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Abstract
Background Utilization of ICP monitors for pediatric patients is low and varies between centers. We hypothesized that in 
more severely injured patients (GCS 3–4), there would be a decreased mortality associated with invasive monitoring devices.
Methods The pediatric Trauma Quality Improvement Program (TQIP) was queried for patients aged ≤ 16 years meeting 
criteria for invasive monitors. Our primary outcome was mortality. Patients with ICP monitoring were compared to those 
without. A logistic regression was used to examine the risk of mortality.
Results Of 3,808 patients, 685 (18.0%) underwent ICP monitoring. ICP monitors were associated with increased risk of 
mortality (OR 1.82, CI 1.36–2.44, p < 0.001). A secondary analysis including type of invasive ICP monitor and dividing 
GCS into 3 categories revealed both intraventricular drain (OR 1.89, CI 1.3–2.7, p = 0.001) and intraparenchymal pressure 
monitor (OR 1.86, CI 1.32–2.6, p < 0.001) to be independently associated with an increased likelihood of mortality regard-
less of GCS, while intraparenchymal oxygen monitoring was not (OR 0.47, CI 0.11–2.05, p = 0.316). The strongest effect 
was seen in those patients with a GCS of 5–6.
Conclusion ICP monitors are an independent risk factor for mortality, particularly with intraventricular drains and intra-
parenchymal monitors in patients with a GCS 5–6.

Keywords Pediatric trauma · Traumatic brain injury (TBI) · Intracranial pressure (ICP) monitor · Intracranial hypertension

Introduction

In 2013 alone, there were 640,000 emergency department 
(ED) visits and 18,000 hospital stays related to traumatic 
brain injury (TBI) in children [1]. This includes a spectrum 
of injury severity from concussion to coma/death, but mor-
tality for severe TBI can be as high as 20% [2, 3] and up to 
40% in those children who present with a Glasgow Coma 

Score (GCS) of 3 [4]. Early studies linking elevated intracra-
nial pressure (ICP) with secondary injury and worse overall 
outcomes in children set the precedent for targeting intensive 
care unit (ICU) and surgical interventions towards reduction 
of intracranial hypertension [5].

In 2007, the Brain Trauma Foundation (BTF) Guide-
lines for TBI made specific recommendations regarding 
the placement of ICP monitors in adults with severe TBI 
(i.e., all patients with a GCS 3–8 and computed tomogra-
phy [CT] evidence of TBI) [6]. Even with strong recom-
mendations for invasive ICP monitoring in adults, adop-
tion among pediatric trauma centers is highly variable and 
reported anywhere from 7 to 70% [2, 3, 7-16]. Despite a 
logical connection between ICP monitoring and improved 
outcomes, there is yet to be definitive evidence (adult 
or pediatric) which demonstrates improved survival with 
invasive monitoring techniques. The most recent word-
ing of the adult BTF guidelines suggests only "manage-
ment of severe TBI patients using information from ICP 
monitoring,” and specific indications for the placement 
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of ICP monitors are absent from the most recent adult and 
pediatric BTF guidelines [17, 18].

There is currently no consensus regarding the use of 
invasive ICP monitors in pediatric patients with TBI. We 
sought to provide a contemporary analysis of severe TBI 
in children and potentially identify a subset of patients 
that may benefit from invasive ICP monitoring. A study 
examining the National Trauma Data Bank (NTDB) using 
data from 2001–2006 demonstrated that while there was 
no overall difference in mortality for children with ICP 
monitors, patients with an initial GCS of 3 actually had 
a survival benefit with their placement [8]. However, 
this study evaluated the use of all the various ICP moni-
tors, including intraparenchymal pressure monitors and 
ventricular drain monitors, and did not differentiate if 
there was a difference in mortality among the various ICP 
monitoring devices. We sought to determine the associa-
tion between ICP monitors and invasive cerebral oxygen 
tension monitors and mortality in pediatric TBI patients, 
stratifying by device and GCS. We hypothesized that in 
more severely injured patients (GCS 3–4), there would be 
a decreased mortality associated with invasive monitor-
ing devices.

