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Abstract

Generative model for Pseudomonad genomes

by

Manasa Kesapragada

Recent advances in genomic sequencing have resulted in several thousands of full

genomes of pseudomonads, a genera of bacteria important in many science areas rang-

ing from biogeochemical cycling in the environment to bacterial pneumonia in humans.

With these high-quality data sets, combined with tens of thousands of somewhat lower

quality metagenomically assembled genomes, we create a generative model for pseu-

domonad genomes. We present a Generative Adversarial Network (GAN) model that

generates gene family presence absence lists as a representation of a novel genome. We

also demonstrate that the discriminator of this model can be used as a binary classifier

to identify incorrect genomes with missing content. In the future, our desired model

can be used to generate genomes within a given set of parameters such as, “Generate

a genome that is root associated, drought resistant, salt tolerant that will produce this

natural product”.
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Chapter 1

Introduction

Synthetic biology is leveraging the extensive DNA sequencing of microbial genomes

obtained from natural environments, hosts, and industrial or laboratory settings. The vast

collection of sequenced microbial genomes offers valuable insights into gene and trait

characteristics, forming a foundation for designing and producing synthetic organisms

with significant biotechnological and medical applications.

While pangenomics [3], a computational approach that analyzes the full genomic

repertoire of a species, has become a prevalent tool for exploring lineage-specific gene

family profiles, its applicability in synthetic organism design remains limited. The

underlying rules governing the transformation of a pangenome into a functional genome

remain elusive, hindering our ability to rationally design synthetic organisms with

desired properties.

Despite the widespread interest in precisely designing and producing artificial micro-

bial genomes, this goal poses a significant challenge for synthetic biology. This study

specifically focuses on the gene content aspect of the problem.

To address this challenge, we propose using Generative Adversarial Networks (GANs)
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Chapter 1 Introduction

as a potent artificial microbial genome design method. GANs, a class of machine learn-

ing algorithms, excel at generating realistic data by learning from real-world examples.

Our approach involves training a generative model on gene family presence/absence pro-

files derived from the extensively studied Pseudomonas bacterial lineage, known for its

extensive host range. The model is designed to create artificial gene presence/absence

lists, forming the basis for constructing analog genome sequences. From this basic

model, our goal is to advance toward generating complete genome sequences with

additional specified properties. This novel approach holds promise for enhancing the

precision and efficiency of artificial microbial genome design within synthetic biology.

2



Chapter 2

Background

§ 2.1 Pseudomonas bacteria

Organisms belonging to the Pseudomonas [4] genus exhibit exceptional metabolic and

physiological adaptability, allowing them to thrive in various terrestrial and aquatic

environments. Their significance stems from their role in both plant and human diseases,

as well as their increasing potential in various biotechnological applications [1]. The

remarkable diversity within the Pseudomonas genus stems from a rich evolutionary

history. The common ancestor of Pseudomonas has navigated a vast array of abiotic

and biotic environments, driving the evolution of numerous traits and lifestyles that

exhibit considerable overlap across species as shown in Fig. 2.1.

§ 2.2 Generative modeling

Generative models learn to capture the statistical distribution of training data, allowing

us to synthesize samples from the learned distribution. They model the distribution of

3



Chapter 2 Background

Figure 2.1: The functional and environmental range of Pseudomonas spp. Figure refer-
ence: [1]

individual classes, while discriminative models focus on learning the boundaries that

distinguish between these classes. In Fig. 2.2 (a), the objective of a generative model

in classifying blue and orange beads involves examining how the class is generated by

considering both the features (x) and labels (y). The generative model utilizes the joint

probability:

𝑝(𝑥, 𝑦) = 𝑝(𝑦) ∗ 𝑝(𝑥 |𝑦)

where the model uses 𝑝(𝑥, 𝑦) as the score to determine whether x corresponds to the

blue or orange class. The probability of y, denoted as 𝑝(𝑦), can be readily obtained

from the available data. With observed data, the model can estimate the distribution

of y, illustrated as a normal distribution in Fig. 2.2 (b). Thus, the model determines

𝑝(𝑥 |𝑦) for blue and orange in their respective distributions. When presented with new

data and given y, the generative model classifies the new bead as blue, as depicted in

4



§2.3 Generative Adversarial Networks (GANs)

Fig. 2.2 (c), based on its clear alignment with the blue distribution.

