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Abstract

Enhanced Use of Contextual Data for Quantitative Gamma-Ray Imaging in Nuclear
Safeguards Applications

by

Kalie Knecht

Doctor of Philosophy in Engineering - Nuclear Engineering

University of California, Berkeley

Professor Kai Vetter, Chair

Nuclear safeguards inspections aim to verify nuclear materials at facilities around the world,
and are faced with constraints such as a limited amount of time to perform measurements,
ideally with minimal disruption to facility operation. Gamma-ray imaging is a promis-
ing technology for performing these inspections because it presents an efficient and non-
destructive method of quantifying nuclear material. Recent advances in gamma-ray imaging
have included integrating mobile radiation imagers with real-time tracking and scene recon-
struction algorithms, enabling a mobile mode of operation and 3D localization of gamma-
ray sources. This technique, dubbed scene data fusion (SDF), holds promise for facilitating
safeguards inspections. While developed for free-moving measurements, SDF also has appli-
cations in cases that require static measurements for increased counting statistics. In these
applications, the scene information can be used to improve quantitative imaging results.
This dissertation employs computer vision techniques with the scene information collected
by SDF-enabled imagers to identify objects of radiological interest. Computational meth-
ods are developed to determine optimal measurement positions to reduce measurement time
while still capturing enough data to quantify nuclear materials within desired statistical
uncertainties. The computation techniques are experimentally validated with a series of
example models and a safeguards-relevant measurement. The result is a software tool that
could enable safeguards inspectors to rapidly formulate a measurement plan in the field and
provide a quantitative measurement of materials present with low levels of uncertainty.
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Chapter 1

Introduction

The goal of this dissertation is to develop a tool that could be used by nuclear safeguards
inspectors to identify optimal measurement positions for quantitative gamma-ray imaging
to assess nuclear materials. This chapter provides the context of the work completed in this
dissertation. It also identifies the gaps in technology that were present at the beginning of this
work and outlines the solutions to those gaps that were developed through this dissertation.

1.1 Motivation

The Treaty on the Non-proliferation of Nuclear Weapons (NPT) went into force 1970 with
the objective to prevent the spread of nuclear weapons, promote peaceful use of nuclear
technology, and achieve global nuclear disarmament. Under this treaty, nuclear weapons
states promise to disarm and help countries develop peaceful civilian nuclear programs.
Non-nuclear weapons states promise to never develop nuclear weapons, and in exchange
receive technology and expertise in peaceful nuclear applications from the nuclear weapons
states.

The International Atomic Energy Agency (IAEA) is tasked with ensuring member states
are complying with this treaty through monitoring of their nuclear facilities. One method
used by the IAEA to ensure treaty compliance is nuclear safeguards inspections. During
these inspections, inspectors verify correctness and completeness of a state’s declared nuclear
materials and activities.

In recent years, the number of countries entering additional safeguards agreements and
the amount of material accounted for in safeguards have both been increasing. However, the
budget for the IAEA to carry out safeguards inspections is not increasing at the same rate
[1]. Additionally these inspections are faced with constraints such as a limited amount of
time to perform measurements, ideally with minimal disruption to facility operation.

Many nuclear materials covered by safeguards agreements emit gamma rays which can be
measured through gamma-ray imaging. Gamma-ray imaging is a promising technology for
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performing these inspections because it presents a fast and efficient non-destructive method
of quantifying nuclear material.

Recent advances in gamma-ray imaging have included integrating mobile radiation im-
agers with real-time tracking and scene reconstruction algorithms to enable a mobile mode of
operation and 3D localization of gamma-ray sources [2]. This technique, dubbed scene data
fusion (SDF), provides promising technology which could facilitate safeguards inspections.
This combined with recent advances in robotics and data science presents an opportunity to
use new technology to continue performing safeguards inspections in a more efficient manner.

1.2 Existing technology

At the onset of this dissertation scene data fusion was a relatively mature technology that
could quickly and accurately localize sources in a variety of applications, including safeguards,
emergency response, and nuclear contamination remediation. Work was also being performed
to include quantification of source activity from point and distributed sources in addition to
localization. While developed for free-moving measurements, SDF also has applications in
cases that use static measurements to improve counting statistics. In these cases, the scene
information can be used to improve quantitative imaging results.

Although SDF techniques were already quite advanced at the onset of this work, there
were improvements that could be made which would be highly useful to a safeguards inspec-
tor. First, the contextual information already collected by SDF systems could be further
leveraged to improve understanding of the scene which would allow modeling of gamma-ray
interactions in materials, leading to more accurate reconstructed gamma-ray activity. Ad-
ditionally, this contextual information could be used to construct a tool which could tell
an operator where to place an imager for the best results during measurements, allowing
efficient and precise data collection in a minimally invasive manner.

1.3 Proposed improvements

The goal of this work is to build a tool which further leverages contextual data and proposes
optimal static measurement positions for safeguards inspectors to place a radiation imager
to quantify nuclear material within desired levels of uncertainty.

To achieve this goal, computer vision techniques are employed with the scene informa-
tion collected by SDF-enabled imagers to identify objects of radiological interest. Computa-
tional techniques are also developed to determine optimal measurement positions to reduce
measurement time while still capturing enough data to quantify within desired statistical
uncertainties. These methods are then experimentally validated with a safeguards-relevant
measurement. The result is a software tool that could be used by safeguards inspectors to
rapidly formulate a measurement plan in the field and provide a quantitative measurement
of materials present with low levels of uncertainty.
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1.4 Dissertation structure

This dissertation is organized as follows:

• Chapter 2 provides necessary introductory concepts including the basics of scene data
fusion and information about contextual data and gamma-ray imaging.

• Chapter 3 discusses new ways contextual data has been leveraged in this dissertation
to improve scene data fusion methods.

• Chapter 4 describes the computation techniques developed to identify optimal static
measurement positions for a quantitative gamma-ray imaging measurement.

• Chapter 5 demonstrates the performance of the optimization techniques with a variety
of example models.

• Chapter 6 applies the optimization techniques contextual data improvements to gen-
erate a 3D gamma-ray image with data collected in a distributed source measurement.

• Chapter 7 draws conclusions of the work and highlights relevant applications and future
outlooks.
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Chapter 2

Background

This chapter provides an overview of a 3D gamma-ray imaging technique called Scene Data
Fusion. The concepts discussed in this chapter provide the necessary technical foundation
for understanding the work completed in this dissertation in the following chapters.

2.1 Scene data fusion

Portable detection systems can be equipped with contextual sensors to allow for free-moving
3D gamma-ray imaging in a method called scene data fusion (SDF) [2], [3]. SDF presents
a non-destructive means of analyzing nuclear material present in a variety of environments.
SDF captures relevant scene data including a 3D map of an area, which can be used to
inform operator decisions and enhance quantitative imaging results. The scene information
can be leveraged to determine optimal measurement positions to reduce measurement time
while still capturing enough data to quantify to desired statistical uncertainties.

SDF is useful for a variety of applications, such as contamination mapping, safeguards,
and source search. Figure 2.1 shows 3D gamma-ray images generated with SDF for these
applications. The image on the left shows a 3D Compton image of the 662 keV gamma rays
in a measurement collected by walking around the bumper cars at the Pripyat amusement
park in the Chernobyl Exclusion zone. The image shows Cs-137 contamination on the lower
sides of the elevated platform due to the washout of contamination from rainwater [4]. The
middle imageshows a measurement collected at the Paducah Gaseous Diffusion Plant in
Kentucky, with three 30A cylinders, where one is 1/2 - 2/3 full of depleted UF6 (DUF6)
[5]. The 3D Compton image of the 1001 keV gamma rays identifies the tank which contains
DUF6. The image on the right shows a Cs-137 point source inside a building which has
been measured with an SDF system deployed on a unmanned aerial vehicle (UAV) where
the source is localized through 3D Compton imaging on the 662 keV gamma rays.
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Figure 2.1: Gamma-ray imaging reconstructions for a variety of applications generated with
scene data fusion

2.1.1 Current scene data fusion capabilities

SDF is currently deployed in hand carried, vehicle carried, and drone carried platforms. SDF
has been extensively demonstrated in source search and non-quantitative mapping scenarios
[2], [3], [6], [5], [7]. Recently methods have been developed to quantify these measurements
in point and distributed source environments [8]. These tools present a way to evaluate
the amount of material present, which is needed for safeguards applications. The scene
information gathered by the system can be further leveraged to enhance imaging capabilities,
especially in cases requiring assessment of weak radiological signatures.

2.1.2 H420-LAMP

One SDF-enabled imager that was used for the work in this dissertation is the H420-LAMP
imaging system, shown in Figure 2.2. The H420-LAMP system combines nuclear radiation
detection with other non-nuclear modalities to provide a spatially-contextual picture of the
location of a radiation source in a real-world setting. The device consists of the commercially
available H420 CdZnTe (CZT) detector, designed by H3D as a 2D static imager capable of
coded-aperture and Compton imaging [9], labeled in blue in the figure. The imager has been
retrofitted with the Localization and Mapping Platform (LAMP) developed at Lawrence
Berkeley National Laboratory [10], which is labeled in red and includes a Intel RealSense
D455 depth camera, Advanced Navigation Spatial inertial measurement unit (IMU), and a
Velodyne 16-beam Puck LiDAR. The device also includes an Intel NUC single-board onboard
computer to perform Simultaneous Localization and Mapping (SLAM) with Google Cartog-
rapher [11], enabling the system to estimate its position and orientation and generate a 3D
map of its surroundings. For generating the 3D map, the system is hand-carried through
the scene. For point-and-dwell static measurements, the imager is placed on a tripod. The
entire system is powered with a single 98 W-hr Li-ion battery [12].

The H420 consists of a 2 × 2 array of 2.2 × 2.2 × 1 cm3 CZT crystals separated by a
0.5 mm gap with a 0.5 mm guard ring at the edge of the detector, giving an active detector
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Figure 2.2: The H420-LAMP imaging system and its coordinate system

volume of greater than 19 cm3. The H420 also has a 1.5 mm thick rank-19 tungsten modified
uniformly redundant array (MURA) mask to enable coded-aperture imaging [13]. The sub-
pixel and depth resolution of the detector is around 0.5 mm. The energy resolution is better
than 1% FWHM at 662 keV [14]. The Compton response of the H420 was measured with
a 4π scanning system with Ba-133 (356 keV), Cs-137 (662 keV), and Co-60 (1173 and 1332
keV). Figure 2.3 shows the Compton response at 662 keV, with 122 response measurements
overlaid. The center of the image corresponds to the direction directly in front of the detector
[12].

The IMU measures the orientation of the imaging system as it moves through the scene
while the LiDAR collects laser beam scans. These data are fed into a SLAM algorithm to
construct a 3D map of the environment and reconstruct the detector position within that
map. The RealSense depth camera collects Red-Green-Blue (RGB) and depth image data
(referred to as RGB-D data) at a rate of 30 Hz, providing information rich visual camera
data.

2.1.2.1 Device operation

The H420-LAMP has a WiFi dongle which allows the user to remotely connect to the detector
and access the web page user interface (UI) with a computer, phone, or tablet [15]. Figure
2.4 shows a screenshot of the UI as it collects data. The UI has a ‘start’ button, which turns
on all of the sensors and begins data collection. After the sensors are turned on, there is
a real time display of the depth camera view and a top-down view of the real-time SLAM
map reconstruction. As counts are collected, a “heat-map” of reconstructed source activity
is overlaid on the camera data.

