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ABSTRACT OF THE DISSERTATION 

Adherence-Independent Home Monitoring for the Early Recognition of Impending 
Hospitalizations 

by 

  
Nicholas Harrington 

Doctor of Philosophy in Bioengineering 

University of California San Diego, 2022 

Professor Kevin King, Chair 
Professor Bruce Wheeler, Co-Chair 

 Rehospitalizations for chronic diseases such as heart failure are common and costly. 

However, they are also preventable. In many cases, timely interventions can prevent the patient 

from reaching a critical point where hospitalization is needed. Since these decompensations 

occur necessarily in the patient’s home, home health solutions are an ideal choice to give 

clinicians insight into their patient’s well being and enable timely interventions. However, many 

home health solutions are limited by requiring adherence or technological literacy, or in some 

cases, an invasive procedure. We describe here a non-contact adherence-independent system for 
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total body weight and cardiopulmonary monitoring in the home bed (BedScales). We describe 

the system design and present validation experiments. Additionally, we discovered that 

nocturnal respiratory rate (NRR) in particular is a very useful, yet understudied biomarker for 

detecting disease exacerbations. We therefore performed the first large-scale analysis of NRR 

from over 22,000 sleep studies and found that there is an association between NRR and chronic 

diseases such as atrial fibrillation, heart failure, and COPD. We installed BedScales devices in 

the homes of high-risk patients and monitored them for an average of one hundred days each. In 

doing so, we found instances where NRR rose from baseline in response to diseases such as 

sepsis, pneumonia, and heart failure. Finally, we present three case reports from patients we 

monitored with complex physiology, demonstrating how the BedScales platform and NRR 

would be able to greatly expand the window that clinicians had for performing a timely 

intervention. We believe that this approach to outpatient management will be able to, in a 

practical and widely applicable manner, allow clinicians to care for their patients at home and 

achieve the triple aim of improving care, improving quality of life, and lowering costs. 
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Chapter 1: Introduction 
 This dissertation focuses on the development of a sensor and analytics platform designed 

to give advanced warning of exacerbations of chronic disease, and investigates nocturnal 

respiratory rate as a powerful but overlooked biomarker of patient decompensation. 

 In this chapter, I will begin by motivating the research. I will describe how improving 

outpatient care could increase patient quality of life and lower costs. I will then survey some of 

the current home health solutions and highlight their key limitations. That will lead to an 

overview of BedScales, our solution to at-home patient monitoring. I will briefly describe what 

our platform is and what we have accomplished. I will then describe the initial biomarkers we 

looked at and how nocturnal respiratory rate emerged as a powerful yet understudied biomarker 

for guiding disease management for patients at home. Finally, I will close with an outline of the 

rest of the dissertation. 

1.1 Hospitalizations and outpatient care 

 Many individuals suffering from chronic diseases (e.g., heart failure, arrhythmias, 

COPD) have complex and turbulent physiology as well as recurrent hospitalizations. Although 

hospital care is necessary for treatment of many illnesses, it is associated with increased 

functional disability and decreased quality of life, particularly when hospitalizations are 

repeated and prolonged. Fortunately, many hospitalizations are avoidable with early recognition 

and intervention. Heart failure for example, is among the most challenging chronic conditions to 

manage. It affects more than 6 million patients in the US and costs more than $30B per year, 

largely due to the high burden of inpatient care required to manage recurrent exacerbations (1). 
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These hospitalizations are not always without warning and are often preceded by fluid 

accumulation with congestion and associated shortness of breath. If identified early, heart failure 

exacerbations can often be managed in the outpatient setting with temporary intensification of 

diuretic therapy (2) (3). 

 Outpatient care therefore has an enormous strategic advantage since the physiologic 

changes that precede these rehospitalizations occur necessarily outside of the clinic, i.e. at 

home. These changes, however, are opaque to clinicians who can only observe and provide care 

for their patients in the narrow window, and artificial setting, of a clinic or hospital. Providing 

doctors a window into this significant aspect of a patient’s life would greatly improve their 

ability to provide care that is timely and proactive. Relying on patients to self-recognize and 

report symptoms is ineffective, as symptoms are notoriously difficult to self-recognize because 

they are subjective, gradual, lagging indicators of illness (4). In addition, patients are also often 

reluctant to disclose symptoms out of fear that they may require hospitalization, a problem that 

was aggravated by the SARS-CoV-2 pandemic (5). If pre-symptomatic prodromes of 

hospitalization could be recognized in the home, diagnostic workup and/or treatment could 

begin earlier, in lower acuity care settings, potentially reducing the number, duration, and 

complexity of hospitalizations.  

 The potential for early intervention is particularly attractive for cardiopulmonary 

diseases such as heart failure, COPD, and pneumonia, which represent the most common causes 

of hospitalizations in older adults. These patients often present with respiratory 

symptomatology, are distinguishable based on history (with or without blood tests and a chest x-

ray), and are associated with well-established interventions that can be administered in clinic or 
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at home (6–9). For example, diuretics are often uptitrated for heart failure exacerbations; 

bronchodilators, steroids, and antimicrobials are administered for COPD exacerbations; and 

antibiotics are initiated for early uncomplicated bacterial respiratory infections (7, 8, 10).  In 

some cases these decompensations, such as that of a heart failure patient transitioning from 

euvolumia to hypervolumia (sometimes by as much as 20 pounds of fluid), do not happen 

overnight, and a proper understanding of the patient’s health at home is a critical step in 

performing the necessary intervention in a timely manner. Outpatient management therefore is a 

critical area where improvements in patient monitoring could both lower costs and increase 

quality of care. 

1.2 Home health 

 Attempts have been made to address these issues by home-health solutions. Care 

coordinators, for example, manage large cohorts of patients and schedule home or clinic visits if 

a patient reports concerning symptoms. However, this method is hindered because the care 

coordinator must manually contact each patient, limiting the number of patients a single person 

can look after. In addition, it requires an actively involved patient or family member, and often 

relies solely on the patient’s ability to correctly identify and communicate symptoms in a timely 

enough manner for an intervention to be effective.  

 Various technological solutions could be used to alleviate this problem, but they almost 

always require the patient to adhere to daily measurements or data transmission, a task that for 

very sick patients is not possible, and even for healthy individuals is difficult to do consistently 

across many months. For example, wearables are limited by the need for patient engagement to 

charge and utilize sensors and apps (11) (12). Implantable devices, such as CardioMEMs have 

!3



proven to be useful, but still require patients to adhere to daily transmission of the data (13–15). 

In managing heart failure for example, a study of telehealth was performed in which each 

subject was instructed to call in and describe symptoms and provide information like weight. 

However, even despite an aggressive reminder system, 15% of the subjects never made a single 

call, and adherence to daily measurements dropped to 55% after 6 months (16). In the status 

quo, therefore, there are a large number of avoidable rehospitalizations for common yet difficult 

to manage diseases. Awareness of an impending clinical event is difficult to acquire because it is 

time-consuming and haphazard to do manually, and is limited by patient adherence to using 

technology. There is a need then to give clinicians better insight into their patient’s condition at 

home in a manner that is versatile enough to be used in a wide variety of home settings and that 

overcomes the critical adherence barrier. 

1.3 BedScales 

 We set out to solve this problem by developing a system of sensors and analytics that 

monitor patient physiology in-home. The goal was not to create an entirely novel type of sensor, 

but rather was to create a new system of hardware and software that was actually useful outside 

of the laboratory, and thus was sensitive to all of the real world concerns involved. We required 

our design to be fully automated and non-contact to overcome the adherence barrier and be 

applicable to individuals who are very sick. We required the system to be inexpensive and 

durable, such that it could be deployed in hundreds of real world settings. We required the 

system to provide easy to understand results, so that clinicians would not be bogged down by a 

large amount of new, and difficult to interpret, data. 
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 Our sensors are small scales placed under the patient’s bed that collect physiologic data 

continuously while the patient sleeps. We transmit this data to the cloud, process it through a 

pipeline of analytics, and surface the results to a web-based dashboard for care coordinators to 

review. This allows care coordinators to target their calls and home visits to the most critically 

ill patients, greatly expanding the scope of patients they can care for as well as providing the 

research community with information on the prodromes of disease exacerbations in the home. 

We developed visualization tools and a risk score in order to surface this information to 

clinicians in an easy to digest manner. We developed this solution to be applicable to the vast 

majority of patients, and thus require no patient participation or technological literacy. We used 

simple components and an injection molded housing which enables us to produce our devices 

on a large enough scale that they can be used in the real world to impact patient management. 

We have installed these devices in over 50 homes around the San Diego area and have collected 

over 5,000 nights of data. Throughout the process, we have worked with care coordinators, in 

one case alerting them to an impending decompensation that upon a visit to the clinic was 

discovered to be an undetected pulmonary embolism (see section 6.3). 

1.4 Biomarkers of disease 

 We began development of our solution by focusing on heart failure in particular and to 

do so, we targeted weight, respiratory signals, and ballistocardiograms (BCG), a mechanical 

cardiac signal caused by the ballistic motion of the heart (correlated with stroke volume and 

contractility), as the key biomarkers to acquire. Weight is relevant for heart failure patients 

because they often suffer from volume overload brought on by a weakened heart squeeze being 

interpreted by the kidneys as low blood pressure. Respiratory rate is relevant to heart failure 
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patients as volume overload can cause pulmonary edema and heart failure patents are often short 

of breath. Heart rate is relevant for heart failure patients due to the presence of tachypnea and 

arrhythmias. Passive home monitoring of some of these biomarkers has been achieved, but 

never all three by the same sensor. For example, by embedding sensors into a wide range of 

everyday objects, measurements have been made of respiratory signals and BCG signals from 

healthy individuals and patients with chronic diseases (17–21). A modified stand-upon weigh 

scale was shown to classify heart failure patients based on 30 second BCGs, but the short 

duration of monitoring and the requirement for patient-initiated self-measurement leave it 

vulnerable to poor patient adherence (22–24). Smart scales can record and transmit daily weight 

but still require the patient to diligently use them. Respirations and BCGs are often measured by 

piezoelectric or electromechanical film sensors placed above or below mattresses or bed frames, 

or via bedside radio frequency transmit-receivers (25–29); however, because these sensors do 

not span the entire body and are primarily sensitive to high frequency dynamic signals, they are 

unable to measure total body weight, which can increase prior to a heart failure hospitalization 

(30). 

1.5 Nocturnal respiratory rate 

 As we developed our system, we found that nocturnal respiratory rate (NRR) in 

particular emerged as a powerful biomarker. We found that patients had consistent night-to-

night distributions of NRR that were stable across time and varied from patient to patient. This 

low-noise background is ideal to detect an underlying change in physiology that may herald a 

disease exacerbation. In our cohort of patients we observed elevated NRR days to weeks prior to 

hospitalizations for diseases such as sepsis, pneumonia, and heart failure. Additionally, we 
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found that in general NRR is an under-studied biomarker. Its dynamics are not characterized 

longitudinally nor are its statistics analyzed across populations. In awake individuals, its 

interpretation is complicated by its dependence on voluntary effort, activity level, effort, and 

emotion (31, 32). However, during sleep NRR reflects underlying physiologic and 

pathophysiologic determinants (33, 34). Furthermore, because NRR strongly impacts inpatient 

deterioration scores (35–40), it may be useful as a biomarker of impending hospitalization in the 

home. In order to fill in this gap in the literature, we adapted our analytics pipeline to process 

data from sleep studies across more than 22,000 subjects. This enabled us to report population 

level statistic for NRR, and for a subset of over 5,700 patients, to understand the dependencies 

and relationship of NRR to various clinical variables. 

1.6 Scope of dissertation 

 This dissertation outlines our research starting with the problem of recurrent, avoidable 

rehospitalizations, all the way to the implementation of a fully automatic, adherence 

independent system that has been used in patient homes for over two years. We began with the 

goal of developing a non-contact, adherence independent sensor for weight and using an 

additional piezoelectric sensor for the high frequency respiratory and cardiac signals. However, 

when we found that the weight sensor was sensitive even to very small vibrations, we designed 

our BedScales platform to measure all three signals. Chapter 2 works through key components 

of this BedScales system, including sensor design, the analytics pipeline, and data visualization. 

