted when none of the other
spliced alignment candidates yields a statistically significant spliced alignment.

Spliced alignment candidates must pass several filters to be included in the read mapping. Candidates
must roughly correspond to the clipped end of the read. They must also be reachable from the primary
alignment by some path in the graph, which is determined using the distance index. The final filter that
a spliced alignment must pass is a significance test. This test has three components: 1) the increase
in alignment score that results from aligning the additional bases, 2) the bias against the splice site
motifs in the intron, and 3) the bias against the intron length. The default parameterization is based
on the human transcriptome. Splice site motifs are penalized by their log-frequency, as given by Burset,
et al. [61]. The bias against the intron length is determined using the log-likelihood of a log-normal
mixture model fit to the human intron length distribution. The three components are combined into a
joint log-likelihood and tested against a critical value.

To compute the quantities needed for this test, the spliced alignment algorithm identifies the splice
motifs near the ends of a pair of splice candidates. If any pair of canonical splice site dinucleotides are
found on any path from the two ends, the intervening sequence is aligned as if the two splice sites were
joined by an edge in the graph. In addition, the intron length is measured between these positions in
the graph using distance along the reference path.

Multimapping reads

Reads with multiple high-scoring alignments can be reported in two different ways. First, separate
alignments can be reported up to a user-specified maximum number (default 10). Second, a single,
possibly disconnected multipath alignment can be reported that includes all high-scoring alignments. In
the first option, all of the reads are annotated with a collective “group mapping quality” that quantifies
the probability that all of the reported alignments are incorrect. In the latter option, the main mapping
quality annotation is equivalent to the group mapping quality.

RNA-seq mapping evaluation

We compared vg mpmap’s performance at mapping RNA-seq data against the vg toolkit’s existing
graph alignment method vg map [7] and two state-of-the-art RNA-seq mapping tools, HISAT2 [15]
and STAR [2]. Graph indexes and genomes were created for each tool using default parameters, with
mpmap and map sharing the XG and GCSA index. All mappers were run with default or recommended
parameters for RNA-seq data. For the simulated data the maximum number of reported multi-alignments
per read was set to 10 for each method.

The main mapping results were obtained using the ENCSR000AED, replicate 1 data (see Supple-
mentary Table 4): Figure 2, Extended Data Figure 2-5, and Supplementary Figures 1-4 and 6. The
SRR1153470 and CHM13 data (see Supplementary Table 4) were used to optimize the parameters of
vg map and vg mpmap. Nevertheless, the pattern of performance on these reads is similar to the
ENCSR000AED data (Supplementary Figures 5 and 7).

We evaluated mapping accuracy on simulated reads using two different methodologies to ensure the
robustness of our conclusions. One methodology was based on basewise overlaps along the linear refer-
ence genome, and the other was based on distances along transcript and reference paths in the graph. In
both cases, the results were stratified by mapping quality. For vg mpmap, we used the group mapping
quality (see above), and for the other tools we used the mapping quality value of the alignment with the
highest overlap or closest distance, or the highest of these mapping qualities in case of ties.

For the overlap-based evaluation, the graph alignments were first projected to the reference paths
using vg surject in spliced alignment mode. Briefly, vg surject takes a set of graph-aligned reads and

18



re-aligns them to all nearby reference paths in the graph, producing a BAM file with the reads aligned
to the reference sequences. The re-alignment is only performed on the parts of the alignment that do
not already follow the reference paths. A read was considered correctly mapped if 90% of the bases of
the simulated true reference alignment were covered by one of its multi-alignments. The true reference
alignments were generated using the transcript position of each read provided by vg sim or RSEM, and
the NA12878 haplotype-specific transcript reference alignments. The latter were created by projecting
the transcript paths to the reference sequences using vg surject in spliced alignment mode.

Due to sequencing artifacts, the ends of reads will occasionally consist of such low-quality bases as
to be practically random. Our simulation framework recapitulates this feature of real sequencing data.
However, in real data these read ends do not correspond to any underlying genomic sequence, whereas
the simulation assigns them a true genomic alignment. Aligners that softclip these uninformative bases
would be penalized in this evaluation, even though this is the correct decision for real data. We therefore
trimmed all bases at both ends of an alignment (including the true alignments) that had a Phred base
quality score below 3 for the purpose of computing the overlap. All alignments for which more than half
of the sequence was trimmed were discarded from the evaluation so that the percent overlap could be
estimated more confidently.

To classify whether a read contained any novel (unannotated) splice-junctions we looked at all dele-
tions and reference skips in the true reference alignment with a length of at least 20 bp. These were
compared to the transcript annotation that was used to build the graph or reference, and defined as
novel if it was not possible to find a splice-junction in the annotation that was within 5 bp at both ends.

Edit distance was calculated as the number of base pair differences between the simulated read and
the reference sequence. The NA12878 1000GP genotypes were used to estimate the genomic variation
edit distances.

We used the vg gampcompare tool for the distance-based evaluation. The truth set in this evalua-
tion was the true graph alignments produced by vg sim. In short, vg gampcompare finds the minimum
possible distance between the start position of an estimated alignment and the true alignment across all
reference and transcript paths in the graph. Before running vg gampcompare, HISAT2 and STAR’s
BAM format alignments were converted into graph alignments (GAM format) using vg inject, which
translates linear reference alignments into alignments against the path of the reference in a graph. An
alignment was considered correct if its start position was within 100 bp of the start position of the true
alignment along the path of the reference or any transcript path.

Reference bias was quantified using simulated reads, by counting the number of reads with a map-
ping quality value of at least 30 that overlapped heterozygous variants. For this analysis, we used the
linear reference-based alignments. In order to treat different variant types and lengths equally, we com-
puted the read count for each variant allele as the average read count across the allele’s two breakpoints.
Reads simulated from each haplotype were counted separately and only variants with at least 20 reads
across both alleles combined were used to quantify reference bias. We skipped variants that were not
classified as SNVs, simple deletions, or simple insertions.