While previous SDF systems are designed to be continuously moved through the mea-
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Figure 2.3: Mollweide projection of the 662 keV Compton response of the H420-LAMP
interpolated onto a NSIDE=16 HEALPix grid with a 5◦ Gaussian smoothing applied [12]

surement, the H420-LAMP system is designed for safeguards applications which require
quantification with low levels of uncertainty. In these scenarios, it is desirable to operate the
imager in a static mode to collect sufficient counting statistics while keeping personnel dose
low. This means that the system collects radiation data from several static measurement po-
sitions to construct a 3D image. However, a global map is still built by continuously moving
through the scene with the device to construct a 3D map of the scene with the contextual
sensors.

For point-and-dwell measurements, there is a separate data acquisition mode which turns
all of the sensors on at first, but turns off the contextual sensors after 30 seconds of data
collection, assuming the detector and its environment will be at rest during the radiation
counts. The contextual data collected during the 30 second measurement can be used to
rotate and translate the static measurement data into the frame of the global map which
is collected during the initial scene survey. Contextual data are not collected for the en-
tire duration of the static measurement because the information rich scene data requires
tens of gigabytes of computer storage space for a 20 minute measurement, and during long
measurement campaigns the onboard computer can run out of storage space.

2.1.3 Emesent Hovermap

While the H420-LAMP is a relatively compact hand-carried system, there are some confined
spaces where the entire H420 system is too bulky to fit. Additionally, the resolution capabil-
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Figure 2.4: Screenshot of LAMP user interface [15]

ities of the Velodyne Puck LiDAR are not advanced enough to reconstruct scenes with a fine
level of detail. To address these drawbacks, the Emesent Hovermap ST-X LiDAR system
[16] is sometimes used to supplement the information collected by the H420-LAMP.

The Emesent Hovermap ST-X is a compact hand-carried system with a rotating puck-
type 32-beam LiDAR. It is capable of generating LiDAR maps at a range from 0.5 to 300 m
with a precision of ±10 mm in typical indoor and underground environments. The precision
worsens to ±15 mm in general environments [16]. Due to its small size, it can easily fit into
confined places.
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2.1.4 Improvements to scene data fusion

The imaging techniques in scene data fusion are sophisticated, but they could be improved
by leveraging data that are collected by the contextual sensors. In this work, the H420-
LAMP is walked around the scene where the LAMP package captures and reconstructs scene
data to create a 3D map of the scene which serves as the imaging space. The contextual
3D map of the scene is leveraged to improve gamma-ray imaging methods in two ways.
First, computer vision techniques are employed to identify and label discrete objects in
the scene. If computer vision techniques can identify types of material in a scene, then
attenuation from those materials can be estimated to properly quantify nuclear materials
present. Some work has already been done to estimate attenuation of intervening materials
in SDF applications [17], [18], [19], but contextual data could improve those estimates.
Second, a multi-objective optimization is performed on the 3D map to identify optimal
measurement positions for quantifying activity from a gamma-ray source. Current SDF
techniques rely on user knowledge and understanding of radiation signatures to perform an
efficient quantitative measurement. This work seeks to develop a computational tool which
can automatically perform efficient measurement planning.

2.2 Contextual data

The data collected by SDF-enabled imagers can be divided into two categories: radiologi-
cal and contextual. Contextual data are data which are collected by the auxiliary sensors
equipped to gamma-ray imagers, including the LiDAR, IMU, and depth camera. Radiologi-
cal data are that which are collected by the radiation imager.

2.2.1 Simultaneous localization and mapping (SLAM)

The raw data collected by the contextual sensors must first be processed with SLAM to
generate the 3D map of the environment and the position history of the imaging system as it
moved through that 3D map. SLAM algorithms are widely used in robot navigation, robotic
mapping, and virtual or augmented reality.

2.2.1.1 Google Cartographer

Google Cartographer is an open-source software developed by Google to perform SLAM in
2D and 3D across multiple platforms and sensor configurations [11]. Cartographer consists of
two related subsystems: local SLAM and global SLAM. Local SLAM builds a succession of
sub-maps as a sensor system moves through a scene. Global SLAM runs in the background
to match sub-maps together and build a global map of a scene, while also solving for the
direction of gravity. Figure 2.5 shows a high level overview of Google Cartographer. The
output of Cartographer is a LiDAR point cloud and a time-stamped trajectory of the system
within the coordinate frame of the point cloud.
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Figure 2.5: High level system overview of Google Cartographer from [11]

2.2.2 Point clouds

Point clouds are used to represent a 3D scene. A point cloud consists of many x-y-z points
which describe the surfaces present in a scene. In addition to x-y-z coordinates, each point
may also have additional data such as color, represented with RGB values. Figure 2.6 shows
an example point cloud of a laboratory scene. The walking path of the contextual sensors
that was used to collect data for building the map is shown in red. The zoomed inset shows
some of the individual x-y-z points that comprise the column in the middle of the room. The
LiDAR point cloud only renders surfaces of objects, so interiors of objects are assumed to
be empty.

In this work, a point cloud is created by taking an initial mapping scan of a measurement
scene. This mapping can be done with the sensors on the H420 LAMP or with a more
advanced sensor, like the Emesent Hovermap. This point cloud serves as the global map of
the scene and is then analyzed to gain information about the measurement scene prior to
collecting radiation data.

2.2.2.1 Point cloud registration

In this work, a global map of a scene is constructed through an initial free-moving survey.
Then, the imager is placed at static positions for longer dwell measurements, where 30 sec-
onds of contextual data are collected. To reconstruct radiation data collected at these static
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Figure 2.6: Point cloud of laboratory scene with zoomed inset showing individual point cloud
points which comprise the column in the scene

positions into the reference frame of the global cloud, a transformation must be found be-
tween the contextual data collected at the static position and the global point cloud. Point
cloud registration is a computation problem which aims to identify a spatial transformation
(scaling, rotation and translation) which can rotate and translate one point cloud into the
coordinate frame of another.

Iterative closest point (ICP) is one computational method that can be used to perform
point cloud registration. This method keeps the reference point cloud static, while iterating
over potential transformations for the second point cloud to find the best match between
points of the two clouds. Open3D ICP tools are used to perform point cloud registration in
this work [20].

2.2.3 Voxel grids

A voxel grid is a regular grid in 3D space, analogous to a pixel grid in a 2D space. To
construct a voxel grid, a desired number of voxels or voxel pitch is specified to construct a
uniform x-y-z grid. A voxel grid can be constructed with a point cloud as an input. Each
voxel in a voxel grid will be considered to be occupied or unoccupied, based on the number
of point cloud points which reside inside of it. The number of points inside a voxel for it to
be considered occupied can be as low as 1, but it may be desirable to raise the threshold to
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a higher value in dense or noisy point clouds. To accelerate computation, voxel grids in this
work are sparsely represented with only the occupied voxels.

2.2.4 Trajectory data

Trajectory data are represented by a series of time-stamped trajectory nodes. Each trajectory
node has an x-y-z location in the coordinate frame of the 3D map as well as an orientation
described by a rotation matrix, quaternion, or angles around the x-, y-, and z-axes (referred
to as roll, pitch, and yaw respectively). The radiation data collected by an SDF system is
also time-stamped, consistent with the trajectory, so individual radiation events can be tied
to a trajectory node or an interpolation between two nodes.

2.3 Gamma-ray imaging

Radioactive elements have unique gamma-ray signatures which can be used to locate or
characterize radioactive sources in our environment. When we use the radiation signature
emitted by a radioactive source to determine the nature of the source and where it is lo-
cated, we call it radiation imaging. This concept is leveraged in medical imaging techniques
like positron emission tomography (PET), where a positron-emitting isotope is injected in-
travenously or applied to a patient to image internal organs. Gamma-ray imaging is an
non-destructive analysis method which aims to quantify the types and amounts of nuclear
material present in a scene.

2.3.1 Gamma-ray interaction mechanics

Gamma-ray imaging relies on information obtained by radiation detectors from gamma-ray
interactions to reconstruct radiation events. A gamma ray interacts with matter through
three key interactions of relevance for gamma-ray imaging: the photoelectric effect, Compton
scattering, and pair production. In the photoelectric effect, the gamma ray is fully absorbed
by an atom which ejects an energetic photoelectron. In Compton scattering, the gamma
ray scatters off of an electron in the material, where the gamma ray is deflected at an
angle and deposits some energy to the electron. Pair production occurs in the Coulomb
field of a nucleus where the gamma-ray energy is converted into an electron-positron pair.
This interaction occurs at high energies, requiring at least an energy equal to two times the
rest mass of an electron, 1.022 MeV. The excess energy above the 1.022 MeV threshold is
converted to kinetic energy shared by the electron-positron pair. The likelihood of each of
these interactions to occur is a function of the energy of the incident gamma ray and the
atomic number of the material interacted with. Figure 2.7 shows the dominant interaction
for a material of a given atomic number (Z) and gamma ray of energy hν [21].
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Figure 2.7: The dominant interaction processes for a gamma ray with energy hν in a material
with atomic number Z [21]

2.3.2 Gamma-ray imaging modalities1

There are a variety of techniques to image gamma rays, which can be broadly divided into
two categories: collimator-based and collimator-less. Collimator-based techniques rely on
attenuation to constrain the relationship between detector pixel and imaging space (e.g.,
voxels). Collimator-less techniques typically rely on information about the energy and po-
sition of gamma-ray interactions to identify the subset of imaging space from which the
gamma ray could have originated.

Basic collimator-based imaging techniques such as pinhole and parallel hole imaging allow
for simple image reconstruction with good angular resolution. However, due to the high level
of collimation, the efficiency and field-of-view (FOV) of these techniques are very limited,
so they are typically only deployed in high count-rate scenarios. Safeguards measurements
often concern low activity sources, so these inefficient collimator-based imaging methods
would require a long measurement time to reach the low level of uncertainty required.

Coded-aperture and Compton imaging are both more advanced, higher efficiency imaging
techniques which leverage information from the gamma-ray interactions previously described.
Coded-aperture imaging is a collimator-based technique which retains the angular resolution
of more basic techniques while increasing efficiency. Compton imaging is a collimator-less
technique which relies on the kinematics of Compton scattering. The H420-LAMP system
offers both coded-aperture and Compton imaging modalities. In combination, these imaging
modalities provide a powerful ability to localize and map sources across a wide range of
gamma-ray energies and activities.

The formulations for coded-aperture and Compton imaging which follow assume a far-
field imaging approximation, which refers to the imager being operated in distances much
greater than the largest dimension of the imager, which is around 5 cm for the H420. The

1Much of the text in this section is published in [5].
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far-field approximation allows for the detector to be treated as a single point, allowing solid-
angle effects of the finite detector size to be ignored. In this work, source-detector distance
is always at least 1 m, ensuring the far-field approximation is accurate.

2.3.2.1 Coded-aperture imaging

Coded-aperture imaging is an imaging technique that leverages the photoelectric effect;
therefore it is suited to relatively low energy gamma rays (<350 keV for the H420-LAMP).
Coded-aperture imaging relies on the signal modulation imposed by distance and a coded
mask created using an array of open and attenuating elements in front of a position-sensitive
detector. This method offers high angular resolution, though at the cost of reconstruction
complexity, limited FOV, sensitivity and proneness to artifacts. For the H420-LAMP, the
FOV is limited to 86◦ × 86◦.