Chapter 3 then reports the validation we did of the three biomarkers against commercial scales 

and in clinical studies. We found in doing so that all three biomarkers could be monitored by our 

platform, but that both weight and BCG had significant barriers to being used in real world 
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settings. However, the respiratory measurement was not only robust in numerous settings, it was 

information rich and seemed to correspond to patient decompensation. Chapter 4 then narrows 

in on this biomarker, NRR, in particular and reports its population level statistics, demonstrating 

its relationship to outcomes, as well as to atrial fibrillation and heart failure. Chapter 5 then 

focuses in further and characterizes NRR longitudinally in a small cohort of patients and 

quantifies the visible NRR prodromes of diseases for various hospitalization causes. Chapter 6 

focuses in yet again and examines case reports from three individuals with particularly unique 

and complex medical histories, and demonstrates the benefits that our platform either could, or 

actually did, bring to their quality of care. Chapter 7 then closes with some remarks on future 

work and a summary of these results. 
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Chapter 2: The BedScales Platform 
 This chapter describes the BedScales sensor and analytics platform (Fig. 2-1). I will start 

by reviewing the fundamentals of the sensor and data acquisition process and then describe the 

physical sensor housing. I will then provide an overview of the data analytics pipeline. 

2.1 BedScales sensor and data acquisition 

 In order to measure the weight changes associated with heart failure exacerbations in an 

adherence independent manner, we needed to leverage something that the patient consistently 

places their full weight on. We chose the bed as the ideal place to make this measurement. In 

order to acquire the full body weight, we chose to place the scales under the bed legs, as that 

would ensure that all of the force from the patient’s weight would pass through the legs, through 

our sensor and into the floor. To be adherence independent, the scales need to monitor 

constantly since there will be no prior knowledge of when the patient is about to get into bed. 

We found in preliminary tests that the subtle shifts in a person's center of gravity while they 

breath, as well as small vibrations from the ballistic motion of a person’s heart, are detectable as 

a oscillating signal on top of the large DC shifts associated with weight. Therefore our weight 
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sensor will be able to simultaneously measure all three of our target biomarkers. Figure 2-2 

shows a diagram of the sensor and microcontroller components. The following subsections 

outline the circuitry used to make this sensitive measurement of weight, followed by two other 

subsections that describe the data acquisition process and the physical housing design. 

2.1.1 Sensing circuit 

 Resistors oppose the flow of electrons causing a drop in voltage. The amount of 

opposition that resistors provide is given by the following equation: 

                                                     (1) 

 Where  denotes the intrinsic material resistivity, L denotes the length, and A denotes the 

cross-sectional area. Deformations of a resistor, such as stretching, increase its length and 

therefore its effective resistance value. Strain gauges are metal components that take advantage 

of this property by mounting two resistors in series such that as the metal component bends 

R =
ρL
A

ρ
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Figure 2-2. Block diagram of BedScales. Scale components (left) and microcontroller (right). The scale is 
comprised of four strain gauges connected to a PCB. The scales connect to the microcontroller via a custom PCB 
header. Wifi is set up on the microcontroller via a smartphone app. The microcontroller iterates through data 
acquisition and hourly data transmission.



under an applied load, the flexible resistor deforms with it, thus changing the balance of voltage 

across the two resistors and converting the applied load into a voltage change. 

 To create a more sensitive measurement of force, three other resistors can be used along 

with the strain gauge, in two parallel sets known as a Wheatstone bridge (Fig. 2-3). The 

relationship between the resistors and applied voltage is given by: 

                                                      (2) 

 This balance between the left and the right sides of the bridge is very sensitive to changes 

in the resistance values, making the Wheatstone bridge an ideal circuit to detect resistance 

changes due to strain. This property can be further accentuated by using strain gauges for every 

resistor in the bridge and configuring them such that the voltage on one side of the bridge 

increases with applied load while the voltage on the other side decreases. This means that even a 

small load causes a large disparity between the voltages on the right and the left. This precise 

measurement of force is the backbone of our sensing system. The strain gauges we chose are 

V = (
R1

R1 + R2
−

R4
R3 + R4

)Vin
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Figure 2-3. Wheatstone bridge circuit diagram.



strong enough to bear 50kg each, yet within a Wheatstone bridge configuration, they are 

sensitive enough to detect respiratory and cardiac signals. 

2.1.2 Data acquisition 

 The output of the Wheatstone Bridge is an analog signal and requires an A/D converter to 

store and transmit the signal. We chose the HX711 (Avia Semiconductor, China) as it is a typical 

chip for load cell data acquisition. The HX711 provides a variable amount of gain, can sample 

up to 80Hz, and has a 24 bit A/D converter, allowing for precise measurements. To be used in 

our system, we needed supporting resistors and capacitors for the HX711, a way to collect and 

transmit the data from the HX711 to the cloud, as well as the infrastructure to combine four 

strain gauges into the Wheatstone Bridge configuration. To accomplish this, we created and 

mass produced a custom PCB (Fig. 2-4a) that supports the HX711, that has solder points for the 

strain gauges, and a micro USB interface that both provides power and a means to collect the 

data from the HX711. We did this in CircuitMaker software (Altium, San Diego, CA) using 

open source HX711 breakout board and load combinator schematics, both from SparkFun 

(Niwot, CO). We wanted to use a single microcontroller to collect and aggregate data from each 

sensor and to transmit data over wifi, as enabling each individual sensor to do this would have 
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Figure 2-4. Custom PCBs. a, Data acquisition PCB for HX711 and strain gauges. Layout (left) and photo 
(right). b, Microcontroller interface PCB. Layout (left) and photo (right).



unnecessarily increased the cost and complexity of the system. We chose the Raspberry Pi Zero 

W (Raspberry Pi Foundation, United Kingdom), a small, credit card-sized computer as our 

microcontroller because of its low cost, ease of use, and small form factor. This microcontroller 

is both wifi and bluetooth enabled. It was important to make installation as streamlined as 

possible and since our device has no built-in screen or keypad, that means that the wifi 

credentials would need to get on the microcontroller via bluetooth. We built a smartphone app to 

accomplish this, as well as to deposit a token on the microcontroller so that it can connect 

securely to our Amazon Web Services cloud storage (Seattle, WA). We then needed an interface 

between the microcontroller and the sensors that was easy-to-use and could account for the fact 

that different beds have different numbers of legs. To do this, we designed a custom PCB in 

CircuitMaker that attaches to the microcontroller and supports up to eight USB connections at a 

time (Fig. 2-4, b). 

 Once powered on, the microcontroller detects the number of scales connected and reads 

from each iteratively. We wrote our acquisition script in C++ (using a BCM2835 library from 

Mike McCauley) so that we could disable and reenable interrupts on the microcontroller while 

the sensors are being sampled. We chose a transmission frequency of one hour to balance the 

need to transmit data frequently, so that patient decompensations could be noticed in near real-

time, while also not transmitting so often that the data acquisition frequency was so slow as to 

lose the high frequency cardiac signals. 

2.1.3 Injection molded housing 

 In order to use under a patient’s bed, the strain gauges and PCB all need to be secured into 

a housing that could withstand the weight of the bed and ensure that the force was directed 
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through the sensors. We modified an earlier metal prototype and designed and mass produced a 

custom injection molded plastic housing that is strong enough to bear the load of the bed, yet 

can be produced inexpensively at large quantities and is easy to assemble (Fig. 2-5a) (Solid 

Works, Dassault Systèmes, France) (Pawli Products, San Diego, CA). We ordered custom dies 

(Alpha Die Cutting, San Diego, CA) to make rubber pads for the top and bottom of the housing 

to avoid sliding or damaging the floor (Fig. 2-5, c-d). We also designed and mass produced an 

injection molded housing for the microcontroller with an indicator light (Fig. 2-5b). 

 In order to get accurate load measurements from the scale, it is crucial that the force 

applied to the top of the housing only passes through the strain gauges, into the housing feet, 

and ultimately into the floor (and is not shunted to any part of the housing). We observed a 

spring-like mechanism in commercial bathroom scales and created a similar mechanism for our 
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Figure 2-5. BedScales housing design. a, Inside of 
single scale showing PCB and strain gauges. b, 
Microcontroller housing with ports for scales to 
connect through. c, Top of single scale, showing 
rubber pad on top. d, Bottom of single scale, 
showing rubber feet.



device (Fig. 2-6).  This holds the feet securely over the center ball of the strain gauge, yet gives 

them flexibility to rotate and does not restrict movement in the z axis, which is the axis of strain 

being measured. We also noticed in commercial scales, and used in our own design, a small 

metal insert as the point of contact between the strain gauge and the feet, to reduce the plastic 

deformation over time. In this section then, we have gone from the fundamental ideas of 

resistors causing a voltage drop, to a circuit that is sensitive to applied load, to a method of 

reading and digitizing this voltage frequently and precisely, to then putting all of that into an 

easy to manufacture housing. This completes the hardware portion of the platform. 
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Figure 2-6. Sensor detail. Spring mechanism 
and metal insert on inside of bottom scale plate.



2.2 Data analytics pipeline 

 In this section, I will describe the processing pipeline that transforms raw voltage readings 

from our sensor into meaningful physiological parameters that can be used to guide clinical 

care. When designing the pipeline architecture, the key challenges were that in order for this 

system to be useful outside of the laboratory, the pipeline needed to operate in real time and be 

scalable. Care coordinators need to know as soon as possible when a patient is in critical 

condition, and our system needs to perform well when used by thousands of patients. These 

constraints mean that many things that would normally be acceptable in a research setting, such 

as asynchronous processing, patient-specific parameter tuning, and manual supervision, were 

not options for us. We needed a pipeline that would run automatically, regardless of who was 

using the sensors and regardless of how many devices were installed. 

 To accomplish our goals, we chose Amazon Web Service's Lambda Functions for our 

pipeline infrastructure. These functions are containers for our Python scripts that run when 

triggered. When a function is trigged (by the placement of a file in a specific cloud storage 
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Figure 2-7. BedScales analytics pipeline. Raw data is ingested, steady regions are found, peaks and valleys are 
annotated, and parameters are found. The resulting data is then aggregated into single-night files to find weight to 
feed back into the pipeline and the resulting data is downsampled and stored in the backend of our web app and 
smartphone app.



location for example), a computing instance spins up, runs our script to process the file that 

triggered it, and then turns off. If hundreds of files are deposited at once, then hundreds of 

instances will spin up, all running the same script on different files. This allows our pipeline to 

be massively parallel as thousands of instances can all simultaneously process incoming data. 

We chained several of these functions together to create our pipelines. Figure 2-7 shows our 

pipeline for processing respiratory signals from BedScales devices. The first function, 

BedScalesIngest, takes raw files and pre-processes them. The second, BedScalesSteady, finds 

stable, low variance regions. The third, BedScalesResp, derives a single respiratory signal with 

peaks and valleys labeled. The final function, RespParameters, converts this information into 

meaningful features like respiratory rate, defined at constant intervals (i.e. every 30 seconds). 

The resulting data is then fed into an aggregate queue, to combine all hours within a night into a 

single file for future processing/visualization and the resulting data is fed into a database queue, 

where it is deposited in the backend of our web and mobile apps. 

2.2.1 Limited assumption approach 

 The key challenge in creating this pipeline was how little could be assumed about the 

incoming data. We did not want to assume a certain number of scales per patient, since beds 

have a variable numbers of legs, and scales may need to be added or removed, so we made the 

pre-processing function detect the scale number automatically. We could not assume when the 

person was in bed, as people have vastly different sleep schedules and patterns. We used a 

weight threshold to detect if the patient was in bed, but to find this threshold, we could not 

assume a range of weights that would apply across all individuals and all installations. Even 

patient-specific weight values would need to be updated periodically if a scale became 
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disconnected or broken, or if the patient’s weight changed by a sufficient amount. We also 

needed this threshold to be relative to the patient’s own “out-of-bed” baseline, since that will 

depend on the specifics of the installation. To solve these issues, we built an additional portion 

of the pipeline to aggregate all the files from a given night and use the result to estimate the 

relative weight of the person in bed and that installation’s baseline value. That threshold is then 

used as a starting point for all of the files in the subsequent night. This allows the pipeline to 

still work in real time based on an automatically detected patient weight estimate, yet also adapt 

across time if this threshold needs to be updated. Once we knew when a patient was in bed, we 

still could not assume that physiology was present as movement artifacts greatly perturb the 

subtle signals from respiration or BCGs. This is why we have a function to find stable regions 

placed prior to the peak finding function, to ensure that peaks and valleys are only labeled when 

the signal is stable enough to be physiology. Finding these peaks and valleys, however, brought 

up additional issues as the standard, “find_peaks” function from SciPy seemed to use 

parameters that needed to be slightly tuned to the signal in question. To solve this, we wrote a 

custom peak finding script (based on the SciPy “find_peaks” function) that was more agnostic 

to the signal magnitude. Since these are physiologic signals we are processing, however, we do 

have  some prior knowledge about what is a feasible result , so we required the peak finder to 

give rise to respiratory rates greater than six brpm. To turn those peaks and valleys into a 

respiratory rate, we needed to be careful to not let errant peaks contaminate our estimates, so we 

used the median inter-breath interval within a moving window as our primary means of 

estimating the respiratory rate. 
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2.3 Data visualization 

 After processing the data, we then are left with a large number of parameter epochs per 

night. However, digesting all this data in an understandable matter is difficult. A graph of a 

single parameter like NRR across one night gives a good sense of the intranight dynamics, but 

does not represent the bulk of the longitudinal data. Each patient would need to be represented 

by hundreds of graphs to see the full picture. Whereas a graph of nightly NRR averages gives a 

good sense of the internight changes but that reduces a very information-rich picture of 

thousands of NRR epochs per night into a single value. Our solution was to use heatmaps to 

display NRR (or any other parameter that we calculate). Figure 2-8 shows the progression of 
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Figure 2-8. Heatmaps as a tool to visualize nocturnal respiratory rate. a, Five minute segment of a 
respiratory signal. b, 24-hours of respiratory rate epochs, depicted as a graph and as a color bar. c, Composite 
heatmap showing NRR longitudinally, 30 nights for 1 patient. d, Composite heatmap showing NRR across a 
population. 30 patients, 1 night each.



how a segment of respiratory signal can be turned into 24 hours of parameters displayed either 

as a plot or a heatmap where color corresponds to respiratory rate magnitude. Then, by rotating 

and stacking many such heatmaps horizontally, we create a composite heatmap picture of NRR 

across time, allowing color to fully show the intranight and internight variations simultaneously. 