To further evaluate allelic bias, we counted the reads supporting each allele of heterozygous variants
among mapped simulated reads for each of the mappers using the approach described above. We also
added a pipeline consisting of STAR followed by read filtering with WASP to this comparison. We
found that WASP was computationally infeasible using the full CEU population, so we instead gave it
a variant database consisting of only NA12878’s own variants. Therefore, to have a better comparison
to WASP, we also created sample-specific references for vg mpmap, vg map, and HISAT2, and we
report results for these references as well. We estimated the observed rate of false positives by testing
for allelic skew in mapped reads on heterozygotic variants using a two-sided binomial test (α = 0.01).
All significant p-values are false positives, since the reads were simulated without an allelic bias.

When benchmarking using real reads, truth alignments are not available. Instead, we used a proxy
measure of aggregate mapping accuracy based on long read mappings from the same cell line. The
long reads are easier to map confidently, and we expect the cell line to have similar transcript expression
across replicates. Thus, higher correlation between the coverage of short read mappings and the coverage
of long read mappings is indirect evidence of higher accuracy. For long read data, we used NA12878
PacBio Iso-Seq alignments generated by the ENCODE project (Supplementary Table 4). The cleaned
Iso-Seq alignments of four replicates were first merged and secondary alignments and alignments with
a quality below 30 were filtered using samtools [62]. These filtered alignments were then compared
to the short-read RNA-seq alignments by calculating the Pearson correlation of the average exon read
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coverage between the two. Exons were defined using the Iso-Seq alignments by first converting them to
BED format and then merging overlapping regions using bedtools [63].

We measured memory and compute time for all mappers using the Unix time utility. The mapping
compute usage of each tool was estimated using 16 threads on an m5.4xlarge AWS instance. The reads
per second statistic was computed by dividing the number of reads by the product of the wall clock time
and the number of threads. This is a somewhat biased measurement, since it includes the one-time start
up computation that does not scale with the number of reads. However, the magnitude of this bias is
small, and it tends to disfavor vg mpmap, which has the longest start up of the tools we evaluated.

Reference alignments in BAM format were sorted and indexed, also using samtools. The SeqLib
library was used in the evaluation scripts to parse the alignments and calculate overlaps [64].

Haplotype-specific transcript quantification

We developed rpvg as a general tool for inferring the most likely paths and their abundance from a set
of mapped sequencing reads. In this study we used rpvg to quantify the expression of haplotype-specific
transcripts (HSTs) in a pantranscriptome. rpvg’s algorithm consist of four main steps:

1. Find read alignment paths that align to HST paths

2. Cluster alignment paths and HST paths

3. Calculate alignment path probabilities

4. Infer haplotypes and expression from probabilities

A graphical overview can be seen in Supplementary Figure 18.

Finding alignment paths

The first step of rpvg is to parse each alignment and find all alignment paths that follow at least one
HST path in the pantranscriptome GBWT index (Supplementary Figure 18a). An alignment path is
the set of nodes a read alignment follows in the graph. For single-path alignments there is only one
alignment path, but for multipath alignments there can be many. We will focus here on multipath align-
ments, since a single-path alignment is a sub-case when a multipath alignment only contains a single path.

Multipath alignments are represented as a graph, and thus the objective is to find all paths through
this graph that also exist as subpaths in the GBWT. This search would normally scale linearly in the
number of HSTs overlapping the read, but the GBWT allows us to simultaneously query all locally-
identical HSTs that contain the same subpath.

rpvg uses a depth-first-search (DFS) through the multipath alignment graph to find all alignment
paths. A branch in the search is terminated if its alignment path is not present as a subpath in the
GBWT. A DFS is initialised at each source node in the alignment graph. We terminate any alignment
path early where it is not possible to reach a score of 20 below the current highest scoring path, assuming
perfect scoring for the remainder of the alignment.

The topology of the multipath alignment graphs is determined by heuristics. In some cases these
heuristics fail, resulting in multipath alignments that do not cover all possible alignment paths. This
can result in incorrect downstream expression estimates as a read might be missing an alignment path
to the correct HST. To overcome this, rpvg allows alignment paths to be shortened in order to be made
consistent with an HST path. More specifically, the DFS can start and end up to four bases inside the
read (excluding soft-clipped bases). The score of partial alignment paths are penalized proportionally to
the number of non-matched bases at each end, adjusted for their quality. The longest possible alignment
path to a HST is selected as the best alignment.

The output from the DFS is one set of alignment paths for each multipath alignment. Next, rpvg
labels a set as low scoring if the highest scoring alignment path in the set is less than 0.9 times the
maximum possible quality-adjusted alignment score. The sets labeled as low scoring are treated as being
incorrect; they may be misalignments, or they may originate from an HST not in the input pantran-
scriptome. They are later used when calculating the noise probability.

For paired-end reads, one additional step is needed: combining the alignment paths of each read to
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create a set of alignment paths for the whole fragment. First a set of alignment paths is generated for
each alignment in the pair as described above. Next, rpvg attempts to combine each start (first read)
alignment path with each of the end (second read) alignment paths. If the fragments are not strand-
specific and the pantranscriptome GBWT is not bidirectional, rpvg then repeats the process using the
reverse complement of the fragment.

The procedure to combine the two alignment paths differs depending on whether they overlap or
not. If they do overlap, a single combined alignment path is created for the fragment by merging the
two while requiring that the path of overlapping portions matches perfectly. If they are separated by
an insert, the start alignment path is extended using a depth-first search following the HST paths. If
the search reaches one of the start nodes for an end alignment path, a new fragment alignment path
is created by merging the search and end alignment path. The new fragment alignment path is only
kept if it follows at least one HST path in the pantrancriptome. The search is terminated if all start
nodes in the end alignment paths have been visited and they are not part of a cycle. An alignment path
is discarded if its length is above µ+ 10σ, where µ and σ are the mean and standard deviation of the
fragment length distribution. These parameters are either supplied by the user or parsed from the input
alignments (the vg aligners write the parameters they estimated to the alignment file). The score of the
resulting fragment alignment path is calculated as the sum of the scores of the two read alignment paths.
The mapping quality is calculated as the minimum across the two reads.