Coded masks are typically square or hexagonal grids with open and filled elements (“bi-
nary masks”). Each open mask element acts as a pinhole, projecting an image of the scene
onto the detector behind it. The detected image is therefore a number of overlapping pro-
jections of the scene. The primary difficulty posed by this is generating mask designs which
result in the most clearly uncorrelated projections, and algorithms which can perform this
reconstruction efficiently and without introducing artifacts. Though coded-aperture imaging
approaches offer a compact, efficient means of imaging gamma rays, they do so at the cost of
reconstruction complexity when compared to basic collimator-based techniques like pinhole
and parallel hole imaging.

For a perfectly efficient detector with pixels (indexed k, l), 2D image formation can be
represented by the following equation:

Dkl =
∑
ij

SijAi+k,j+l +B (2.1)

where A represents the binary mask array, B contains all background terms (including
electronic noise, gamma rays transmitted through the mask, etc.), D is the detected pattern
on the detector face [22] and S represents the source distribution.

This can be reformulated into a 3D problem by assuming:

• a series of observations denoted by time-interval ∆t,

• a detector with an orientation of ~v observing a source along the ray defined by r̂s,

• an angular detector (2D) response characterized across 4π by the function γkl(~v, r̂s)
(far-field assumption),

• detector and voxel centers defined by x and xs,

• voxel activity Λs,

• background dependent on pixel index k, l and time, t.
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This gives the following expression for rate in each pixel for each time bin:

Dklt =
Nvox∑
s=1

γkl(~v, r̂s)Λs∆t

4π‖~xs − ~x‖2
+Bklt∆t , (2.2)

where attenuation has been neglected.

2.3.2.2 Compton imaging

Compton imaging offers a means of imaging sources with characteristic gamma-ray energies
above a few hundred keV (>350 keV for the H420-LAMP). This imaging modality relies
on multiple interaction events within the detector volume. It is possible to consider events
comprised of multiple Compton scatters which terminate in a photoelectric absorption, but
in this analysis we consider only double interaction events, assuming one Compton scatter
and one photoelectric absorption.

Compton imaging requires the 3D positions of the first two interactions associated with
one gamma-ray event, which form the symmetry axis of a Compton cone. It also requires the
energy of the incident gamma ray and the energy deposited in the first interaction, which
define the opening angle of the Compton cone. Assuming that the incident gamma ray
scatters off of an unbound, stationary electron in the Compton scattering interaction, the
opening angle can be calculated with the following equation:

cosθ = 1 +mec
2

(
1

Eγ
− 1

E ′γ

)
, (2.3)

in which:

• θ is the Compton cone opening angle

• me is rest mass of an electron

• c is the speed of light

• Eγ is incident gamma-ray energy

• E ′γ is outgoing gamma-ray energy

The incident gamma-ray energy is assumed to be the total energy of the interactions that
comprise an event. Spectroscopic imaging uses the events whose incident energy is within a
window around a feature of interest, most often a full-energy peak associated with a specific
radionuclide. Each cone represents all possible incident directions for a specific gamma ray,
and the accumulation of multiple cones can reconstruct the 2D projection of the gamma rays
[6].

Compton imaging has lower efficiency than coded-aperture imaging due to its restrictive
event selection. However, the angular resolution is often much higher due to the enhanced
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directional information provided by Compton kinematics. Compton imaging also offers an
omnidirectional FOV.

The depth sensitivity of the H420 improves Compton imaging by reducing the uncertainty
in the lever arm (distance between two interaction positions). Events are selected which have
a lever arm above 2.1 mm to reduce uncertainty in the determination of the scatter axis and
remove events with poor angular resolution [6]. While improving angular resolution, this
lever arm cut also reduces Compton imaging efficiency.

In this analysis we consider only double interaction events. The sequence of the two
interactions can be ambiguous at some energies. The interaction with the higher energy
deposition is often sequenced first, except in physically impossible sequences (e.g., interaction
with higher energy deposition is beyond Compton edge) [23] [24]. It is also possible to use the
Klein-Nishina cross section to choose the sequence with the more likely probability [23] [25].
These methods can result in some cones being incorrectly sequenced, removing accurate cones
which can be used to reconstruct source location. It is also possible to use both scattering
sequences and to weight each cone based on the likelihood of the scattering sequence it is
generated from [26]. One method is to give a higher weight to the cone generated from
the sequence where the first interaction has a higher energy deposition. It is also possible
to apply a weight based on the Klein-Nishina and photoelectric effect cross sections of the
interactions. In this analysis both scattering sequences are considered and no weighting is
applied to the cones.

3D Compton imaging can be achieved by performing static measurements, either by using
the parallax provided by the extent of the detectors from a single position or by moving the
detector to different locations in the scene. To perform these reconstructions, the position
and orientation of the detector at each measurement must be known to properly rotate and
translate Compton cones. It is also possible to accomplish 3D imaging while freely moving
the system throughout the scene, but this requires some automatic and real time solution
(i.e., SLAM) to know the position and orientation of the detector during each gamma-ray
event [2], [6].

3D image reconstruction speed and noise reduction can be improved by constraining re-
constructions to intersections of Compton cones with surfaces present in the scene. Each
occupied voxel in the scene is treated as a spherical Gaussian volume with a standard de-
viation calculated as the product of the voxel size and

√
π/2. This formulation keeps the

volume of the spherical Gaussian the same as the cubic voxel. To account for uncertainties
in the Compton cone axis and opening angle caused by uncertainties in energy deposition
and event position, the Compton cones are also given a width described with a Gaussian
distribution. The Compton cone width can be calculated on a cone by cone basis, but in this
analysis each cone is given a constant conservative value of 14◦, which is an experimentally-
determined value on the order of the angular resolution of the Compton imager used in
this work. The cone-voxel intersection is performed by computing the overlap of the two
Gaussian distributions in 3D2.

2The computation is detailed in forthcoming LBNL Technical Report 2001559 by D. Gunter et. al.
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2.3.3 Maximum-likelihood expectation-maximization

Maximum-likelihood expectation-maximization (MLEM) is an efficient means of calculating
the maximum likelihood estimate of a function from incomplete data. In practice, this
algorithm yields high quality reconstructions of 2D and 3D scenes, but at the cost of high
computational complexity and propensity to create high-spatial-frequency artifacts [27].

This algorithm is used for image reconstruction for all imaging modalities on the H420-
LAMP. The derivation of the MLEM algorithm can be found in [28, 29, 30], while the
list-mode interpretation [31] is given by:

λl+1
m =

λlm
σm

∑
n

tnm∑
k tnkλ

l
k + bn

, (2.4)

in which:

• σm represents the sensitivity (chance that a given event, indexed by m, is detected at
all)

• λlm represents the image reconstruction for a given iteration, l

• tnm is the 3D response function sampled on a per-event basis such that it represents
the probability that an event emitted in image bin (pixel/voxel) m is detected as event
n

• bn is a background factor for each event

In the case of a detector with a relatively low count rate and a high scene update rate,
the list-mode implementation is best used, as each measurement at each pose is starved for
counts.
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Chapter 3

Improvements to contextual data use

Previously the contextual data described in Section 2.2 has been used in Scene Data Fusion
to unlock the ability to reconstruct 3D radiation images in free-moving measurements. In
some cases, the data collected has been further leveraged to constrain image reconstruction
to surfaces present in a scene and also estimate attenuation from air [18], [19]. While this is
helpful in accurately reconstructing a scene, there is room for improvement in the use of the
contextual data collected by SDF-enabled imagers. Recent advances in machine learning,
particularly in computer vision, present advanced methods for analyzing contextual data
to improve physics models in radiation image reconstruction. This chapter will discuss two
computer vision techniques investigated to further improve SDF methodologies. It will also
discuss a ray-tracing algorithm which was developed to inform attenuation estimates through
materials.

3.1 3D object detection

3D object detection is a computer vision task which seeks to identify and locate objects in
3D environments based on their shape, location, and orientation. A point cloud represents
a scene with a set of x-y-z points, but the relationship of these points to one another is not
expressed and must be inferred by the viewer. 3D object detection presents a technique for
identifying discrete objects in a point cloud based its x-y-z points. 3D object detection is a
tool that can be used to quickly identify objects of safeguards relevance within a 3D point
cloud that was previously collected with contextual sensors.

3.1.1 MMDetection3D

MMDetection3D [32] is an open-source object detection toolbox developed by OpenMMLab,
a multi-institutional group of software developers that have developed a variety of computer
vision tools. It is based on the PyTorch machine learning library [33] which performs tensor
computation with GPU acceleration and builds deep neural networks. MMDetection3D is
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an extension of MMDetection [34], which is an object detection toolbox which uses 2D data
(i.e. camera data). The MMDetection3D package has indoor and outdoor object detection
architectures available, as well as LiDAR and camera based object detection. Each of these
applications has several pre-trained machine learning models available, which means that
they can be used without first having to train a model with training data. This tool was
selected to perform 3D object detection because it offers a number of pre-trained machine
learning models which can easily be switched between to analyze 3D point cloud data.

3.1.2 Datasets

Each of the pre-trained models in MMDetection3D has been trained on a open-source 3D
contextual dataset. These datasets consist of contextual data (LiDAR scans, RGB and depth
camera videos) which have been annotated with labels that define the bounds of discrete
objects and information about each object, such as its orientation and what it is (e.g., desk,
chair, etc.). These datasets are used to train and validate a variety of machine learning
techniques, but for object detection they are used to identify discrete objects in a scene.
The datasets used in this work consist only of indoor scenes.

Figure 3.1: Manually annotated scene from ScanNet used for training computer vision models
[35]
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ScanNet [35] is one of the datasets available which is based on RGB-D video. It contains
2.5 million views in over 1500 scans, which have been annotated with 3D camera poses,
surface reconstructions, and instance-level semantic segmentations. The scenes included in
the dataset are indoor household or office scenes, and the semantic voxel labels include
household objects such as wall, floor, chair, table, desk, and bed. Each scene consists of just
a single room. Figure 3.1 shows one of the scenes in the ScanNet dataset with its crowd-
sourced semantic annotations. Each instance of a given object is given a separate label; for
example, although there are 5 chairs each one has its own label. One could select the label
‘chair (5)’ to identify only the points which are part of the fifth chair object. Table 3.1 shows
all of the labels available in the ScanNet dataset.

Integer Label
0 floor
1 wall
2 cabinet
3 bed
4 chair
5 sofa
6 table
7 door
8 window
9 bookshelf
10 picture
11 counter
12 desk
13 curtain
14 refrigerator
15 bathtub
16 shower curtain
17 toilet
18 sink
19 other

Table 3.1: ScanNet object labels

SunRGBD [36] is another RGB-D sensor based dataset. The dataset is captured by 4
different sensors and contains 10,000 RGB-D images that are densely annotated, including
146,617 2D polygons and 58,657 3D bounding boxes with accurate object orientations, as well
as 3D room layout and category for scenes. This dataset is also only focused on household
and office objects, with similar semantic labels to the ScanNet dataset.
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The Stanford 3D Indoor Scene Dataset (S3DIS) [37] is the third and final dataset used
to train models in MMDetection3D. This is a newer dataset which is composed of larger
scenes (i.e. buildings with multiple rooms) but is still only focused on household or office
scenes. The dataset consists of colorized point clouds, or point clouds where each x-y-z point
also has an RGB value. Table 3.2 shows all of the object labels in the S3DIS dataset. The
labels for objects in this dataset are more general than those in the ScanNet and SunRGBD
datasets. In addition to labels for objects in a scene, this dataset also has labels for the type
of room (e.g., office, hallway, auditorium, etc.) based on the objects inside of it.