Figure 2.2: Generative models model the distribution of individual classes: showing an
example of the distribution of two classes

§ 2.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [5] provide a way to learn deep representa-

tions without extensively annotated training data. GANs operate on a unique adversarial

framework, where a generator and discriminator engage in a dynamic interplay, each

striving to outperform the other. The generator generates data instances indistinguish-

able from real ones, while the discriminator learns to differentiate between genuine and

synthetic samples. This adversarial training process drives GANs to create realistic

outputs (Fig. 2.3).

The training process for a GAN model involves iteratively training the generator and

discriminator. During each iteration, the generator produces a batch of fake data, and

the discriminator is trained to classify the data as either real or fake. The generator is

5



Chapter 2 Background

Figure 2.3: Generative Adversarial Networks (GANs): Figure illustrating the signifi-
cance of each term in GANs.

then updated based on the feedback from the discriminator. The main steps involved in

training a GAN model are listed below as shown in Fig. 2.4:

• Define GAN Architecture: The first step in training a GAN model is to define

the architecture of the model. This includes specifying the types of layers, the

number of neurons in each layer, and the activation functions. The architecture

of the GAN should be tailored to the specific application.

• Train discriminator: The discriminator is first trained on a set of real data. This

training aims to teach the discriminator to distinguish between real and fake data.

The discriminator is trained using a loss function.

• Train generator: The generator is then trained to produce fake data that can fool

the discriminator. The generator is trained using a loss function that measures the

6



§2.3 Generative Adversarial Networks (GANs)

difference between the generated and real data.

• Alternate training: The training of the discriminator and generator is then alter-

nated. This process continues for multiple epochs.

• Save generator model: Once the GAN model has been trained, the generator

model can be saved. This generator model can then be used to generate new,

realistic fake data.

• Save discriminator model: The discriminator model can also be saved and used

as a binary classifier to distinguish between real and fake data.

Figure 2.4: Generative Adversarial Networks (GANs) - workflow. Fig reference: [2]

During the training process, the discriminator and generator are trained against each

other. This means that the parameters of the discriminator are held constant when the

generator is being trained and vice versa. This helps to ensure that the discriminator

and generator are constantly learning from each other.

7



Chapter 2 Background

2.3.1 DC GANs

Deep Convolutional Generative Adversarial Networks (DCGANs) [6] enhance the gen-

eration of intricate, high-dimensional data, by incorporating convolutional layers into

the Generative Adversarial Network (GAN) architecture. Key attributes of DCGANs

encompass the use of convolutional layers in both the generator and discriminator net-

works, efficient down-sampling and up-sampling through strided and fractional-strided

convolutions, application of batch normalization for stable and accelerated training,

utilization of ReLU activation functions to introduce non-linearity, and avoidance of

fully connected layers in hidden layers to prevent overfitting and enhance flexibility in

handling input sizes. DCGANs use Binary Cross-Entropy as their loss function. This

function represents the average cost for the discriminator misclassifying real and fake

observations. The higher the cost function, the worse the discriminator is performing.

This indicates the generator wants to maximize this cost function, and the discriminator

wants to minimize—which is often referred to as the "minimax game". Some of the

issues which arise using this loss function are:

• Mode Collapse: Mode collapse occurs when a GAN fails to generate diverse

class data. This can happen when the discriminator is trained using the binary

cross-entropy loss function. The BCE loss forces the discriminator to output a

value between 0 and 1, representing the probability that the input is real. As the

discriminator improves, it approaches 0 or 1 for all inputs. This means that the

discriminator will eventually classify all data as either extremely fake or extremely

real. The generator, in turn, will try to produce data that the discriminator classifies

as real. However, if the discriminator is always classifying data as either extremely
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§2.3 Generative Adversarial Networks (GANs)

fake or extremely real, the generator will only need to produce a small number of

data points to fool the discriminator. As a result, the generator will only produce

a small number of different types of data, even though the real data is much more

diverse. For instance, during training with the MNIST dataset [7], the GAN may

only produce a single type of number instead of all 10, such as generating only

the digit ’2’ and neglecting others.

• Vanishing Gradient: The vanishing gradient problem occurs because the binary

cross-entropy loss restricts the discriminator’s confidence values within the 0

to 1 range. As the objective is to approach a value close to 1, the computed

gradients tend to approach zero. This situation deprives the generator of adequate

information, hindering effective learning. Consequently, this imbalance leads to

a robust discriminator but an ineffective generator.