Methods

Data source and cohort

This study was deemed exempt by the institutional review 
board, as it utilized a national deidentified database. The 
Pediatric Trauma Quality Improvement Program (TQIP) 
database, which collects a variety of patient and insti-
tutional variables for adults and children admitted to 
American College of Surgeons (ACS) trauma centers, was 
queried for trauma patents ≤ 16 years old meeting histori-
cal BTF criteria for invasive ICP monitoring (presence 
of TBI and GCS ≤ 8) between 2014 and 2016. TBI was 
defined by international classifications of disease ver-
sion-9 (ICD-9) event codes: 800–801.96, 803–804.99, and 
850–854.19. Exclusion criteria included death within 48 h 
of admission and an abbreviated injury scale (AIS) < 3 for 
the head. Information regarding the type of invasive mon-
itoring was collected on all patients with AIS grade ≥ 1 
for the head. Pediatric TQIP follows National Trauma 
Data Standard Data Dictionary and collects the following 
field values for cerebral monitoring: (1) intraventricular 
drain/catheter (e.g., ventriculostomy, external ventricu-
lar drain); (2) intraparenchymal pressure monitor (e.g., 
 Camino® bolt, subarachnoid bolt, intraparenchymal cath-
eter); (3) intraparenchymal oxygen monitor (e.g.,  Licox®).

Patient demographics, characteristics, 
and outcomes

The patient demographic and characteristic information 
collected included age, race, gender, mechanism of injury, 
injury severity score (ISS)/AIS, and comorbid conditions. 
Our primary outcome was mortality. Secondary outcomes 
evaluated included length of stay (LOS), intensive care 
unit (ICU) LOS, ventilator days, and complications. The 
complications included acute kidney injury (AKI), acute 
respiratory distress syndrome (ARDS), cardiac arrest, 
deep venous thrombosis (DVT), pneumonia, pulmonary 
embolism, urinary tract infection (UTI), and severe sepsis. 
We compared primary and secondary outcomes between 
patients who underwent ICP monitoring and those without 
ICP monitoring. All missing data points were not imputed 
but treated as missing data.

Statistical analysis

Categorical data were reported as percentages, and continu-
ous data were reported as medians with interquartile range 
(IQR). Mann–Whitney U test was used to compare continu-
ous variables and Chi-square test was used to compare cat-
egorical variables for bivariate analysis. Odds of mortality 
was determined using a stepwise, hierarchical multivari-
able logistic regression model. All variables were eligible 
for inclusion in the multivariable model. These were first 
measured using a univariate logistic regression model and 
variables with a p < 0.2 were included in a multivariable 
logistic regression model. We then performed a stepwise, 
hierarchical regression to select the model with the best fit 
for the outcome of interest—mortality. Since we included 
a binary outcome of mortality, we chose to use the Hos-
mer–Lemeshow test to evaluate our model. This test pro-
duces a Chi-square Hosmer–Lemeshow statistic and a p 
value, which, if greater than 0.05, suggests good fit. We did 
find that our models based on the Hosmer–Lemeshow test 
had good fit with a Hosmer–Lemeshow Chi-square statis-
tic which was 2.94, with a p value = 0.44. Additionally, the 
Nagelkerke R square was 0.59 for the model. A secondary 
multivariable logistic regression analysis was performed to 
determine odds of mortality as stratified by type of inva-
sive monitoring device (intraparenchymal pressure monitors 
vs. intraventricular monitors vs. oxygen tension monitors). 
This was then repeated with an additional stratification by 
a tripartite subdivision of GCS (3–4 vs. 5–6 vs. 7–8). The 
reference group for these analyses included patients with 
no invasive monitoring device. The risk of mortality was 
reported with odds ratio (OR) and 95% confidence inter-
val (CI). Statistical significance was defined as p < 0.05. All 
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statistical analyses were performed with IBM SPSS Statis-
tics for Windows, Version 24 (Armonk, NY: IBM Corp).

Results

Baseline characteristics/unadjusted outcomes

We identified 3,808 pediatric patients with TBI who met 
inclusion criteria. Of these patients, only 685 (18.0%) had 
invasive ICP monitoring. There were 454 (66.3%) with 
an intraparenchymal pressure monitor, 319 (46.6%) with 
an intraventricular drain, and 31 (4.5%) with an intra-
parenchymal oxygen monitor. There was some overlap 
between these categories as 30.7% of patients with an 
intraventricular drain also had an intraparenchymal pres-
sure monitor, and 21.6% of patients with an intraparen-
chymal pressure monitor had an intraventricular drain. On 
the other hand, < 5% of either intraventricular drains or 
intraparenchymal pressure monitors had an oxygen moni-
tor. Finally, most patients with an intraparenchymal oxy-
gen monitor had some other form of monitoring device: 
32.3% had an intraventricular drain and 67.7% of patients 
had a pressure monitor.