Integer Label
0 ceiling
1 floor
2 wall
3 beam
4 column
5 door
6 window
7 table
8 chair
9 sofa
10 bookcase
11 board
12 other

Table 3.2: S3DIS object labels

3.1.3 Pre-trained models

MMDetection3D has five architectures for indoor LiDAR-based 3D object detection, each
of which has multiple pre-trained models available. While many of the data sets that the
models are trained on contain colorized point clouds, these five architectures do not require
the LiDAR point cloud to be colorized to make predictions. All of the pre-trained models
available for all five of these architectures are investigated to detect discrete objects in the
LiDAR point clouds in this work.

3.1.3.1 Deep Hough voting for 3D object detection in point clouds

Votenet [38] is an architecture which uses deep Hough voting for 3D object detection in point
clouds. It was the earliest architecture avaialable for object detection in MMDetection3D.
This architecture attempts to directly detect objects in point clouds rather than leveraging
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the existing 2D detector architectures, like many other architectures were attempting to do
at the time of its publication. The architecture uses purely geometric information, without
any color images, to identify objects. This architecture has pre-trained models available
which were trained with both the ScanNet and SunRGBD datasets.

3.1.3.2 3D object detection using hybrid geometric primitives

3D Object Detection Using Hybrid Geometric Primitives (H3DNet) [39] is an architecture
that uses a colorless 3D point cloud as input and outputs collections of oriented bounding
boxes and their semantic labels. This architecture predicts a hybrid set of geometric prim-
itives (bounding box centers, face centers, bounding box edge centers) and converts them
into object proposals with a distance function between the object and those primitives. The
distance function allows optimization of the object proposals.This model has a pre-trained
model trained with the ScanNet dataset.

3.1.3.3 Group-free 3D object detection via transformers

The previous architectures described use a PointNet network backbone. Group-Free 3D
[40] is an architecture that does not use a PointNet network, claiming that the grouping
required to use PointNet hurts performance. Instead of grouping local points to each object
candidate, this method computes features of an object from all the points in the point cloud
with an attention mechanism in the transformers. This architecture has pre-trained models
trained with the ScanNet dataset through four different methods.

3.1.3.4 Fully convolutional anchor-free 3D object detection

Fully convolutional anchor-free 3D object detection (FCAF3D) [41] is an architecture which
uses voxel representation of a point cloud and processes voxels with sparse convolutions.
Unlike the previously described models, it can handle large scale scenes with minimal run
time. This architecture does not make prior assumptions of geometry of objects like other
object detection methods. This architecture has pre-trained models trained with all three
datasets described in Section 3.1.2.

3.1.3.5 Towards real time indoor 3D object detection

Towards real time indoor 3D object detection (TR3D) [42] is a fully convolutional 3D object
detection model. It uses both point cloud and RGB inputs, and fuses 2D and 3D features in
an attempt of multi-modal detection. This architecture has pre-trained models trained with
all three datasets described in Section 3.1.2.
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3.1.4 Object detection with pre-trained models

Each pre-trained model has a configuration and checkpoint file which can be downloaded
from the MMDetection3D GitHub repository. MMDetection3D has a function called ‘infer-
ence detector’ which performs 3D object detection on a point cloud with a trained model.
Prior to using this function, the pre-trained model must be loaded by calling the ‘init model’
function with the configuration and checkpoint files of the pre-trained model as parameters.
The loaded model and a point cloud can then be provided to the ‘inference detector’ func-
tion, which will return a ‘pred instances 3d’ class that contains all of the 3D bounding boxes
for all of the objects detected in the scene. Appendix A.1 shows a sample of how to perform
3D object detection with a pre-trained model and point cloud in MMDetection3D.

3.1.5 3D object detection performance

The performance of each of the pre-trained models is evaluated with the sample laboratory
scene shown in Figure 2.6. The scene is first cropped to a relatively small portion of the
room, containing two desks. Figure 3.2 shows the cropped region of the cloud that was
used for this analysis. For this scene, the object of interest is the box placed on one of
the desks, and the performance of the models is evaluated based on how well the bounding
boxes they find describe the bounds of the box. Figure 3.3 shows an image of the box in the
point cloud taken by the RealSense depth camera. Figure 3.4 shows the result of object

Figure 3.2: Cropped laboratory point cloud used to analyze 3D object detection tools
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Figure 3.3: Camera image of laboratory point cloud scene

Figure 3.4: Object Detection Results

detection performed by the TR3D model pre-trained with SunRGBD data. The inference
detector returned a series of bounding boxes which describe all of the discrete objects in the
scene. The bounding box which contains the box on the desk is selected and the point cloud
points which lie within this bounding box have been colored red. This model performed
well in identifying the object of interest. A few of the point cloud points that comprise the
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object were not within the range of the bounding box, but it is a relatively small portion
of the object. Appendix A.2 shows results for all of the other pre-trained models with this
scene. The TR3D model pre-trained on the SunRGBD dataset performs the best in correctly
identifying the bounds of the box and is used for performing object detection in this work.

3.2 Semantic segmentation

Semantic segmentation is a computer vision task which attempts to categorize each pixel in
an image, or point in a point cloud, into a class or object. In this work, labels can be assigned
to objects in our 3D scene to help identify the object we are interested in. These labels can
also be used to identify the floor of a room, which has the engineering benefit of specifying
the height at which the imager must be placed in reference to the floor. Additionally, these
labels could also be used to provide initial guesses for attenuation coefficients for intervening
material.

3.2.1 2D semantic segmentation

2D semantic segmentation refers to identifying semantic labels for each pixel in a 2D camera
image. The RealSense depth camera on the H420-LAMP produces RGB-D images which can
be labeled with 2D semantic segmentation techniques. Because these images also contain
depth information, the labels could be projected onto a 3D scene.

Figure 3.5: 2D semantic segmentation results
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DeepLab-V3 is a state-of-the-art 2D semantic image segmentation model developed by
Google [43]. Similar to 3D computer vision tasks, there are a variety of datasets with labeled
camera images which are used to develop and validate 2D semantic segmentation techniques.
ADE20K is one such dataset which contains over 27,000 labeled camera images of household
and street scenes [44], [45].

Figure 3.5 shows the results of using a Google DeepLab-V3 model pre-trained on ADE20K
to semantically segment the image in Figure 3.3. Many pixels in the scene are correctly
labeled, including the box, the computer monitor and its stand, the column, as well as large
regions of the ceiling, floor, and walls. Additionally, the ArUco markers in the image are
correctly labeled as ‘sign’ and the door on the right side of the image is labeled as ‘door’.
Some of the pixels which make up the desk in the scene are correctly labeled as ‘desk’ or
‘table’, but large portions of pixels which make up the desk are incorrectly identified as
‘floor’. Some of the pixels in three of the lights are labeled as ‘light’, but the rest of the
light pixels are labeled as ceiling. Many pixels in the scene where objects are present are
given the label ‘wall’, ‘floor’, or ‘ceiling’. This is likely because the labels in ADE20K do
not adequately describe a laboratory scene. These results demonstrate that the pre-trained
model can find gross features of the room and label some objects, but a more relevant dataset
would be required to correctly label objects in a laboratory or industrial scene.

3.2.2 3D semantic segmentation

It is also possible to semantically segment a 3D scene directly from 3D data, such as a LiDAR
or photogrammetry point cloud. MMDetection3D supports 3D semantic segmentation in
addition to 3D object detection.

3.2.3 Pre-trained models

The MMDetection3D package has indoor and outdoor semantic segmentation architectures
available for both LiDAR and camera based segmentation. There are two architectures
available for indoor 3D semantic segmentation. Each of these architectures also has a number
of pre-trained models available which use the ScanNet and S3DIS datasets.

3.2.3.1 PointNet++: Deep hierarchical feature learning on point sets in a
metric space

PointNet++ [46] is a hierarchical neural network that applies PointNet recursively on a
nested partitioning of the input point set. It learns local features with increasing contextual
scales. This architecture uses LiDAR point clouds with and without color as an input. This
architecture has models pre-trained with the ScanNet and S3DIS datasets.
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3.2.3.2 Position adaptive convolution with dynamic kernel assembling on
point clouds

Position adaptive convolution with dynamic kernel assembling on point clouds (PAConv)
[47] is a generic convolution operation for 3D point cloud processing. It constructs the
convolution kernel by dynamically assembling basic weight matrices stored in a weight bank,
where coefficients of the weight matrices are self-adaptively learned from point positions
through ScoreNet. This architecture has only two pre-trained models, each trained on the
S3DIS dataset.

3.2.4 Semantic segmentation with pre-trained models

The approach to using MMDetection3D for 3D semantic segmentation is similar to the
approach of using it for 3D object detection. In this case, a pre-trained model and point
cloud is provided to a function called ‘inference segmentor’, which will return an array called
‘pts semantic mask’ which contains an integer corresponding to the label assigned to each
of the point cloud points. Tables 3.1 and 3.2 show the corresponding labels for the integers
returned for ScanNet and S3DIS respectively. Appendix B.1 shows a sample of how to
perform 3D object detection with a pre-trained model and point cloud.

3.2.5 Semantic segmentation performance

Each of the pre-trained models is used to infer semantic labels to the same point cloud used
to evaluate the point cloud shown in Figure 3.2. Figure 3.6 shows the results of using the
PointNet++ model pre-trained on the ScanNet dataset to semantically label the point cloud.
The semantic labels are visually represented by coloring each point cloud point based on its
label. The colors used for each of the labels are shown in the key at the bottom of the image.
The points which comprise the desk in the scene are correctly given mixed labels of ‘table’
and ‘desk’. However, most of the other points are incorrectly classified. The points within
the box of interest are given the incorrect labels of ‘window’ and ‘bookshelf’. The points
which comprise the computer monitor are also given the label ‘window’. There are a number
of points which have false labels of ‘bed’ and ‘chair’. The poor classification is due to the
ScanNet dataset only containing labels for household objects, which are not relevant to a
laboratory setting.

Appendix B.2 shows results for the other pre-trained models with the same scene. None
of the models perform particularly well and have the same issues as the result shown in
Figure 3.6. Some of these models use the S3DIS dataset, which has more general labels but
is accustomed to larger, building-sized point clouds. Therefore, models trained with it do
not perform well with the constrained clouds that are used in this work. While the labels
are more general in the S3DIS dataset, they still do not adequately describe laboratory or
industrial scenes.
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Figure 3.6: Semantic Segmentation Results

3.3 Attenuation estimation

To correctly reconstruct radiation emission rates, attenuation through intervening material
must be accounted for. Previously, SDF has accounted for air attenuation in some recon-
struction techniques by computing the distance between the detector pose and voxel and
treating the entire path length as air, even if occupied material exists between the detec-
tor and voxel [18], [19]. In order to properly model attenuation, the path length traversed
through various materials and their attenuation coefficients must be known. The 3D se-
mantic segmentation techniques described in Section 3.2 can be used to inform attenuation
estimates, or they can be provided by a user when the material is known.