One proposed solution to these issues is adopting Wasserstein loss [8], which ap-

proximates the Earth Mover’s Distance (EMD) — the effort needed to transform one

distribution into another. Wasserstein Generative Adversarial Networks (WGANs) [9]

utilize this loss function to address the challenges associated with DCGANs.

2.3.2 WGAN

WGAN introduces the Wasserstein distance (also known as Earth Mover’s distance)

as the metric for measuring the difference between the generator and discriminator

distributions. The key idea is to encourage the discriminator to output values that can be

interpreted as a measure of distance between the generated and real data distributions.

The Wasserstein distance requires the discriminator to be Lipschitz continuous. This

9



Chapter 2 Background

constraint helps achieve a more stable and meaningful measure of the difference between

real and generated data distributions and helps mitigate issues such as mode collapse

and vanishing gradient. In WGAN, Lipschitz continuity is typically enforced using two

common techniques: Weight Clipping and Gradient Penalty

WGAN- Weight Clipping

In this approach, the discriminator’s weights are clipped to a small constant value to

enforce Lipschitz continuity. Weight clipping involves constraining the parameters of

the discriminator within a specified range, preventing them from becoming too large.

While this method helps stabilize training, it can still lead to training instability and

other issues.

WGAN- Gradient Penalty

Instead of relying on weight clipping, WGAN with Gradient Penalty (WGAN-GP)

penalizes the norm of the gradient of the discriminator with respect to its input. This

penalty is added to the original Wasserstein loss to encourage the Lipschitz constraint

without the need for aggressive weight clipping. WGAN-GP often leads to more stable

training and avoids some of the problems associated with weight clipping.

In the current study, we use WGAN-GP in order to ensure model convergence and

stability.

10



Chapter 3

Methods

Genus-level Pseudomonas genome data is sourced and downloaded from the National

Center for Biotechnology Information (NCBI)[10], licensed under a Creative Commons

Attribution-ShareAlike 4.0 International License. The Genome Taxonomy Database

(GTDB)[11] is used as a guide to identify Pseudomonad nucleotide sequence genomes

of interest. In this study, the analysis is conducted on a randomly selected subset of 3,000

genomes from approximately 12,000 Pseudomonad genomes available on NCBI. The

analysis utilized computational resources from the DOE Systems Biology Knowledge

Base (KBase) [12] and the National Energy Research Scientific Computing Center

(NERSC).

§ 3.1 Pangenome Analysis

The first step towards building the model is to perform a pangenome analysis. A

pangenome (Fig. 3.1) is the entire set of genes from all strains within a group. It

can be understood as the union of all the genomes of a group. The pangenome can

be broken down into a "core pangenome" that contains genes present in all genomes,

11



Chapter 3 Methods

a "shell pangenome" that contains genes present in two or more strains, and a "cloud

pangenome" that contains genes only found in a single strain [13–15]. Pangenome

Figure 3.1: Parts of the pangenome.

analysis helps in understanding the genetic determinants of biological activity. We use

PPanGGOLiN [16], a Free Software suite used to create and manipulate prokaryotic

pangenomes from a set of genomic DNA sequences to perform pangenome analysis.

This pipeline comprises four essential stages. The first stage involves annotation,

where genes are labeled and categorized. The subsequent stage focuses on clustering,

where genes with similar characteristics are grouped together to build gene families.

Following clustering, the pipeline proceeds to the graph stage, where nodes represent

these gene families, and edges depict their genomic neighborhoods. Finally, gene

12



§3.1 Pangenome Analysis

families are allocated to specific partitions in the partitioning stage, distinguishing them

as ’persistent,’ ’shell,’ or ’cloud’ based on their prevalence and occurrence patterns.

We run the ppanggolin workflow by providing a tsv-separated file, a list with the

first column being a unique genome name and the second column being its path to

the associated FASTA file(compressed fna file). The PPanGGoLin analysis on 3000

genomes was run using the NERSC Perlmutter HPC system. Around 450GB of memory

was utilized, taking 13 hours to complete. PPanGGOLiN provides multiple outputs to

describe a pangenome. The output yields four primary files/folders, each providing

crucial information as shown in Fig. 3.2:

Figure 3.2: Parts of the pangenome.