We have found this to be a powerful tool, a colorful “fingerprint” of a patient, as their NRR 

patterns evolve across time, allowing us to “at-a-glance” take in thousands of hours of data. 

2.4 Conclusion 

 In conclusion, here we describe a non-contact adherence independent sensor system for 

monitoring weight, respirations, and BCG in the home bed. We overcame challenges in the 

hardware and software domains to produce an inexpensive, easy to manufacture, fully 

automated home-health sensor with the goal of providing clinicians with better insight into 

patient trajectories at home. 
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Chapter 3: BedScales Validation 
 In this chapter I present validation experiments for weight, respiratory, and cardiac 

monitoring using the BedScales platform. The following sections are portions of our paper 

published in Scientific Reports. In that paper we validated our ability to measure weight across 

multiple weeks and across a wide range of weight values. We validated our respiratory rate 

measurements by comparing them to a chest belt in clinical sleep studies. We validated our 

BCG signals by comparing them to electrocardiograms (ECG) in clinical sleep studies. After 

presenting these proof-of-concept results, I will discuss where each biomarker stands in terms of 

its ability to be successfully monitored in-home and then provide details of the methods 

employed. 

3.1 Results 

 In this section I cover the three main biomarkers, weight, respiratory rate, and heart rate 

that the BedScales platform was designed to monitor. We performed proof-of-concept validation 

with each of these useful biomarkers. 

3.1.1 Passive weight monitoring.  

 Commercial weigh scales require that patients remember to self-initiate daily standing 

weight measurements and are limited to engaged patients who can safely and stably stand on a 

home floor scale. Hospital beds measure patient weights when they are in bed using non-contact 

sensors, but they do so only at a single time point, leaving them vulnerable to unmeasured errors 

when blankets, pillows, books, and devices are added between the time of zeroing and 
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measuring weight. In contrast, the benefit of BedScales is that they are designed to measure the 

weight of the bed and its contents continuously across time, which will allow for separate 

quantification of persons and objects based on the times that they are added or removed. For 

example, one can see the separate addition of a glass, increasing amounts of water, and recurrent 

placement and removal of a smartphone (Fig. A-1). Weights are measured by summing the loads 

measured by the sensors beneath each bed leg. When an inanimate object of constant weight is 

moved to different locations on the bed, to simulate a person changing positions, the distribution 

of load amongst the sensors changes, but the total measured weight remains relatively constant 

(Fig. 3-1a). Figure 3-1b illustrates the individual sensor measurements (color) and their sum 

(black) while a person is awake using a laptop compared to after they fall asleep. Note that 

movements become infrequent and episodic during sleep. Validation studies demonstrate that 

BedScales weight estimates are linearly correlated with commercial floor scales across 

clinically relevant weight ranges (spanning 100–800 lbs) (Fig. 3-1, d-f). These value represent 

an average of three bedscales measurements per sample and are fit to the commercial scales 

using two point calibration. Additional characterization studies examining the lower limits of 

sensitivity demonstrated the ability to discern changes of 0.03 lbs and measure light-weight 

objects (e.g., smartphone) that are commonly placed onto the bed (Fig. A-1). Figure 3-1g shows 

a comparison of several weeks of daily weights measured by the BedScales compared to two 

commercial floor scales (each with a reported accuracy of ~ 0.2 lbs). 
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Figure 3-1. Non-contact adherence-independent longitudinal weight monitoring. a, Measurement of 
individual (black) and summed (purple) sensor loads during movement of a 25 lbs weight from positions A 
through E (middle to the four corners of the bed). b, Cartoon illustrating a sleeping subject redistributing total 
body weight during episodic movements in bed. Individual (colored) and summed (black) sensor loads are shown 
while a subject is awake in bed using a laptop with frequent redistributions of load (left) and during sleep with 
only episodic movements separated by long periods of lying still (right). c, 3 weeks of the longitudinal sum of 
scales used to derive daily weights. Inset shows a single day of a person getting into and out of bed. d, 
Correlation plot of BedScales versus commercial floor scale weights (n = 162). e-f, Histogram and Bland–Altman 
of measurement error, expressed as a percent of measured weight, comparing BedScales versus commercial floor 
scale. g, Comparison of daily BedScales weight measurements compared to two commercial bathroom scales. 
Pairwise error mean (0.12% or ~ 0.2 lbs) and standard deviation (0.40% or ~ 0.6 lbs) are shown.



3.1.2 Passive weight monitoring of multiple individuals sharing a bed.  

 Individuals often share the bed with a partner or pet (Fig. 3-2a); and we reasoned those 

weights could be separately inferred based on the timing differences between their getting into 

and out of bed (Fig. 3-2b). To determine the minimum interval that would allow discrimination 

of two-person weights, we performed simultaneity tests in which two persons entered and exited 

the bed at successively decreasing time intervals (Fig. 3-2c). Even when the interval was 

reduced from 30 seconds to 5 seconds, the two individuals were readily discriminated and 

weighed (Fig. 3-2, d-g). While further work would need to be done to write an algorithm that 

can separate the weights automatically, this demonstrates that from a sensor perspective, 

BedScales  could be used to measure total body weight in a patient’s home bed, even if the bed 

is shared with a partner or a pet. 
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Figure 3-2. Non-contact adherence-independent multi-person weight monitoring. a, Cartoon of partners 
sharing a bed. b, Overnight measurements of two partners sharing a bed. Colored signals indicate individual 
sensor tracings. Black indicates the sum of sensors. Sudden weight changes due to each person getting into and 
out of the bed are color coded (blue and pink) and annotated. c, Illustration of synchronicity protocol for 
measuring total body weights at progressively shorter time intervals. (Person = P) P1 On, P2 On, P1 Off, P2 Off, 
then repeated exchanging P1 and P2. d, Corresponding total weight signal measured by the BedScales with a 
time interval of 30 s, e, 15 s, and f, 5 s. g, Estimates of decoupled weights of the two individuals sharing a bed for 
each synchronicity time interval and corresponding weight measured by a commercial floor scale (mean + 
standard deviation).



3.1.3 Respiratory monitoring using non-contact bed sensors.  

 When a patient is asleep in bed, episodic musculoskeletal movements are separated by 

comparatively long movement-free intervals during which low variance physiological signals 

such as respirations and ballistocardiograms can be measured. This provides opportunities to 

perform quantification of respiratory rate and detection of episodic tachypneas, apneas, and 

periodic breathing. BedScales respiratory signals arise from the dynamic redistributions of load 

that accompany chest wall movement during inspiration and expiration. To convert signals from 

multiple sensors into a single patient respiratory signal, we first performed bandpass frequency-

dependent filtering of the individual sensor signals (cutoffs at 0.167 Hz and 1.5 Hz). We then 

had separate signals from each sensor that needed to be combined into a single composite 

respiratory signal. To do this, we used principal component analysis within a sliding window to 

calculate eigenvalues that, when multiplied by individual sensor signals and algebraically 

summed, create a maximally variant single respiratory source signal for peak finding (Fig. 3-3, 

a-b). The resulting signal enabled quantification of interbreath intervals and respiratory rates.  

 Respiratory signals exhibited expected contours with brisk linear upstrokes during 

inspiration followed by exponential decays during expiration (Fig. 3-3, b). To validate the 

measurements, we installed BedScales beneath the legs of a hospital bed during overnight sleep 

studies and compared the resulting signal to those obtained from the standard commercial chest 

belt respirometer (Fig. 3-3, b-c). To facilitate comparisons, we estimated the respiratory rate 

every 30 seconds generating 5737 respiratory rate epochs from 8 patients and observed a mean 

error and standard deviation of −0.17 ± 0.72 bpm. This is shown longitudinally across time (for 

a single patient) (Fig. 3-3c) as a histogram of errors (Fig. 3-3d), and as a Bland–Altman plot 
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(Fig. 3-3e). Additionally, we have placed in Appendix A, two more analyses that we performed 

on the respiratory signal. We explored a method for demixing the respiratory signals from two 

individuals sharing a bed (Fig. A-2) and we also found that BedScales can monitor more 

complex respiratory patters and, for a single patient, quantified the burden of sleep apneas 

through the lens of BedScales (Fig. A-3). 
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Figure 3-3. Respiratory monitoring using non-contact adherence-independent BedScales. a, Raw respiratory 
signals from 4 scales in the middle of an overnight recording (light gray is the entire overnight weight signal). b, 
Composite signal (purple) derived from linear combination of scales weighted by PCA-based eigenvalues 
compared to commercial respiratory chest belt (black) with peak finding annotation (green and blue dots 
respectively) across short (top) and long (bottom) time scales. Inset shows short inspiratory phase with rapid 
linear increase during inspiration followed by longer exponential decay during passive expiration. c, Comparison 
of respiratory rates derived from BedScales (purple) and commercial respiratory chest belt (black) across one 
night (~ 1000 epochs). d, Histogram of respiratory rate differences between BedScales and a commercial 
respiratory chest belt across 8 sleep study patients. X axis limits set at ± 1% quantile of error. e, Bland–Altman 
plot comparing BedScales and chest belt respiratory rates. Y axis limits set at ± 1% quantile of error. 



3.1.4 Heart rate monitoring using non-contact bed sensors.  

 The mechanical force of each heartbeat results in a characteristic signal known as the 

BCG with defined waves that follow each QRS complex of the ECG (41). Bandpass filtering of 

BedScales signals (5 Hz and 50 Hz cutoffs) revealed characteristic BCG morphologies from the 

individual scales (Fig. 3-4, a-b). A single-peak BCG was derived by converting the raw BCG 

signal from each scale into an absolute measure of BCG energy (via a smoothed moving 

variance algorithm). The signals were then summed and filtered (bandpass, 1 Hz, 50 Hz) to 

create a final single-peak BCG signal, which was used for peak finding, heart rate estimation, 

and comparison to ground truth ECG-derived heart rates (Fig. 3-4, c-d). We validated the 

BedScales heart rate estimations by comparing to simultaneously recorded ECGs. Heart rate 

estimates were made every 30 seconds, which generated 5219 epochs from eight patients. The 

data showed quantitative agreement with a mean error and standard deviation of −0.94 ± 2.14 

bpm, which is displayed longitudinally across time (for a single patient) (Fig. 3-4d), as a 

histogram of errors (Fig. 3-4e), and as a Bland–Altman plot (Fig. 3-4f). Furthermore, we have 

placed in Appendix A preliminary results that suggests that complex cardiac features, such as 

increased stroke volume following a premature ventricular contraction (PVC) or non-sustained 

ventricular tachycardia (NSVT) are also visible through the lens of Bedscales (Fig. A-4) 

. 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Figure 3-4. Adherence-independent longitudinal ballistocardiographic monitoring using BedScales. a, BCG 
signals (black) from each of the 4 legs during an overnight recording, smoothed for display (light gray is the 
overnight weight signal). b, Single-peak BCG (pink), BCG (purple) showing the labeled waveform (smoothed for 
display), and simultaneously recorded ECG signal (black). c, Comparison of longitudinal BCG signals from the 4 
individual scales (blue, orange, green, red), the single-peak BCG (pink), and the ECG (black). d, Comparison of 
heart rates derived from BedScales (pink) and ECG (black) across one night (~ 900 epochs). e, Histogram of 
heart rate differences derived from BedScales and from ECG across 8 sleep study patients (5219 epochs, mean 
error −0.94 bpm, standard deviation 2.14 bpm). X axis limits set at ± 1% quantile of error. f, Bland–Altman plot 
comparing BedScales and ECG derived heart rates. Y axis limits set at ± 1% quantile of error.