3.3.1 Fast voxel traversal ray-tracing algorithm

Ray tracing is a technique for modeling light transport within a scene, enabling the calcula-
tion of path length traversed through various materials. The fast voxel traversal algorithm
formulated by Amanatides and Woo [48] (with pseudo-code provided in [17]) is implemented
in Python for ray tracing in this work.

The algorithm is initialized with a start and end point which both reside within the
bounds of a voxel grid where each voxel has a label of occupied or unoccupied. Additionally,
occupied voxels may have a label corresponding to the type of material which resides within
it. In this work, the end point is typically the center of an occupied voxel which is treated as
a gamma-ray source. The start point is any position where a radiation imager may be placed
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Figure 3.7: ray-tracing algorithm steps

that is within an unoccupied voxel. The voxel indices i, j, and k (for x, y, and z) are identified
for both the start and end points. An incrementor array is then created based on the sign
of each element of the direction vector between the start and end points, indicating whether
each element of the start voxel indices must be increased or decreased to move towards the
end voxel.

Ray tracing is performed in a loop through a series of ‘steps’. Here, a step refers to
an x-y-z point lying on the line between the start and end points along which the ray is
incrementally traced. The start point serves as the first step. The loop uses the incrementor
array to find the next voxel in x, y, and z and identifies the voxel boundary closest to the
current step in each dimension along the line between the start and end points. The ray is
moved to the closest boundary, which will serve as the next step. During each iteration the
algorithm stores the distance traveled and occupancy of the traversed voxel, including the
occupied voxel label if provided. This process continues until the boundary of the final voxel
is reached. Finally, the ray is traversed through the remaining portion of the terminating
voxel to reach the end point.

Figure 3.7 shows a 2D representation of the ray-tracing algorithm. The start point is in
green and the end point is in red. The orange line represents the entire length traversed in
the algorithm, and each step of the loop is plotted with an orange marker.
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3.3.2 Attenuation calculation

To compute the attenuation through materials, the path length through a material and
its attenuation coefficient are needed. The ray-tracing algorithm described in Section 3.3.1
records the distance through occupied and unoccupied voxels as it traverses from ‘start’ to
‘end’, as well as occupied voxel labels if provided. Upon termination of the loop, the distances
traversed through occupied and unoccupied voxels are summed. If labels were provided for
occupied voxels, these distances are summed separately. In addition to showing the individual
steps of the ray-tracing algorithm, Figure 3.7 shows the distances traversed through occupied
and unoccupied voxels. The sum of distances computed are 30 cm for occupied voxels and
118 cm for unoccupied voxels, which is treated as air at standard temperature and pressure
(STP) for attenuation estimates.

Figure 3.8: ray-tracing algorithm steps demonstrated for a scenario where two different
material types are present

Scenes are typically composed of more than one type of material, so it is desirable to
compute distances traversed through multiple individual materials. If a voxel grid is created
where the occupied voxels are assigned labels based on what type of material they are (as
determined through instance segmentation or object detection), the distances through each
material can be computed separately. Figure 3.8 shows an example of the ray-tracing algo-
rithm traversing through occupied voxels of two different types of materials. The distances
traversed through occupied voxels are 51 cm and 26 cm for material 1 and 2 respectively.
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Currently the ray-tracing algorithm is only implemented for cases where only two types of
material in addition to air are present, but this could be expanded to handle a larger number
of materials.

3D semantic segmentation techniques could be used to assign labels to different occupied
voxels in the scene. In addition to assigning labels to voxels for calculating distances traversed
through individual materials, these labels could be used to identify an attenuation coefficient.
The labels could be used to inform an initial guess for attenuation coefficient which may be
solved iteratively [17]. Attenuation coefficients could also be determined with a lookup table
which contains materials associated with semantic labels for a range of gamma-ray energies.
Given a path length and attenuation coefficient of a material, attenuation by that object can
be calculated for any start point and end point.

3.3.3 Visibility cutoff

In addition to calculating path lengths through intervening material, the ray-tracing algo-
rithm is also used to determine whether a voxel is visible from an x-y-z point. A voxel is
considered visible if the only occupied material traversed from a start point to the voxel
center is from the voxel itself. Figure 3.9 left shows a scenario where a voxel would be con-
sidered visible, because the only occupied material traversed is from the terminating voxel.
The figure on the right shows an example from the same start point where the voxel is con-
sidered not visible because some of the occupied material traversed is from a different voxel.

Figure 3.9: Example of voxels which are visible (left) and invisible (right) from a start
position
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Figure 3.10: Number of voxels occupied with material 2 visible at several different start
points

Figure 3.10 shows an example of how many voxels occupied with material 2 are visible at
several different start points for scenario shown in Figure 3.8. This figure validates that the
visibility calculation is performing as expected. Start points where more voxels are visible
generally have less attenuation from intervening material than start points where less voxels
are visible, so these positions may be considered desirable locations for gamma-ray imaging.

3.4 Discussion

One of the weaknesses of the 3D object detection and semantic segmentation methods used
in this work is that all of the datasets used are generated with household and office scenes,
whereas the setting for this work is in laboratory or industrial scenes. Object detection is less
sensitive to the poor choice of data, as it is performing the relatively simple task of seeking
point cloud points which comprise the same object. The H3D model is used for object
detection in this work because it successfully identifies the bounds of very simple objects.
However, in safeguards applications, there may be small details in a scene which must be
identified as separate objects, such as pipes containing gaseous materials. None of the object
detection methods investigated in this work are able to effectively detect small (on the order
of two inches) objects because the data in the dataset was collected with contextual sensors
with too low of a resolution to properly reconstruct fine levels of detail.

The household labels have more of an effect on the semantic segmentation tasks, because
the only labels available are for household objects. Currently there is not a publicly available
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labeled dataset of 2D or 3D laboratory or industrial scenes which could be used to train the
semantic segmentation architectures investigated in this work. Due to the lack of available
data, this work does not use semantic segmentation techniques to inform attenuation es-
timates. Rather, the user must provide attenuation coefficients for known materials in a
scene. With increasing use of computer vision in industrial and laboratory settings, a more
relevant dataset may become available. The architectures explored in this work could be
trained with such a dataset to produce a trained model which predicts labels for objects
more accurately in laboratory and industrial scenes. These labels could then be used with
a lookup table for attenuation coefficients to inform attenuation calculations in gamma-ray
imaging reconstructions.

One weakness of the ray-tracing algorithm is that it assumes the entire voxel to be filled
with material when it is occupied, when the voxel could only contain a few point cloud points.
This means that the distances traversed through occupied voxels could be calculated to be
higher than it is in reality. To prevent this overestimation, voxel sizes could be made smaller.
However, the trade-off is that smaller voxel sizes mean that the ray-tracing algorithm will
take longer to complete.
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Chapter 4

Measurement position optimization1

Gamma-ray imaging is a useful tool to safeguards analysts because it allows for non-destructive
characterization and quantification of nuclear materials. While gamma-ray imaging is a use-
ful tool, measurements can be time consuming particularly if low levels of uncertainty are
desired. Safeguards inspectors typically have a limited amount of time to perform measure-
ments, ideally with minimal disruption to facility operation. Therefore, it is desirable to
have a gamma-ray imaging tool which can identify optimal measurement positions to per-
form counting measurements. The contextual information collected in Scene Data Fusion
can be leveraged to define a measurement space and identify optimal measurement positions
within it.

This chapter will outline an optimization technique which uses contextual data and a
gamma-ray imagers response to identify optimal measurement positions. The optimization
consists of four steps:

1. Identify volume of interest

2. Select viable measurement positions

3. Calculate sensitivity to volume of interest at potential measurement positions

4. Find subset of positions which maximize sensitivity while maintaining uniform sensi-
tivity to the volume of interest

4.1 Example model

First, a simple example model will be defined to demonstrate the computational methods
described in this chapter. The example model consists of a 10 m x 10 m x 10 m voxel grid
with a 0.5 m voxel pitch. The object of interest consists of 8 occupied voxels in the center

1Much of the text in this chapter is published in the 2023 INMM and ESARDA Joint Annual Meeting
Proceedings [49].
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of the voxel grid. These 8 occupied voxels are assumed to be uniformly distributed with a
source which emits 662 keV gamma rays. All other voxels in the scene are assumed to be
unoccupied. Figure 4.1 shows the extent of the voxel grid with the volume of interest in the
center.

Figure 4.1: x-y (left) and x-z (right) planes of example model

4.2 Identification of volume of interest

The first step in the optimization is to select a volume of interest. This work assumes that
the object being imaged occupies some volume within the voxel grid, which can consist of
one or more occupied voxels. Therefore, the voxels which contain the imaged object must be
identified. Selection in this context refers to identifying the x-y-z bounds in the point cloud
which contains the volume of interest.

In safeguards applications, the safeguards inspector is tasked with verifying declared
amounts of material present. Therefore, the object of interest is already known, and only
needs to be identified within the 3D map of the scene by the operator.

4.2.1 Manual object detection

Object detection can be performed manually by inspecting the point cloud and identifying
the x-y-z limits of the volume of interest. This region of the global voxel grid is cropped and
identified as the object voxel grid.
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4.2.2 Automatic object detection

Manual object identification would require too much time for this tool to be useful in the field,
so an automatic object detection technique was developed to assist operators in identifying
measurement objects. Section 3.1 describes how this task is performed with the contextual
data collected by the detector system. Once all of the objects in the scene are identified,
an operator will select the object they are interested in finding optimal positions for. The
bounding box around the object will be used to construct a voxel grid where the number of
voxels in the object or voxel pitch will be specified. The voxels within the object bounding
box will be labeled as ‘object’, while all other occupied voxels in the scene will be labeled as
‘other’ or ‘non-object’.

4.2.3 Custom voxel grid

Once the object is selected within the point cloud, a voxel grid is constructed which contains
the object at some desired voxelization (i.e desired number of voxels for the object or desired
voxel pitch). The voxel grid is then extended around the object in all directions up to a
user-provided distance. Typically this value will be a few meters or less due to the inversely
proportional relationship between number of counts in the detector and distance from the
source. The extended voxel grid has the same voxel size as the object of interest. Each
voxel is considered occupied if there are a number of points within its bounds greater than a
cutoff value. All other voxels are considered to be unoccupied. The object voxels are given
an ‘object’ label and all other occupied voxels are labeled as ‘non-object’.

Care must be taken with the voxelization parameters to ensure the object and its sur-
rounding space are accurately represented by the voxel grid. If there are small details in
the scene which should be represented in the voxel grid, the voxel pitch must be sufficiently
small to capture the level of detail desired. However, if the voxel size is decreased, the cutoff
value for occupied voxels should also be decreased to account for the smaller voxel volume.

4.2.4 Example model object identification

In the case of the example model, the object is manually defined to be a 1 m x 1 m x 1 m box,
which has been voxelized into 8 voxels with a 0.5 m pitch. These 8 voxels are all occupied
and given the label ‘object’. These are the only occupied voxels in the scene, so no voxels are
given the ‘non-object’ label. Figure 4.2 shows a similar example where an external object
has been added. In this figure, the external object voxels and the central object voxels are
each given unique labels.

