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FREENESS AND EQUIVARIANT STABLE HOMOTOPY

MICHAEL A. HILL

Abstract. We introduce a notion of freeness for RO-graded equivariant gen-

eralized homology theories, considering spaces or spectra E such that the R-

homology of E splits as a wedge of the R-homology of induced virtual rep-
resentation spheres. The full subcategory of these spectra is closed under all

of the basic equivariant operations, and this greatly simplifies computation.

Many examples of spectra and homology theories are included along the way.
We refine this to a collection of spectra analogous to the pure and isotropic

spectra considered by Hill–Hopkins–Ravenel. For these spectra, the RO-

graded Bredon homology is extremely easy to compute, and if these spaces
have additional structure, then this can also be easily determined. In particu-

lar, the homology of a space with this property naturally has the structure of a
co-Tambara functor (and compatibly with any additional product structure).

We work this out in the example of BUR and coinduced versions of this.

We finish by describing a readily computable bar and twisted bar spectra
sequence, giving Bredon homology for various E8 pushouts, and we apply this

to describe the homology of BBUR.

1. Introduction

Equivariant cohomology is often viewed as very difficult to compute. In full
generality, this is often true, as many computations which non-equivariantly were
completed in the 1950s and 1960s are still out of reach. Addtionally, the kinds
of cellular decompositions which geometrically arise are often not adapted to easy
computation, further compounding the problem. Many computations in the litera-
ture require significant amounts of hard work, even for ordinary (Bredon) homology
(see, for example, the recent papers of Dugger on equivariant Grassmanians [5] and
Hazel on C2-surfaces [11]).

In this paper, we build on a class of spectra introduced by Ferland–Lewis [6],
focusing on a certain subcategory of spaces and spectra for which essentially all of
these problems go away. The basic definition is motivated by algebra.

Definition. Let R be an E8-monoid in genuine G-spectra. A G-spectrum E has
R-free homology if R ^ E splits as a wedge of R-modules of the form

R ^ pG` ^
H
SV q,

where V is a virtual representation of H.

These classes of spectra contain many geometrically meaningful spaces and spec-
tra. Delightfully, these R-free spectra are closed under most of the usual operations
in equivariant homotopy.

Key words and phrases. equivariant homotopy, equivariant homology, Dyer–Lashof.
The author was supported by NSF Grant DMS–1811189.
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2 MICHAEL A. HILL

Theorem. If R is an E8-monoid in genuine G-spectra, then the category of R-free
spectra is closed under

(1) coproducts,
(2) restriction along arbitrary homomorphisms,
(3) induction from a subgroup,
(4) the smash product, and
(5) norm maps, if R is actually a G-E8 ring spectrum.

For Bredon homology, this gives a large class of spaces and spectra for which the
cohomology is easy to describe with almost arbitrary coefficients. Most excitingly,
it means we can describe the full coalgebra (in fact, co-Tambara functor) structure
on the homology of these spaces and on the cohomology of equivariant commutative
monoid objects. Closure under norms here gives a formula for the Bredon homology
of coinduced spaces with various coefficients, which in turn gives ways to understand
Bredon homology and cohomology of certain Eilenberg–Mac Lane spaces.

After describing a host of examples, we restrict focus to a class of spectra for
which everything is described by the underlying homology. The slice filtration of [12]
gives a version of the Postnikov tower where we use various representation spheres
instead of ordinary spheres. In the nicest cases, such as those built out of the norms
of the Fujii–Landweber spectrum of Real bordism MUR, the slice associated graded
is a wedge of regular representation spheres smashed with computationally tractible
Eilenberg–Mac Lane spectra [7, 25] (see also [20]).

We consider HZ-free spectra where the [induced] virtual representation spheres
are only in regular representation dimensions. These assumptions allow us to re-
duce almost any computational question to a question about the non-equivariant
homotopy, tying things to classically studied objects. We demonstrate the effi-
ciency of this by giving the full Tambara and co-Tambara functor structures on
the homology of BUR and of MapC2pG,BURq. We also describe the action of the
C2-Dyer–Lashof algebra on the mod 2-homology of BUR.

We close with applications to the bar/Rothenberg–Steenrod and Eilenberg–
Moore spectral sequences. When the spaces in question are R-free, the E2-terms of
the usual spectral sequences have the expected form, and we use this to compute
the homology of BBUR and of the coinduced space MapC2pG,BBURq for all finite
G. As an aside, we also mention the sign-twisted analogues of these classical spec-
tral sequences when G “ C2, giving ways to compute the homology of the signed
bar construction or the cohomology of the twisted homotopy pullback and signed
loop spaces.

Throughout the paper, our emphasis is on the conceptual understanding of the
objects and on explicit examples. We include many examples of spaces and spec-
tra of interest, showing how they fit into this framework, working to demystify
equivariant computations.

Conventions and notation. In all that follows, we work in “genuine” G-spectra
for a finite group G. Much of what we say will actually be model agnostic; we
will largely talk about results in the homotopy category. When discussing the
difference between E8 and G-E8 monoids, however, we will implicitly be working
in equivariant orthogonal or symmetric spectra, since both have well-developed
notions of the norm [12], [10].
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2. RO-graded homology

Many of the spaces which arise geometrically can be built not out of cells of the
form “disk in a [virtual] representation V ” but rather out of more general cells of
the form

G` ^
H
DpV q,

where V is a [virtual] H-representation. Algebraic constructions like the norm
automatically build in this more general kind of RO-grading, considering instead
objects graded on pairs consisting of a subgroup H and a virtual representation of
H. A more coordinate free version is given by considering Thom spectra of virtual
bundles over finite G-sets; a particular model of this is the work of Angeltveit–
Bohmann [1].

Definition 2.1 ([15, Definition 2.7]). If T is a finite G-set and V is an equivariant
virtual bundle over T , then let MpV q be the Thom spectrum of V and

π‹pEq
`

T, V
˘

“
“

MpV q, E
‰G
.

Remark 2.2. If T is a transitive G-set, then a choice of point t P T gives an
equivariant equivalence

T – G{Stabptq,

and restriction to t gives an equivalence of categories between Stabptq-equivariant
virtual representations and virtual equivariant vector bundles over T .

Notation 2.3. In the case T “ G{H, so V gives a virtual H-representation VH , let

EHVH
pS0q “ π‹pEqpT, V q.

These abelian groups assemble into a kind of Mackey functor, twisted by these
bundles. This generalizes the earlier work of Ferland–Lewis [6].

Proposition 2.4. If f : S Ñ T is a map of finite G-sets and if V Ñ T is a virtual
equivariant bundle, then f induces a transfer map

π‹pEq
`

S, f˚V
˘ Tf

ÝÝÑ π‹pEq
`

T, V
˘

and a restriction map

π‹pEq
`

T, V
˘ Rf

ÝÝÑ π‹pEq
`

S, f˚V
˘

.

The Weyl action here can be somewhat subtle. If V is a representation of G,
then we have a Weyl action on

π‹pEqpG{H,G{H ˆ V q.

The standard isomorphism of G-spaces over G{H

G{H ˆ V – Gˆ
H
i˚HV

give isomorphisms of vector bundles, and hence this group depends only on the
H-representation i˚HV . The Weyl action, however, depends on V itself as a G-
representation. Put another way, the standard isomorphism given above is not
Weyl-equivariant.
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Example 2.5. If G “ C2 and V “ pσ´ Rq, the virtual dimension zero shift of the
sign representation, then the groups

π‹pEq
`

C2, C2 ˆ pV ‘ Rnq
˘

are just the ordinary homotopy groups

πnpi˚eEq.

In this case, however, we have twisted the Weyl action: as a C2-module, we have
an isomorphism

π‹pEq
`

C2, C2 ˆ pV ‘ Rnq
˘

– πnpi˚eEq b σZ,

where σZ is the integral sign representation. This observation has been used by many
authors in the study of the homotopy fixed point spectral sequence for Hopkins–Miller
spectra (see [17]).

Remark 2.6. The Mackey double coset formula also changes in the RO-grading:
there can be signs introduced which reflect the degree of the map on the underlying
representation sphere. See, for example, [12, Lemma 7.20].

Smashing together maps gives us the external product.

Definition 2.7. If x P π‹pEqpT, V q and y P π‹pE1qpS,W q, then we have an external
product

x^ y P π‹pE ^ E1qpT ˆ S, V ˆW q

given by the smash product of representing maps.

Since this pairing is the one arising from the pairing of homotopy classes of
functions in G-spectra, it has the usual properties.

Proposition 2.8. The external product is linear in both factors and satisfies the
Frobenius relation:

x^ Tf pyq “ TIdˆf px^ yq.