• Lists categorizing genes as ’persistent,’ ’shell,’ or ’cloud’ based on their prevalence

and occurrence patterns.

13



Chapter 3 Methods

• A presence/absence matrix detailing the presence or absence of genes across

different genomes.

• Organism statistics containing essential details such as the organism’s name as-

sociated with the provided genome, the count of gene families present in that

genome, etc.

• Projections displaying gene-related information, including the gene identifier,

contig details, and the start and end positions of the genes.

We use the core, shell, and cloud genes lists from the output partition folder and

gene_presence_absence.Rtab matrix file for the current study.

§ 3.2 Data Input

The input data for the GAN model consists of a presence-absence matrix extracted

from the gene_presence_absence.Rtab file generated by PPanGGOLiN. This matrix is

a two-dimensional array where the columns represent the genomes used in constructing

the pangenome, and the rows correspond to gene families. A value of 1 indicates the

presence of a gene family in a genome, while 0 signifies its absence.

Our focus in this analysis is on identifying genes that are present in two or more

genomes. To achieve this, we filter the presence-absence matrix to include only:

• Core genes: Genes that are present in all genomes.

• Shell genes: Genes present in 10-95% of the genomes.

14



§3.2 Data Input

Genes with less than 10% occurrence, known as cloud genes, are excluded from the

analysis. The data presented to the GAN model in this matrix can be described as a 2D

tensor, where one dimension represents genomes, and the other represents the presence

or absence of their corresponding genes. This 2D tensor serves as the input to the GAN

model, which is responsible for generating new gene presence-absence matrices that

share similar characteristics to the original data.

Figure 3.3: Gene Presence/Absence matrix

15



Chapter 3 Methods

§ 3.3 Model

To build the generative model, we use the Wasserstein GAN-Gradient Penalty method.

Generative adversarial networks (GANs) [5] are a powerful class of generative modeling

subjectively regarded as producing better samples than other methods [17]. GANs

have two neural networks playing against each other where one, the generator, learns

to generate reasonable data as training, and the other, the discriminator, learns to

distinguish the generator’s fake data from real data. The generated instances become

negative training examples for the discriminator. Instead of using a discriminator to

classify or predict the probability of generated data as being real or fake, we use WGAN,

which changes the discriminator model with a critic that scores the realness or fakeness

of a given data using Wasserstein loss [9]. The WGAN gradient penalty method [18] is

used in order to ensure model convergence and stability.

3.3.1 Generative Model Architecture

The network architecture for our GAN model is designed to handle large matrix data, fol-

lowing recommendations from previous studies [19]. The model consists of a sequence

of densely connected layers, each with 214 neurons. This network size is approximately

70% of the input gene count (22843 core and shell genes). The generator input latent

vector of size 212 shown in Fig. 3.4.

3.3.2 Model Training

The input dataset is a gene presence-absence matrix comprising 3000 genomes and

22843 core and shell genes. We train the model on 80% of the dataset randomly

16



§3.3 Model

selected, using a batch size of 64. The Adam optimizer with a learning rate of 0.0002,

beta_1 of 0.5, and beta_2 of 0.9 is utilized.

To ensure the stability of the training process, we update the critic model three

times more frequently than the generator model. This approach is consistent with the

recommendations for training WGAN models. The model is trained for 50 epochs on

AMD EPYC 7763 CPUs.

a) Critic

(b) Generator

Figure 3.4: WGAN Model for Pseudomonad genomes

17



Chapter 4

Results

To evaluate the performance of the models, we first test the generator for the percentage

of core genes present in their gene presence-absence lists. These gene presence-absence

lists of the genomes have a median of 73% of the required core genes, which can be

shown in a clustermap in Fig. 4.1, with the number of genomes on the y-axis and core

genes on the x-axis.

Next, we test the critic model on previously unseen test genomes, constituting the

20% data split from before training. In this evaluation, the critic model predicted 598

genomes as real among 600 test genomes, demonstrating a 99% accuracy. However,

when subjected to synthetic incorrect genomes created by omitting core genes, the critic

correctly identified only one out of the four incorrect genomes. This result on the

incorrect genomes is evident as the critic was trained only on the fake data generated by

the generator but was not pre-trained with the fake data from the input source.