The final output from the search is a set of alignment paths and the HSTs that each path aligns to
for each read or fragment. For simplicity, in the following, we will use the term “fragment” to denote
both a single-end read and a set of paired-end reads.

Clustering transcript paths

HST paths that do not share any fragments are independent, and therefore their expression can be
inferred separately. In contrast, the expression of HST paths that share alignments must be inferred
jointly. Accordingly, rpvg identifies clusters of HST paths that share alignment paths from the same
fragment. By dividing the inference problem into these smaller, independent clusters, computation and
memory can be considerably reduced. The clustering algorithm works by first constructing an undirected
graph where vertices correspond to HST paths and edges correspond to HST paths being observed in
the same set of fragment alignment paths. Connected components in this graph correspond to clusters.

Calculating alignment path probabilities

For each fragment, the probability of it originating from each of the HSTs in its cluster is calculated by
rpvg using the alignment path scores, lengths and mapping quality (Supplementary Figure 18b). First
the probability ε that the fragment was not from any of the HST in the cluster is calculated using the
mapping quality q:

ε = max
(
εmin, 10−q/10

)
, (3)

where εmin is the minimum noise probability. The motivation behind having a minimum is that mapping
qualities are generally less reliable at higher values. The minimum noise probability is 10−4 for all
fragments except those that were labeled as low scoring, for which it is 1. Let A be the set of alignment
paths (i.e. alignments) for a fragment. For each alignment path a ∈ A, the likelihood of it being the
correct path is calculated using its score sa and length `a:

L(a) = ψα

(
`a − µ
σ

)
exp (λsa) , (4)

where λ is a scaling factor that converts the alignment score into the log-likelihood of a pair-HMM
[65], ψα(x) = 2φ(x)Φ(αx) is the density of a skew-normal distribution (with φ and Φ the density and
distribution function of a standard normal distribution, respectively), and µ, σ, and α are the location,
scale, and shape parameters of the fragment length distribution modeled as a skew-normal distribution.
For paired reads, these parameters are estimated from the alignment path lengths across all fragments
that have 1) a mapping quality of at least 30, and 2) the same length for all alignment paths. The
fragment length distribution is omitted from the equation when the fragments are single-end reads.
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With this likelihood, we can compute the posterior probability that the fragment originated from a given
HST. Let the set of all HST paths in the cluster be denoted by T , and let the set of HST paths an
alignment path a is consistent with be denoted by Ta. The probability that the fragment (or alignment
A) originated from an HST is calculated as:

pt = (1− ε) · P (t|A) = (1− ε) · P (A|t)P (t)∑
t∈T P (A|t)P (t)

(5)

with

P (A|t) ∝ max
a∈A

{
L(a)˜̀

t
if t ∈ Ta

0 otherwise
(6)

Here, ˜̀t is the effective transcript length for t calculated as ˜̀t = `t − µ`t [3, 4]. In turn, µ`t is the mean
of the fragment length distribution truncated to [1, `t], computed using a published formula [66]. The
effective transcript length accounts for the fact that fragments cannot be sequenced from all positions
due to the size of the fragment. If the fragments are single-end reads, the fragment length distribution
parameters used to calculate the effective length must be supplied by the user. The prior over HSTs P (t)
is taken to be uniform. If the HST probability pt is below 10−8, it is truncated to 0 to reduce storage.

We denote the set of all fragment probabilities in a cluster as F and the probabilities for a fragment i
as Fi = (ε,p), where p is the vector of probabilities over all T HSTs in the cluster. Many fragments will
have very similar probabilities and can thus be collapsed to save computation resources and memory [4].
To do this we collapse two fragment probabilities Fi and Fj if they satisfy both of:∣∣εi − εj∣∣ < 10−8∣∣∣pit − pjt ∣∣∣ < 10−8, ∀t ∈ T

(7)

We also associate each set of collapsed fragments with c, the number of collapsed fragments in the
set. The resulting set E of tuples (ε,p, c) is subsequently used to infer the expression of the HSTs in the
pantranscriptome.

Inferring haplotype-specific transcript expression

rpvg quantifies the expression of the HSTs in the pantranscriptome using a nested inference scheme
(Supplementary Figure 18c). This is done independently for each cluster. First, the distribution over
haplotype combinations (i.e. diplotypes) is inferred. The most probable haplotype combinations are then
selected from this distribution and expression is inferred conditioned on the haplotypes. In the following,
we will assume the sample is diploid, but the equations and algorithms generalize to any ploidy.

The marginal distribution over diplotypes is approximated by assuming the haplotypes are identical
for all transcripts in a cluster. The motivation behind this approximation is that most clusters cover
only a small region (typically a gene) of the genome. However, this approximation can break down when
there are partial haplotypes or recombination events in the cluster. Using the transcript and haplotype
origin table provided by vg rna, the HSTs in the cluster are first grouped by their haplotype origin.
Note that since an HST can be consistent with more than one haplotype it can also belong to multiple
groups. Next, groups with the same set of HSTs are collapsed, resulting in a set of unique haplotype
groups.

Now let us denote the set of haplotype groups as H, with each group h ∈ H consisting of a set of
HSTs. The objective is to infer the distribution over diplotypes d = {h1, h2} conditioned on the set of
collapsed fragment probabilities E. The probability of a diplotype is defined as:

P (d|E) = P ({h1, h2}|E) ∝ P (h1)P (h2)
∏

(ε,p,c)∈E

(
ε+

1− ε
2

(P (p|h1) + P (p|h2))

)c
(8)

and
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P (p|h) =
1
n

∑
t∈h pt∑

k∈H
1
n

∑
t∈k pt

∝
∑
t∈h

pt (9)

where the prior probability of each haplotype group P (h) is proportional to the number of haplotypes
in the group, and n is the number of transcripts in the cluster (the factors of 1

n and 1
2 amount to an

approximation that expression is uniform across all transcripts and the two haplotypes, respectively).
This model is inspired by a similar haplotyping model used in Dindel [67].

