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PERCEPTUAL IMPACT OF BURSTY VERSUS ISOLATED PACKET LOSSES IN H.264
COMPRESSED VIDEO

Ting-Lan Lin and Pamela C. Cosman

University of California, San Diego – ECE

Amy R. Reibman

AT&T Labs – Research

ABSTRACT

When video packets are lost in congested networks, one loss

pattern creates a different visual impact than another. We

conduct a subjective experiment with H.264 videos and con-

clude that isolated losses are better than bursty losses in terms

of perceptual video quality. A network-implementable video

quality model is developed for a router to drop packets so as

to achieve good visual quality.

Index Terms— Video codecs, Packet loss, Subjective

video quality metrics, FMO (Flexible Macroblock Ordering)

1. INTRODUCTION

In a network, packets can be corrupted in transmission or can

be dropped by intermediate routers due to congestion. Con-

siderable research has been done to explore how packet losses

impact video quality. In [1], the authors evaluated quality by

computational metrics from a no-reference model as well as a

subjective test. They found that simple quality metrics (such

as blockiness, blurriness and jerkiness) do not predict qual-

ity impairments in a packet-loss environment as well as when

there are no packet losses. The joint effect of encoding arti-

facts by MPEG-2 and ATM cell loss ratio was considered [2]

where quality was measured with the MPQM perceptual qual-

ity metric. In [3], a subjective experiment showed that higher

motion videos are more sensitive to cell losses. Also, low vis-

ibility of losses could be maintained when network loading

increases by increasing the number of videos multiplexed.

Although objective metrics sometimes do not reflect per-

ceptual quality well, PSNR (Peak Signal to Noise Ratio) and

MSE (Mean Square Error) are commonly used to measure

video quality. The relation between PSNR and perceptual

quality scores is considered in [4]. This work on low-

resolution, low-bitrate videos found that packet losses are

visible when the PSNR drop is greater than a threshold, and

the distance between dropped packets is crucial to perceptual

quality. The prediction of objective distortion by MSE is

discussed in [5], which concludes that bursty losses produce

larger distortion than an equal number of isolated losses.

This work was supported in part by the National Science Foundation, the

Center for Wireless Communications at UCSD, and the UC Discovery Grant

program.

The visibility of lost slices after motion-compensated er-

ror concealment was investigated in our prior work in [6, 7].

We showed that most (84%) lost slices are invisible. With this

model, we used one bit to denote high/low priorities for slices

during encoding so slices of low priority could be dropped

first by the router during congestion. The result showed that

visibility-based dropping is better in terms of visual quality

than the traditional DropTail packet dropping policy which

drops consecutive packets off the tail of the queue [8].

In this paper, we consider a different question: if a router

must drop L slices and does not have access to visibility-

based priority information, which slices should be dropped

to minimize the perceptual impact? As a related question, we

are concerned with how to group multiple slices into a single

packet at the encoder so that, if the packet is lost, the quality

degradation will not be as severe. We conducted a subjective

experiment to investigate the visual impact of different spa-

tial and temporal patterns of packet loss. Our work differs

from [4] in two main respects. They characterize subjective

quality based on PSNR, and we linearly regress our subjec-

tive data on several different factors. Also, instead of only

low-rate coding, we use rates from 200 kbps to 600 kbps. (At

high rates, this allows us to characterize the packet-loss effect

with minimal encoding artifacts.) In Section 2, four different

packet dropping strategies and the evaluation experiment are

described. In Section 3, the performances of different drop-

ping methods are compared by non-parametric analysis. Sec-

tion 4 constructs a prediction model for video quality based on

network-accessible factors for a given number of lost packets.

2. EXPERIMENT SETUP

Encoding: We used H.264/AVC JM Version 12.1 to encode

SIF resolution videos (15 horizontal slices per frame, 22 mac-

roblocks of 16×16 pixels per slice). The frame rate is 30 fps,

and encoding rates are 200, 400 and 600 Kbps. There are 20

frames, IBPBP... in a GOP. Rate control and loop filtering are

enabled; the initial quantization parameter is set to 40.

Loss Types : We consider four types or patterns of losses.

In Spatial Adjacent (SA), consecutive slices are lost within

one frame; this corresponds to the DropTail policy which

drops consecutive packets. In Same Frame (SF), slices are

lost within one frame but they are not all adjacent (i.e., the
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case of SA is excluded). In Same Location (SL), lost slices

are in spatially identical locations in different frames. In Dif-

ferent Frame and Location (DFL), lost slices are in different

spatial locations and in different frames in the video. For SL

and DFL, each frame includes at most one lost slice. Each

lossy video has only one loss type involving either L =4, 6

or 8 lost packets. To prevent the case of all lost slices being

invisible to the subject, we use the slice-visibility model from

[6] to randomly choose one visible slice in the video. We then

develop the four loss types based on that location, where the

chosen visible slice can be any slice from the 1st to the Lth

slice in the loss event. For real-time video, delay exceeding

500ms is unacceptable, so at 30 fps, at most 15 frames can

be buffered. So in patterns SL and DFL, we constrain a loss

event to span less than 15 frames.