4.3 Viable measurement position selection

Once an object of interest is selected, a grid of potential measurement locations is au-
tomatically constructed around the object voxel grid between a user-provided maximum
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Figure 4.2: Example of measurement space with external shield

standoff distance and a minimum standoff distance such that all object voxels are in the
coded-aperture imaging FOV of 86◦ × 86◦. This constraint is included because the imager
is capable of coded-aperture imaging, but the coded-aperture imaging modality is not used
in this work. This constraint also ensures the imager remains in the far-field to ensure the
imaging formulations described in Section 2.3 can be used. Maximum standoff distance is
user provided, but it can also be inferred by the desired number of counts and the estimated
count rate of the object from the initial scene survey.

Some measurement positions are nonphysical or undesirable for a counting measurement.
To remove these points, the measurement positions which reside in occupied voxels are
removed. The ray-tracing algorithm described in Section 3.3.1 is used to determine if at
least one object voxel is visible at each potential measurement position, as some object
voxels may be occluded by the object itself. Typically an object in a scene is divided into
multiple voxels. For a candidate measurement position to be considered, it must be able to
see at least one of those voxels. It is acceptable if they are not all visible - for example, a
3D object will have voxels on the other side of the object from the desired position. A 3D
object might also have internal voxels in addition to surface voxels, which will not be visible
at any measurement position. Positions where no object voxels are visible are removed from
consideration.

Once the potential measurement x-y-z positions are identified, a discretization in orienta-
tion around the z-axis (gravity axis) of the imaging system may be defined. The coordinate
system of the detector is shown in Figure 2.2. Orientations around the x- and y-axis are
not included due to physical constraints of placing the imager on the tripod. Each potential
orientation is considered for each of the x-y-z positions, but generally those which point
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toward the object of interest are desirable. If the orientation is not set, a uniform detector
response is assumed (i.e. angular response is not considered).

Each combination of x-y-z positions and orientations is referred to as a potential ‘pose’
for the imager. Each of the potential poses are evaluated to serve as the the optimal imager
placement for static imaging to quantify the volume of interest.

4.3.1 Example model position selection

The potential measurement positions are generated for the example model with an added
constraint that all of the positions are on-axis with the object of interest in the z-dimension
with a maximum standoff distance of 3 m from the center of the object, resulting in 84 x-y-z
positions. The orientation is discretized in 45◦increments around the z-axis, resulting in 8
potential orientations, making a total of 672 poses. Because the only occupied voxels in the
example model are the source voxels, the ray tracing techniques do not mask out any of the
measurement positions as infeasible. The 672 potential measurement poses generated are
shown in the x-y and x-z plane in Figure 4.3.

Figure 4.3: Potential measurement poses selected for example model shown in x-y plane
(left) and x-z plane (right).

4.4 Sensitivity calculation

When trying to quantify the amount of nuclear material present in a container within desired
levels of uncertainty, the primary objective is to maximize the number of radiation counts.
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Sensitivity is a property we can optimize in order to achieve this, therefore prior to optimizing
we must calculate the sensitivity from each potential measurement pose to each object voxel.
The sensitivity to each object voxel at each potential measurement pose is computed as:

S = R× 1

r2
× e−µunoccrunocc × e−µobjrobj × e−µoccrocc (4.1)

where:

• R is the expected detector response for double gamma-ray events at the desired energy
at the solid angle between the given detector pose and an object voxel,

• r is the distance between the center of the object voxel and the detector position,

• µunocc is the linear attenuation coefficient of the provided gamma-ray energy in air at
STP,

• runocc is the path length of air between the object voxel center and the measurement
position,

• µobj is the linear attenuation coefficient of the provided gamma-ray energy in object
occupied voxels, and

• robj is the path length of occupied object voxels between the object voxel center and
the measurement position.

• µocc is the linear attenuation coefficient of the provided gamma-ray energy in non-object
occupied voxels, and

• rocc is the path length of non-object occupied voxels between the object voxel center
and the measurement position. Note that robj + rocc + rair = r.

The detector response is generated through experimentally bench-marked Geant4 simulations
[8]. The polar and azimuthal angles between the measurement pose and source voxel are
computed and the response is interpolated from response data for the desired gamma-ray
energy. The ray-tracing algorithm described in Section 3.3.1 is used to find the occupied and
unoccupied path lengths. The occupied attenuation coefficient is manually provided for the
object and non-object materials.

4.4.1 Example model sensitivity

For the example model, double interaction events which deposit a total of 662 keV in the
detector are assumed for the detector response. The linear attenuation coefficient for water
at 662 keV of 8.574 m−1 is used for the object of interest. There are no non-object materials
in the scene, so the non-object attenuation term (e−µoccrocc) of Equation 4.1 is not used.
Figure 4.4 shows the mean sensitivity at each x-y-z position to each object voxel. Due to
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Figure 4.4: Mean sensitivity at each potential position to all object voxels of the example
model

the simple, symmetrical nature of this model, the 1
r2

term is dominant. Figure 4.5 shows
the mean sensitivity at each x-y-z position for each of its potential orientations. This figure
demonstrates the directional dependence of the detector response.

4.5 Multi-objective optimization

In this work we are interested in optimizing sensitivity. A simple approach would be to
find the position which maximizes the mean sensitivity to object voxels. However, this
approach could lead to non-uniform exposure to all of the voxels that comprise the object
of interest. To address this shortcoming, we introduce another optimization variable, the
minimization of the mean of the variance in sensitivity to each of the object voxels at the
measurement position. This means that we are performing a multi-objective optimization.
Multi-objective optimization problems may not have a single best solution. Instead they
have multiple solutions with trade-offs between the variables of interest which may conflict
with one another.

4.5.1 Best single position

In multi-objective optimization, the optimization of one metric may be at the expense of
another. To find the candidate optimal solutions we use the Pareto front, a concept borrowed
from economic and game theory which seeks to find solutions that ‘help’ one metric without
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Figure 4.5: Mean sensitivity for each potential pose of the example model. The arrow on
each plot represents the orientation of the poses.

‘hurting’ the other [50]. The Pareto front comprises all of the optimal solutions to a multi
objective optimization problem.
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Before finding the Pareto front, the optimization variables are computed. The mean and
variance in sensitivity to each object voxel for each of the potential measurement poses is
computed to serve as the two optimization variables for each of the potential poses. Figure
4.6 shows the sensitivity mean and variance for each of the potential poses in the example
model in gray. Each list of values is min-max normalized, and the normalized values are
used to construct the Pareto front.

The Pareto front is found by sorting the list of optimization variables in increasing order
of sensitivity variance, followed by decreasing order of sensitivity mean. The first value in
the sorted list is selected as the first point on the Pareto front. The list is then looped
through in order, adding values which have mean values greater than the previous. At the
conclusion of the loop, the measurement positions on this list are considered to be optimal.
Appendix C.1 contains the Python code that was developed to compute the Pareto front in
this work. Figure 4.6 shows the Pareto front in cyan. Any of the metrics which lie on the
cyan line are considered optimal solutions to the problem.

Figure 4.6: Pareto front and how different solution methods are derived

A method for selecting a single position from the set of Pareto optimal solutions is
required to create a measurement plan. There are a variety of methods to choose the de-
sired candidate from the Pareto front, including the Nash bargaining solution [51] and the
Kalai-Smorodinsky bargaining solution [52]. To use these solutions, we first calculate two
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hypothetical points, the ideal and disagreement points. The ideal point is the maximum
sensitivity mean value and the minimum sensitivity variance value, representing the best
value for each of the parameters which does not physically exist. The disagreement point is
the minimum sensitivity mean value and maximum sensitivity value, representing the worst
values in each parameter. Figure 4.6 shows the ideal point in blue and the disagreement
point in red.

One solution method is the Nash bargaining method, which seeks the Pareto front value
which has the furthest Euclidean distance from the disagreement point. The minimum
distance to ideal method borrows from the Nash bargaining solution, but rather than maxi-
mizing distance from the disagreement point, it finds the closest solution to the ideal point.
The final solution method examined is the Kalai-Smorodinsky (K-S) method, which finds
the Pareto front value which lies closes to the line connecting the ideal and disagreement
points. Figure 4.6 shows the solution identified by each of these methods. Note that the
Nash bargaining solution and the minimum distance to ideal methods identify the same
solution.

4.5.2 Best combination of positions

The methods described so far find the best single position to perform a radiation imaging
measurement. However, a single position will likely result in non-uniform exposure to the
object of interest, meaning that our sensitivity variance values will be poor. It is also
desirable to have multiple view points to construct a 3D gamma-ray image. Therefore, it is
preferred to consider solutions with multiple measurement positions.

First a permutation is performed to find all possible combinations of measurement po-
sitions. Typically a constraint is imposed to allow this to be computationally tractable by
setting a desired number of measurement positions. Note for many potential positions or
for a high desired number of positions, the permutation is computationally intensive and
infeasible for real time operation.

Once all of the combinations of measurement positions are found, the optimization vari-
ables are computed. Figure 4.7 illustrates the steps taken to obtain the optimization vari-
ables. First the sum of sensitivity to each of the object voxels across all poses in each
combination is computed. Then, similar to the single best position methodology, the mean
and variance in summed sensitivity to each object voxel is computed to serve as the optimiza-
tion variables. The rest of the optimization is performed in the same manner as the single
position methodology - the Pareto front is assembled and a solution is identified through the
Nash, K-S, or minimum distance to ideal method.

4.5.3 Example model optimization

A combination of 3 measurement poses from the 672 candidate poses results in 50,803,424
potential combinations to perform the optimization over. The sensitivity to each of the 8
object voxels is computed for all 672 poses, and the metrics of interest are computed for
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Figure 4.7: Calculation of optimization variables for multiple position optimization

each potential combination for the brute-force optimization. Figure 4.8 shows the sensitivity
mean and variance metrics for a down-sampled fraction of all possible combinations of poses
in gray. The cyan curve shows the Pareto front for these metrics, representing the set of
optimal combinations for the example model. Figure 4.9 left shows where the poses that
comprise these optimal combinations lie in the x-y plane. The solution identified by the
Nash bargaining solution is shown in purple in Figure 4.8, lying close to the ‘ideal point’ of
maximum sensitivity and minimum variance. The poses that comprise this combination are
shown in Figure 4.9 right. Due to the symmetrical nature of this example model, there are
degenerate combinations with the same metrics in 90◦ rotations around the object and in
mirrored configurations.

4.6 Application of genetic algorithm to accelerate

optimization

In the case of many potential measurement poses, the brute-force approach results in a large
computational burden (e.g., for 1000 potential measurement poses and 3 optimal poses, there
are over 1.67 × 108 possible combinations of poses which must be computed). In these cases,
it is desired to use an optimization method such as a genetic algorithm (GA) to accelerate
these calculations to facilitate real-time operation.
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Figure 4.8: Optimization metrics for a 1/10 sample of potential combinations of measurement
poses with Pareto front and optimal solution identified through the Nash bargaining solution

Figure 4.9: Pareto front poses in x-y plane (left) with optimal position identified by the Nash
bargaining solution (right)
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4.6.1 Genetic algorithms

Genetic algorithms are an optimization technique which mimics biological evolution to im-
prove a population of potential solutions iteratively. Within the context of a GA, a ‘pop-
ulation’ consists of a number of ‘individuals’, each of which represent a potential solution
to the optimization problem. Each individual is composed of ‘genes’, which is an encoded
representation of the variables being evaluated for the optimization problem. Figure 4.10
demonstrates the concept of genes and individuals in an example where the global popu-
lation consists of permutations of 3 for the integers 1 through 6. An individual is a single
permutation. Each individual has three genes, which correspond to one of the integers.