The distribution over diplotypes is inferred by calculating P (d|E) for all pairs of haplotype groups
h ∈ H. To reduce the space of haplotype combinations that need to be evaluated, rpvg uses a branch-
and-bound-like algorithm, where diplotypes containing an improbable haplotype group are not evaluated.
Instead, the probability of all diplotypes containing an improbable haplotype group is set to 0. A
haplotype group h is labeled to be improbable if its optimal diplotype probability P ({h, ho}|E) is 1

s
times lower than the current highest evaluated probability, where s is the minimum diplotype posterior
probability threshold used in the next step in the inference. The optimal diplotype probability is defined
as

P ({h, ho}|E) ∝ P (h)
∏

(ε,p,c)∈E

(
ε+

1− ε
2

(
P (p|h) + max

ho∈H
(P (p|ho))

))c
(10)

This value serves as an upper bound on the probability of any diplotype containing h.

The expression of the HSTs in the cluster is estimated using the inferred distribution over diplotypes.
First, the set of diplotypes with a posterior probability of at least s = 10−3 is selected from the distri-
bution P (d|E). HST expression is inferred for each of the diplotypes in this set.

The following is repeated for each diplotype in the set. First, all HSTs that are consistent with at
least one of the haplotypes in the diplotype are collected. We denote this HST subset Ts ⊆ T and define
the likelihood over the relative expression values α as

L(α) =
∏

(ε,p,c)∈E

(
α0ε+

∑
t∈Ts

αtpt

)c
, (11)

where α0 is the expression value of an artificial “noise transcript” that accounts for the possibility
of mismapping. An expectation maximization (EM) algorithm is used to find the (local) maximum
likelihood estimate of the expression values. The algorithm iterates between assigning fractional fragment
counts to the HSTs and the noise transcript, and updating the expression values. This is a well known
algorithm that is used by many other transcript quantification tools [1, 3, 4]. The expression values are
initialized uniformly and the EM algorithm is run until convergence or for a maximum of 10,000 iterations.
The algorithm is considered converged if

∣∣αi − αi−1∣∣
αi

≤ 0.001, ∀α ∈ α : α ≥ 10−8, (12)

for 10 consecutive iterations, where i is the index of the current iteration. This criteria is inspired by the
one used by Kallisto [3] and Salmon [4]. For the final maximum likelihood estimate, we truncate all
the relative expression values below 10−8 to 0.

After the EM step, rpvg can optionally run a Gibbs sampling step to quantify the uncertainty in
the expression estimates. The Gibbs algorithm iteratively samples the assignment of each fragment to
a HST (or the noise transcript), and the expression values α, which are given a symmetric uniform
Dirichlet prior with a concentration parameter of one. A similar algorithm is described in Li et al. [1]
and Patro et al. [4]. First, 1000 diplotypes are sampled from P (d|E), with a Gibbs sampler being run
for each unique sampled diplotype. Each sampler is initialized on the maximum likelihood estimate from
the EM algorithm and the number of samples of expression values collected is equal to the number of
times the diplotype was sampled. This results in a total of a 1000 collected Gibbs samples of expression
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values for each cluster. In addition, we thin each Gibbs chain and only collects a sample of expression
values at every 25th Gibbs iteration. This is done to reduce autocorrelation between samples.

rpvg provides both a joint and marginal output of the inferred probabilities and expression values.
The joint output contains the inferred posterior probabilities over HST combinations (i.e. diplotypes)
and their corresponding estimated expression values. Only combinations with a probability of at least
10−8 are written to this output. The marginal output contains the haplotype probability and estimated
expression value for each HST in the pantranscriptome. The haplotype probability is calculated as the
sum of posterior probabilities over all diplotypes that include the HST. The HST expression is simi-
larly calculated as the sum of the estimated expression values over all diplotypes that include the HST,
weighted by their posterior probability. The expression of the noise transcript is aggregated across all
clusters into a single artificial transcript called “Unknown”.

Transcript quantification evaluation

We compared rpvg’s quantification accuracy against three other transcript quantification tools: Kallisto,
Salmon and RSEM. Haplotype-specific transcript indexes for Kallisto, Salmon and RSEM were
built from the HST sequence FASTA files generated by vg rna. For the real data, the 104 full-length
mitochondrial and scaffold transcripts in the GENCODE v29 annotation were added to the pantran-
scriptomes. Salmon indexing was run with duplicates kept and, on the real data, the reference genome
was given as a decoy. The Bowtie2 mapper was used in RSEM with the maximum number of align-
ments per read increased to 1,000. The transcript expression was estimated using default parameters
for all methods, except for the real data where strand-specific inference was enabled. Kallisto and
Salmon were run without bias correction. RSEM was only run on the NA12878 personal sample-
specific transcriptome and the “Europe (excl. CEU)” pantranscriptome, as it did not scale to the two
largest pantranscriptomes.

rpvg was run using default parameters and with three different types of alignments inputs: the
standard multipath alignments from vg mpmap and single-path alignments from vg map and vg mpmap.
The vg mpmap single-path alignments were generated by finding the best scoring path in the multipath
alignments using vg view. The fragment length distribution parameters estimated by vg mpmap were
given as input to rpvg when using the vg map alignments. rpvg was run with a ploidy of 2 for all read
sets, including CHM13. All HSTs with a haplotype probability below 0.8 were filtered from the rpvg
output.

The main expression results were obtained using the ENCSR000AED, replicate 1 data (see Supple-
mentary Table 4): Figure 3, Extended Data Figures 7 and 9, and Supplementary Figures 8-13. The
SRR1153470 and CHM13 read data (see Supplementary Table 4) was used to optimize the parameters
of rpvg: Supplementary Figure 14,15.

For the ENCSR000AED and SRR1153470 data, which are both NA12878 cell lines, we compared the
quantified HSTs to the NA12878’s haplotypes from the 1000GP data. We considered an HST consistent
with these haplotypes if it matched the sequence of one of the two possible NA12878 haplotype versions
of the transcript. Biopython was used to parse and compare HST FASTA sequences [68]. The haplotyp-
ing performance of each method was then estimated by comparing the number and fraction of quantified
HSTs with positive expression that were consistent.