The multiplication in the RO-graded context can be a little more confusing,
since elements are attached to virtual representations for different groups. To effec-
tively compare them, the elements must first be restricted to a maximal common
subgroup. In general, we have many ways to represent this. Conceptually, the
RO-graded group actually remembers more information, including not only the el-
ements but also the various Weyl conjugates. Thinking in this way, the RO-graded
products will not only record the product we would expect but also include any of
the pairwise products of restrictions to conjugate subgroups.

If T “ S, then we have a canonical pullback diagram

V ‘W V ˆW

T T ˆ T.
∆T

Composing the external product with the restriction along the diagonal ∆T gives
the usual product structure on the ROpT q-graded homotopy of the “restriction to
T” of a ring spectrum R.
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If T “ G{H and S “ G{K, with H and K not necessarily conjugate, then we
do not have as simple a picture. The classes x and y are maps

G` ^
H
SV

x
ÝÑ E & G` ^

K
SW

y
ÝÑ E1,

and smashing them together gives the map
`

G` ^
H
SV

˘

^
`

G` ^
K
SW

˘ x^y
ÝÝÝÑ E ^ E1.

The source is naturally the Thom spectrum of a virtual bundle on G{H ˆ G{K,
which can be rewritten by the double coset formula as

G{H ˆG{K – Gˆ
H
i˚HG{K –

ž

HgKPHzG{K

G{pH X gKg´1q.

The bundle over the summand associated to HgK is

i˚HXgKg´1V ‘ i˚HXgKg´1c
˚
gW,

and the corresponding map on this summand is

resHHXgKg´1pxq ^ resgKg
´1

HXgKg´1pc˚
gyq.

Corollary 2.9 ([1]). If E has a multiplication in the homotopy category of genuine
G-spectra, then the composition with the multiplication in E makes π‹pEq into an
RO-graded Green functor.

In fact, there is a good G-symmetric monoidal category of R‹-modules for any
equivariant commutative ring spectrum R. This will be developed in forthcoming
joint work with Angeltveit–Bohmann. We will make use of this structure somewhat
heavily in what follows. However, the only cases in which we will consider it are
ones for which the structure is immediate from the definition of the objects, so
there should be no confusion.

We close by summarizing the notation that will show up for the various kinds of
gradings.

Notation 2.10.
The wildcard ‹ will be used for gradings by RO.
The wildcard ‹ will be used for gradings by ROpGq.
The wildcard ˚ will be used for gradings by Z.

3. Free R-homology

In this section, let R be a fixed E8-ring spectrum in genuine G-spectra. Equiv-
ariantly, this is weaker than being a commutative monoid in any of the good point-
set models of spectra, but this is sufficient to have a good, symmetric monoidal
category of modules over R [3].

3.1. Free and projective. It greatly simplifies much of the notation (and of our
discussion of a basis) to allow ourselves to evaluate our homotopy Mackey functors
on infinite G-sets and virtual representations on these.

Notation 3.1. If T is a discrete G-set and V is a virtual bundle over T , then let

R‹pEqpT, V q “ lim
ÐÝ

R‹pEqpS, i˚SV q,

where S ranges over all finite subsets of T .
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Since Thom spectra of disjoint unions of spaces is the coproduct of the associated
Thom spectra, we have a natural isomorphism

R‹pEqpT, V q –
“

MpV q, R ^ E
‰G
.

Definition 3.2. A G-spectrum E has free R-homology or “is R-free” if there is a
G-set TE and a virtual vector bundle VE over TE such that we have an equivalence
of R-modules

R ^ E » R ^MpVEq.

The full subcategory of SpG spanned by the spectra with free R-homology will be
denoted

SpGR,fr.
It has projective R-homology if R^E is a retract of an R-module of the form

R ^ MpV q for some virtual vector bundle V over a G-set. The full subcategory of
SpG spanned by the spectra with projective R-homology will be denoted

SpGR,pr.

Remark 3.3. The use of “free” here is to bring to mind a free module. In the
homotopy category of R-modules, the R-module R ^ pG` ^

H
SV q corepresents the

functor

E ÞÑ πHV pEq,

on the category of R-modules, and hence maps out of it correspond to certain
elements in this RO-graded Mackey functor.

Definition 3.4. If E has free R-homology, then a basis for the R-homology of E
is an element

x⃗ P R‹pEqpTE , VEq

for a G-set TE and a virtual bundle VE over TE , such that the induced map

R ^MpVEq
R^x⃗

ÝÝÝÑ R ^ E

is an equivalence.

We can restate the definition of a basis using an orbit decomposition of T . A
choice of points in each orbit for T gives an equivariant isomorphism

T –
ž

tPT {G

G{Ht,

and if we let VE,t be the restriction of VE to the orbit G{Ht, then

R‹pEqpT, V q –
ź

tPT {G

RHt

VE,t
pEq.

A basis then is a collection of elements

xt : G` ^
Ht

SVE,t Ñ R ^ E

such that the induced map

R ^

¨

˝

ł

tPT {G

G` ^
Ht

SVE,t

˛

‚Ñ R ^ E

is an equivalence. We will use both formulations.
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Just as for vector spaces, a basis is a choice of additional data which aids in ex-
plicit computation. In particular, describing product structures is greatly simplified
with a basis.

Remark 3.5. Although a basis is given by specifying certain elements in certain RO-
graded stems, the freeness actually gives us a host of related elements. Consider
M “ R ^ pG` ^

H
SV q. The unit map S0 Ñ R gives a distinguished map

G` ^
H
SV Ñ M

which gives a basis. Unpacking the adjunction, this corresponds to theH-equivariant
map

SV Ñ i˚HR ^ i˚HpGq` ^
H
SV

induced by the inclusion

SV – H` ^
H
SV ãÑ i˚HG` ^

H
SV .

If H ‰ G, then there are many other summands. In particular, any element
g P NGpHq gives us a summand

gH` ^
H
SV ,

which is the representation sphere for the pullback of the representation V along the
conjugation-by-g automorphism of H. When V is in the image of the restriction
of a representation of NGpHq, this is just recording the Weyl-conjugates of our
original element.

Example 3.6. For any R, a basis for R ^ pG` ^ S1q is the data of an element

x P π1

´

ł

|G|

i˚eΣR
¯

–
à

|G|

π0
`

i˚eR
˘

such that the induced action-map

ZrGs b π0pi˚eRq Ñ
à

|G|

π0
`

i˚eR
˘

is an isomorphism. It also records (linearly independent) classes for all γ P G:

γ ¨ x P
à

|G|

π0pi˚eRq

(and in fact, the Mackey functor homotopy group is
İ

§

G

e
π0pi˚eRq).

It is helpful to keep in mind the example of Bredon homology with coefficients in
a commutative Green functor R. The Eilenberg–Mac Lane spectrum associated to
a commutative Green functor is always E8, so we can apply this general formalism.

Example 3.7. If G “ teu, then a basis for the homology of E with coefficients
in R “ R (an ordinary commutative ring) is the same as a basis for the graded
R-module H˚pE;Rq.

Example 3.8. Kronholm and Hogle–May showed that if X is a finite ReppC2q-
complex (meaning a C2-complex formed by attaching disks in representations along
their boundaries), then X has free HF2-homology (with no summands induced up
from the trivial group) [23], [18].
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Example 3.9. C. May’s decomposition theorem for the [co]homology of a finite
C2-CW complex says that for any finite C2-complex X, we have a splitting

HF2 ^X » HF2 ^

´

ł

C2` ^
H
SV _

ł

ΣkiSpniσq`

¯

where in the second sum, ni ě 2 and σ is the sign representation [29]. Thus C2

spaces have free HF2-homology if and only if this second sum vanishes.

Example 3.10. Hazel’s computation of the Bredon homology of C2-surfaces shows
that every connected C2-surface for which the action is not free has free HF2-
homology [11, Theorem 6.6].

Example 3.11. Ricka extended the Hu–Kriz computation of the dual Steenrod
algebra for F2 and showed that HF2 has free HF2-homology [34], [20].

There are two important restricted cases that show up often in computations.
The proof of the following theorem is just by observation.

Theorem 3.12. Let E be a spectrum with free R-homology.

(1) If the basis comes from virtual representations of G exclusively, then the
RO-graded homotopy is induced up from the ROpGq-graded homotopy Mackey
functors.

(2) If the basis comes from trivial representations of G, then the RO-graded
homotopy is induced up from the Z-graded homotopy Mackey functors.

In both cases, we can extend to induced cells, provided we again only consider
representations of G and trivial representations, respectively.

3.2. Closure properties of SpGR, r. The spectrum with R-free or projective ho-
mology enjoy a number of useful closure properties.