3.2 Discussion  

 Here, we describe validation experiments for BedScales, a non-contact adherence-

independent sensor designed to longitudinally quantify cardiopulmonary dynamics and weight 

throughout each night. We found that while both weight and BCG still have significant barriers 

to being operationalized, the respiratory measured has proven to be incredibly robust in many 

different situations. 

 For weight, we have shown that BedScales correlates over large ranges (100-800 lbs), 

which will be necessary for measuring a large diversity of patients and beds. Additionally, 

across a longer term, multi-week experiment, the platform in a non-contact manner performed 

comparably to commercial scales. However, we have in other experiments found that the weight 

measurement could have some position dependency or even drift over time (the weight 

measurement changing due to plastic deformation), thus making accurate estimates difficult. 

Additionally, we have written an algorithm to separate out objects and individuals but that will 

need to be refined and validated to operationalize this system for patients who share a bed. 

 For BCG, we have shown that BedScales can match ECG recordings in clinical sleep 

studies. This is an important result as ECG sensors require the attachments of several electrodes 

to the patients, whereas BedScales can likewise track heart rate by simply placing our sensors 

under the bed. However, we have observed that the quality of the BCG signal can depend on the 

type of bed used, and varies from person to person, such that many of our in-home patients did 

not have a discernible BCG signal. 
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 We have shown preliminary results in Appendix A of demixing the respiratory signal 

from two individuals but more work is needed to implement and validate that method in real-

time, and it would need to be done for the BCG signal as well. 

 The respiratory signal however, has consistently performed well in numerous settings. In 

beds, in recliners, and across multiple years of monitoring, the respiratory signal has been 

information rich and robust, even when some of the scales become disconnected or break.  

 Taken together, these results indicate that while the weight and BCG components of the 

system need further work, or need to be done using an alternate sensor like a piezo electric 

mattress sensor, the BedScales platform can reliably measure an information rich biomarker 

across time in an adherence independent manner. The following chapter will take a step back 

and examine this biomarker in the population, and then Chapter 5 will present our findings from 

deploying BedScales sensors to numerous patients and observing longitudinally changes in 

NRR in condition with clinical events. 

3.3 Methods 

 In this section, I will go more in depth as to how the analyses in the above sections were 

performed.  

3.3.1 Human subjects.  

 The governing IRB for this research was IRB # 171480 and IRB # 180160. 

3.3.2 Weight measurement.  

 Bed sensor weight validation was performed by using five healthy volunteers and two 

static weights in various permutations to span a large range of loads. Each person was measured 
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on a commercial bathroom scale before sitting/lying on a bed with the BedScales sensor under 

each of its 4 legs. The 4 scales were calibrated together by fitting coefficients that minimized the 

variance when the same load was applied in different places. The final weights were calculated 

by subtracting the total load measured after and before each permutation of individuals and 

weights was placed on the bed (3 measurements were made of each permutation and these were 

averaged together). Two-point calibration that minimized the measurement error was then used 

to convert from arbitrary units (AU) to pounds (lbs). Longitudinal weight comparisons were 

made by installing BedScales under a home bed and comparing to self-measurement on two 

separate commercial floor scales at the beginning of each night of sleep. The limits of sensitivity 

were tested by placing the sensors beneath a 4-leg couch and placing an empty glass on a flat 

cutting board. At 20 s intervals, 15 mL (0.033lbs) aliquots of water were added. The glass was 

removed and replaced with and without water, and a smartphone was repeatedly added and 

removed.  

3.3.3 Two-person weight demixing.  

 The weights of persons sharing a bed were determined by measuring the calibrated sum 

of all sensors across time and extracting the large differential weight changes. The weight 

changes were then classified into two groups termed person 1 and person 2. Simultaneity tests 

were performed by instructing 2 persons to get into and out of bed at specified temporal 

intervals in the following sequence—Person 1 (IN), Person 2 (IN), Person 1 (OUT), Person 2 

(OUT) and then repeated but exchanging Person 1 and 2. To explore the limits of simultaneity 

that would still permit decoupling of person weights, we systematically decreased the interval 

between Person 1 then 2 (or 2 then 1) getting into and out of bed and repeated the experiment 
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for several time intervals (30 s, 15 s, 10 s, and 5 s), until the maneuver could not reach a steady 

position in the allotted interval.  

3.3.4 Respiratory measurement. 

 BedScales respiratory signals were generated by frequency-dependent filtering with 

cutoffs of 0.167 Hz and 1.5 Hz. A single respiratory signal was derived by linearly combining 

the individual sensor respiratory signals weighted by PCA eigenvalues calculated for each 12.5 s 

window. A moving variance algorithm was used to isolate regions of steady physiology (regions 

< 10 s were rejected) and peak finding was performed on these regions. The respiratory rate was 

calculated using the median inter-peak interval during a 5-min moving window with a shift of 

30 s. For validation, the BedScales respiratory signal and chest belt were subject to additional 

smoothing (moving mean, 0.5 s), windows were required to have no more than 45 s of unstable 

physiology, and regions with technical artifacts in the chest belt were excluded. Data was 

aligned and compared to a simultaneously recorded respiratory chest belt with respiratory rates 

quantified using the same method described above. 

3.3.5 Ballistocardiographic measurement.  

 BCG signals from each scale were derived by frequency-dependent filtering 

(Butterworth) with cutoffs of 5 Hz and 50 Hz (lower cutoff set to 1 Hz during BCG amplitude 

analysis). These signals were then smoothed using a moving mean filter and moving variance 

filters. The resultant signals from each scale were then summed to create a composite signal, 

which was filtered using another frequency-dependent filter (Butterworth) with cutoffs of 1 Hz 

and 50 Hz. The resultant signal was a single peak measure of BCG. For in-home data, steady 

regions (as defined by the respiratory signal) were isolated and analyzed. For validation, a 
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moving variance algorithm was used to isolate regions of steady physiology (regions < 5 s were 

rejected) and peak finding was performed on these regions. The heart rate was calculated using 

the median inter-peak interval during a 5-min moving window with a shift of 30 s. For 

validation, windows were required to have no more than 45 s of unstable physiology and a 

region with technical artifacts in the ECG was excluded. Data was aligned and compared to a 

simultaneously recorded ECG signal with heart rates quantified using the same method 

described above. 

3.3.6 Clinical sleep studies.  

 BedScales were installed beneath the legs of a conventional hospital bed in the Clinical 

and Translational Research Institute where overnight sleep studies were conducted. As part of 

another ongoing study, subjects underwent standard in-laboratory polysomnography (PSG) with 

electroencephalogram (EEG), electrooculogram, submental and leg electromyogram for sleep 

staging; nasal pressure and thermistor for airflow measurement; thoracic and abdominal 

piezoelectric bands for respiratory effort; arterial oxygen saturation monitoring at the finger; and 

electrocardiogram monitoring for safety. Patients slept supine. Signals from the sleep studies 

and the BedScales were aligned using custom python scripts.  

3.3.7 Statistics.  

 Statistical analysis was performed using custom python scripts or GraphPad Prism 

software. All data are represented as mean values±standard deviation unless indicated 

otherwise. For two-group comparisons, a two-tailed nonparametric Mann–Whitney test was 

used unless otherwise specified. All analyses except respirophasic inspiratory versus expiratory 
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BCG magnitudes were unpaired. P values less than 0.05 were considered significant and are 

indicated by asterisks as follows: *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  
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Chapter 4: Nocturnal Respiratory Rate and its 
Relationship to Clinical Variables 

 In this Chapter, we shift our focus and narrow in on NRR in particular. The previous 

Chapter described our sensing platform and validation experiments. After deploying our 

platform in a variety of patient homes, NRR emerged as a potentially powerful biomarker yet 

not much is known about it. NRR dynamics are not routinely measured at high density in 

clinical practice. Consequently, the distribution of NRR dynamics in the population or in 

individuals remains largely uncharacterized. To define NRR in populations, we collected and 

analyzed raw waveforms from chest belt respirometers or flow sensors from over 22,000 

polysomnograms (PSG) from sleep studies taken from the National Sleep Research Resource 

(42). Here, we present the first large scale analysis of NRR and for a subset of 5700 patients, 

report its relationship to demographic and clinical data. To do this, we adapted our analytics 

pipeline described in Chapter 2 to ingest data from the sleep studies, perform peak finding, and 

find parameters. Due to its parallel and expandable nature, our BedScales pipeline, designed for 

real-time processing of thousands of patients, is also an ideal tool for retroactively processing 

large amounts of sleep studies in a reasonable time frame. 

4.1 Results 

4.1.1 Sleep study analysis 

 We pulled our PSG data from five sources available on the National Sleep Research 

Resource. The studies we used were the the Hispanic Community Health Study/Study of 
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Latinos (HCHS) (43), MrOS Sleep Study (MROS) (44), Multi-Ethnic Study of Atherosclerosis 

(MESA) (45), Sleep Heart Health Study (SHHS) (46), and the Wisconsin Sleep Cohort Study 

(WSC) (47). 

 Figure 4-1, a-b details our basic workflow. We downloaded raw EDF files from each study 

and processed them through our analytics pipeline to convert the waveforms into signals with 

annotated peaks and valleys, and then into a series of parameter epochs, defined in 30-seconds 

intervals. In order to do this, we needed to adapt our pipeline to process data from clinical sleep 

studies rather than from the BedScales platform. This brought a new set of challenges as we had 

to make even less assumptions than before. We could no longer isolate steady regions from 

movements, because the distinction between the two was less clear or predictable as seen from 

the lens of sleep study data. Additionally, we no longer had access to the weight signal so we 

needed a new method to tell when the patient was in bed.  

 We solved both of these problems by creating a new Lambda function that outputs 

parameters to discern physiology. In particular, we found that by comparing couplets of 

normalized “breaths” within a moving window, true breaths (those that arise from a stable 

respiratory signal) were well correlated with each other while false breaths (those that arise from 

a random noise or movement artifact) had no consistent shape and thus were not as well 

correlated (see section 4.3 below for details). Figure 4-1c shows the distribution of this metric 

across all epochs from all studies. We found that this distribution was loosely bimodal, with the 

smaller peak being related to noise and the larger one being related to stable physiology.  

 In order to used this metric as a filter for noise versus physiology, we set a cut point as the 

minimum between these two peaks. Figure 4-1d shows examples of tracings from the left and 
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right of the cut point. Our goal in doing this was not to perfectly separate quality and noisy 

tracings, but to cut out the bulk of the tracings that were noise, such that when we found 

aggregate respiratory epoch statistics, they would be uncontaminated. Additionally, by finding 

statistics based on all of the quality epochs in a given night, we mitigated the risk of our final 

answer being impacted by errant regions of noise that made it past our quality metric. 

 However, in addition to only retaining quality epochs, we also wanted the subject-nights 

that comprised our final distribution to be high quality and reflective of a relatively normal night 

of sleep, not be representative of only a few minutes of data with the rest being technical 

artifacts or movement. Therefore, we found the distribution of time each subject had quality 

data, as seen in Figure 4-1e and removed all nights where the subject was below the 0.05 

percentile for time spent in bed, rounded to the nearest hour (3 hrs). Figure 4-1f shows the 

amount of nights per study that were initially present (gray) and that were retained (blue). 
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Figure 4-1. Setup and methods for sleep study analysis. a, Block diagram of design of sleep study analysis. b, 
Diagram of studies being transformed into annotated signals, and then transformed into parameters. c, 
Distribution of quality metric across all epochs and all studies. Chosen cut point labeled. d, Examples of tracings 
from the noise side and physiology side of the cut point. e, Histogram of time-in-bed of each night in the sleep 
studies. f, Bar plot showing how many nights per study were retained.