We used transcripts per million (TPM) to measure expression. For the simulated data we re-calculated
the TPM value for all methods to ensure that there was no bias towards RSEM, which was used to
estimate the expression profile employed by vg sim to parameterize the HST expression values. The
TPM value depends on the effective transcript length, which is not calculated in the same manner for
each method. Therefore, if this is not corrected, methods that estimate the effective transcript length
more similarly to RSEM will have an advantage that does not depend on their ability to predict correct
expression values. The true fragment length distribution parameters and the effective transcript length
approach employed by rpvg (similar to Kallisto and Salmon) was used when re-calculating the TPM
values.

The method’s ability to predict the correct expression value was evaluated using the simulated data
for which the true expression is known. The true expression values were calculated from a table provided
by vg sim, which indicates the transcript of origin for each read. The simulated TPM values were cal-
culated in the same manner as described above. We used both Spearman correlation and mean absolute
relative difference (MARD) to quantify concordance between estimated and true expression.
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The CHM13 cell line is effectively haploid, so only a single HST is expected to exist for each tran-
script. We used this feature of the data to measure the haplotype inference performance of each method
on the T2T CHM13 data. We defined each HST as either major or minor. Major HSTs were defined
as the highest expressed haplotype for each transcript; the rest were defined as minor. The fraction of
expression from minor HSTs is a lower bound on the fraction of incorrectly inferred transcript expres-
sion. Accordingly, we used the number of major and minor transcripts that each method predicted to
be expressed to compare their haplotype inference performance.

To evaluate allele-specific expression (ASE) estimation, we converted the simulated and estimated HST
expression values to allele-specific read counts for the NA12878 variants. These were calculated by di-
viding the expression values with the corresponding transcript length and multiplying by twice the read
length (to account for paired-end sequencing). In addition, we inferred allele-specific read counts for the
same NA12878 variants using the WASP [19] pipeline with STAR alignments. Using both simulated and
inferred allele-specific read counts, we next labeled heterozygotic variants with at least one read in the
simulated data as showing significant ASE using a two-sided binomial test with p-values adjusted using
the Benjamini-Hochberg procedure and a False Discovery Rate (FDR) α = 0.1. We took the hypothesis
tests of the true simulated read counts to be the truth labels. The sets of labeled heterozygotic variants
were lastly compared between simulation and methods to produce ASE true and false positive rates.

We assessed the rpvg’s robustness to admixture on real data using an indirect proxy. We applied
the mpmap-rpvg pipeline to two samples from the same study [30]: one of European American ancestry
(SRR12765534) and the other of African American ancestry (SRR12765650). We expect the African
American individual to be more highly admixed. We then measured the proportion of marginal posterior
expression assigned to the two most highly-expressed HSTs by summing over diplotypes. This is a lower
bound on error, since for the majority of genes without a copy number alteration, there can only be two
copies of the gene. We then computed the proportion of transcripts for which the two highest-expressed
HSTs accounted for at least a given threshold proportion of the total expression. We repeated this
analysis for different threshold values and stratified the results by minimum transcript expression.

HLA pantranscriptome construction and typing

We evaluated the vg mpmap-rpvg pipeline’s ability to type HLA alleles. To start, we constructed a set
of HLA haplotypes using gene allele sequences from the IPD-IMGT/HLA database (release 3.43.0) [32].
Many of the alleles in the database are partial and do not cover the corresponding entire gene, with a
large fraction of them only covering the coding sequence or just the antigen recognition site (ARS) exons.
Since haplotypes covering whole genes including introns are needed to construct a pantranscriptome using
the vg rna pipeline, we first imputed the missing coding sequence with the closest complete allele for
all the partial alleles using hlaseqlib [23].

Next we used the reference to extend the alleles into full haplotypes. We padded each allele with
10,000 reference bases on both sides using the corresponding genes coding start and end location in the
GENCODE v29 transcript annotation to ensure that the allele sequences would align to the correct genes.
The padded HLA alleles were then aligned to a spliced pangenome graph using vg mpmap in long read,
single-path mode. The resulting alignments were projected to the reference genome using vg surject
and used to determine the location of splice-junctions in the allele sequences. The reference sequences
of the corresponding introns were added to the allele to produce haplotype sequences covering the whole
gene. The intron sequences were only added for junctions that were within 2 bases of an annotated
splice-junction to ensure that genomic deletions were not mistakenly interpreted as splice-junctions.

These haplotypes were then used to create HLA pantranscriptomes. First, the haplotypes were
mapped against the same spliced variation graph using vg mpmap in long read, single-path mode. The
resulting alignments were used to update the graph with the variation in the haplotypes using vg aug-
ment. Using these haplotypes and vg rna, we created two HLA pantranscriptomes (see Supplementary
Table 3): “HLA (main)” consisting of five of the main and most variable HLA genes and “HLA (10)” con-
sisting of 10 HLA genes of which all had at least a 100 haplotypes. Null alleles that have been shown not
to be expressed were not included in the construction of the pantranscriptomes. In addition, transcript
HLA-B-258 was also not used as it was covering both HLA-B and HLA-C. This transcript have been
removed in later versions of the GENCODE annotation. “HLA (main)” was built using the “1000GP
(all, excl. CEU)” spliced variation graph, whereas “HLA (10)” was built using the “1000GP (all)” graph.
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Using the “HLA (main)” pantranscriptome, we first optimized the default parameters of rpvg for
HLA typing using six RNA-seq samples from the Geuvadis data set: NA07051, NA11832, NA11840,
NA11930, NA12287 & NA12775 [34] (see Supplementary Table 4). All samples were from the CEU
population, which was excluded in the variation graph construction. We compared the inferred alleles
to the typing results from Gourraud et al. [35] and Abi-Rached et al. [36], both of which are available
on the 1000GP homepage (https://www.internationalgenome.org/category/hla/). Similar to the
quantification evaluation, HSTs with a haplotype probability below 0.8 were filtered before evaluation.
An expressed HST was regarded as correct if its corresponding HLA allele matched one of the two stud-
ies. When evaluating diplotyping performance both HLA alleles needed to be correct and also match
both ground truth alleles in the same study. To improve accuracy and speed, we adjusted the maximum
number of standard deviations from the mean allowed for the fragment length, the maximum allowed
score difference to the best alignment and the threshold for filtering alignments compared to the optimal
score.