Figure 4.10: Sample global population for GA

Genetic algorithms ‘evolve’ a population of individuals through six steps:

1. Initial population

2. Fitness function

3. Selection

4. Crossover

5. Mutation

6. Termination

Figure 4.11 shows a diagram of how the genetic algorithm would evolve a problem initialized
from the global population in Figure 4.10. In the first step, an initial population is randomly
selected from a global population. In the figure, the GA’s initial sample consists of 3 indi-
viduals from the global population. Note that none of the individuals sampled contain the
integer 6, which is present in the global population. In the second step, each of the individ-
uals in the sampled population are evaluated by a fitness function. The fitness function is
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the function which the optimization is seeking to minimize or maximize. The figure shows
the solution to the fitness function for each individual in the sampled population. The third
step of the algorithm, selection, selects the fittest individuals from the population. In this
example, we are seeking maximization of the fitness function, so the first two rows in the
sample population are selected. The crossover step of the algorithm allows the selected indi-
viduals to share their genes to create ‘offspring’. Selected individuals and their offspring are
kept in the sampled population. The example figure shows the selected individuals and an
offspring in red. The fifth step of the algorithm is mutation, where genes may be randomly
mutated into individuals. In the example figure, the integer 6 is randomly mutated into the
individual in the second row. The mutation step marks the end of a ‘generation’ in the GA.
The result of these steps is a new population of individuals. The new population is then
evolved again with steps 2-5. The process is repeated until the desired number of evolutions
is met, resulting in a final population that is more fit than the initial population.

Figure 4.11: Diagram of genetic algorithm steps

4.6.2 Application of a genetic algorithm to this problem

To formulate the optimization problem in this work as a GA problem, measurement poses
are treated as ‘genes’ and a combination of measurement poses is treated as an ‘individual’.
The global ‘population’ of individuals consists of all possible combinations of measurement
poses. Only a small fraction of the global population is present in an initial population
randomly sampled by the GA. Figure 4.12 illustrates an example random initial population
of the example model optimization for use with a genetic algorithm. Each gene is an integer
which corresponds to an index of one of the 672 measurement poses. Fifteen individuals
are present in this figure, representing fifteen combinations of measurement poses out of the
50,803,424 possible combinations.

In this formulation, a random sample of combinations of measurement positions is taken
for the initial population. This accelerates the calculation by skipping the full permutation
of all possible measurement positions. The fitness functions are the optimization variables as
used in the brute-force method - the mean and variance of the summed sensitivity across all of
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Figure 4.12: Example initial population of optimization problem for use with a genetic
algorithm

the poses that make up the individual combinations represented in the population. The indi-
viduals selected are those combinations of poses with relatively high sensitivity mean and/or
relatively low sensitivity variance. Crossover is performed on the selected combinations by
exchanging measurement poses between the different selected combinations. Mutation is
performed by swapping in random measurement poses from the global population, which
may or may not have been present in the initial population. This prevents convergence to a
local minima or maxima. This process is repeated until the desired number of iterations is
achieved.

4.6.3 Genetic algorithm parameters

The main parameters for the GA are population size, crossover and mutation. Typically the
initial population must be sufficiently large, or the mutation parameter sufficiently high to
ensure all of the potential positions are explored by the algorithm. If the total number of
positions represented in the initial population (the number of combinations multiplied by the
number of positions in each combination) is around the same as the number of measurement
positions available, the global population should be sufficiently represented. If there are
more positions in each combination, more individual poses will be represented in the initial
population. If the number of positions per combination is increased, the population size can



CHAPTER 4. MEASUREMENT POSITION OPTIMIZATION 49

be decreased. Conversely, the population should be increased if the number of positions per
combination is decreased.

If the population is not sufficiently large, the mutation parameter can be tweaked to
increase chances of seeing unrepresented poses without increasing computation time. Figure
4.13 shows the effect of changing the mutation parameter on how many evolutions it takes for
the population to converge. Too high of a mutation parameter means that the population
does not converge within 50 evolutions, as random new poses are being mutated in at a
very high rate. Higher mutation rates correspond to a higher number of unique poses and
combinations in the final population.

Figure 4.13: Number of unique individuals in a population for various mutation parameters

The crossover parameter can also be changed. Figure 4.14 shows the effects of changing
the crossover parameter. The effect of changing the crossover parameter has less of an effect
than changing the mutation parameter. The crossover rate is not strongly related to the
uniqueness of the final population over 50 generations. However, an increased crossover rate
does correlate to a slower convergence, but the effect is not significant.

For this work, the crossover parameter was determined to be sufficient at 95%. The mu-
tation parameter was increased from the default value of 1% to 20% to increase computation
speed while ensuring the entire population is sufficiently represented.
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Figure 4.14: Number of unique individuals in a population for various crossover parameters

4.6.4 PyGMO optimization package

PyGMO [53] is an open-source Python library for massively parallel optimization with a
number of optimization techniques available. It provides a uniform interface for optimization
algorithms and problems, making it easy to explore different algorithms. The PyGMO
package requires optimizations to be constructed into a ‘Problem’ class. The ‘Problem’
class requires class functions to characterize the optimization problem, including the fitness
function and the bounds of potential function inputs. The custom ‘Problem’ class developed
for this optimization problem is in Appendix C.2.

PyGMO includes a ‘Population’ class, which can be used to randomly sample a global
population at a desired population size. The bounds of the population are defined in the
‘Problem’ class. To initialize a ‘Population’, the ‘Problem’ is loaded, and a ‘Population’ is
loaded with the ‘Problem’ class and population size as input parameters, which samples a
population based on the problem constraints. For this optimization problem, the popula-
tion is sampled from a list of integers which index the potential measurement poses. The
population is sized such that most of the potential poses are represented in the sample at
least once. A random seed can also be used to ensure replicability in generating the initial
population.

The Non-dominated Sorting Genetic Algorithm (NSGA-II) [54] is selected to perform the
optimization because it is a genetic algorithm in PyGMO which allows for multi-dimensional
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optimization problems. The algorithm is initiated with a mutation parameter set at 20%
to increase the likelihood that those poses not initially represented in the population are
mutated into the population during one of the evolutions. The crossover parameter of the
algorithm is left at the default value of 95%. The genetic algorithm is used to evolve the
population 50 times. For each generation of the GA, the optimization metrics are computed
on-the-fly for each of the combinations of poses in that generation. This means that the
number of computations required to find the optimal position is the population size multiplied
by the number of generations. For a population size of 1000 and 50 generations, this means
only 50,000 computations are required, which is substantially fewer than the 1.67 × 108

computations required to calculate all potential combinations in the example at the beginning
of this section.

4.6.5 Genetic algorithm applied to example model

Figure 4.15: Initial population randomly sampled by the GA (left) and poses in Pareto
optimal combinations after 50 evolutions (middle) with the combination of poses identified
by the Nash bargaining solution (right)

The GA-accelerated optimization is used to find the optimal positions of the example
model, and bench-marked against the brute-force method to demonstrate the feasibility of
using this approach. Figure 4.15, left shows the initial population of 1000 combinations used
in the optimization, where 663/672 potential poses are represented. The initial population is
evolved for 50 generations, with the default crossover parameter and 20% mutation parameter
to allow for mutation of the 9 unrepresented positions into the population. Figure 4.15
middle shows the final population on the x-y plane, where all of the poses lie on the Pareto
front of the brute-force method as shown in Figure 4.9 left. This indicates that the final
population is overall more fit, and comprised of the optimal poses within the global scope
of the problem. Figure 4.15 right shows the optimal combination of positions selected by
the Nash bargaining solution, which matches the optimal combination of positions selected
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by the brute-force method (including the same degenerate solutions). The GA approach
only required 50,000 computations (population of 1000 evaluated over 50 generations), while
the brute-force approach required 43,895,680 computations, demonstrating that the same
result can be reached with significantly fewer computations when using a genetic algorithm.
This validates that this problem is a suitable use of the GA, facilitating the use of this
optimization framework in the field.

4.7 Discussion

In this chapter a framework for identifying optimal measurement positions for a radiation
imaging measurement was developed and demonstrated with an example model. In this
framework, a volume of interest is identified, either manually or through automatic object
detection techniques. Next, all viable measurement poses are identified, with some con-
straints to ensure physical feasibility. Then, the sensitivity to each of the volume of interest
voxels from each of the potential measurement poses is computed. Finally, the mean and
variance of the sensitivity are computed to serve as the optimization variables in a multi-
objective optimization. The Pareto front is used to identify the set of optimal solutions,
and the Nash bargaining solution is used to identify a single optimal solution from the set.
While this approach is straightforward for a simple example model, real-world measurement
scenarios are much more complicated and demand fast and simple computation to enable
on-board real-time optimization. Therefore, the genetic algorithm is used to accelerate the
optimization to facilitate its use in the field.

One drawback of using a GA is that there is not a guarantee to arrive at the same solution
as the brute-force method. However, due to the nature of multi-objective optimization having
multiple optimal solutions, it is very likely that the solution determined by a GA will still be a
Pareto optimal solution. While the solution might not always be identical to the brute-force
method, the time savings of using algorithmic approaches enables the use of these methods
in real-time.

Another drawback of using a GA to solve this problem is that the parameters of the
GA might need to be altered in different scenarios, which would require operator knowledge
of how the algorithm works. In the example model example, 602 out of 608 measurement
poses were represented in the initial sample. If significantly fewer measurement poses were
represented, either the population size or the mutation parameter should be increased to
more effectively represent the global population. However, if the population size is increased
too much the computation time might become infeasible, and if the mutation parameter
is set too high, the population may not converge. Algorithmic approaches other than the
GA, such as gradient-free algorithms, could be investigated as additional means to solve this
problem, which might require less parameter tweaking.



53

Chapter 5

Simple models

Chapter 4 laid out the framework for optimizing static measurement positions for a quan-
titative gamma-ray imaging measurement. Section 4.1 laid out an example model which
was used to explain the various steps of the optimization. This model was used to develop
the optimization code and verify that the various software features were performing as ex-
pected. However, the simple, symmetrical nature of the model can not accurately simulate
complicated real world measurements. In addition to the simple model laid out in the pre-
vious chapter, other simple models were created and investigated to develop more complex
scenarios to validate various features of the optimization.

5.1 Model 2: box with internal voxels

The problem explored in Chapter 4 consisted of a simple 1 m x 1 m x 1 m box with a 0.5 m
voxel pitch. This coarse voxelization allowed for all of the object voxels to be visible at
some measurement position in the scene. In real world measurements, objects may be very
large, requiring voxelization to be set such that some voxels are internal to the object and
not visible at any measurement positions. In this section, a simple model which contains
internal voxels is explored.