4.1.2 Nocturnal respiratory rate in the population 

 After filtering, we had a resulting 22,684 nights of waveform data to process. Figure 4-2 

shows the distributions of these epochs, both as heatmaps and histograms, for each study and 

then a composite distribution including all of the studies. As described in Figure 2-8d each 

column of the heatmap represents a single night of data (in this case, a single subject), the y-axis 

represents the hours in bed (artificially registered so that most studies have the same start time), 

and the color represents the magnitude of the NRR for that epoch (from 10-30 brpm). We sorted 

the heatmaps from least to greatest NRR to allow for easier visualization. 

!41

Figure 4-2. NRR distributions displayed as heatmaps and histograms for five sleep studies. Color bar ranges 
from 10-30 brpm, values below 10 not shown. a, Wisconsin Sleep Cohort Study. b, Multi-Ethnic Study of 
Atherosclerosis. c, MrOS Sleep Study. d, Sleep Heart Health Study. e, Hispanic Community Health Study/Study 
of Latinos. f, All sleep studies combined into single distribution.



4.1.3 N Nocturnal respiratory rate relationship to clinical variables 

 After acquiring the NRR distributions for each study, we created composite statistics (such 

as mean, median and variance) of the epochs in each night. To understand the relationship that 

NRR has with other variables, and gain insight into its utility as a biomarker for disease, we 

then examined the relationship between NRR and key variables in the SHHS study. What 

follows are preliminary results that we plan to expand to all studies in a future publication. Table 

4-1 displays the results. We found that some features, such as age or a history of CABG do not 

appear to be related to NRR. However, we found that a history of heart failure and atrial 

fibrillation in particular, as well as COPD, were related to NRR. For example using a cut point 

of 17 brpm, 4% of all subjects above the threshold had atrial fibrillation, while for those below 

the threshold, this value dropped to 1%.  This may be because NRR is a proxy for interstitial 

pressure, which is why heart failure and atrial fibrillation had the strongest relationship to an 

elevated NRR. Regardless, the important take away is that NRR, a biomarker that can be 

measured in an adherence independent fashion, appears to be linked to chronic diseases of 

interest. Additionally, NRR also appears to be related to outcomes. Figure 4-3 displays a 

Kaplan-Meier curve for the SHHS study describing the 15-year survival rates. We separated the 

patients into 4 different groups based on NRR with cutoffs at 17, 20, and 23 brpm and found 

that with increasing NRR, groups had less chance of survival, with end-of-study survival rates 

around 70%, 60%, 40%, and 20% respectively. Figure B-1 in Appendix B presents an odds ratio 

that communicates a similar relationship between NRR and 15-year mortality. 
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Table 4-1. Relationship between NRR and demographic/clinic variables.

High [>17 bpm] Low [<=17] P-value

(N=1568) (N=4031)

Age
Mean (SD) 64.8 (11.9) 62.6 (10.9) < 1e-04

Median [Min, Max] 66.0 [40.0, 90.0] 62.0 [39.0, 90.0]

Gender
Male 772 (49.2%) 1899 (47.1%) 0.1617

Female 796 (50.8%) 2132 (52.9%)

SBP
Mean (SD) 129 (19.8) 127 (19.1) < 1e-04

Median [Min, Max] 127 [79.0, 202] 124 [52.0, 214]

DBP
Mean (SD) 73.5 (12.4) 73.7 (11.3) 0.5801

Median [Min, Max] 73.0 [10.0, 120] 73.0 [21.0, 132]

Height
Mean (SD) 167 (9.60) 168 (9.57) 0.004969

Median [Min, Max] 167 [145, 188] 167 [145, 188]

Weight
Mean (SD) 79.6 (17.1) 77.5 (15.7) < 1e-04

Median [Min, Max] 78.6 [47.0, 126] 76.4 [47.0, 126]

BMI
Mean (SD) 28.9 (5.64) 27.8 (4.81) < 1e-04

Median [Min, Max] 28.2 [18.0, 50.0] 27.3 [18.0, 50.0]

Mean Nocturnal Respiratory Rate
Mean (SD) 19.2 (1.86) 14.9 (1.61) < 1e-04

Median [Min, Max] 18.7 [16.4, 32.8] 15.0 [9.05, 23.0]

Median Nocturnal Respiratory Rate
Mean (SD) 18.9 (1.91) 14.4 (1.56) < 1e-04

Median [Min, Max] 18.2 [17.0, 33.3] 14.6 [8.51, 16.9]

Nocturnal Respiratory Rate Variance
Mean (SD) 4.91 (5.06) 4.43 (5.66) 0.002052

Median [Min, Max] 3.29 [0.367, 52.2] 2.85 [0.219, 107]

Hx of CABG
Yes 61 (4.50%) 145 (4.13%) 0.6157

No 1294 (95.5%) 3368 (95.9%)

RBBB on EKG at visit 1
Yes 27 (2.45%) 82 (2.84%) 0.5694

No 1075 (97.6%) 2804 (97.2%)

History of atrial fibrillation
Yes 39 (4.53%) 25 (1.24%) < 1e-04

No 822 (95.5%) 1993 (98.8%)

LBBB on EKG at visit 1
Yes 18 (1.63%) 26 (0.901%) 0.07018

No 1084 (98.4%) 2860 (99.1%)

History of heart failure
Yes 55 (3.68%) 41 (1.07%) < 1e-04

No 1439 (96.3%) 3803 (98.9%)

COPD
Yes 30 (1.97%) 30 (0.755%) 0.0001943

No 1496 (98.0%) 3944 (99.2%)

Hx of smoking
Yes 893 (57.5%) 2056 (51.3%) < 1e-04

No 661 (42.5%) 1953 (48.7%)

4



 

!44

Figure 4-3. Kaplan-Meier curves for NRR. Time is shown on the x axis and survival on the y axis. Colors 
correspond to individuals with different NRR. After around 2 years, the group with the highest NRR had the 
lowest percentage of survival at all time points.



4.2  Discussion and conclusion 

 We present here the first large scale study of NRR. By processing over 22,000 subject 

nights, we created a novel data set of NRR and its relationship to clinical variables. Our 

preliminary results have linked NRR in a single study to chronic diseases such as atrial 

fibrillation as well as to 15-year mortality outcome. Future work will explore the relationships 

between NRR and clinical variables across all studies. This result is important in the context of 

our BedScales platform because in the following Chapter, as we return to in-home monitoring, 

we now have a justification to think that patients with higher NRR are at higher risk, and 

potentially, that as an individual moves from low to high NRR across time, their physiology 

may be changing for the worse. 

4.3 Methods 

4.3.1 Nocturnal respiratory rate estimate and quality metric calculation 

 The chest belt or flow sensor signals from each study were smoothed (window sizes of 

0.5-1 seconds) and peaks were found using a custom peak finding script based on SciPy 

find_peaks as described in Section 2.2.1. NRR was estimated from the median inter-peak 

interval within a 5 minute moving window (30 second shift). To derive the NRR quality metric 

we took all couplets of “breaths” (valley-peak-valley-peak-valley) within a 60 second window 

(10 second shift) and measured how well each couplet correlated to the others. To do this we 

normalized the magnitudes, pinned the peaks of each couplet together, resampled the region 

between them, and truncated the regions on the end such that we would have two couplets, with 
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aligned peaks, and the exact same number of samples, essentially normalized with respect to 

time. We then compared each couplet pair with every other couplet pair in the window (using 

both a Spearman and Pearson correlation calculated using the SciPy package). We then took the 

median of each type of correlation measure within the window, essentially giving an indication 

of how well correlated overall the couplets are with each other. To balance the contributions 

made by each correlation measure, we then took the mean of the two to provide a final single 

number indicating how overall correlated the couplets are within that 1-minute window. 

Regions with legitimate physiology should have in general self-similar breaths whereas regions 

of noise should be far less correlated. To align the NRR and quality metric parameters in time, 

we then used a 5 minute moving window (30 second shift) to aggregate the quality metric 

parameters into a single value, defined every 30 seconds, so that there would be a 1-1 match 

between NRR and our quality metric, enabling easily filtering out of regions that were low 

quality. 

4.3.2 Nocturnal respiratory rate relationship to clinical variables 

 To create Table 4-1, a Student’s t-test and Chi square test methods were used to assess for 

statistically significant (p < 0.05) correlations between “High” (>17 brpm) NRR group and 

various continuous and categorical clinical variables respectively. For Figure 4-3, Survival 

analysis performed using Cox regression analysis reveals a decreasing survival rate across 

increasing NRR groups; highest survival rate in those with NRR < 16.9 brpm and lowest in 

those with NRR > 23 brpm.  
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Chapter 5: Nocturnal Respiratory Rate Enables Early 
Recognition of Hospitalizations 
 In this Chapter, we explore NRR dynamics measured by BedScales and evaluate their 

utility as a biomarker of impending hospitalizations. We deployed BedScales sensors to patient 

homes and defined high resolution longitudinal NRR trends over months (without requiring any 

patient participation). This Chapter is largely a reprint of material that we prepared for a 

manuscript to be submitted in spring of 2022. Our main focus in this Chapter is to examine 

whether excursions of NRR from patient-specific baselines could be used to recognize some 

impending hospitalizations before patients report symptoms and whether it could be done 

without excessive false alarms. In a high-risk, elderly, and medically complex cohort we 

collected and analyzed 3,403 patient-nights of data (4,326,167 epochs at 30-second intervals) 

from 34 patients. We found that at nominal alarm thresholds, we detected 11 of 23 

hospitalizations, with warning windows ranging up to weeks in advance. Given that only a 

subset of hospitalizations are expected to have detectable prodromes, this represents a 

significant improvement over the current standard of patient-reported symptoms. Together, this 

suggests that NRR may be a useful biomarker for automated early detection of many impending 

hospitalizations. The following sections report these findings and then conclude with a detailed 

description of the methods employed. 
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5.1 Results 

5.1.1 Adherence-independent monitoring of nocturnal respiratory rates 

 To determine the longitudinal patterns of NRR, we analyzed data from an IRB-approved 

observational study of adherence-independent home bed monitoring. We selected patients 

enrolled from 6/22/2020 to 1/20/2021 from an academic health center, cardiology practice, and 

population health program who were felt by their providers to be at high risk of hospitalization 

for cardiopulmonary causes in the next year (Table 5-1). Patients were on average 75 years old 

and had multiple co-morbidities. A total of 34 patients were monitored for 3,403 total patient-

nights. After removing nights (10%) due to absent or inadequate data, 3,056 patient-days 

remained for analysis. Participants spanned diverse ages (20’s-90’s), genders, ethnicities, 

socioeconomic contexts, body weights, and medical comorbidities; settings ranged from 

transitional housing, studio apartments, and condos, to multi-story homes in gated subdivisions; 

and sleep furniture included couches, recliners, and a diversity of beds (twins, queens, kings, 

and adjacent twins). Problematically, nine of our patients shared a bed with a partner which is 

discussed more at length in the methods in Section 5.4.2. Many patients suffered from physical 

or cognitive disabilities that would have made usage of adherence-dependent wearables and 

mobile apps challenging. For example, we monitored patients with dementia, a woman with 

blindness from diabetic retinopathy, and another who was bed-bound and neurologically 

impaired after a debilitating stroke. 
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Table 5-1. Summary of longitudinal home monitoring patient cohort.



5.1.2 Longitudinal NRR in patients with clinical stability 

 In order to understand NRR longitudinally, we divided patients into 2 groups, those who 

were hospitalized during the period of monitoring and those who were not. We focused first on 

the patients who were not hospitalized during the analysis period. Individual patients were 

qualitatively similar to themselves across time but different from other patients as illustrated by 

four examples (Fig. 5-1, a-d). To analyze the characteristics of stable patients, and to do so in a 

manner that equally weighted each patient regardless of monitoring duration, we chose 30 

nights from each stable patient generating a distribution of around 600,000 epochs, with a mean 

of 17 brpm and a variance of 16 brpm2 (Fig. 5-1e). Quantitatively, when the distribution of 

NRRs for individuals were corrected using a universal reference, the variance was significantly 

greater (15.9 brpm2) than when corrected using a patient-specific reference (7.2 brpm2) (Fig. 

5-1f). This suggested that the longitudinal variation for individual patients is low in clinically 

stable patients. It also suggested that from a practical perspective, detection of excursions from 

baseline should compare to patient-specific NRR norms rather than cross-sectional population 

norms, since the interpatient variation was larger than intrapatient variation (Fig. 5-1g). 

5.1.3 Longitudinal NRR in patients with hospitalizations and clinical events 

 We next focused on patients who had clinical events during the monitoring period. 