Next, we ran rpvg using the optimized parameters on two different sets of RNA-seq data: ten
randomly selected CEU samples from Geuvadis that were not used in the optimization and 3 parent-
child trios from the 1000GP sequenced as part of the Human Genome Structural Variation Consortium
(HGSVC) [33] (see Supplementary Table 4). The Geuvadis and HGSVC data sets were run on the “HLA
(main)” and “HLA (10)” pantranscriptomes, respectively. For the Geuvadis data, we used the same two
studies as described above to determine typing accuracy, whereas for the HGSVC data trio concordance
was used. For the Geuvadis data sets, typing accuracy for three different levels of HLA resolution were
evaluated: 1 field, 2 field and G groups. G groups are defined as alleles that have identical nucleotide
sequences across the ARS exons and were used to distinguish ambiguous alleles in the Gourraud et al.
study.

Variant genotyping and effect prediction

We used RNA-seq data from five randomly selected tissues from the same individual to estimate allele
concordance across data sets. We also demonstrate the ability to genotype variants with potential
effects on functional elements. All five data sets are available from the ENCODE project [28, 29] (see
Supplementary Table 4). For each RNA-seq data set, all technical replicates were combined and the vg
mpmap-rpvg pipeline was run using the “Whole” pantranscriptome (see Supplementary Table 3). The
pipeline was run with default parameters except for rpvg, for which it was specified that the RNA-seq
data was strand-specific.

The rpvg HST expression estimates were converted to variant allele-based expression values for the
downstream analyses. To do this, all exonic variants were first annotated with the transcripts overlapping
them using bcftools. These annotated variants were then used together with the original haplotypes
to translate each HST to its corresponding set of variant alleles. Using this translation, we computed
the expression of each variant allele as the sum of the expression over HSTs that contained the allele.
The haplotype probability values were similarly computed as a sum over the HSTs that contained the
allele. However, for diplotypes where the alleles were called homozygous, only the probability of one
of the haplotypes was added. This ensured that the corresponding alleles were only counted once per
diplotype sample similar to the haplotype probabilities.

Using these results for each of the five tissues, we estimated the number of expressed variant alleles
and the allele concordance between the tissues. For this analysis, we filtered all alleles with a probability
below 0.8. An allele was defined to be expressed if it had nonzero expression in at least one tissue,
and a variant was defined as expressed if at least one of its alleles, including the reference, had nonzero
expression. Next, we estimated the consistency in whether an allele was expressed or not between tissues.
To account for alternative expression and splicing across tissues, we only considered tissues for which the
corresponding variant was expressed. An allele was then said to be concordant across tissues if it was
either consistently expressed or consistently not expressed across all tissues that had the corresponding
variant expressed (see Extended Data Figure 10). Variants that were only expressed in a single tissue
were excluded for the concordance estimation. Since both alleles might not have been sequenced by
chance for lowly expressed exons, we repeated the analyses for different thresholds of variant expression.
Finally, the homopolymer length of each variant was calculated by counting the maximum number of
consecutive identical bases in each direction from the variant start site.

Next, we predicted the effect of the expressed variants on functional elements, such as transcript and
protein sequences. This was done using the Ensembl Variant Effect Predictor (VEP) toolset [38]. VEP
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was run on all expressed variant alleles with a probability of at least 0.8 and a variant expression value of
at least 5 TPM. The reason for the latter threshold was that we wanted to show the effects for exons with
a non-negligible expression and also minimize genotyping error from allelic dropout. The GENCODE
v29 transcript annotation was used for VEP with conversion to minimal variant representation enabled.
Predicted consequences that did not have an impact rating of moderate or high were filtered. For variants
with both moderate and high impact consequences, only the high impact ones were shown.

Demonstration of analyzing genomic imprinting

We obtained RNA-seq data sets from samples NA11832, NA11930, NA12775, and NA12889 from the
Geuvadis data set [34] and ran them through the vg mpmap-rpvg pipeline (see Supplementary Table 4).
Each sample had two accessions, which were combined into one data set. We also obtained and analyzed
data from sample NA12878 from the ENCODE Project (ENCSR000AED replicate 1) [28, 29]. These
samples are all unrelated. All parameters used were identical to those used in the real data evaluations
of vg mpmap and the only difference for rpvg was that Gibbs sampling was enabled. The Geuvadis
samples were used to troubleshoot the analysis and identify potentially interesting genes to highlight
in the demonstration. The analyses were then repeated on the ENCODE sample. This design reduces
the risk of identifying noise as signal. Only the results of the final analysis are the ones reported in the
Results section.

To confirm that the pipeline could detect previously known ASE, we looked for signatures of im-
printing in the 20 genes with the most statistically significant parent-of-origin ASE in the study by Zink,
et al. (from Supplementary Table 6) [17]. One of these genes, RP11-69E11.4, had since been removed
from the GENCODE database, so we excluded it from the analysis. Zink’s, et al. study analyzed ASE
on individual SNVs. To make our results comparable to theirs, we translated rpvg’s HST-based ex-
pression quantification into a corresponding variant allele-based expression quantification using the same
approach as described above. The expression of each allele was computed as the sum of the expression
of each HST that contained the allele.

We decided to highlight the haplotype-specific expression of the NAA60 gene in depth because it
consistently showed monoallelic expression for both haplotypes across different isoforms in the initial
exploratory data sets. To identify the haplotype of origin for different HSTs, we compared the variants
associated with each HST (using the table from vg rna) to the sample’s haplotypes from the 1000GP
VCF. Equal-tailed credible intervals were approximated using rpvg’s Gibbs sampling method.

Data availability

All data used in this study are available at https://github.com/jonassibbesen/vgrna-project-paper.
Data that are available from public repositories are provided as web links only. Accession numbers are
included when relevant, and accession numbers for sequencing data are also listed in Supplementary
Table 4. The repository also includes all spliced pangenome graphs and pantranscriptome haplotype-
specific transcript sets, which may be freely used in other projects. Mapping benchmark tables and
haplotype-specific expression estimates are archived in Zenodo [69].