Subjective Evaluation: We define a comparison set to be

the rating of SA, SF, SL, DFL and No-Loss (NL) versions

(in randomized order) of a video at one encoding rate and

loss length. The original uncompressed source video can be

viewed as a known reference. Given that this original has

a score of 100, the viewer is asked for a relative rating for

the lossy videos. The rating procedure for a comparison set

was realized by SAMVIQ (Subjective Assessment Method-

ology for Video Quality) [9]. The observer rated the overall

quality of a video by sliding a bar on a scale from 0 to 100,

marked bad (0-20), poor (20-40), fair (40-60), good (60-80)

and excellent (80-100). They can fine tune the score using

keyboard up/down arrows, with the numerical score shown to

the viewer. They can watch the videos more than once, and

can refine the rating.

In each comparison set, if the NL version did not score

highest, the viewer was asked to redo that comparison. Most

viewers passed this consistency check without redoing the

comparison. For the lowest rate videos (200 Kbps), coding

artifacts and packet losses are not easily distinguishable, lead-

ing some viewers to fail the consistency check initially. But

most passed on the second try, and all passed by the fourth try.

We generated 360 comparison sets, using 4 original videos

with 3 encoding rates and 3 lengths of loss, each of which

had 10 different random locations for loss insertion. Each

comparison set was rated by 5 subjects. Each subject rated

18 comparison sets (2 original videos, 3 rates, 3 lengths of

loss, and one loss location), providing 90 quality labels (5

loss patterns per comparison set), taking about 1 hour to com-

plete. In all, 100 subjects generated 9000 quality labels. To

characterize the original videos, we use temporal motion in-

formation (tmi) and spatial information (si) as defined in [10].

First we calculate differences of the luminance of successive

frames. The tmi is the maximum spatial standard deviation

of each difference frame. The si is the maximum spatial de-

viation of Sobel-filtered luminance frames. The videos used

were Bullfight (tmi,si=35,73), Wagon (24,123), Sport (32,63)

and Dancing (14,85).
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Fig. 1. Boxplot of data from different dropping patterns. Each

box indicates 1st quartile, median and 3rd quartile.
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Fig. 2. (a) QQ plot of Score data versus Standard Normal. (b)

Histogram of scores obtained from 100 subjects.

3. ANALYSIS OF DROPPING PATTERNS

The purpose of our experiment is to see how each dropping

pattern affects perceptual video quality. We start using a

boxplot comparison (Figure 1), which shows the differences

among four distributions. Specifically, DFL (46.15) has the

highest mean perceptual score, followed by SL (42.47), SF

(41.29) and SA (38.49) in descending order. So bursty losses

degrade the video quality the most, and separating losses both

spatially and temporally improves quality more than either

individually. In fact, the improvement in mean quality for

DFL relative to SA is larger than the sum of the improve-

ments for SL and SF. Note that this boxplot comparison is

unpaired, meaning that data are not paired by loss length, en-

coding rates, and source videos in comparing patterns. Paired

comparison will be discussed next.

First, we examine the normality of the data with a QQ plot

(Quantile-Quantile plot) [11] in Fig. 2(a). At both ends of

the curve, there are deviations from normal quantiles. There

are hard limits at both ends of the scale; viewers cannot give

scores below 0 or above 100. This phenomenon can also

be seen in Fig.2(b). By the JB (Jarque-Bera) test [11] for

normality, the p-value is essentially zero and thus we reject

the assumption that the data are normal. Therefore, we re-
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sort to non-parametric paired analysis. The Wilcoxon Signed

Rank Test (paired comparison) [12] compares the medians of

any pair of dropping patterns in a one-sided test where the

H1 alternative is that the median of one dropping pattern is

greater than that of the other. Let xi and yi be the values in

dropping patterns A and B in the ith comparison set. Define

w =
∑n

i=1 rizi where ri is the rank of |xi − yi| among all

|xj − yj |, and zi = 1 if xi − yi > 0 and zi = 0 otherwise.

Here n = 1800 (360 × 5), the number of total comparison

sets. The statistic for the test,

Z =
w − [n(n + 1)]/4

√
[n(n + 1)(2n + 1)]/24

, (1)

distributes approximately as Normal(0,1) when n > 12. The

largest p-value is 0.032 (< 5%), which occurred for the SL-

SF comparison, and the other pairwise comparisons had p-

values all smaller than 10−5: they all significantly rejected

H0 at the 95% level. Therefore, DFL has the highest median

score in a paired comparison with any of the others, followed

by SL, SF and SA in descending order, which is consistent

with the boxplot of Figure 1. We conclude that dropping

packets in isolation, especially in temporal isolation, provides

better video quality compared to temporally consecutive or

spatially adjacent dropping (e.g., DropTail).

4. VIDEO QUALITY RATIO PREDICTION

After considering the effects of dropping patterns for a range

of encoding artifact levels, we now focus on the data at

600kbps. These contain minimal encoding artifacts and let us

explore the effects of packet losses alone. To investigate the

impact of packet loss given a number L of packets dropped,

we define the ratio RQ = QualityScore/L. Given L, we

want RQ to be large. An interesting interpretation of RQ can

be seen from Figure 3. This shows quality from burst loss

(SA) and isolated loss (DFL) regressed on packet loss rate.