Overall, most patients were male (62.7%) with a 
median age of 5 years (IQR 11), though infants < 1 year 
of age made up the largest portion of the study population 
(23.4%). The most common mechanisms of injury were 
fall (33.2%) and motor vehicle collision (26.3%).

Patients who underwent ICP monitoring were older (8 
vs. 4 years, p < 0.001) and had a higher median ISS (26 
vs. 16, p < 0.001) than those that did not have invasive 
monitoring. These patients were also more likely to have 
severe concurrent thoracoabdominal injuries as indicated 
by a higher percentage of AIS grade of > 3 (Table 1). 
While pedestrian injuries, gunshot wounds, and motor 
vehicle collisions were all more common in patients with 
invasive ICP monitoring, there was a significantly higher 
incidence of falls in those without (37.8% vs. 12.1%, 
p < 0.001, Table 1).

The unadjusted outcomes were worse in nearly all 
examined categories for those patients with ICP moni-
toring including longer LOS (19 vs. 4 days, p < 0.001), 
longer ICU LOS (13 vs. 2 days, p < 0.001), and more 
ventilator days (9 vs. 1, p < 0.001). Similarly, all exam-
ined complications, except for pulmonary embolism 
(p = 0.095), were increased in the ICP monitoring group; 
all p < 0.001 (Table 2). The unadjusted incidence of mor-
tality was three times higher in patients with invasive ICP 
monitoring compared to those without ICP monitoring 
(15.9% vs. 5.3%, p < 0.001).

Multivariable logistic regression for odds 
of mortality

After initial comparison, a selection of bivariate variables 
were included in a multivariable logistic regression model: 
presence of an ICP monitor, ISS ≥ 25, spine injury, pneu-
monia, severe sepsis, and AKI. Severe AIS-Head and GCS 
motor ≤ 3 were also included in the model because of their 
independent association with mortality in TBI [19]. While 
ISS ≥ 25 (OR 10.4, CI 7.15–15.12, p < 0.001) and AKI (OR 
6.93, CI 1.68–28.56, p = 0.007) had the highest association 
with mortality in our model, the presence of an ICP monitor 
was an independent risk factor for mortality (OR 1.82, CI 
1.36–2.44, p < 0.001, Table 3).

We then performed a secondary analysis by including 
type of invasive ICP monitor and dividing GCS into three 
categories (GCS 3–4 vs. 5–6 vs. 7–8) with the initial mul-
tivariable logistic regression model. Both intraventricular 
drain (OR 1.89, CI 1.3–2.7, p = 0.001, Table 4) and intra-
parenchymal pressure monitor (OR 1.86, CI 1.32–2.6, 
p < 0.001, Table 4) were independently associated with an 
increased likelihood of mortality regardless of GCS, while 

Table 1  Demographics of pediatric trauma patients with and without 
ICP monitors

ICP intracranial pressure, ISS injury severity score, IQR interquartile 
range, COPD chronic obstructive pulmonary disease, AIS abbreviated 
injury scale, GSW gunshot wound, MVC motor vehicle collision

Characteristics ICP monitor − ICP monitor + p value
(n = 3123) (n = 685)

Age, year, median (IQR) 4.0 (11) 8.0 (10) < 0.001
Male, n (%) 1929 (61.8%) 459 (67.0%) 0.010
Race, n (%)
White 1848 (59.2%) 385 (56.2%) 0.153
Black 499 (21.3%) 161 (29.5%) < 0.001
Hispanic 591 (18.9%) 117 (17.1%) 0.261
Asian 92 (4.7%) 16 (4.0%) 0.513
ISS, median (IQR) 16.0 (15) 26.0 (13) < 0.001
Comorbidities, n (%)
Diabetes 6 (0.2%) 2 (0.1%) 0.605
COPD 77 (2.5%) 9 (1.3%) 0.066
AIS (grade > 3), n (%)
Thorax 184 (5.9%) 92 (13.4%) < 0.001
Abdomen 71 (2.3%) 34 (5.0%) < 0.001
Mechanism of injury, n (%)
Bicyclist 135 (4.3%) 31 (4.5%) 0.814
Pedestrian 204 (6.5%) 92 (13.4%) < 0.001
Stab 7 (0.2%) 3 (0.4%) 0.322
GSW 49 (1.6%) 37 (5.4%) < 0.001
Fall 1181 (37.8%) 83 (12.1%) < 0.001
MVC 741 (23.7%) 259 (37.8%) < 0.001
Suicide attempt 21 (0.7%) 10 (1.5%) 0.038
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intraparenchymal oxygen monitoring was not (OR 0.47, 
CI 0.11–2.05, p = 0.31, Table 4). When stratifying the sub-
groups of ICP monitor device type by GCS score, patients 
with GCS 5–6 were associated with a statistically significant 
increase in odds of mortality (Table 4).