Notation 3.13. Let r stand for either “fr” or “pr”.

3.2.1. Closure under sums.

Proposition 3.14. The adjoint pair G` ^
H

p-q % i˚H on equivariant spectra descends

to an adjoint pair
G` ^

H
p-q : SpH

i˚HR, r
Õ SpGR, r : i˚H .

A basis for one gives the other via restriction or induction.

Proof. Since these are full subcategories, and since retracts are preserved by any
functor, it suffices to show that restriction and induction preserve R-free spectra.
For restriction, we just use the restriction of the Thom spectrum. For induction,
we note the equivalence:

G` ^
H
MpV q » MpGˆ

H
V q,

where Gˆ
H
V is the induced bundle over Gˆ

H
T . □

Proposition 3.15. The category SpGR, r is closed under arbitrary coproducts. A
basis for the wedge is the sum of the bases.

Proof. The smash product distributes over wedges, and the wedge of Thom spectra
of virtual bundles over G-sets is again a Thom spectrum of a virtual bundle over a
G-set. □
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3.2.2. Closure under base-change. The notions of free and projectives also work
well with base-change.

Proposition 3.16. A map f : R Ñ R1 of E8 ring spectra induces a map

f˚ : SpGR, r Ñ SpGR1, r.

A basis x⃗ for E over R gives a basis f˚px⃗q be composing with f .

Proof. This follows from base-changing the equivalence R^E » R^MpVEq along
the map R Ñ R1. □

3.2.3. Closure under products. The categories of frees and projectives are also
closed under the [twisted] smash products on G-spectra, being closed under the
norms which R has.

Proposition 3.17. The category SpGR, r is a symmetric monoidal subcategory of

SpG for the smash product. A basis for E and E1 gives a basis for E^E1 by boxing
them together.

Proof. Again, it suffices to show this for free spectra. If V and V 1 are virtual vector
bundles on T and T 1 respectively, then we have a natural equivalence

MpV q ^MpV 1q » MpV ˆ V 1q,

where the latter is just the Thom spectrum of product of V and V 1 over T ˆ T 1.
The result follows from recalling that the functor R ^ p-q is a strong symmetric
monoidal functor from G-spectra to R-modules. □

This gives us a kind of weak Künneth theorem.

Theorem 3.18. If E P SpGR, r, then for any R-module M , then M ^ E is a sum-

mand ofM^MpVEq for some virtual vector bundle VE, and hence the multiplication
gives a natural isomorphism

R‹pEql
R‹

π‹pMq Ñ π‹pE ^Mq.

Proof. Again, it suffice to show for E R-free. By assumption, there is a splitting of
R-modules

R ^MpVEq » R ^ E.

This gives an equivalence of R-modules

E ^M » pR ^ Eq ^
R
M »

`

R ^MpVEq
˘

^
R
M » MpVEq ^M.

Since the smash product distributes over the wedge, the latter spectrum is a wedge
of R-modules of the form

pG` ^
H
SV q ^M.

The result follows by the definition of the representables. □

If the basis is via representations ofG or trivial representations, then this recovers
the Künneth theorem of Lewis–Mandell [26].

Corollary 3.19. Let E be in SpGR, r and let M be an R-module.

(1) If a basis for E can be chosen such that only virtual representations of G
are used, then we have an isomorphism

π‹pE ^Mq – R‹pEql
R‹

π‹pMq.
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(2) If a basis for E can be chosen such that only trivial representation of G are
used, then we have an isomorphism

π˚pE ^Mq – R˚pEq l
R˚

π˚pMq.

In the special case that the module M is in fact R ^ E1 for some R-free or pro-
jective E1, this shows that the functor of RO-graded R-homology Mackey functors
is strong symmetric monoidal.

Corollary 3.20. If E,E1 P SpGR, r, then the multiplication gives a natural isomor-
phism

R‹pE ^ E1q – R‹pEql
R‹

R‹pE1q.

3.2.4. Closure under norms. For the norms, we recall some properties of the norm
and these relatively simple Thom spectra.

Notation 3.21. If T is an H-set and V Ñ T is a virtual vector bundle, then let

MapHpG,V q Ñ MapHpG,T q

be the coinduced vector bundle over MapHpG,T q.

Proposition 3.22. For any virtual vector bundle V , we have

M
`

MapHpG,V q
˘

» NG
HMpV q.

Proof. All of the functors considered commute with filtered colimits, so it suffices
to consider the case that T is finite. This is then the distributive law for norms,
together with the observation that if T “ H{K, thenMpV q “ H`^

K
SV , allows us to

further reduce to the case that T “ H{H. A vector bundle over this is just a virtual
H-representation, the Thom spectrum of which is the corresponding representation
sphere. The coinduced space in this case is G{G, and the representation is ÒGH V .
We now compute

M
`

MapHpG,V q
˘

“ SÒ
G
HV » NG

HS
V – NG

HMpV q. □

The norm is also a strong symmetric monoidal functor, and hence it induces a
map

NG
H : R-Mod Ñ NG

HR-Mod.

Proposition 3.23. The norm induces a functor

NG
H : SpHR, r Ñ SpGNG

HR, r
.

Proof. It suffices to show this for E having free R-homology. In this case, we simply
apply the norm to the equivalence

R ^ E » R ^MpVEq

for some virtual vector bundle VE and use Proposition 3.17. □

If R is an E8 ring spectrum that has an E8-map

NG
H i

˚
HR Ñ R,

then we have a relative norm map on R-modules given by

M ÞÑ R ^
NG

H i
˚
HR

NG
HM.
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The usual case is when R is an equivariant commutative ring spectrum (i.e. a
G-E8 ring spectrum), but this has also been worked out for algebras over linear
isometries operads [3].

Proposition 3.24. Let R be an E8 ring spectrum that has an E8-map

NG
H i

˚
HR Ñ R,

then NG
H induces a functor

SpH
i˚HR, r

Ñ SpGR, r.

The norm of a basis for E gives one for the norm.

Example 3.25. Since

MU^MU » MU^BU` » MUrb1, . . . s,

where |bi| “ 2i, the spectrum MU and the space BU have free MU-homology. This
implies that the same is true for the norms: NG

e MU and NG
e Σ8

`BU have free

NG
e MU-homology.
We have identical statements for CPn for all n ď 8 and the spaces BUpnq.

Using the orientations given by the norm of MU, we produce a host of other
interesting examples.

Example 3.26. Let R be an E8 G-spectrum that admits an E8 norm map

NG
e i

˚
eR Ñ R,

and assume that i˚eR can be given a commutative complex orientation. Then for any
spectrum E such that MU˚ E is a free MU˚-module, NG

e pEq has free R-homology.
The identity map MU Ñ i˚e MUG and the Connor–Floyd map MU Ñ KU give

examples of commutative complex orientations, which shows that the spaces and
spectra considered in Example 3.25 have free MUG and KUG-homology.

Example 3.27. If E is any finite type, bounded below spectrum with free integral
homology, then NG

e E has free KUG and MUG homology.

In the Bredon case, if R has the structure of a Tambara functor [39], then Ullman
has shown that HR has the structure of a G-E8 ring spectrum [40]. This gives us
many examples for Bredon homology. In particular, the absolute norms (i.e. the
norms from the trivial group) of an ordinary commutative ring are always Tambara
functors. Generalizing the C2-equivariant examples of [13], we get that absolute
norms are free for a large number of Green functors.

Example 3.28. Let k be a field and let R be a Green functor under NG
e k. Then

for any spectrum E, NG
e E has free HR-homology.

The more general integral story also follows.

Example 3.29. If E is an ordinary, non-equivariant spectrum such that H˚pE;Zq

is free, then NG
e E has free A-homology. Since HM is an HA-module for any

Mackey functor M , NG
e E has free M -homology for any M .

There is a norm in R-homology, specified by the norms in Mackey functors (or
equivalently in spectra), and the following holds by definition.
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Corollary 3.30. If E is an H-spectrum that has free i˚HR-homology, then we have
a natural isomorphism

R‹pNG
HEq – NG

H

`

i˚HR‹pEq
˘

.

Notation 3.31. In any context where it is defined, letNG{H be the compositeNG
H i

˚
H .

With this notation, if E is a G-spectrum with free R-homology, then we have a
natural isomorphism

R‹pNG{HEq – NG{HR‹E.

As a specific example, this gives us the equivariant homology of the topological
Singer construction [28].

Example 3.32. Let k “ Fp, let G “ Cp, and let Fp be the constant Green func-
tor Fp. This is a Tambara functor, so for any spectrum E, we have a natural
isomorphism

H
`

NCp
e pEq;Fp

˘

– NCp
e

`

H˚pE;Fpq
˘

.