The slopes can be interpreted as the average quality loss per

additional dropped slice. As DFL has a less steep slope than

SA, dropping an additional packet in isolation hurts quality

less compared to an additional packet loss in a spatial burst.

Factors Set1 Set2 Set3

Constant 5.890 18.128 18.40

TR 1.218 0.395 0.358

SR 1.177 0.40 0.336

NumI — -1.74 -1.582

NumP — -1.80 -1.714

NumB — -1.54 -1.548

NumHighPri — — -0.205

Correlation 0.420 0.8551 0.8571

Table 1. Regression coefficients for RQ and correlation

For a given number of losses, isolation appears to help quality,
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Fig. 3. Scatter plot of quality loss versus packet loss rate.

so this motivates us to quantify the isolation as a predictor of

quality score. For a given loss, we define its temporal range

(TR) and spatial range (SR) to be the difference between

max and min values of the dropped frame number and slice

number, respectively, scaled by 1/L. Given L, if the dropped

packets are more spread out temporally or spatially, TR or

SR will be higher. Another factor that can be available in

the router for predicting quality after packet loss is the type

of packet dropped. NumI is the number of dropped packets

that are in an I frame, with similar meanings for NumB and

NumP . Furthermore, we assume that each packet carries

one bit of visibility information from the visibility model [6]

calculated at the encoder. We say a packet is of high priority

when its visibility > 0.25, and define NumHighPri as the

number of packets of high priority dropped.

To analyze how each factor affects the responses RQ,

we use linear regression analysis, where the regression co-

efficients are found by the least-squares approach. Since

each comparison was rated by 5 people, we average them

as QualityScore for each comparison set. We start from

the factor sets that are most easily obtained and then in-

crease the number of factors. Table 1 shows the regression

coefficients for different sets of factors for responses RQ,

and their Pearson correlation coefficients between the true

and predicted responses, characterizing the prediction accu-

racy [13]. In Set1, we consider only SR and TR. The table

indicates the correlation coefficient is 0.420. Set2 includes

the number and type of packets dropped, which increases the

correlation coefficient dramatically to 0.8551. Set3 further

includes the number of packets of high priority dropped, but

this yields limited improvement. One reason may be that

the visibility model includes the packet type as an important

factor already. This is an encouraging result from a practi-

cal point of view: if the encoder includes the single bit of

visibility information with each encoded slice, the bitstream

would no longer be standard-complaint; however, our model

shows that in predicting the quality score, the visibility in-

formation is of negligible additional utility after considering
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other factors. This suggests that the router’s choice of which

packets to drop from its congested buffer can adequately be

made using easily obtainable standard-compliant information

(TR, SR,NumI, NumB,NumP ). To validate the use of

linear regression, the normality of the residuals is tested by

the JB test : the p-values are 0.051, 0.057 and 0.062 (> 5%)

for the three models Set1, Set2 and Set3, and thus we cannot

reject normality. To conclude, when forced by congestion to

drop packets, the router can minimize the damage to video

quality by increasing isolation (SR, TR) among the lost

packets. But to predict the video quality accurately, the type

of packets should be considered.

Packetization for H.264 Flexible Macroblock Ordering
(FMO): FMO in H.264 allows packets to contain arbitrary

non-consecutive groups of macroblocks from one frame,

with the grouping varying from frame to frame. Putting adja-

cent slices in a packet will likely have the best compression

rate due to spatial redundancy; however, separated slices in

a packet can minimize damage to video quality when that

packet is lost, according to our previous conclusion. The goal

here is to develop a model that predicts the visual effect of

packet losses within one frame, which can eventually lead to

a design algorithm for making FMO decisions.

Since standard-compliant FMO allows packetization only

within one frame, we consider here a linear regression model

for RQ that only uses within-frame variables and dropping

possibilities. Specifically, we do not include TR, NumI ,

NumP , and NumB in our prediction model, and we con-

sider only SA and SF in which lost slices are scattered across

one frame. FMO decisions occur at the encoder, so content-

specific factors describing each slice can also be included in

the model. The significant factors considered, along with their

regression coefficients, are listed in Table 2. The resulting

correlation coefficient between the actual and predicted scores

is 0.8722. The use of linear regression is also validated by the

JB test with p-value 0.0714. Therefore, using this table, a

packetization strategy could be developed; one could try dif-

ferent combinations of slice groups to achieve the best RQ.

Conclusion: We showed by nonparametric analysis that

bursty losses, corresponding to the traditional DropTail pol-

icy, perform worst statistically compared to dropping strate-

gies involving temporal or spatial isolation for packet losses.

Furthermore, a video quality model composed of network-

accessible factors was developed to provide a dropping crite-

rion for a router. When we concentrate on losses within one

frame, factors corresponding to slices are also found corre-

lated to the quality ratio. The relation can be used to attain

better video quality for FMO when encoding.
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