Code availability

The source code for vg and rpvg is publicly available at https://github.com/vgteam/vg [70] and
https://github.com/jonassibbesen/rpvg [71] respectively. Both tools are licensed under the MIT
License. A full list of the versions of all computational tools used is available in Supplementary
Table 6. All bash scripts with exact command-lines used to generate the results are available at
https://github.com/jonassibbesen/vgrna-project-paper [72]. This repository also includes the
custom C++, Python, and R scripts used for analysis and plotting, together with references to Docker
containers and log files from the analyses.
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Main and extended data figures for haplotype-aware

pantranscriptome analyses using spliced pangenome graphs

Main figures
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Figure 1: Diagram of haplotype-aware transcriptome analysis pipeline
The three major steps in the pipeline. a vg rna adds splice junctions derived from a transcript anno-
tation to a pangenome graph to create a spliced pangenome graph. It simultaneously creates a pantran-
scriptome composed of a set of haplotype-specific transcripts (HSTs) using a panel of known haplotypes
(not shown). b vg mpmap aligns RNA-seq reads to subgraphs of the spliced pangenome graph repre-
sented as a multipath alignment. c rpvg uses the alignments from mpmap to estimate the expression
of the HSTs in the pantranscriptome.
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Figure 2: Mapping benchmark using RNA-seq data from NA12878
RNA-seq mapping results comparing vg mpmap and three other methods using simulated and real
Illumina data. a Mapping error and recall for different mapping quality thresholds (colored numbers)
using simulated data. Reads are considered correctly mapped if one of their multi-alignments covers 90%
of the true reference sequence alignment. b Mean fraction of mapped reads supporting the non-reference
allele for variants of different lengths in simulated data. Negative lengths correspond to deletions and
positive to insertions. The colored numbers are the mean fraction for SNVs. c Mapping rate using real
data. d Pearson correlation between Illumina and Iso-Seq exon coverage using real data as a function
of mapping quality threshold. e Number of read pairs mapped per second per thread using real data on
an AWS m5.4xlarge instance. f Maximum memory usage for mapping in gigabytes using real data.
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Figure 3: Haplotype-specific transcript quantification benchmark using RNA-seq data from
NA12878
Haplotype-specific transcript (HST) quantification results comparing rpvg against three other meth-
ods using simulated and real Illumina data. It should be noted that the other methods were primarily
designed for reference transcript quantification and not millions of HSTs. For details on the pantran-
scriptomes used see Supplementary Table 3. a Recall and precision of whether a transcript is correctly
assigned nonzero expression for different expression value thresholds in transcripts per million (TPM;
colored numbers for “Whole (excl. CEU)”) using simulated data. b Mean absolute relative expression dif-
ference (MARD) between simulated and estimated expression (in TPM) for different pantranscriptomes
using simulated data. MARD was calculated using either all HSTs in the pantranscriptome (solid bars) or
using only the NA12878 HSTs (shaded bars). “Personal (NA12878)” is a sample-specific transcriptome.
c Number of expressed transcripts from NA12878 haplotypes against the number from non-NA12878
haplotypes for different expression value thresholds (colored numbers) using real data. d Fraction of
transcript expression (in TPM) assigned to NA12878 haplotypes for different pantranscriptomes using
simulated (left) and real (right) data.
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Figure 4: HLA typing and allele concordance evaluation using RNA-seq data from trios
and different tissues
a Mendelian concordance of HLA typing results using Illumina data from 3 trios and a pantranscriptome
containing ten HLA genes. Results are summarized by the number of transcripts (left) and proportion of
expression in transcripts per million (TPM) (right) predicted to be expressed for each child and gene. The
concordance is labeled unknown when a transcript is not expressed in one of the parents. b & c Variant
genotyping analyses using Illumina data from 5 tissues from the same individual and a pantranscriptome
containing the 1000 Genomes Project haplotypes. b Number of variant alleles predicted to be expressed
in at least one (solid lines) or two tissues (dashed lines) for different expression thresholds. c Fraction of
alleles predicted to be concordant across tissues for alleles in all expressed exons (including unexpressed
alleles of expressed variants; top) and alleles expressed in at least two tissues (bottom). The results
are shown for different variant expression thresholds and homopolymer lengths. See Extended Data
Figure 10 for a graphical description of concordance.