During the 3,403 patient-nights of monitoring we observed 23 clinical events, defined as an 

overnight hospital stay, which is equivalent to a 30-day clinical event rate of ~20%, consistent 

with the high-risk patient population that we enrolled. We observed hospitalizations for heart 

failure exacerbation (Fig. 5-2a), pneumonia responsive to antibiotics in a patient with heart 

failure on dialysis (Fig. 5-2b), failure to thrive in a diabetic man with chronic debilitating 
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musculoskeletal pain (Fig. 5-2c), septic shock in a patient with long standing heart failure on 

dialysis (Fig. 5-2d), severe anemia from gastrointestinal bleeding in a patient with prior stroke 

(Fig. C-6, d), as well as community-acquired COVID-19 infection in an immunosuppressed 

individual, hypoglycemia, hyperglycemia, localized cellulitis, and palpitations due to bigeminy. 

These clinical events occurred for diverse reasons, only some of which would be expected to 

have associated changes in respiratory rate. 

!52

Figure 5-1. Nocturnal Respiratory Rate (NRR) dynamics longitudinally measured in the home bed. a-d, 
60-night heatmaps of 4 example patients showing low intrapatient NRR variability but large interpatient NRR 
differences. Colorbar ranges from 10-30 brpm. Values below 10 brpm not shown. e, Histogram of all epochs (n = 
644,665) from the 16 clinically stable patients (mean = 17.28 brpm, variance = 15.94 brpm2). f, Histograms of all 
epochs centered at the universal mean (gray) and each subject centered on their own overall mean (variance = 
7.18 brpm2) (green). For both (e) and (f) the x-ax is cropped such that all bins with >0.01% of data are shown. g, 
Box plot of the entire population as a single distribution (blue) and each individual patient (green). Labels in 
parenthesis highlight the patients shown in a-d with corresponding letter. For the box plots in f and g, the center 
line represents the median value, the boxes extend from the first to the third quartile, and the whiskers extend 
1.5x the interquartile range before the first quartile and past the third quartile.



 To analyze the quantitative differences between hospitalized and non-hospitalized 

patients, we first defined a causal patient-specific baseline as the lowest sustained NRR (see 

methods in section 5.4.6). We then plotted the deviation of NRR compared to baseline for each 

patient type. The hospitalized group had a 4-fold greater variance compared to the stable group 

(3.78 brpm2 and 0.84 brpm2 respectively). The KS statistic for the two groups had a p value 

<0.0001 indicating that the two distributions were significantly different. By inspection of the 

cumulative distribution function (CDF), the distinction between the two groups was due to the 

hospitalized group having a greater proportion of elevations from baseline (Fig. 5-2e). We next 

asked whether the differences were concentrated in time and localized to the days immediately 

preceding the hospitalization event. We defined a proximity factor to specify windows in 

advance of hospitalization for analysis. As the proximity factor decreased, the deviation from 

baseline increased suggesting that it may be possible to detect impending hospitalization by 

longitudinally monitoring deviations of NRR from baseline (Fig. 5-2f). We defined a threshold 

NRR (NRRth) above the patient-specific baseline. When patients exceeded the threshold, they 

were classified as “in-alarm” (red) while those who remained below threshold were classified as 

“not in-alarm” (green) (Fig. 5-2g). The optimal value of NRRth can then be selected to 

maximize detection of impending hospitalizations (true positives) while minimizing alarms for 

patients who did not ultimately require hospitalization (Fig. 5-2g). We did not classify the latter 

as “false alarms” since some patients exhibited gradual rise-and-fall patterns of NRR that 

suggested the presence of a true subclinical event that simply did not require hospitalization but 

still represented an event that may have benefited from outreach (Fig. C-5). It is important to 

note that unlike molecular diagnostic tests, which have well-defined ground truths that enable 
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use of sensitivity and specificity performance metrics, the “impending hospitalization” outcome 

has no established ground truth. Many hospitalizations would not be expected to have a 

cardiopulmonary prodrome while many subclinical events that do not reach the level of 

hospitalization are still worthy of alarm. Therefore, we judged success of NRR based on the 

ability to maximize the number of detected events per days of monitoring while minimizing 

alarms for which no subclinical event could be identified. 
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Figure 5-2. Comparison of clinically stable and unstable (hospitalized) patients. a-d, Heatmaps of 
hospitalized patients. Y-axis is time of day in hours. X-axis is time in weeks. Colorbar ranges from 10-30 brpm. 
Values below 10 brpm not shown. e, CDF of the distribution of baseline deviations for stable patients (blue) and 
hospitalized patients (black). f, Inset shows that the Proximity Factor is a measure of how far a night is from a 
hospitalization event. Main plot shows a CDF of the distribution of baseline deviations for nights far from a 
hospitalization event (black), and for nights within 2, 5, 10, 20, and 30 nights from hospitalization event (gray). g, 
Inset shows that the RRth is a threshold with respect to baseline and that days below threshold are considered low 
risk (green) and days above are high risk (red). Main plot shows the number of hospitalization events detected 
(gray bars, left y-axis) and the number of days among stable patients that were labeled “high risk” (pink line, 
right y-axis) for varying values of RRth. RR99% (black dashed line) is a value of RRth where 99% of stable days 
are considered low risk. 



5.1.4 Development of an impending hospitalization 

 To evaluate the performance of this approach, we selected a NRRth threshold value to 

limit above-threshold days to <1% in non-hospitalized patients (NRR99%) and applied it to 

hospitalized and non-hospitalized patients (Fig. 5-3). This resulted in 2 alarm regions in 2 non-

hospitalized patients over 1707 days of monitoring, one of which exhibited a characteristic rise-

and-fall pattern suggestive of a true subclinical event for which an alarm would arguably be 

desired (Fig. C-5), as well as scattered alarms on hospitalized patients but not at a time near 

their event. By comparison, using a window of 3 days (meaning that events were considered to 

have been detected if they occurred within 3 days of an alarm) we detected on 11 of 23 

hospitalizations, which occurred for reasons including heart failure with volume overload, 

anemia requiring transfusion, pneumonia, acute COVID-19 infection, and septic shock. To 

evaluate the window of early detection, we aligned the hospitalization dates and compared the 

duration of each prodrome. The longest prodrome (~3 weeks) was associated with a volume 

overload event from heart failure exacerbation. Such warning periods would provide ample time 

for patient calls, home visits, urgent clinic visits, and escalation of diuretics. Even events with 

shorter prodromes, if they are disease-like infections, could still enable earlier initiation of 

antibiotics. This has potential for significant clinical benefit since, every hour of delay in 

initiating antibiotics is associated with increased mortality in sepsis. 
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Figure 5-3. NRR and risk assessment for full data set. a, Dot plot of nocturnal respiratory rate for all nights of 
patient data, colored by low risk (green) and high risk (red). Patients are grouped into 3 categories, patients who 
had no clinical events (blue), patients who had clinical events but for whom NRR was not predictive (light 
magenta), and patients who had clinical events and for whom NRR was predictive (dark magenta). b-c, Heatmaps 
of respiratory rate deviation from baseline (b) and risk assessment (c) for all nights of patient data. Patients may 
span multiple rows. Gray used for padding. Hospitalization events annotated with white diamond. Suspected sub-
clinical events annotated with gray diamond. Days with less than 3 hours of epochs not shown. d, Dot plot of 
NRR deviation from baseline for all patient-nights. Colored by low risk (green) and high risk (red) and grouped 
as described above. e-f, Heatmaps of NRR deviation from baseline (e) and risk assessment (f) for 3 weeks prior 
to hospitalization for events with respiratory rate prodromes. Days with less than 3 hours of epochs not shown. 
The same colorbars from b-c are used in e-f.



5.2 Discussion 

 Respiratory rate is a fundamental vital sign that is often clinically neglected, except at its 

extremes. Here, we show that NRR dynamics represents a powerful biomarker that can be 

passively monitored by non-contact sensors without requiring any patient engagement. Across 

3400 patient-nights of longitudinal home bed monitoring in high-risk patients, we defined 

patterns of clinical stability and identified prodromes of impending hospitalizations for diverse 

causes. During periods of clinical stability, each patient exhibited low night-to-night variability 

compared to higher interpatient differences. This argued in favor of using patient-specific 

references rather than cross-sectional references. Doing so enabled early detection of respiratory 

changes days and weeks prior to hospitalization for conditions such as heart failure, 

diverticulitis, severe anemia due to gastrointestinal bleeding, pneumonia, acute COVID-19 

infection, and septic shock. 

 Interpretation of impending hospitalizations using NRR is different from a molecular 

diagnostic test with a clear gold standard against which measurements can be compared and 

sensitivity and specificity quantified. There is no ground truth for acute and subacute illnesses or 

impending hospitalizations with respiratory prodromes. As expected, not all hospitalizations are 

preceded by respiratory prodromes. However, the inability to detect all causes of 

hospitalizations should not detract from those that can be detected. It is valuable to be able to 

detect clinical events days to weeks before patient-reported symptoms if it can be done without 

alarming on clinically stable or symptom-free patients. In our study, although we did alarm in a 

settings that did not result in hospitalizations, close examination of the associated NRR 

dynamics revealed that a subset exhibited rise-and-fall patterns suggestive of true subclinical 
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events for which outreach was desirable (Fig. C-5). In short, we propose a pragmatic approach 

to evaluation of NRR-based diagnostics – maximize detection of clinical events while 

minimizing alarms that have no clinical correlate when retrospectively evaluated. 

 Automated monitoring has potential to enable care coordinators to rapidly review large 

patient cohorts. Although events are automatically detected by the risk score algorithm, the data 

can be rapidly over-read for confirmation. Heatmaps place each day’s data in the context of all 

prior days and web-based dashboards allow the automated results for each patient to be 

reviewed daily, requiring ~5 seconds per patient. This has the potential to substantially increase 

the number of patients a care coordinator can manage. Rather than performing randomly 

scheduled calls, time can be dedicated to those patients who are off their baseline and at risk of 

hospitalization. For example, consider a care coordinator who follows patients for 1-2 months 

after hospital discharge. At any given time, a care coordinator may be responsible for 100 high-

risk patients with an average hospitalization rate of ~1 per year. Although the expected 

hospitalization rate is only 1 every few days, it is unknown which patients are off their baseline 

at any given time. Therefore, a commonly used strategy is to perform structured phone calls 

every few weeks. Contrast that with a workflow based on automated remote monitoring and 

NRR-prompted calls. A care coordinator could follow a substantially larger pool of patients with 

a similar risk profile (e.g., 1000 patients with 1 hospitalization per year). The automated alarm 

system is likely to surface 5-10 patients per day who are off their baseline at any given time. In 

addition to substantially expanding the number of patients a care coordinator can care for, it 

preserves time for calling patients and family members, performing home visits, and 

coordinating targeted examination, diagnostic testing, interventions, and follow-up when 
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necessary. In summary, the use of automated NRR-based early warning has potential to enable 

efficient allocation of care coordinator resources with minimal unwarranted alarms. 

 What is the appropriate intervention for a patient with impending hospitalization? 

Management of patients found to be off their baseline by in-home sensors is a largely 

unstructured domain of outpatient medicine that is likely to mature as providers are confronted 

with data from early detection technologies. The data should be viewed similarly to patient-

reported symptoms rather than a result of a diagnostic lab test. It alerts the provider that the 

person is off their baseline, but additional conversation with or without objective diagnostic 

workup will be needed to define the way in which they are off their baseline. In our current 

workflow, early recognition of impending hospitalizations is communicated to care coordinators 

who call patients, discuss any symptoms, and if necessary, follow-up with additional phone 

calls, home visits, diagnostic tests, interventions, or escalation of care. Future work will 

prospectively test whether communicating NRR-informed risk scores to care coordinators, with 

or without accompanying structured workflows, can improve outcomes. This is particularly 

promising because many causes of increased NRR have established interventions. For more 

severe deteriorations, early evaluation in the ER and consideration of hospitalizations may 

reduce overall length of stays, need for ICU, or improve clinical outcomes after discharge. 

These questions will need to be tested prospectively to determine if NRR-guided care can 

improve the quality and cost of care as well as the quality of life for patients and their families. 
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5.3 Conclusion 

 In summary, we show that NRR, when monitored longitudinally using non-contact 

adherence-independent bed sensors, is a promising biomarker of impending hospitalizations. 

The potential for early recognition of acute and subacute illnesses makes outpatient chronic 

disease management a data-driven science and in doing so has potential to improve patient 

satisfaction and quality of care while reducing health care costs (48).  

5.4 Methods 

 In this section, we describe in details the methods employed to acquire the results and 

generate the figures seen in the preceding sections. 