In particular, for p “ 2, the F2-Bredon homology of NC2
e HF2 is free.

Unpacking this a little more, a basis is given by orbits rf s in the monomial basis
in

´

Fprξ1, . . . s b Epτ0, . . . q
¯bpM

Cp,

where the group Cp acts on this by permuting the tensor factors. Every monic
monomial f has a stabilizer subgroup Hf . This is the subgroup associated to the
orbit rf s as a basis vector. The degree of f is given by

||f || “
|f |

|Hf |
ρHf

,

where |f | is the ordinary, underlying degree induced by the degrees in the dual
Steenrod algebra.

These freeness results can also give us interesting information about non-free
spectra. Snaith showed that we have an equivalence of E8 ring spectra

KU » Σ8
`CP8rβ´1s,

where β is the map on Σ8
`CP8 induced by the inclusion CP 1 ãÑ CP8 [38].

The norm functor commutes with filtered colimits, so this gives us an equivariant
version of Snaith’s theorem.

Theorem 3.33. For any finite group G, we have an equivalence of G-E8 ring
spectra

NG
e KU » Σ8

` MappG,CP8qrNpβq´1s,

where

Npβq : S2ρG Ñ Σ8
` MappG,CP8q

is induced by the norm.

Corollary 3.34. Let R be a G-E8 ring spectrum such that CP8 has free i˚eR-
homology. Then we have an isomorphism

R‹N
G
e KU » lim

ÝÑ
Σ´2nρGNG

e

`

i˚eR˚pCP8q
˘

.

In particular, this is always a flat R‹-module.
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Proof. Both the norm and R-homology commute with direct limits. This follows
from the homology of the coinduction. □

Example 3.35. Because HA is a G-E8-commutative ring spectrum and CP8 has
free HZ-homology, we have

H‹

`

MappG,CP8q;A
˘

– NG
e H˚pCP8;Zq – NG

e

`

Γpxq
˘

,

where |x| “ 2. The Bott element we invert is the norm of x, and we deduce

H‹N
G
e KU » NG

e Qrx˘1s.

Since KUG is a NG
e KU -algebra, we also deduce that HA^KUG is rational.

Remark 3.36. The norms of the divided power algebra are curious Tambara func-
tors, though the structure can be worked out from the basic properties of the norms.
We spell this out for Cp.

Just as with the discussion of the topological Singer construction in Exam-
ple 3.32, a basis is given by orbits of monic monomials in the tensor power Γpxqbp,
where Cp again acts by permutation. The stabilizer of a monic monomial again
gives us the appropriate way to determine the degrees: most monomials are stabi-
lized by teu and hence correspond to a free summand, while monomials of the form
fbp correspond to a summand S|f |ρp . These are the norms of classes f b 1bpp´1q.

Let γipxq be the ith divided power of x. Then we have the divided power relations

γix ¨ γjx “

ˆ

i` j

i

˙

γi`jx.

Since the norm is multiplicative, this gives relations

Npγixq ¨Npγjxq “ N

ˆ

i` j

i

˙

Npγi`jxq.

The norms of integers can be computed back in the Burnside Mackey functor, where
we find

NCp
e pnq “ n`

np ´ n

p
rCps,

and this gives us the actual relation:

Npγixq ¨Npγjxq “

ˆ

i` j

i

˙

Npγi`jxq `

´

`

i`j
i

˘p
´
`

i`j
i

˘

¯

p
trCp
e

`

γi`jpxqbp
˘

.

3.2.5. Closure under duals. We also have a weak Universal Coefficients Theorem,
provided our spectrum is small.

Definition 3.37. Let E P SpGR, r, and let VE be the associated virtual bundle such

that R ^ E » R ^ MpVEq. We say E is finite type if for each k ď j P Z, only
finitely many orbits of TE contribute to πℓpR ^MpVEqq for k ď ℓ ď j.

Clearly, if the set TE can be chosen to be finite, then it is finite type. This more
general condition is analogous to only having finitely many cells in each degree.

Theorem 3.38. If E P SpGR, r is a finite complex, then DpXq is also in SpGR, r.
More generally, if E P SpGR, r is finite type, then for any R-module M , we have

a weak equivalence of R-modules

F pE,Mq » M ^Mp´VEq.
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We have a universal coefficients isomorphism that computes the M -cohomology
of E out of the R-homology of E:

M´‹pEq – HomR‹

`

R‹pEq,M‹

˘

.

Proof. If E is a finite complex, then

DpEq ^R » F pE,Rq,

and the first will follow from the second.
Since M is an R-module, we have an equivalence

F pE,Mq » FRpR ^ E,Mq.

A basis for the R-homology of E gives an equivalence

FRpR ^ E,Mq » FR
`

R ^MpVEq,M
˘

,

and this is equivalent to F
`

MpVEq,M
˘

. Since maps out of a wedge is the product,
we first check the case of an orbit. The result is then the classical Wirthmüller
isomorphism:

F
`

G` ^
H
SV ,M

˘

» G` ^
H
S´V ^M.

Finally, the finite type condition ensures that the natural map from the wedge to
the product is in fact an equivalence.

The second part follows from this by taking homotopy and observing the result
for orbits. □

A surprising final feature of the universal coefficients theorem is that we can also
describe the cohomology of the norms of R-free spectra.

Proposition 3.39. Let R be an E8 ring spectrum that has an E8-map

NG
H i

˚
HR Ñ R.

If an H-spectrum E has free i˚HR-homology with a finite basis, then the function
spectrum F

`

NG
HE,R

˘

is equivalent to a free R-module, and the basis is the dual to

the one for NG
HE.

In particular, analyzing the Thom spectrum for the functional dual, we have
that for E as in the proposition, the R-cohomology of NG

HE can be described as
the norm of the i˚HR-cohomology of E.

3.2.6. Pullbacks. Finally, freeness and projectivity is also preserved by restricting
along quotient maps (also called “pulling back”).

Notation 3.40. If N is a normal subgroup of G and q : G Ñ Q “ G{N , then let

q˚ : SpQ Ñ SpG

be the inclusion of Q-spectra into G-spectra.

Proposition 3.41. The functor q˚ induces a functor

q˚ : SpQR, r Ñ SpGq˚R, r.

If E P SpQ has a basis for R, then q˚E has a basis for q˚R.
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Proof. Again, it suffices to check on the full subcategory of R-free spectra, and
since q˚ is strong symmetric monoidal, it suffices to show on the associated Thom
spectra. By construction,

q˚MpVEq » Mpq˚VEq,

where q˚VE is just VE viewed as a G-virtual bundle. □

Remark 3.42. The fixed points functors do not preserve projective objects, as the
tom Dieck splitting shows. However, the canonical map

q˚pRGq Ñ R

gives us a map

q˚ : SpRG, r Ñ SpGR, r.

This gives another proof of a basic construction in Bredon homology.

Example 3.43. If E is an ordinary, non-equivariant spectrum such that H˚pE;Zq

is free in each degree, then q˚E has free Bredon homology for any coefficients:

H˚pq˚E;Mq – H˚pE;Zq bM.

For any G,

π0q
˚HZ “ A,

and the negative homotopy groups are all zero. The zeroth Postnikov section then
gives us an E8-map

q˚HZ Ñ HA.

The result then follows from Proposition 3.41, Proposition 3.16, and Theorem 3.18.

Example 3.44. If E is an ordinary, non-equivariant spectrum such that H˚pE;Fpq

is free in each degree, then for any G and for any Green functor R in which p ¨ 1 “

0 P RpG{Gq, q˚E has free R-homology. This is because the pullback of HFp has
π0 “ A{p, the initial example of such a Green functor.

In particular, for any G and for any R of this form, this applies to

E “ Σ8KpFp,mq,

the pullback of which is the suspension spectrum of the Eilenberg–Mac Lane space
for the constant coefficient system Fp.

Both of these examples are also free with bases in integer stems. In particular
this functorially describes the RO-graded homology, by Theorem 3.12.

3.3. Freeness and spaces. The author’s primary interest in these freeness results
comes from the connection between the [twisted] smash products in spectra and
[twisted] Cartesian products in spaces.

Proposition 3.45. If X is an H-space, then we have a natural equivalence

NG
HΣ8

`X » Σ8
` MapHpG,Xq.

If X and Y are G-spaces, then

Σ8
` pX ˆ Y q » Σ8

`X ^ Σ8
`Y.