a b

Figure 5: Exploratory demonstration of analyzing genomic imprinting using data from
NA12878 lymphoblastoid cell line
Results of the vg mpmap-rpvg pipeline on RNA-seq data from a lymphoblastoid cell line from the
ENCODE Project, focusing on genes previously identified as imprinted in blood. a The proportion of
expression attributed to the higher-expressed allele of heterozygous variants among the 20 most signifi-
cantly imprinted genes from Zink’s, et al. study [17] compared to all genes. The axes are scaled so that
both histograms have the same area. b Isoform-level haplotype-specific expression in NAA60, which
was identified as imprinted but not as having isoform-dependent reversals in the polarity of imprinting
in genome-wide studies. Isoforms with expression less than 0.25 transcripts per million (TPM) are not
shown. Intervals indicate equal-tailed 90% credible intervals computed from 1000 Gibbs samples.
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Extended data figures
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b
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Extended Data Figure 1: Diagram of a multipath alignment
A diagrammatic comparison between the multipath alignment output of vg mpmap and the single-path
alignment output of other graph aligners (such as vg map). a A read and b a sequence graph, which
have been colored to indicate which parts of the read could plausibly align to which parts of the graph.
c A single-path alignment. The read sequence is aligned to one path from the graph. d A multipath
alignment. The alignment can split and rejoin to express the alignment uncertainty to different paths in
the graph.
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Extended Data Figure 2: Mapping benchmark for primary alignments using RNA-seq data
from NA12878
Mapping error and recall for vg mpmap and three other methods using simulated Illumina data. Colored
numbers indicate different mapping quality thresholds. Reads are considered correctly mapped if their
primary alignments cover 90% of the true reference sequence alignment.
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Extended Data Figure 3: Mapping benchmark stratified by edit distance using RNA-seq
data from NA12878
Mapping recall (a) and error (b) for vg mpmap and three other methods using simulated Illumina data
as a function of edit distance. Unique alignments are primary alignments with a mapping quality of
at least 30. Reads are considered correctly mapped if their alignments cover 90% of the true reference
sequence alignment.
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Extended Data Figure 4: Mapping benchmark stratified by non-reference variants using
RNA-seq data from NA12878
Mapping error and recall for vg mpmap and three other methods using simulated Illumina data. Colored
numbers indicate different mapping quality thresholds. Reads are considered correctly mapped if one
of their multi-alignments covers 90% of the true reference sequence alignment. Reads are stratified into
those that a contain no variants, b contain no insertions or deletions (indels) and one single nucleotide
variant (SNV), c contain no indels and two SNVs, d contain no indels and three SNVs, e contain no
indels and more than three SNVs, and f contain any indels.
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Extended Data Figure 5: Allelic bias benchmark using RNA-seq data from NA12878
Allelic mapping bias for vg mpmap and four other methods using simulated Illumina RNA-seq reads,
which were simulated without allelic bias. STAR was used as the aligner for the WASP pipeline.
The WASP (STAR) pipeline were provided the 1000GP NA12878 haplotypes as input. The number of
variant sites with coverage at least 20 is plotted against the observed rate of false positive hypothesis tests
of allelic skew (two-sided binomial test, α = 0.01). Coverage was calculated from primary alignments
with a mapping quality value of at least 30. The bottom row shows a zoomed view without WASP
(STAR).
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Extended Data Figure 6: Haplotype-specific transcript uniqueness in a 1000 Genomes
Project pantranscriptome
The fraction of HSTs that are unique to each of the 2504 samples in the 1000 Genomes Project (1000GP)
when compared to different subsets of samples in the 1000GP. Left box plots show the fraction unique
when comparing to all other samples, middle box plots show the fraction unique when comparing to
all other samples excluding the samples’ population, and right box plots show the fraction unique when
comparing to all other samples excluding the samples’ super population. AFR: African (n = 661), AMR:
Admixed American (n = 347), EAS: East Asian (n = 504), EUR: European (n = 503), SAS: South Asian
(n = 489). The horizontal line in the boxes corresponds to the median, and the box bounds (inter-quartile
range) to the 25th and 75th percentile. The whiskers extend to the minimum and maximum value, but
no further than 1.5 times the inter-quartile range from the box bounds. Values outside the whiskers are
displayed as points.
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Extended Data Figure 7: Allele-specific expression benchmark using RNA-seq data from
NA12878
Allele-specific expression (ASE) results comparing the mpmap-rpvg pipeline against WASP (with
STAR as the aligner) using simulated data. Shows true positive rate and false positive rate of ASE
significance for different thresholds of variant read count in the simulated data. Variants were defined as
showing significant ASE using a two-sided binomial test of the allele-specific read counts with p-values
adjusted using the Benjamini-Hochberg procedure and a False Discovery Rate (FDR) α = 0.1. All
heterozygotic NA12878 variants from the 1000 Genomes Project (1000GP) with at least one read in
the simulated data were used for the benchmark. For the mpmap-rpvg pipeline, we used the personal
transcriptome generated from the 1000GP NA12878 haplotypes (Supplementary Table 3). WASP was
provided the 1000GP NA12878 haplotypes as input. Note, we only used WASP for bias correction and
allele-specific read counting, and not its downstream inference method.

Extended Data Figure 8: Proportion of marginal expression attributed to ≤ 2 HSTs of a
transcript
For an African American individual (left) and a European American individual (right), the proportion of
transcripts for which the marginal expression has at least X proportion assigned to ≤ 2 HSTs is shown for
various values of X. Colors correspond to different thresholds on the proportion of marginal expression.
A pantranscriptome generated from all 1000 Genomes Project haplotypes were used for the evaluation
(“Whole” in Supplementary Table 3). Transcripts with fewer than 1 inferred read are omitted.
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Extended Data Figure 9: Multipath alignment benchmark using RNA-seq data from
NA12878
Haplotype-specific transcript (HST) quantification results comparing rpvg with single-path and multi-
path alignments from vg mpmap and vg map as input using simulated and real Illumina data. For details
on the pantranscriptomes used see Supplementary Table 3. The vg mpmap single-path alignments were
created by finding the best scoring path in each multipath alignment. a Recall and precision of whether
a transcript is correctly assigned nonzero expression for different expression value thresholds (colored
numbers for “Whole (excl. CEU)” pantranscriptome) using simulated data. Expression is measured in
transcripts per million (TPM). b Mean absolute relative expression difference (MARD) between simu-
lated and estimated expression (in TPM) for different pantranscriptomes using simulated data. MARD
was calculated using either all HSTs in the pantranscriptome (solid bars) or using only the NA12878
HSTs (shaded bars). c Number of expressed transcripts from NA12878 haplotypes shown against the
number from non-NA12878 haplotypes for different expression value thresholds (colored numbers) using
real data. d Fraction of transcript expression (in TPM) assigned to NA12878 haplotypes for different
pantranscriptomes using simulated (left) and real (right) data.
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Extended Data Figure 10: Examples of allele expression concordance across tissues
A set of examples showing allele concordance across tissues using two different variant expression thresh-
olds. Only three tissues are used in the example for simplicity. Blue and orange bars correspond to
reference and alternative allele expression, respectively. Variant expression is calculated as the sum of
the two alleles. An allele is defined as concordant if it is either consistently expressed or consistently not
expressed across all tissues for which the corresponding variant is expressed. Using this definition all
alternative alleles except for the allele in variant 2 are defined as concordant when the minimum variant
expression threshold is set to 0. If the variant expression threshold is increased to 3, the alternative
allele in variant 2 becomes concordant since tissue 2 will be filtered for this variant. Moreover, variant 4
will be excluded due to tissue 3 being filtered since at least two expressed tissues are needed to compute
concordance.
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