Discussion

We reported that the utilization of invasive intracranial 
monitoring among pediatric patients with severe TBI was 
around 18%. Patients who underwent invasive monitoring 
were older, had more severe injuries, and were more likely 

to have a non-fall mechanism of injury. Invasive monitoring 
patients also had a higher incidence of both in-hospital mor-
tality and in-hospital complications (AKI, ARDS, cardiac 
arrest, DVT, pneumonia, UTI, severe sepsis). The use of an 
ICP monitor was an independent risk factor for mortality. 
Specifically, intraparenchymal pressure monitors and intra-
ventricular drains/monitors were independently associated 
with an increased risk of mortality, while intraparenchymal 

Table 2  Clinical outcomes in 
pediatric trauma patients with 
and without ICP monitors

LOS length of stay, ICU intensive care unit, ARDS acute respiratory distress syndrome, CPR cardiopulmo-
nary resuscitation, DVT deep vein thrombosis, UTI urinary tract infection

Outcome ICP monitor − 
(n = 3123)

ICP monitor + (n = 685) p value

LOS, days, median (IQR) 4.0 (7) 19.0 (18) < 0.001
ICU, days, median (IQR) 2.0 (6) 13.0 (11) < 0.001
Ventilator, days, median (IQR) 1.0 (4) 9.0 (9) < 0.001
Complications, n (%)
AKI 2 (0.1%) 7 (1.0%) < 0.001
ARDS 17 (0.5%) 19 (2.8%) < 0.001
Cardiac arrest with CPR 42 (1.3%) 24 (3.5%) < 0.001
DVT 29 (0.9%) 33 (4.8%) < 0.001
Pneumonia 71 (2.3%) 99 (14.5%) < 0.001
Pulmonary embolism 2 (0.1%) 2 (0.3%) 0.095
UTI 22 (0.7%) 31 (4.5%) < 0.001
Severe sepsis 5 (0.2%) 10 (1.5%) < 0.001
Craniotomy/craniectomy 298 (9.5%) 250 (36.5%) < 0.001
Mortality, n (%) 164 (5.3%) 109 (15.9%) < 0.001

Table 3  Multivariable logistic regression analysis for risk of mortal-
ity in pediatric traumatic brain injury patients

ICP intracranial pressure, ISS Injury Severity Score, AIS Abbreviated 
Injury Scale, GCS Glasgow Coma Scale, MVC Motor Vehicle Colli-
sion, GSW gunshot wound

Risk factor OR CI p value

ICP monitor 1.82 1.36–2.44 < 0.001
ISS ≥ 25 10.4 7.15–15.12 < 0.001
AIS-Head ≥ 4 2.05 1.19–3.54 0.01
GCS-Motor ≤ 3 3.47 2.05–5.89 < 0.001
Spine injury 1.23 0.87–1.74 0.243
Pneumonia 0.5 0.28–0.9 0.021
Severe sepsis 0.51 0.1–2.49 0.4
Acute kidney injury 6.93 1.68–28.56 0.007
Mechanism: MVC 0.86 0.64–1.17 0.337
Mechanism: GSW 1.69 0.96–2.98 0.07
Craniotomy 0.61 0.44–0.86 0.005

Table 4  Adjusted analysis for mortality in pediatric patients with 
severe traumatic brain injury

Controlled for ISS ≥ 25, AIS-Head (grade 4 or 5), GCS-Motor ≤ 3, 
spine injury, pneumonia, severe sepsis, acute kidney injury, mecha-
nism (gunshot wound or motor vehicle collision), and craniotomy
GCS Glasgow Coma Scale
a Model contains too few complete cases to stratify by GCS

Risk factor OR CI p value

Any invasive monitor 1.82 1.36–2.44 < 0.001
GCS 3–4 1.35 0.98–1.87 0.064
GCS 5–6 5.02 1.75–14.39 0.003
GCS 7–8 0.85 0.16–4.49 0.849
Intraventricular drain/monitor 1.89 1.3–2.7 0.001
GCS 3–4 1.41 0.93–2.15 0.106
GCS 5–6 6.77 1.97–23.2 0.002
GCS 7–8 1.24 0.14–11.46 0.439
Intraparenchymal pressure monitor 1.86 1.32–2.6 < 0.001
GCS 3–4 1.44 0.99–2.1 0.055
GCS 5–6 4.09 1.29–13 0.017
GCS 7–8 1.08 0.2–5.72 0.93
Intraparenchymal oxygen  monitora 0.47 0.11–2.05 0.316
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oxygen monitors showed no difference. Contrary to our 
hypothesis, despite adjusting for invasive monitor type and 
presenting GCS, there did not appear to be any specific 
group that saw a mortality benefit and the risk of mortality 
was increased for several groups.