We can assemble all of our results so far into a summary theorem.
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Theorem 3.46. Let X be an K-space such that X has free i˚KR-homology. Then
we have a natural isomorphism

NG
KR‹pXq – R‹

`

MapHpG,Xq
˘

,

and moreover, this is free on the basis NG
H x⃗, where x⃗ is a basis for the homology of

X.
If X and Y are G-spaces that have R-free homology, then

R‹pX ˆ Y q – R‹pXql
R‹

R‹pY q,

with a basis given by the product of the bases.

Example 3.47. In general, coinduction preserves Eilenberg–Mac Lane spaces: if
M is an H-Mackey functor, then we have an equivalence

MapH
`

G,KpM,nq
˘

» K
`
İ

§

G

H
M,n

˘

.

(More generally, the G-space MapH
`

G,KpM,V q
˘

represents the functor

X ÞÑ HV pi˚HX;Mq,

so these are all kinds of Eilenberg–Mac Lane spaces.)
When H “ teu, this allows us to determine the homology of Eilenberg–Mac Lane

space attached to any induced Mackey functor with coefficients in a NG
e k-algebra,

for k a field. As an applicatioin, we have

H‹

´

K
`
İ

§

Cp

e
Fp, n

˘

;Fp
¯

– NCp
e

´

H˚

`

KpFp, nq;Fp
˘

¯

,

and the latter was determined by Cartan and Serre [4], [36].

This is closely connected to some additional structure that is often difficult to ac-
cess. Equivariant spaces are canonically G-cocommutative comonoids. In addition
to the coproduct

X Ñ X ˆX,

they have conorm maps

X
∆G{H

ÝÝÝÝÑ MappG{H,Xq – MapHpG,Xq.

The contravariant Yoneda functor gives for any X a functor

よX : Mapp-, Xq : pFinGqop Ñ T opG,

and on passage to fixed points, these conorm maps are exactly giving the usual
coefficient system of fixed points for any G-space.

Definition 3.48. If f : S Ñ T is a map of finite G-sets, then let

ψf : R‹

`

MappT,Xq
˘

Ñ R‹

`

MappS,Xq
˘

be the “conorm” map associated to f . When f “ ∇S : S > S Ñ S is the fold map,
we call this the “coproduct”.

In general, this is difficult to work with, since we need not have a good [twisted]
Künneth theorem. In the case we are considering, however, we do!
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Theorem 3.49. Let R be an equivariant commutative ring spectrum, and let X be
a space that has free R-homology. Then R‹pXq has a comultiplication map

R‹pXq Ñ R‹pXql
R‹

R‹pXq

making it a “co-Green functor”. Moreover, we have for any map of finite G-sets
f : S Ñ T a conorm map

NTR‹pXq Ñ NSR‹pXq

which is a map of co-Green functors.

Proof. Since X has R-free homology, so do all of its restrictions, and hence so
do all of the spaces MappT,Xq for any finite G-set T . The comultiplication and
conorm maps then follow immediately from our earlier analysis of the homology of
the spaces involved.

That the conorm maps are maps of coGreen functors follows from naturality:
for any f : S Ñ T , we have a commutative diagram

S > S S

T > T T.

∇

f>f q

∇

Functoriality then shows that the conorm associated to f is a map of co-Green
functors. □

Remark 3.50. If a basis for R‹pXq is in integer stems, then the co-Green structure
is simply base-changed from the integral one. The conorms essentially never are,
due to the degree scaling aspects of the norm.

Rephrased, a space with free R-homology gives a strong G-symmetric monoidal
functor

SetG,op Ñ R‹-Mod,

where theG-symmetric monoidal structure on SetG,op is the dual to the co-Cartesian
one. This is the definition of a G co-commutative comonoid. Since a Tambara func-
tor is a G-commutative monoid by work of Mazur and Hoyer [16, 19], this gives
R‹pXq naturally the structure of a co-Tambara functor. Via the Universal Coeffi-
cients theorem for R-free spaces, this structure is dual to the structure which gives
rise to the Tambara functor structure on the R-cohomology of a G-space.

Remark 3.51. The usual formulation of a Tambara functor describes norm maps
nKH : RpG{Hq Ñ RpG{Kq with satisfy certain axioms relating them to the additive
Mackey functor structure. These connect, via work of Mazur and Hoyer ([16], [19])
to G-commutative monoids in Mackey functors via canonical maps of sets

RpG{Hq – i˚KRpK{Hq Ñ pNK{H i˚KRqpK{Kq.

The maps go the wrong way to be able to interpret a co-Tambara functor easily in
the more traditional way: there is no clear way to extract a map

RpG{Kq Ñ RpG{Hq
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from the data:

i˚KRpK{Kq
`

NK
H i

˚
KR

˘

pK{Kq

i˚KRpK{Hq.

ψH
K

3.4. Hopf algebroids and comodule Tambara functors. There are many ex-
amples of spectra for which we have various kinds of comultiplications. These are
ubiquitous amongst spectra which have free homology over themselves. This was
shown and used by Hu–Kriz for a stricter notion of free; it works very generally.

Proposition 3.52 ([20]). If R is an E8 ring spectrum such that has free R-
homology, then the pair

pR‹, R‹Rq

forms a Hopf algebroid, and moreover, the R-homology of any space or spectrum is
a comodule over this.

Proof. Since R has free R-homology, we can apply the weak Künneth theorem to
deduce a natural isomorphism for any E

π‹pR ^R ^ Eq – pR‹Rql
R‹

R‹pEq.

Applying this to the case E “ R and considering the unit map in the middle copy of
R, we have the comultiplication. Applying this to a general E and again considering
the unit on the rightmost copy of R give the coaction. □

It is important to note here that there are no hypotheses places on E: the R-
homology of any E inherits this structure. When E itself has more structure, then
we can say even more about the coaction map. Classically, if E is a ring object
in the homotopy category, then the R-homology of E is a comodule algebra, since
the unit map is a map of ring spectra. When E is a G-commutative monoid in the
homotopy category, then we have the analogous Tambara case.

Theorem 3.53. Let R be a G-E8 ring spectrum which has free R-homology and
let E be a G-commutative monoid in the homotopy category. Then R‹E is an
RO-graded Tambara functor and the coaction map

R‹E Ñ R‹Rl
R‹

R‹E

is a map of RO-graded Tambara functors.

Proof. By assumption, R^E is a G-commutative monoid in the homotopy category,
and so is R^R^E. The coaction map is the map induced by the unit in the middle,
and this is a map of G-commutative monoids:

R ^ E – R ^ S0 ^ E Ñ R ^R ^ E.

The result follows from [1]. □

When E also has free R-homology, we can use an external version of the norm,
making some of the structure more transparent. To avoid clutter, we restrict ex-
position to the norms from subgroups to G. The more general ones follow from
considering instead various restrictions to subgroups.
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Proposition 3.54. Let R be a G-E8 ring spectrum which has free R-homology
and let E be a G-commutative monoid in the homotopy category that has free R-
homology. Then for any subgroup K, we have a commutative diagram of commu-
tative Green functors

NG{KR‹pEq NG{KpR‹Rql
R‹

NG{KpR‹Eq

R‹E R‹Rl
R‹

pR‹Eq.

NG{Kψ

N NlN

ψ

As an application of this structure, we can look at the coaction on the homology
of the topological Singer construction at the prime 2.

Example 3.55. If R is a C2-E8 ring spectrum that has free F2-homology, then
H‹pR;F2q is a comodule Tambara functor over the equivariant dual Steenrod alge-
bra: the comodule structure map is a map of Green functors and commutes with
the norms:

NC2
e H˚pi˚eR;F2q

`

NC2
e A˚

˘

l
H‹

NC2
e H˚pi˚eR;F2q

H‹pR;F2q A‹ l
H‹

H‹pR;F2q.

NC2
e ψ

N
NlN

ψ

This means in particular that the coaction on the spectrum NC2
e HF2 is completely

determined by the coaction on HF2, allowing us to analyze the homotopy groups of
this spectrum by a Hu–Kriz style Adams spectral sequence [20].

4. An even nicer class of spectra

4.1. Homological purity. We single out a class of spectra for which computa-
tions are strikingly simple, being completely determined by the homology of the
underlying spectrum.

Definition 4.1. A regular slice sphere is a G-spectrum of the form

G` ^
H
SkρH ,

for some integer k. The dimension of such a regular slice sphere is k|H|.

In [12], a spectrum E was called “pure” if the slice associated graded of E is a
wedge of regular slice spheres smashed with HZ. We build on that here.

Definition 4.2. A G-spectrum E is homologically pure if there is

(1) a set IE ,
(2) a function i ÞÑ ki assigning to elements of IE an integer, and
(3) a function i ÞÑ Hi assigning to elements of IE a subgroup of G,

such that we have an equivalence of HZ-modules

HZ ^ E » HZ ^
ł

iPIE

G` ^
Hi

SkiρHi .