5.4.1 In-home study 

 We started with a cohort of 41 in-home patients. We excluded patients who had less than 

5 nights of data (impacting 6 patients) and we excluded an additional patient for technical 

reasons (see discussion of two-person issue below). Two patients (PC196385 and PC842512) 

had gaps in their records longer than 2 months and these regions were not included in our 

accounting of nights monitored or nights missed. Two patients (PC938552 and PC156895) had 

5 nights with timing mismatch at the beginning of their records and these nights were not 

included. Two nights from PC345529 and PC989678 and 4 nights from PC217124 were 

excluded due to artifacts. Eight nights from PC245828 were excluded, 3 for artifacts, and 5 

because, based on weight analysis, the data on those nights was not from our patient. Two 

patients (PC245828 and PC834441) had one set of sensors under their bed and another set of 

sensors under their recliner and these two data streams were combined to create a composite 
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record for each of them. The first 16 nights of PC233478 had a large proportion of artifacts and 

required a reinstall so we started their record after the reinstall. From the beginning to end of 

each patient’s record there were 3,403 nights of data total and 3,056 nights with a sufficient 

number of epochs. On average, 91% of each patient’s record contained nights with a sufficient 

number of epochs (Fig. C-2). 

5.4.2 Two-person problem 

 Nine of our patients share a bed with a partner and so for these datasets there is 

uncertainty as to which individual is contributing to the NRR measurement from our sensor (one 

patient was excluded from our study due to this issue as it was clear that we were not 

monitoring our patient consistently). Of the 9 that were included, 1 patient (PC196385) was able 

to be partially isolated based upon weight and timing. Additionally, this patient had 2 

hospitalization events that were successfully detected, indicating that this data set is matched to 

the correct person. For the remaining 8 patients we assumed that we are monitoring the correct 

individual and future work will employ two mattress sensors rather than BedScales (see Chapter 

7) to disambiguate individuals who share a bed. Six of these 8 patients (PC217124, PC326258, 

PC753332, PC938552, PC944286, and PC989678) were not hospitalized which matches our 

NRR assessment as these individuals had almost entirely low risk nights. We acknowledge the 

possibility for false negatives for these patients if their data was reflective of the patient’s 

partner and the partner was hospitalized for a disease exacerbation during our monitoring 

period. Two patients (PC361953 and PC682378) had events that went undetected by NRR and 

possibly these false positives were caused by this two-person issue. 
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5.4.3 Processing pipeline 

 To monitor the NRR, we used the BedScales platform described in Chapter 2. The 

processing pipeline used for the results in this Chapter are similar to that described previously. 

The resulting respiratory rate epochs from the pipelines were required to be within a 

physiologically reasonable range (6<x<40) and nights were required to contain at least 3 hours 

of epochs to be included. By convention, our “patient-nights” are defined as running from 

12pm-12pm (changes due to daylight savings are not considered).  

5.4.4 Clinical cohorts 

 Using the EMR, we recorded the significant interactions that our in-home patients had 

with clinicians. We separated the patients into a stable cohort (18 patients) and a hospitalized 

cohort (16 patients). We included in the hospitalized cohort all patients who were admitted 

overnight except for two patients (PC993456 and WP62227) because they were hospitalized for 

falls rather than a disease exacerbation. We included as an admission one patient (PC158695) 

who was admitted to a Skilled Nursing Facility. For correlating our in-home data with 

hospitalization events, standard calendar days were used and so events were recorded if they 

occurred up to midnight during the final night of monitoring for each individual. 

5.4.5 Longitudinal in-home analysis 

 To assess the longitudinal stability of nocturnal respiratory rate for in-home patients 

(Fig. 5-1), we chose the patients who were not admitted to the hospital for a disease 

exacerbation and who had at least 30 nights of data, resulting in 480 nights total from 16 

patients. The epochs for assessing stability were taken from a window of 30 nights that began at 

night 1 for these patients. For patients who had large gaps (>14 nights) of missing data during 
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this period, the 30-night window started after the gap period (this impacted patients PC196385 

and PC217124). Variance comparison analysis was calculated using Levene test implemented 

by scipy.stats.levene. 

5.4.6 Baseline calculation and self-referencing 

 To derive a baseline NRR for each patient, we found the causal moving average of each 

night with a window size of 5 nights and then took the rolling minimum of this value as it 

evolved across time. This ensured that each baseline value was the result of multiple nights of 

monitoring and that if our sensors were installed to a patient who was actively returning to their 

normal range, the derived baseline value would gradually decrease as the individual’s 

respiratory rate returned to normal (Fig. C-3). Since there is no causal moving average defined 

for the first x-1 nights where x is the window size, when the baseline was subtracted from the 

nightly NRR estimate, all of the nights prior to a genuine baseline measure were set to a null 

value and not considered in subsequent analysis. A maximum of 1 night of missing data was 

allowed within the window of nights that was used in setting the moving average. 

5.4.7 Clinically stable versus hospitalized patients 

 To see if there is any difference in NRR between clinically stable and hospitalized 

patients (Fig. 5-2e), we compared the distributions of baseline deviations across all nights for 

these two populations. To compare distributions comprised of nights near and far from 

hospitalization events (Fig. 5-2f), we defined a Proximity Factor that defined how many nights 

prior to the event were placed into the “near” distribution. To take into consideration that after 

the hospitalization event, the patient may be fully recovered, or may still be sick and recovering, 

we set a buffer value of 7 nights after the event and those nights were not placed into either the 
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“near” or “far” distributions. To compare the CDFs of the distributions in Figure 5-2, e-f, we 

used a Kolmogorov-Smirnov test for goodness of fit, implemented by scipy.stats.kstest. 

 For our risk assessment strategy, we set a threshold (RRth) that is a specified amount 

above baseline and in general, all nights above the threshold were considered high risk nights. 

To reduce noise from artifacts or from sporadic high-risk alerts, we incorporated 3 other 

considerations (Fig. C-4): (i) A night must either be the second consecutive above RRth to be 

considered high risk or (ii) the night must be above a higher threshold, RRth+ to be considered 

high risk. (iii) Nights that dropped below RRth could still be considered high risk if that night, 

and the other consecutive preceding high-risk nights (if any) had a mean that was still above the 

threshold. Considerations (i) and (ii) prevent sporadic or errant nights from being labeled high 

risk but allow for detection of acute conditions that suddenly raise the NRR (Fig. C-7c). Based 

on our dataset, we set RRth+ to be 1.75 brpm above RRth. Consideration (iii) is a causal way to 

prevent high risk regions from being fractured by nights that dip slightly below the threshold. 

 To count the number of events that were preceded by a rise in NRR (Fig. 5-2g), we set a 

margin value of 3, and any event that occurred within 3 nights of a high-risk night was 

considered to have been detected by NRR analysis. We set RRth based upon the value that 

would yield 1% or fewer high-risk nights in patients that were clinically stable (RRth99%). For 

our dataset, this value was 3.41 brpm.  

5.4.8 Risk assessment 

 We applied our risk assessment strategy to the entire dataset (Fig. 5-3). We grouped 

patients into three categories (i) patients who had no hospitalization events (ii) patients who 

were hospitalized but for whom NRR was not predictive and (iii) patient who were hospitalized 
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and for whom NRR was predictive. To create the heatmaps in Figures 5-3, b-c we arranged all 

patient-nights in columns of 50 nights. Some patients spanned multiple rows and gray was used 

for padding to keep the columns even. Nights without data are not shown. We aligned all 

hospitalization events together and displayed 21 nights prior to each event (Fig. 5-3, 3-f). One 

patient in this figure, (PC842512) had their high-risk night on the same day as his admission so 

this was adjusted for display purposes. 
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Chapter 6: Case Studies 
 In this Chapter, we present three case studies of specific patients. These clinical cases 

highlight the ability of adherence independent monitoring to track NRR changes prior to a 

hospitalization event and demonstrate in real-world scenarios the potential benefit of home 

monitoring as a means of improving outpatient care. 

Section 6.1 Failure to thrive 

 Our first case study involves a patient who had two hospitalizations during our initial 

monitoring period, as seen in the heatmap in Figure 6-1 below. The first clinical event occurred  

around the second week of monitoring. The patient was found to have a hemoglobin count of 

6.2 and was referred to the emergency department. Upon examination, he was admitted 

overnight to the hospital for a gastrointestinal bleed and underwent EGD. There is a clear rise 

and fall of NRR prior and post this admission. The NRR then rose again, starting around week 

five, prompting a home visit by a nurse. The nurse evaluated the patient and due to his inability 

to complete activities of daily living, he was admitted to a skilled nursing facility. This case 

shows the ability of NRR to warn of an impending clinical event. Additionally, this case 

highlights the wide variety of events that can cause a rise of NRR as here the issues were more 

related to quality of life and pain than they were to a specific pulmonary based infection or 

decompensation. 
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6.2 Development of sepsis 

 The second case study involves a patient who acquired sepsis (the systemic response to 

infection) resulting in a multi-week hospitalization. The patient was an 85-year-old African 

American woman who lived alone, was legally blind and morbidly obese. Additionally, she had 

multiple comorbidities including end-stage renal disease and ischemic cardiomyopathy with 

recurrent heart failure hospitalizations (ejection fraction 15%). As part of our observational 

study (described in Chapter 5), NRR was longitudinally monitored in her home bed using our 

BedScales platform (described in Chapter 2). Figure 6-2 shows the patient’s NRR for 1 month  

prior to her septic shock hospitalization. Baseline nocturnal respiratory rates of 14-18 breaths 

per minute increased during the 48 hours prior to hospitalization reaching sustained rates above 

25 and 30 breaths per minute. 
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Figure 6-1. Nocturnal respiratory rates prior to admissions. Heatmap of NRR measured in breaths per minute 
(brpm) by BedScales. Color range from 10 to 30 brpm, rates below 10 not shown. Red arrows show days of 
admissions. Respiratory rates increase prior to each admission and return to a lower level after time in skilled 
nursing facility.



 

Sepsis is a common, costly, and frequently fatal condition thus the ability to detect sepsis in the 

home is very important because mortality due to sepsis increases with each hour that 

antimicrobial therapy is delayed (49)(50). This has fueled campaigns to improve early 

recognition of sepsis, but these have primarily focused on clinical settings such as the 

emergency room and hospital (50). This case suggests that adherence-independent home 
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Figure 6-2. Nocturnal respiratory rates during emergence of septic shock in the home. a, Heatmap of NRR 1 
month prior to admission for septic shock. b, Respiratory rates (NRR) shown across time at 20 days prior to 
admission (c-1) and for each of the 4 days prior to admission (c-2-c-6). Hashes indicate discontinuities in the time 
axis. c, Examples respiratory waveforms measured by the bed sensor are shown at the numbered locations in (b).



monitoring of NRR may extend the sepsis recognition window by hours to days. Doing so could 

facilitate expedited evaluation and early initiation of antimicrobial therapy to reduce sepsis-

associated morbidity and mortality. 

Section 6.3 Acute pulmonary embolism 

 Our final case study involves a patient whose heatmap can be seen in Figure 6-3 below. 

The patient’s steady increase in NRR across time prompted two phone calls to the patient’s 

home (on days eight and four prior to admission) during both of which no acute symptomatic 

changes were noted. However, the NRR worsened following the second call. The next evening 

the NRR steadily improved but a visiting nurse arrived on the day of admission and found the 

patient subjectively dyspneic, tachypneic in the high 20s, and hypoxic with an oxygen saturation 

of 80s. Patient was transferred to the emergency department and it was found that she had a 

pulmonary embolism. She was started on anticoagulation and hospitalized. During the 

admission she underwent additional dieresis to treat volume overload. Through the lens of the 

NRR heatmap, there is a marked improvement once she returns home from her admission.  

 This example is important because acute pulmonary embolisms are unheralded events 

associated with cancer, immobility, and inherited conditions that can be fatal if not treated with 

anticoagulation. Many acute pulmonary embolisms develop outside of clinical settings, and here 

we show the ability of the BedScales platform and NRR to detect a pulmonary embolism, and in 

this case, actually impact the patient’s care. 
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Figure 6-3. Nocturnal respiratory rates prior to admission for pulmonary embolism. a, A heatmap of 
nocturnal respiratory rates measured in breaths per minute (brpm) by a non-contact adherence-independent home 
bed sensor for over three months during which the patient developed worsening tachypnea over 5 days before 
presenting to the emergency department. Orange arrows show days on which the patient’s home was called. Red 
arrow shows day of admission. b, Respiratory waveform tracings shown on 9 different days spanning from 
110d-1d prior to admission (PTA).
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Chapter 7: Future Work and Conclusion 

 In this chapter I will close by reflected on future work required and then summarizing 

our results. As described in the section 6.3, we initiated a clinic visit for a patient who had a 

previously unknown pulmonary embolism. However, what is unique about that case is that that 

patient was using a mattress sensor (Emfit, Finland), rather than our BedScales platform. This 

shows that the pipeline and analytics that we developed is sensor agnostic. This is important 

because for future work, we will be exploring the use of other sensors that have much lower 

requirements for installation. The BedScales platform’s key limitation is that it is difficult to 

install, as the bed must be lifted or dissembled in order to place the scales underneath the legs. 