There is considerable variability in the reported use of 
invasive ICP monitoring in the literature regarding pediatric 
patients depending on the database used, patient’s age and 
definition of severe TBI [2, 3, 7-16], and the utilization rate 
(18%) in our study was within that range. This wide varia-
tion could be secondary to highly varied utilization between 
individual institutions. Bennett et al., for instance, had very 
similar inclusion criteria to our study and showed an over-
all utilization rate of around 32.5% using a linked Pediat-
ric Health Information (PHIS)-National Trauma Databank 
(NTDB) database, though individual institution utilization 
rates varied anywhere between 5 and 50% within their study 
[2]. Similarly, Van Cleve et al. had an overall utilization 
rate of 27% but found that adult trauma centers were more 
likely to place invasive monitoring devices into pediatric 
patients than combined pediatric/adult trauma centers [7]. 
Roumeliotis et al. actually speculated that the low rates of 
ICP monitor usage might be due to more rapid improvement 
or deterioration of clinical status than adult patients [10].

Though the increased odds of mortality seen with ICP 
monitoring (OR 1.82) in our study was modest compared 
to other variables such as ISS ≥ 25 (OR 10.4) or GCS-
Motor ≤ 3 (OR 3.47), it was still present after adjusting for 
potential confounders. The mortality risk associated with 
invasive ICP monitoring has not been demonstrated in other 
pediatric studies that evaluated for this association [2, 8, 9, 
12, 13, 15, 16]. The published unadjusted mortality rates for 
pediatric patients with severe TBI who undergo ICP moni-
toring are frequently higher, but many studies showed no 
difference in mortality after adjusting for other covariables 
[2, 15, 16]. Bennett et al. had very similar raw mortality 
rates to our study (ICP [18.5%] vs. no ICP [9.5%]), but after 
using propensity scoring to adjust for a variety of variables, 
there was no significant difference in likelihood of mortal-
ity [2]. Some of this difference might be explained by the 
inclusion of hospital clustering in their model, which we 
were unable to do. It is also possible that the limited number 
of centers included in their study (31 pediatric hospitals) is 
less generalizable to lower volume pediatric centers, and the 
ICP monitors have worse outcomes outside of those high-
volume centers.

Several other authors showed a reduction in survival with 
the use of invasive monitoring devices in pediatric patients 
with severe TBI [8, 12, 13]. Alali et al., for example, dem-
onstrated a 50% reduction in mortality with the use of inva-
sive ICP monitors [13]. However, they excluded patients 
with significant injuries to other body regions, which could 
explain this difference as we did not look exclusively at 

isolated head injuries. And, though Arunkumar et al. also 
showed a reduction in mortality with invasive ICP monitor-
ing, their study had only 50 cases [12].

Unfortunately, this conflicting data from pediatric studies 
cannot be clarified by application of adult research. While 
there are multiple adult studies showing a modest reduc-
tion in mortality with placement of invasive ICP monitors 
[20-26], there are a number that demonstrate either no dif-
ference [27, 28] or worse survival [29-31]. In fact, the only 
randomized controlled trial on the topic failed to show any 
difference between those treated with invasive ICP monitor-
ing with strict ICP control (< 20 mmHg), and those managed 
with imaging findings and physical exam [28].