A homologically pure G-spectrum E is isotropic if there are no summands with
a trivial stabilizer.
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Remark 4.3. A slightly restricted form of this definition was independently given
by Pitsch–Ricka–Scherer in their analysis of conjugation spaces [31]. The choice
name and reason for the name are the same as the one here: analogy with [12].

In fact, we can work more generally, using arbitrary zero-slices. Any zero-slice
is of the form HM for some Mackey functor in which all restriction maps along
surjective maps are injections [12, Proposition 4.50], and the map π0 induces an
equivalence between zero-slices and the full subcategory of Mackey functors of this
form.

Notation 4.4. We say that a Mackey functor M is a zero-slice if HM is zero-slice.

Since the zero-slice of the zero sphere is HZ, any zero-slice is a module over HZ.
This shows that we could have instead used arbitrary zero-slices.

Proposition 4.5. A G-spectrum E is homologically pure if and only if for every
zero-slice M , we have an equivalence of Z-modules

HM ^ E » HM ^
ł

iPIE

G` ^
Hi

SkiρHi .

Notation 4.6. If we have a decomposition like that of homological purity or isotropic
homological purity only for particular Green zero-slices R, then we will say that E
has [isotropic] homological purity for R.

The regular representations are closed under restrictions, conjugations, and in-
ductions. This gives the following.

Proposition 4.7. If E is a homologically pure H-spectrum, then

(1) G` ^
H
E is homologically pure,

(2) if K Ă H, then i˚KE is homologically pure, and
(3) NG

HE is homologically pure.

4.1.1. Homology. The main benefit of this definition is from the defining property
of zero-slices: all restriction maps are injections, and hence statements can usually
be checked at the level of underlying homology.

Notation 4.8. Given an indexing set IE for a homologically pure E, for each integer
n, let

InE “
␣

i P IE | ki|Hi| “ n
(

.

Proposition 4.9. Let E be homologically pure and let M be a zero-slice. For any
subgroup K and for any integer k, we have

HkρK
pE;Mq –

à

jPIk|K|

E

i˚KM i˚KG{Hj
.

We also have

HkρK´1pE;Mq –
à

jPIpk|K|´1q

E

à

gPKzG{Hj

KXgHjg
´1“teu

i˚KMK .

In particular, all restriction maps are injections.
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Proof. By assumption, HM ^ E is a wedge of induced up regular representation
spheres smashed with HM , and hence a wedge of slices. We therefore have

πkρK
`

i˚KpHM ^ Eq
˘

–
à

jPIk|K|

E

“

SkρK , i˚KpG` ^
Hj

SkjρHj ^HMq
‰

–

à

jPIk|K|

E

“

S0, i˚KpG{Hj` ^HMq
‰

The result follows by the definition of i˚KM i˚KG{Hj
.

For the case of pkρK ´ 1q, the argument is identical until the last step. Here, we
have a direct sum

à

π´1

`

S´kρK ^ i˚KpG` ^
Hj

SkjρHj ^HMq
˘

The double coset decomposition of G as a pK,Hjq-biset allows us to rewrite each
summand:

π´1

`

S´kρK ^ i˚KpG` ^
Hj

SkjρHj ^HMq
˘

–

à

gPKzG{Hj

İ

§

K

pKXgHjg´1q
π´1

`

S
pn´mqρ

pKXgHjg
´1q ^HM

˘

,

where

n “ kjrHj : Hj X g´1Kgs and m “ krK : K X gHjg
´1s.

The only regular representation sphere that has a non-trivial homology in degree
´1 is the one for the trivial group in degree ´1, which gives the second part. □

Corollary 4.10. If G “ Cpn and E is homologically pure and isotropic, then the
homology groups in dimensions of the form piρH ´ 1q vanish.

Definition 4.11. A homologically pure G-spectrum E is generalized isotropic
if there is no pair

i P InE and j P In´1
E

such that G{Hi ˆG{Hj contains a free summand.

This generalized isotropic condition allows us to have other ways to check ho-
mological purity.

Theorem 4.12. Let E be a G spectrum that admits a filtration such that grpEq

is homologically pure and generalized isotropic. Then E is homologically pure and
generalized isotropic.

Proof. The filtration on E gives a spectral sequence with E1-term

π‹

`

grpEq ^HZ
˘

– H‹

`

grpEq;Z
˘

.

By assumption, this is a free HZ‹-module, and the generators are in dimensions
kiρHi

for i P IgrpEq. The generalized isotropic condition guarantees that these
classes are permanent cycles, since there are no possible targets for the differentials
on the generators by Proposition 4.9. Thus E1 “ E8, and since this is a free
module, there are no possible extensions. □
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The same proof applies more generally to deduceR-freeness for pure and isotropic
R. More generally, we also deduce nice properties for the R-homology of a homolog-
ically pure E for any R which is pure, provided we have the same kind of generalized
isotropy.

Definition 4.13. A G-spectrum R is weakly pure if for each n P Z, there is a
set In and for each i P In, a subgroup Hi and a zero-slice M i for Hi such that the
regular n-slice of R is

PnnR »
ł

iPIn

G` ^
Hi

´

S
n

|H|
ρH

^HM i

¯

.

Remark 4.14. If a G-spectrum R is weakly pure, then the regular slice filtration of
R is the same as the classical slice filtration of R. This is because for each n, the
fiber of PnR Ñ Pn´1R is also a classical n-slice. By [12, Proposition 4.45], this
must be the classical slice tower.

Theorem 4.15. Let R be a weakly pure G-ring spectrum that is slice 0-connective,
and let E be a homologically pure spectrum such that InE is empty for n sufficiently
negative.

If for each j P InE, there is no k P Z, iE P In´1´k
E , and iR P Ik such that

G{Hj ˆG{HiE ˆG{HiR

contains a trivial summand, then

R‹E –
à

jPIE

R‹

`

G` ^
Hj

SkjρHj
˘

.

Proof. The slice filtration of R gives a filtration on E ^R with associated graded

ł

nPZ

˜

ł

iPIn

G` ^
Hi

S
n

|Hi|
ρHi ^HMn,i

¸

^ E.

Since E is homologically pure, this is equivalent to

ł

jPIE

ł

nPZ

˜

ł

iPIn

G` ^
Hi

S
n

|Hi|
ρHi ^HMn,i ^G` ^

Hj

SkjρHj

¸

.

The E2-term of the associated spectral sequence is

E2pR ^ Eq – E2pRq l
H‹

H‹pE;Zq,

which is a free module over the E2-term for R with a basis given by a basis for
the homology of E. Our assumption on the lack of free summands guarantees
that there are no possible targets for differentials on the basis elements, since the
corresponding group of possible targets vanishes.

This gives us a map of R-modules:

R ^
ł

jPIE

G` ^
Hj

SkjρHj Ñ R ^ E.

By construction, this induces a map of filtered spectra, and hence a map of spectral
sequences. This map is an isomorphism on E2, which implies that the map is a
weak equivalence, since our assumptions on R and E guarantee that slice spectral
sequence converges strongly. □
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4.1.2. Cohomology. We can make similar statements about the cohomology.

Proposition 4.16. If E is homologically pure and |InE | ă 8 for all n, then for
any zero-slice M , we have an equivalence of HZ-modules

F pE,HMq » HM ^
ł

iPIE

G` ^
Hi

S´kiρHi .

Proof. Since zero-slices are HZ-modules, we have an equivalance of HZ-modules

F pE,HMq » FHZpHZ ^ E,HMq.

The homological purity of E gives an equivalence of HZ-modules

HZ ^ E » HZ ^
ł

iPIE

G` ^
Hi

SkiρHi ,

and hence we have

F pE,HMq »
ź

n

ź

iPIn
E

G` ^
Hi

S´kiρHi ^HM.

Since InE is finite, the inner most products are the same as wedges. Since for all
integers k and subgroups H, the homotopy Mackey functors of

G` ^
H
S´kρH ^HM

are zero outside of a finite range (depending only on k and H), the outer most
product is also equivalent to the wedge. □

Example 4.17. An theorem of Pitsch–Ricka–Schrerer shows that any conjugation
space of Hausman–Holm–Puppe [9] are “mod 2” homologically pure and isotropic
[31]. This gives a large class of examples.

4.2. Consequences in computations. The condition of homological purity gives
surprising computational control.

4.2.1. Green functor structure.

Theorem 4.18. Let E be a homologically pure spectrum, and assume that E comes
equipped with a [commutative, associative] multiplication in the homotopy category.
Then for any commutative Green functor R which is a zero-slice, the multiplication
on

H‹pE;Rq

is completely determined by the restrictions to

H˚pi˚eE;RpGqq.