The initial motivation to require such an arduous installation was to be able to measure total 

body weight, but as described at the end of Chapter 3, more work will need to be down to 

facilitate such measurements automatically in real-world settings. We therefore have pivoted to 

using standard mattress sensors, after discovering that NRR was much more powerful than 

previously expected and that it alone can provide insight into impending hospitalizations. 

 In conclusion, our goal was to provide clinicians with advanced warning of disease 

decompensation. To do this, we set out to measure clinically useful biomarkers and to create a 

system that is pragmatically applicable. We have sought to ensure that this device will be used 

by patients, by designing it to be adherence independent, low-cost, and durable. Additionally, 

we have been sensitive to the needs of clinicians and designed a system that will not overload 

them with difficult to interpret data, but that provides clear pictures of patient health (heatmaps) 

and a risk score of NRR elevations. We have shown that NRR is a previously overlooked yet 
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very useful biomarker. We have analyzed it in populations and have monitored it longitudinally 

in a non-contact adherence independent manner. We have observed numerous hospitalizations, 

for a variety of diseases, where NRR rose prior to admission, sometimes even weeks in advance. 

We believe that this work serves to advance our ability to care for patients in-home and will 

both improve patient quality of life as well as lower costs. 
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Appendix A: Supplement for Chapter 3 
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Figure A-1. Demonstration of BedScales weight sensor sensitivity. 15ml of water were added every 20 
seconds to demonstrate signal-to-noise ratio of sensor.



Demixing of respiratory signals obtained from two simultaneous sleepers was performed using a 

hidden Markov model. Mechanical respiratory sources were interpreted as latent signals that 

evolve in a stochastically continuous manner, according to a linear additive Gaussian model, 

mixed through a linear operation with additive sensor noise to give rise to the signals at the four 

detectors. Interpreting the linear operation as unknown, we used the Expectation–Maximization 

algorithm to obtain the maximum-likelihood estimate (51).  Given this estimate,  the Kalman 

smoothing algorithm was used to extract the mechanical respiratory patterns of the two sources 

(52). Validation was performed by simultaneously but independently measuring each respiratory 

signal using two respiratory belts (Vernier, Beaverton, OR). Interbreath intervals were compared 

by measuring the error between each demixed signal and each ground truth respiratory belt 

signal. For each individual, the absolute error between the putative demixed source signal and 

each respiratory belt signal was calculated and compared using a t test. 
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Figure A-2. Strategy for separation of respiratory signals when two persons share the bed. a, Cartoon 
illustrating how two persons sharing a bed are modeled as two respiratory point sources and raw signals from the 
4 legs of the bed beneath two sleeping individuals. Inset shows 2 sensors each predominantly measuring one 
person with contaminating signal from the second person. b, Demixed signals for person 1 (blue) and person 2 
(pink) derived from the raw signals in A. c, Validation experiment comparing demixed BedScales signals (blue 
and pink) with the corresponding ground truth chest belt signals (black). d, Bar plot comparing peak location 
errors across both subjects between the demixed signal and the “correct chest belt “versus the error between the 
demixed signal and the “wrong chest belt.” e-f, Bar plot quantifying the error between the BedScales separated 
signal from subject A (e) or B (f) and the chest belt on subject A (A-CB, left) or subject B (B-CB, right). Data are 
shown as mean ± standard deviation. ****P < 0.0001, Mann–Whitney test.
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Figure A-3. Example patient with mixed obstructive and central sleep apnea during simultaneous sleep 
study and BedScales monitoring. a, BedScales non-contact respiratory signal (green) compared to chest 
respiratory belt (blue) during overnight sleep study. Inset illustrates the overnight burden of apneas. b, Histogram 
of all apneas. c, Duration of apneas vs timing of apneas throughout the overnight study. d, High temporal 
resolution from one of the five apnea clusters during the night. e, Central sleep apnea episode and f, obstructive 
sleep apnea episode comparing BedScales respiratory signal (green) with chest belt (blue), nasal flow sensor 
(pink) and BedScales BCG (purple). g-h, Insets show detailed BedScales respiratory and BCG signals during a 
(g) central apnea (no respiratory effort) and (h) an obstructive apnea (low amplitude respiratory effort against a 
closed airway).
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Figure A-4. Hemodynamic consequences of arrhythmias. a, Single-peak BCG (pink) compared to ECG (black) 
with peak annotation (purple arrows) surrounding a ventricular couplet. Pink annotations highlight the BCG 
magnitude increase after the ventricular couplet. b, Single-peak BCG (pink) compared to ECG (black) with peak 
annotation (purple arrows) during a region of non-sustained ventricular tachycardia (NSVT). Pink annotations 
highlight the BCG magnitude increase surrounding the NSVT. c, Bar plot quantifying the relative magnitude of 
BCG beats occurring before ventricular couplets, triplets or NSVTs (gray) compared to the BCG beat immediately 
following the ectopy (blue). Data are shown as mean ± standard deviation. ****P < 0.0001, Mann–Whitney test. 



Appendix B: Supplement for Chapter 4 
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Figure B-1. Odd ratio linking NRR to outcomes in SHHS study. A granular analysis across different NRR 
subgroups reveals an increasing association (odds ratio) between NRR and mortality; this is particularly true for 
NRR rates at 18 bpm and above, where all associations appear to be statistically significant (p<0.05) and with 
increasing odds ratios and 95% CI ranges.  



Appendix C: Supplement for Chapter 5 
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Figure C-1. Nocturnal respiratory rate sleep study intra-night statistics. a, Histogram of percent of 
respiratory rates within 3 brpm of each sleep study subject’s mean. b, Histogram of skew per sleep study subject. 
Red dashed line indicates mean of skew (1.33). Inset show nocturnal respiratory rate distribution for a patient 
with a typical skew value (1.3).

Figure C-2. Percent of nights with sufficient data. a, Histogram of percent of nights within monitoring period 
that contained at least 3 hours of quality epochs.
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Figure C-3. Causal adaptive baseline correction. a, Heatmap of NRR for a patient with a monotonically 
decreasing brpm. Colorbar ranges from 10-30 brpm, values below 10 brpm not shown. b, Nightly median 
respiratory rate (black) with causal baseline annotated (red). c, Heatmap of NRR with baseline subtracted. 
Colorbar ranges from -10 to 10 brpm, values below -10 not shown. d, Nightly median respiratory rate (black) 
with baseline subtracted.
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Figure C-4. Risk assessment strategy. a, Illustration of risk inference from NRR dynamics. Respiratory rates 
are plotted across time colored by low risk (green) and high risk (red). Horizontal dashed lines indicate the 
baseline NRR, the NRR threshold (RRth) and the additional NRR threshold (NRR+). In general, points below the 
first threshold (RRth) are low risk and points above are high risk. Roman numerals highlight regions of special 
consideration (see Methods). (i) Demonstrates that nights above the first threshold are only considered high risk 
if they are the second consecutive point above the threshold. (ii) Demonstrates that if a night is above the second 
threshold (NRR+) it is always considered high risk. (iii) Demonstrates that nights below the first threshold are 
still considered high risk if the days preceding them have an overall mean that is above the first threshold.

Figure C-5. Suspected subclinical events. Heatmap and corresponding NRR deviation from baseline for two 
patients who both exhibited a steady rise and fall of brpm indicative of a disease exacerbation. Heatmap colorbar 
ranges from 10-30 brpm, values below 10 brpm not shown. NRR excursions colored by low risk (green) and high 
risk (red). Black dashed lines show RRth (bottom) and RRth+ (top). PC896215 (a) was never seen in clinic 
during our monitoring period and PC361953 (b) was seen in clinic for orthostatic hypotension 3 weeks after the 
suspected subclinical event was resolved.
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Figure C-6. Heatmaps for patients with clinical events, NRR predictive. Heatmap and corresponding NRR 
deviation from baseline for 4 patients whose events were preceded by a rise in NRR. Heatmap colorbar ranges 
from 10-30 brpm, values below 10 brpm not shown. NRR excursions colored by low risk (green) and high risk 
(red). Black dashed lines show RRth (bottom) and RRth+ (top). a, Patient had two hospitalization events, the first 
for fluid overload (+/- pneumonia), the second for pneumonia and mild fluid overload. b, Patient had two 
hospitalization events, the first for syncope, the second for pneumonia and mild fluid overload. c, Patient had two 
clinical events, the first was a hospitalization for a gastrointestinal bleed, the second was a referral to a skilled 
nursing facility for failure to thrive (inability to complete ADLS and for knee pain). d, Patient was hospitalized 
due to concern for gastrointestinal bleed.
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Figure C-7. Heatmaps for patients with hospitalization events, NRR predictive. Heatmap and corresponding 
NRR deviation from baseline for 3 patients whose events were preceded by a rise in NRR. Heatmap colorbar 
ranges from 10-30 brpm, values below 10 brpm not shown. NRR excursions colored by low risk (green) and high 
risk (red). Black dashed lines show RRth (bottom) and RRth+ (top). a, Patient was referred to emergency 
department for shortness of breath and difficulty walking. Was admitted for MSSA bacteremia and mixed septic 
shock. b, Patient was hospitalized for fever and chills. Was found to have COVID-19. c, Patient was seen in 
emergency department for altered mental status and malaise. Was hospitalized for diverticulitis. 
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Figure C-8. Heatmaps for patients with hospitalization events, NRR not predictive. Heatmap and 
corresponding NRR deviation from baseline for 4 patients whose hospitalization events were not preceded by a 
rise in NRR. Heatmap colorbar ranges from 10-30 brpm, values below 10 brpm not shown. NRR excursions 
colored by low risk (green) and high risk (red). Black dashed lines show RRth (bottom) and RRth+ (top). a, 
Patient had 4 hospitalization events, the first for volume overload, the second for symptomatic bigeminy and 
ectopy, the third for cellulitis, and the fourth for heart failure exacerbation (this event was associated with a rise 
in NRR). b, Patient was referred for cellulitis symptoms, was found to have heart failure. c, Patient was 
hospitalized for congestive heart failure exacerbation. d, Patient had two hospitalization events, the first for over-
diuresis, the second for hyperglycemia and hypovolemia.
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Figure C-9. Heatmaps for patients with hospitalization events, NRR not predictive. Heatmap and 
corresponding NRR deviation from baseline for 4 patients whose hospitalization events were not preceded by a 
rise in NRR. Heatmap colorbar ranges from 10-30 brpm, values below 10 brpm not shown. NRR excursions 
colored by low risk (green) and high risk (red). Black dashed lines show RRth (bottom) and RRth+ (top). a, 
Patient was hospitalized for hypoglycemia. b, Patient was hospitalized for atrial flutter. c, Patient was 
hospitalized for COVID-19. d, Patient was hospitalized for volume overload.
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Figure C-10. Heatmaps for patients without hospitalization events. Heatmap and corresponding NRR 
deviation from baseline for 6 patients who did not have hospitalization events during our monitoring period. 
Heatmap colorbar ranges from 10-30 brpm, values below 10 brpm not shown. NRR excursions colored by low 
risk (green) and high risk (red). Black dashed lines show RRth (bottom) and RRth+ (top).
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Figure C-11. Heatmaps for patients without hospitalization events. Heatmap and corresponding NRR 
deviation from baseline for 6 patients who did not have hospitalization events during our monitoring period. 
Heatmap colorbar ranges from 10-30 brpm, values below 10 brpm not shown. NRR excursions colored by low 
risk (green) and high risk (red). Black dashed lines show RRth (bottom) and RRth+ (top).
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Figure C-12. Heatmaps for patients without hospitalization events. Heatmap and corresponding NRR 
deviation from baseline for 5 patients who did not have hospitalization events during our monitoring period. 
Heatmap colorbar ranges from 10-30 brpm, values below 10 brpm not shown. NRR excursions colored by low 
risk (green) and high risk (red). Black dashed lines show RRth (bottom) and RRth+ (top).
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