Alkhoury et al. used the NTDB to look at the outcomes 
of severe pediatric TBI patients with invasive ICP monitor-
ing. After adjustment for other variables, ICP monitoring 
was associated with a significant reduction in mortality (OR 
0.64) but only for those children with a GCS of 3 [8]. This 
led us to hypothesize that there may be a subset of patients in 
the TQIP database who similarly benefited from ICP moni-
toring. However, our findings did not support our hypothesis. 
Unfortunately, stratifying patients by GCS had the opposite 
effect. While both intraventricular and intraparenchymal 
pressure monitors were associated with a modest increase 
in mortality (OR 1.89 and 1.86, respectively), this was spe-
cifically seen in the subgroup of patients with a GCS of 5–6. 
For patients with a GCS of 5–6, there was nearly a fivefold 
increased risk of mortality with any invasive type of monitor 
device; this risk was highest in children with intraventricular 
drain (OR 6.77). This could potentially be explained by how 
the ICP monitor is interpreted and utilized by providers. If 
patients with a lower GCS have poor outcomes regardless of 
intervention and patients with a GCS of 7–8 are more likely 
to improve, the use of an ICP monitor would be less likely to 
change the outcome compared with a more middling severe 
TBI group. However, without knowing the interventions that 
were undertaken in response to intracranial hypertension, 
this remains speculative.

It is unclear why invasive monitoring has failed to 
improve outcomes in pediatric trauma patients. In 2013, 
a study looking at high-dose barbiturates for refractory 
intracranial hypertension in pediatric patients showed better 
long-term outcomes when ICPs were controlled compared 
to uncontrolled ICPs [32], but this finding does not seem to 
translate to monitoring having a benefit. Balakrishnan et al. 
hypothesized that it was related to timing, but their single 
institution study failed to show any difference in mortality, 
LOS or functional outcomes between early (< 6 h) and late 
placement (6–72 h) of ICP monitors in pediatric patients 
[16]. It is possible that it is our interpretation of ICPs and 
cerebral perfusion pressures that limit the utility of monitors, 
as some exploratory studies have shown algorithmic and 
continuous approaches to ICP monitors may have prognostic 
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value above intermittent measurements [33-35]. Newer tech-
nologies (e.g., cerebral oxygen tension) have also shown 
some promise over more traditional methods of invasive 
ICP monitoring [7]. While intraparenchymal oxygen moni-
tors did not have a statistically significant association with 
mortality in this study, they only made up 4.5% of the patient 
population. It is possible that more patients may prove this 
modality to be beneficial.

Our study represents the largest study using the unique 
variables of the pediatric TQIP database. This allowed us to 
stratify risk by invasive monitor type, which has not been 
previously done in the pediatric literature and has been con-
flicting in adult literature [26, 27]. We also simultaneously 
stratified for GCS and other variables to determine the asso-
ciation between invasive monitoring devices and mortality, 
representing the most extensive adjustment for covariables 
in pediatric patients to date.

This study also has several important limitations—many 
inherent to retrospective database studies. Though we 
attempted to adjust for selection bias, it is still present as 
with all retrospective studies. In addition, the TQIP database 
only includes those children that are admitted and does not 
account for non-TQIP centers. Especially in light of other 
studies showing the significant variability between individ-
ual pediatric centers, TQIP centers may not be representative 
of all pediatric hospitals. The database also lacks pertinent 
information (e.g., socioeconomic status, presence of coag-
ulopathy), which may be prognostic in TBI outcomes. In 
addition, missing pertinent variables that are not included 
in TQIP include center volume, institutional protocols for 
the placement of ICP monitor and management of intracra-
nial hypertension, actual ICP/CPP measurements, timing of 
invasive monitor placement, and other potentially prognostic 
variables (e.g., pupillary response). Without knowing what 
interventions were taken for intracranial hypertension, it is 
difficult to determine whether this association with mortality 
is related to the device or how providers utilize the informa-
tion gained from them. There is also some degree of overlap 
between monitor types, particularly for intraparenchymal 
oxygen monitors, which may skew the effect that an indi-
vidual monitor has on mortality. Furthermore, we cannot 
track long-term neurologic outcomes for those patients that 
survive, which is a significant limitation of this database, 
because TQIP only provides index hospitalization data. 
While we adjusted for injury severity using GCS-Motor 
scores and AIS-Head scores, lack of specific imaging data 
is a significant limitation of the TQIP database, and it is 
possible that patients in one group had more severe injuries 
by imaging criteria.

In conclusion, our study contributes to the growing body 
of literature that invasive ICP monitors are infrequently uti-
lized in pediatric patients, have unclear benefit, and may 
actually be associated with increased mortality in certain 

pediatric populations. While newer technologies, such as 
cerebral oxygen tension or continuous cerebral perfusion 
pressures, may prove to be beneficial over time, there is 
insufficient evidence to support widespread use in pediatric 
patients with severe TBI based on our findings. A prospec-
tive, randomized trial is desperately needed to determine 
which patients, if any, are likely to benefit from these moni-
toring devices.
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