Proof. The homological purity of E guarantees that the homology and cohomology
are free modules over the RO-graded homology of a point. In particular, the ring
structure is completely determined by the products of basis vectors. These occur
in dimensions of the form kρH for various k and H. If x P HkρH pE;Zq and y P

HℓρJ pE;Zq, then the product of x and y is represented by a map out of

pG` ^
H
SkρH q ^ pG` ^

J
SℓρJ q.

This is a wedge of spaces of the form

G` ^
K
SmρK ,
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where K ranges over all subgroups of the form H X gJg´1 and where

mρK “ i˚KpkρHq ` i˚Kc
˚
g pℓρJq.

In particular, this is a wedge of regular slice spheres, again, and hence the prod-
uct takes values in a zero-slice by Proposition 4.9. Since all restriction maps are
injections here, the result follows. □

Corollary 4.19. If E is a homologically pure spectrum, then the RO-graded ring
structure on the cohomology of E with coefficients in any commutative Green zero-
slice is functorially determined by the underlying cohomology ring.

4.2.2. Tambara functor structure. If, moreover, E is a G-E8-ring spectrum, then
we also have good control over norms.

Theorem 4.20. If E is a G-commutative monoid in the homotopy category and if
E is homologically pure, then for any Tambara zero-slice R, we have that the norms
in

H‹pE;Rq

are determined by the formula

i˚eN
G
H pxq “

ź

γPG{H

γpi˚exq.

Proof. The proof is the same as for the products. Here we use that the collection of
regular representations is a sub-semi-Mackey functor of the representation ring. □

Remark 4.21. Tambara functors which are also zero-slices were independently stud-
ied by Nakaoka, who called these “MRC” Tambara functors, in his study of local-
izations of Tambara functors [30].

4.2.3. CoTambara structure. Again, all of the desired structure can be read out of
the underlying homology. The conorm maps are detected as twisted coproducts.
The proofs are identical.

Theorem 4.22. Let E be a homologically pure spectrum, and assume that E comes
equipped with a [cocommutative, coassociative] comultiplication in the homotopy
category. Then for any commutative Green functor R which is a zero-slice, the
comultiplication on

H‹pE;Rq

is completely determined by

H˚

`

i˚eE;RpGq
˘

.

Theorem 4.23. If E is a G-co-commutative comonoid in the homotopy category
and if E is homologically pure, then for any Tambara zero-slice R, we have that the
conorms in

H‹pE;Rq

are determined by the formula

i˚eN
G
H pxq “

´

`
â

γPG{H

γ
˘

˝ ψ
¯

pi˚exq.
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4.2.4. Dyer–Lashof operations. Finally, we restrict to C2. None of the arguments
here are that specific to C2; the only issue is in defining the appropriate Dyer–
Lashof operations. For groups which contain C2, norm arguments provide analogous
classes, but the author has no idea in general. We recall Wilson’s ROpC2q-graded
stable operations.

Theorem 4.24 ([2, §3], [41]). For each i ě 0 and for each ϵ “ 0, 1, we have
Dyer–Lashof operations

Qiρ2´ϵ : H‹p-;F2q Ñ H‹`iρ2´ϵp-;F2q.

When ‹ “ iρ2, Q
iρ2 is the square.

In this case, homological purity says that the underlying structure describes
everything.

Theorem 4.25. If E is a homologically pure C2-E8-ring spectrum, then we have

Qiρ2´ϵ : H‹pE;F2q Ñ H‹`iρ2´ϵpE;F2q

is determined by the restrictions i˚eQ
iρ2´ϵ. The “odd” operations Qiρ2´1 can only

land in cells induced from the trivial group.

Proof. This again follows immediately from the assumption of homological purity.
□

4.3. Example: the homology of CP8 and of BUR.

4.3.1. The C2-E8 space CP8. The standard cell structure for CP8 has a unique
cell in dimension kρ2 for all k ě 0 and no other cells. In particular, it is homologi-
cally pure and isotropic, with a basis given by all

b̄n P Hnρ2pCP8;Zq

corresponding to the top cell of CPn. The ring and coring structure then follows
immediately from the underlying case.

Proposition 4.26. As a Green Hopf algebra, the homology of CP8 with coeffi-
cients in Z is a divided power algebra on the primitive class b̄1.

The norm (and conorm) maps are also determined by the underlying condition.
Here we have

i˚C2

`

NC2
e bn

˘

“ ´b2n “ ´

ˆ

2n

n

˙

b2n.

Proposition 4.27. The norms are given by

NC2
e bn “ ´

ˆ

2n

n

˙

b̄2n.

The conorms are dual to the (negative) squaring operation.
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4.3.2. The homology of BUR. We begin with the computation of the homology of
BUR with coefficients in Z. We give a slightly different proof than that of [21] and
[32], using instead our formulae above. This line of argument was undoubtedly
known by Araki and Landweber.

Theorem 4.28. There are classes

āi P Hiρ2pBUR;Zq

such that the induced map on A8-rings

HZ ^
ľ

iě1

S0rāis “ HZ ^ S0rā1, ā2, . . . s Ñ HZ ^BUR

is an equivalence of C2-equivariant associative algebras, and hence the C2-space
BUR is homologically pure and isotropic.

Proof. Araki lifted the classical, non-equivariant description of MU˚ MU, showing

MUR ^MUR » MURrā1, . . . s,

and in particular, this is free with a basis in regular representation dimensions. The
Thom isomorphism shows

MUR ^BUR` » MUR ^MUR

as C2-E8 rings. Since HZ is a commutative ring spectrum under MUR, the result
follows by base-change. □

Remark 4.29. The classical Schubert cell analysis works equally well here, and the
underlying argument is essential the same as that of [9].

Corollary 4.30. For any finite group G which contains C2, the coinduced G-space
MapC2pG,BURq is homologically pure and isotropic with basis given by the norm
of the monomial basis.

Notation 4.31. Let

Z‹ “ π‹HZ.

Corollary 4.32. We have an isomorphism of ROpC2q-graded Green functors

H‹pBUR;Zq – Z‹rā1, . . . s,

where |āi| “ iρ2.

We can also deduce the norms, coproducts, and conorms.

Proposition 4.33. The norms are given by

NC2
e paiq “ p´1qiā2i .

Finally, the co-Tambara structure is lifting the usual dual polynomial structure.
Since the space BUR is finite type, we can equivalently describe the cohomology
ring and the norms there.

Proposition 4.34 ([21]). The cohomology ring of BUR is

H‹pBUR;Zq – Z‹rc̄1, . . . s.

Moreover, the inclusions of equivariant maximal tori into the URpnq identify these
Chern classes with the usual symmetric functions in the Chern roots.
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Proof. Only the second part requires proof, sinceBUR is homologically pure, isotropic,
and of finite type. The same is true for the space pCP8qˆn. The induced map on
cohomology is the determined by the underlying homology, and we reduce to the
classical case. □

Proposition 4.35. The norms of the Chern classes are also the squares:

NC2
e pciq “ p´1qic̄2i .

Finally, using Theorem 4.25, we deduce the action of Wilson’s Dyer–Lashof op-
erations.

Theorem 4.36. The Dyer–Lashof operations Qiρ2 on H‹pBUR;F2q act as

Qiρ2pājq “

ˆ

n

r ´ n´ 1

˙

āi`j mod decomposables.

The Dyer–Lashof operations Qiρ2´1 are identically zero.

Proof. Theorem 4.25 implies that these operations are completely determined by
the underlying action. The ordinary Dyer–Lashof action on the homology of BU
was determined by Kochman [22, 24]. □

As an aside, this also gives the Dyer–Lashof action on the space BO by applying
geometric fixed points.

Corollary 4.37 ([22, Theorem 36]). In

H‹pBO;F2q – F2re1, . . . s,

we have for all r ě 0 and n ě 1,

Qrpenq “

ˆ

n

r ´ n´ 1

˙

en`r mod decomposables.

5. Bar and twisted bar spectral sequences

For R-free spectra, we have readily computable equivariant versions of the clas-
sical Rothenberg–Steenrod and Eilenberg–Moore spectral sequences. For G “ C2,
we also have twisted versions of these where the group acts also on the homotopy
pullback diagram. We explain how these work here, giving an example for the bar
spectral sequence.

5.1. Bar and Rothenberg–Steenrod. Let A be an associative monoid in G-
spaces. Let X be a right A-space and let Y be a left A-space. In this case, the
derived balanced product can be computed via the bar construction:

X b
A
Y “ BpX,A, Y q,

where BpX,A, Y q is the geometric realization of the simplicial complex

k ÞÑ BkpX,A, Y q “ X ˆAˆk ˆ Y,

and where as usual, the structure maps are the actions or product in A.