Hence, we plan to further train the model with a combination of real and incorrect

genomes and test the critic on a larger number of incorrect genomes. These observations

show that the model has performed fairly well on generating gene presence-absence

18



matrices with 73% accuracy, and the critic has identified 99% of the real genomes.

Figure 4.1: Generator ouptut evaluation
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Chapter 5

Future Works

The current work serves as an initial step in developing a model for generating pseu-

domonad genomes, with the potential for various applications of both the discriminator

and generator models. Several planned directions for extending and utilizing the current

model include:

• Extending the dataset to 9000 genomes: Initially, 12,000 Pseudomonad genomes

were downloaded from NCBI, and around 9000 error-free genomes were identified

for analysis. The plan is to extend the analysis to all 9000 genomes, providing a

more comprehensive dataset for the model.

• Real/Fake genome identification: Utilizing the trained discriminator model as a

binary classifier to distinguish between real and fake genomes. This process is

crucial for ensuring if a genome has all the required genes.

• Pretraining the model with synthetic data: Currently trained with all real data, the

model will be enhanced by incorporating fake data during pretraining. This

involves generating synthetic genomes by removing the required core genes,

20



creating a more diverse training set.

• Finding missing genes and gap filling: Leveraging the generator model to identify

incomplete sequences and fill gaps by generating the necessary core genes. This

step contributes to enhancing the completeness and accuracy of the generated

genomes.

Figure 5.1: Conditional GAN

• CGAN: Gene position, function identification: Creating a Conditional Generative

Adversarial Network (CGAN) utilizing both positional and functional character-

istics: In this approach, the class is passed to the generator as a one-hot vector

𝑦 combined with a noise vector 𝑍 as shown in Fig. 5.1. Simultaneously, the

discriminator receives the class as a set of one-hot matrices, where the vector’s

size and the number of matrices reflect the quantity of classes. Ppanggolin pro-

vides gene position information through a.tsv file in the Projections folder for

each genome. In this file, genes are arranged so that the first line corresponds to

21
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the gene at position 0 for a specific contig, the second line at position 1, and so

on. This ordering aligns with the genes’ start positions. Extracting gene position

information from this file serves as a valuable input class for the CGAN.

• Generate new genome with input parameters: The ultimate goal is to create a

comprehensive model capable of generating genomes with specified parameters.

For example, generating a genome that is root-associated, drought-resistant, salt-

tolerant, and capable of producing a specific natural product. This capability

would provide a powerful tool for tailored genome synthesis.

In summary, the current work lays the groundwork for an evolving model with diverse

applications, ranging from dataset expansion and authenticity verification to advanced

capabilities such as conditional generation and parameter-based genome synthesis.
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Chapter 6

Conclusion

In this work, we present three results: the calculated Pseudomonad bacteria pangenome,

a generative model to identify incorrect genomes, and generated gene family pres-

ence/absence lists for artificial genomes. This research contributes to finding incom-

plete gene complements of low-quality genomes (e.g. metagenomically assembled

genomes) as well as the study of gene functions and positional information by intro-

ducing a novel method for tackling this problem. Despite restricting the input features

to only gene presence/absence, the model is apparently able to learn enough of the

gene covariance structure to make artificial gene lists. The model can accurately pre-

dict real genomes, which has immediate applications in the assessment of genomes

constructed from metagenomic sequencing (MAGs) which can often be incomplete or

chimeric [20, 21]. Given the performance of our current model using only gene pres-

ence/absence, we believe that incorporation of additional biologically-significant gene

features will significantly improve the model.

Ultimately, our goal is to create a model capable of generating genomes with desired

characteristics, this will require augmenting our gene level features, such as functions
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Chapter 6 Conclusion

and position; multi gene modules or operons and pathways; and organism level trait

annotations, will make the generative model significantly more informative. However,

even the most basic of these features, gene function and position, are not straightforward

to assign, extract or encode into the feature tables. Gene functional annotation is impre-

cise and because bacterial genomes are often highly fragmented, even the ordering of

genes on the chromosome is not known. Higher level features, such as organismal traits

and traits that emerge under specific environmental interactions are very heterogenous

and incomplete from most genomes, which introduce additional challenges which may

require development of new methods. Despite these challenges, we believe that this

work represents a solid foundation to build towards designer genomes.

This research has been accepted at the Learning Meaningful Representations of

Life Workshop during the 36th Conference on Neural Information Processing Systems

(NeurIPS 2022).
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