Remark 5.1. Although the space underlying the (non-derived) version of X b
A
Y is

just the ordinary Xˆ
A
Y , we use the tensor product notation to stress the connection

with the algebraic case and to distinguish from later pullback constructions.
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If A and either X or Y are R-free, then we have a bar spectral sequence com-
puting the R-homology of X b

A
Y .

Theorem 5.2. If A and either X or Y are R-free, then we have an Adams-graded
spectral sequence

E
s,‹
2 “ Tor

R‹pAq

´s

`

R‹pXq, R‹pY q
˘

ñ R‹´spX b
A
Y q.

Proof. Our assumptions guarantee that for each k, the R-homology of BkpX,A, Y q

is given by

R‹

`

BkpX,A, Y q
˘

– R‹pXql
R‹

R‹pAqlkl
R‹

R‹pY q,

and the maps are the standard resolution computing Tor. □

Remark 5.3. If a basis for A and either X or Y can be chosen to be in ROpGq, then
Lewis–Mandell give an ROpGq-graded version of the Künneth spectral sequence
which gives the exact same result. This is because our bar complex becomes the
relative smash product upon taking Σ8

` . The resulting spectral sequence is the
same [26], since it is built the same way.

Applying cohomology instead to the bar construction when X “ Y “ ˚ gives
the Rothenberg–Steenrod spectral sequence [35]. Our assumptions allow this to be
determined as well.

Theorem 5.4. If A is R-free and A is finite type, then we have a spectral sequence

E
˚,‹
2 “ ExtsR‹pAq

`

R‹, R‹
˘

ñ R‹´spBAq.

Example: BBUR. Since BUR is HZ-free, we can run the bar spectral sequence to
compute the homology of BBUR.

Proposition 5.5 ([26]). There is an Adams-style spectral sequence with

E2
s,‹ “ Tor´s

H‹BUR
pZ‹,Z‹q – EZ‹

`

ȳ1, . . .
˘

ñ H‹´s

`

BBUR;Z
˘

,

where ȳi is the element in Tor1 represented by āi and has bidegree p´1, iρ2q.

Since all of the algebra generators are in filtration p´1q, this spectral sequence
collapses at E2. This is a free Z‹-module, hence there are no additive extensions.
There are, however, multiplicative extensions.

Theorem 5.6. As an ROpC2q-graded Green functor,

H‹pBBUR;Zq – Z‹rȳ1, ȳ2, . . . s{pȳ2i ´ aσ ȳ2i`1q,

where ȳi is a fixed element of degree iρ2 ` 1.

Proof. The Dyer–Lashof operations commute with the homology suspension, and
since this factors through the indecomposables, our earlier analysis gives on-the-
nose identifications of the Dyer–Lashof actions.

Wilson has shown that for a class in degree pnρ2 ` 1q, the square is stable and
can be written as

p-q2 “ aσQ
pn`1qρ2 ` uσQ

pn`1qρ2´1.

In particular, the squares are given by

ȳ2n “ aσQ
pn`1qρ2 ȳn “ aσ

“

Qpn`1qρ2 ān
‰

“ aσrā2n`1s “ aσ ȳ2n`1. □



FREENESS AND EQUIVARIANT STABLE HOMOTOPY 29

Remark 5.7. The geometric fixed points of this are again polynomial, and we recover
the result of Kochman on the homology of BBO [22].

Remark 5.8. The C2-space BUR is C2-E8, so it makes sense to ask about norm
maps here. The situation is more complicated. In fact, the Tor term itself has
a somewhat confusing relationship with the norms, since there is no reason for
the homology suspension to set them equal to zero. Put another way, the usual
argument shows that homology suspension factors through the ordinary module of
Kähler differentials, but it will not necessarily factor through the module of genuine
Kähler differentials of [14].

Since the homology of BBUR is free, we also get the homology of the coinduced
BBUR.

Theorem 5.9. For any finite group G and inclusion C2 Ă G, we have an isomor-
phism of RO-graded Tambara functors

H‹

`

MapC2pG,BBURq;Z
˘

– NG
C2

`

H‹pBBUR;Zq
˘

.

5.2. Twisted bar spectral sequence. In C2-equivariant homotopy, we have an
additional version of the E1-operad: the Eσ-operad. Algebras for this have no mul-
tiplication on their fixed points, but they do have a transfer map and an underlying
multiplication. A summary can be found in [13].

If A is an Eσ-algebra, then we can form a kind of balanced tensor product

A X

X X
ò

b
A
X,

where C2 acts on the whole diagram by swapping the two copies ofX. This amounts
to the data of a space X acted on by the associative monoid i˚eA. The Eσ-structure
on A means that the group action gives an isomorphism i˚eA – i˚eA

op, and hence
the action on X also canonically gives a right action. The twisted balanced product
swaps the two factors of X and also then necessarily changes these left and right
actions.

Definition 5.10. If A is an Eσ-algebra and X is an i˚eA-module, then let

BσpA;Xq “ B
`

A,MappC2, Aq,MappC2, Xq
˘

,

where the action of MappC2, Aq on A is via the Eσ-structure.

Perhaps the most interest case is when X is a point. In this case, work of Hahn–
Shi and of Liu show that in this case Bσ is the appropriate “signed de-looping”,
providing a classifying space for Eσ-algebras [8, 27].

Theorem 5.11. If A has R-free homology, then we have a spectral sequence which
Adams indexed has the form

E
s,‹
2 “ Tor

NC2
e

`

i˚e R˚pi˚e Aq

˘

´s

´

R‹

`

MappC2, Xq
˘

, R‹pAq

¯

ñ R‹´s

`

BσpA;Xq
˘

.

If X also has R-free homology, then the action of NC2
e

`

i˚eR˚pi˚eAq
˘

on

R‹

`

MappC2, Xq
˘

– NC2
e

`

i˚eR˚pXq
˘

is the one induced by functoriality.
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5.3. Eilenberg–Moore. Following Rector, we build a geometric model of the
Eilenberg–Moore spectral sequence [33, 37]. Just as non-equivariantly, any G-space
is a coalgebra with comultiplication given by the diagonal map, and G-space X
together with a map to a G-space B can be viewed as a B-comodule (and in fact,
we have much more structure equivariantly coming from the twisted diagonals).
This allows us to form the cosimplicial cobar complex as a model for the homotopy
pullback.

If X Ñ B and B Ð Y are maps of G-spaces, then a model for the homotopy
pullback is given by

X ˆ
B

h Y » coBpX,B, Y q,

where coBpX,B, Y q is the totalization of the cosimplicial complex

k ÞÑ X ˆBˆk ˆ Y,

and where the structure maps are the diagonal of B or the respective coaction
maps. If B and either X or Y are R-free and finite type, then we have a spectral
sequence computing cohomology. In general, convergence of this spectral sequence
is very delicate, just as classically. For this reason, we state the result only for
Bredon homology with coefficients in a Green functor.

Theorem 5.12. If B and either X or Y has R-free homology, then we have a
spectral sequence

E2 “ Tor
H‹

pB;Rq

´s

`

H‹pX;Rq, H‹pY ;Rq
˘

ñ H‹`spX ˆ
B

h Y ;Rq.

5.4. Twisted Eilenberg–Moore. Dual to the twisted pushout, we have a twisted
homotopy pullback.

Definition 5.13. If f : X Ñ i˚eB, then let X
ò

ˆ
B
X be the defined by the homotopy

pullback

X
ò

ˆ
B
X MappC2, Xq

B MappC2, Bq.

MappC2,fq

∆

This is modeling a pullback diagram where now the group acts by swapping the
two sides again. The homotopy pullback gives a version of the ordinary homotopy
pullback where we replace the ordinary interval with the balanced interval r´1, 1s

in the sign representation.

Remark 5.14. If X is a point, then this gives us the space of signed loops into B.

This pullback gives a cobar complex and hence an Eilenberg–Moore spectral
sequence via Theorem 5.12.

Theorem 5.15. If B has R-free homology, and if R is a Tambara functor then we
have a spectral sequence

E2 “ Tor
NC2

e H˚
pi˚e B;RpC2qq

´s

´

H‹
`

MappC2, Xq;R
˘

, H‹pB;Rq

¯

ñ H‹`s
`

X
ò

ˆ
B
X;R

˘

.

Moreover, if X also has R-free homology, then the action on

H‹
`

MappC2, Xq;R
˘

– NC2
e H˚pX;RpC2qq
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is induced by the non-equivariant one.

We believe that these spectral sequences will be useful in computing the coho-
mology of equivariant Eilenberg–Mac Lane spaces.
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