5.1.1 Model definition

This model consists of the same box as in Chapter 4, except with a finer voxel pitch of
0.25 m. This will help us explore the effects of self-shielding on the algorithm. The model
now consists of 64 occupied voxels, and all other voxels in the scene are again assumed to be
unoccupied. The 64 occupied voxels are assumed to be uniformly distributed with a source
which emits 662 keV gamma rays. 8 of the occupied source voxels are internal to the object
and not visible at any positions outside of the object. Figure 5.1 shows the voxelization of
the measurement space in the x-y and y-z plane.
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Figure 5.1: x-y (left) and x-z (right) plane of model 2

5.1.2 Optimization results

The GA-accelerated optimization described in the previous chapter is performed on this
example model, with the 64 occupied voxels considered to be the volume of interest. The
measurement position selection is again given the constraint that all positions are on-axis
with the center of the object with a maximum standoff distance of 3 m. The source voxels
are assumed to be composed of water, and the optimization assumes a gamma-ray energy
of 662 keV. Figure 5.2 left shows the 672 potential measurement poses (84 positions × 8
orientations) identified by the optimization. The positions identified are identical to the
positions identified for the model in Chapter 4 (see Figure 4.3). This is expected because
the measurement scenario is physically the same, but the voxel sizes are smaller. Figure 5.2
right shows how many voxels are visible to each of the potential measurement poses. While
64 voxels are present, only 56 voxels are present on the surface of the object and possible
to be seen at any of the potential poses. This demonstrates the importance of the visibility
cut discussed in Section 4.3. Typically, a cutoff value of 1 is used, meaning that at least 1
object voxel must be visible for a pose to be considered. The value can be increased, but if
it is set too high, (e.g., 64 voxels) all potential poses will be removed from consideration.

Figure 5.3 shows the mean sensitivity at each x-y-z position to each object voxel. When
compared to the sensitivity calculated for the example model in Chapter 4 (see Figure 4.4),
we can see that the mean sensitivity values are higher for each position. Due to self-shielding
and increased distance, the sensitivity to internal voxels is lower than sensitivity to external
voxels. Figure 5.4 shows the contribution to sensitivity for the 8 internal voxels and 56
external voxels scaled by the number of voxels in each group. We can see that the sensitivity
to the internal voxels is an order of magnitude smaller than the sensitivity to external voxels.
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Figure 5.2: Potential measurement poses identified (left) and number of object voxels visible
at each position (right) for example model 2

Figure 5.3: Mean sensitivity to object voxels for model 2

This is because the mean free path of a 662 keV photon through water is around 10 cm,
which is slightly less than half of a voxel size for this example model.

To determine the best combination of measurement positions, the genetic algorithm is
used with the default crossover parameter and the mutation parameter set to 20%. The
initial population consists of 1000 combinations of poses, and the population is evolved for
50 generations. Figure 5.5 shows the optimization metrics for all potential combinations in
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Figure 5.4: Mean sensitivity to object voxels for internal voxels (left) and external voxels
(right) for example model 2 scaled by the number of voxels per group

gray and the metrics that lie on the Pareto front of the final population in cyan. The Nash
bargaining solution is used to identify the best combination of positions, which is shown in
purple on the Pareto front plot. Figure 5.6 shows the optimal poses in the x-y plane of the
scene. This solution is identical to the Chapter 4 solution.

5.1.3 Effects of increased attenuation

When the object of interest is assumed to be composed of water and the gamma-ray energy
is assumed to be 662 keV, the self-shielding effect is appreciable. If the attenuation value
is increased, the effect of attenuation becomes more dominant. The optimization of this
problem is performed again with the same parameters previously described, except the object
is assumed to be composed of UF6 (density = 5.09 g/cm3) with a linear attenuation coefficient
of 56.7 m−1, which is an order of magnitude higher than the linear attenuation coefficient of
water.

The potential poses are the same as for water, shown in Figure 5.2 left. Figure 5.7 shows
the mean sensitivity to all object voxels at each potential measurement pose. The sensitivity
is two orders of magnitude lower than what is shown in Figure 5.3 for water. Figure 5.8
shows the contribution to sensitivity for the 8 internal voxels and 56 external voxels scaled
by the number of voxels in each group. The sensitivity to internal voxels is seven orders of
magnitude lower than the sensitivity to external voxels, which is a much greater difference
than Figure 5.4 where the occupied voxels are filled with water. The mean free path of a
662 keV gamma ray in UF6 is around 1.8 cm, so gamma rays emitted from internal voxels
must travel through at least 14 mean free paths to exit the object of interest.
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Figure 5.5: Pareto front for example model 2

Figure 5.6: Optimal poses selected for example model 2

The GA parameters used for the water scenario are also used to optimize this example.
Figure 5.9 shows the optimization metrics in gray with the metrics of combinations which lie
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Figure 5.7: Mean sensitivity to object voxels for model 2 with increased attenuation

Figure 5.8: Mean sensitivity to object voxels for internal voxels (left) and external voxels
(right) for example model 2 with increased attenuation scaled by the number of voxels per
group

on the Pareto front in cyan. The metrics of the combination identified by the Nash bargaining
solution are shown in purple. Compared to the optimization with water, the sensitivity mean
and variance is lower for all of the metrics. Figure 5.10 shows the combination identified
by the Nash Bargaining solution on the x-y plane. The poses are the same, but due to the
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Figure 5.9: Pareto front for example model 2 with increased attenuation

Figure 5.10: Optimal poses selected for example model 2 with increased attenuation

decreased sensitivity from self-shielding, the counting measurement should be performed for
a longer period of time.
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5.2 Model 3: external shield

The models explored so far have consisted of scenes where the only occupied material is the
volume of interest. In real measurements, there is often a number of intervening materials
which constrain the potential measurement positions and potentially attenuate the radiation
signatures. Therefore, it is important to investigate the effect of external shielding on the
optimization procedure.

5.2.1 Model definition

We will now consider the same box as Chapter 4, except with an external shield 0.5 m to
the left of the left face of the object. The shield is 0.5 m wide with a length of 3 m and a
height of 1 m on axis with the box. The object is assumed to be water, and the shield is
assumed to be concrete, a highly attenuating material with a linear attenuation coefficient
of 15861 m−1. Figure 5.11 shows the voxelization of the example model.

Figure 5.11: x-y (left) and x-z (right) plane of example model 3

5.2.2 Optimization results

The GA-accelerated optimization described in the previous chapter is performed on this
example model, with the 8 central voxels considered to be the object of interest. The
measurement position selection is given the constraint that all positions are on-axis with
the center of the object with a maximum standoff distance of 3 m. Figure 5.12 left shows
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the potential poses which were identified by the optimization. The initial candidate pool is
identical to the previously discussed models, but the positions to the left of the external shield
which cannot see any of the object voxels were removed from consideration as discussed in
Section 4.3. This results in 61 potential measurement positions with 8 potential orientations,
for a total of 488 potential poses. Some of the poses can have line of sight to at least one of
the object voxels, but experience some attenuation from the external shield.

Figure 5.12: Potential measurement poses identified (left) and mean sensitivity to object
voxels (right) of example model 3

When calculating sensitivity, the non-object occupied voxel term of Equation 4.1 is used
due to the presence of an external shield. Figure 5.12 right shows the mean sensitivity at
each x-y-z position to the object voxels. Most of the positions have the same sensitivity
as what was calculated in Chapter 4 (see Figure 4.4); however, the positions which have
attenuation from the shield wall have lower sensitivity than their symmetric counterparts.
This is due to the high attenuation coefficient ascribed to the external shield.

To determine the best combination of measurement positions, the genetic algorithm is
used with the default crossover parameter and the mutation parameter set to 20%. The
initial population consists of 1000 combinations of poses, and the population is evolved for
50 generations. Figure 5.13 shows the optimization metrics for all potential combinations
in gray and the metrics that lie on the Pareto front of the final population in cyan. The
measurement positions which are attenuated by the concrete wall are/are not present in any
of the Pareto front combinations due to the large decrease in sensitivity from the concrete
shielding. The Nash bargaining solution is used to identify the best combination of poses,
which is shown in purple on the Pareto front. Figure 5.14 shows the poses identified by the
Nash bargaining solution on the x-y plane. The solution is one of the degenerate solutions of
the example model in Chapter 4 (shown in Figure 4.9). The previous model had a number
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Figure 5.13: Pareto front for example model 3

Figure 5.14: Optimal poses selected for example model 3

of degenerate solutions due to the symmetric nature of the problem. Because this problem
is asymmetrical with a shield on the left side, there is only one solution identified.
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5.2.3 Effect of removing visibility restriction

The visibility constraint described in Section 4.3 serves to remove positions which are phys-
ically infeasible or undesirable. This restriction can be removed, allowing measurement
positions on the other side of the concrete wall to be considered. We still remove positions
from inside the wall as they are considered physically infeasible, rather than just undesir-
able. Figure 5.15 left shows the potential poses for this example model when the visibility
constraint is removed. Some of the poses which were present in the Chapter 4 example are
removed from consideration because they reside in the voxels occupied by concrete. This
constraint serves to remove positions which are inside of objects and therefore infeasible for
placing the radiation imager. Figure 5.15 right shows the mean sensitivity for each x-y-z
position to all of the object voxels. The positions to the left of the wall which have been
added to consideration have a mean sensitivity of zero, unlike their mirrored counterparts
due to the presence of the shielding wall. Figure 5.16 shows the mean distance traversed
through the concrete for a voxel emitted by one of the 8 source voxels to each measurement
position. The mean sensitivity in the measurement positions to the left of the wall are zero
because the mean free path of a 662 keV gamma ray in concrete is around 64 µm, which
is four orders of magnitude smaller than the voxel pitch in this example model. The figure
shows that gamma rays would have to traverse approximately 50 cm of concrete to reach
positions to the left of the concrete wall.

Figure 5.15: Potential poses identified (left) and sensitivity (right) for example model 3 when
the visibility constraint is removed

The GA parameters used for the constrained example are used to optimize this uncon-
strained example. Figure 5.17 shows the optimization metrics of all potential combinations
in gray and the metrics which lie on the Pareto in cyan. The metrics of the combination
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Figure 5.16: Sum of distance traversed through non-object material for example model 3
with the visibility constraint removed

Figure 5.17: Pareto front for example model 3 with unconstrained positions

identified by the Nash bargaining solution is shown in purple. Figure 5.18 shows the poses
identified by the Nash bargaining solution in the x-y plane. This solution is the same as the
constrained solution in Figure 5.14. This means that it is feasible to use the visibility con-
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straint because it removes poses with a low sensitivity which are not desirable for a counting
measurement. Adding this constraint simplifies the computation because there are less poses
to consider, and less potential combinations to optimize over.

Figure 5.18: Optimal poses selected for example model 3 with unconstrained positions

5.3 Model 4: two separated boxes

The example models presented so far consist of scenes where is only one object of interest
present. In some cases, it may be preferred to optimize for two or more objects. An example
would be a holdup scenario with two containers right next to each other, where one has nu-
clear material and the other is declared to be empty. Rather than optimizing and measuring
both separately, it would save time to measure both simultaneously.

5.3.1 Model definition

We will now consider a model where there are two 1 m3 cubic boxes separated by 1 m. The
scene is extended to 10 m × 10 m × 10 m, with a voxel pitch of 0.5 m. Both objects are
assumed to be composed of water. The model consists of 16 occupied voxels total, with all
other voxels in the scene assumed to be unoccupied. The 16 occupied voxels are assumed to
be uniformly distributed with a source which emits 662 keV gamma rays. Figure 5.19 shows
the voxelization of the measurement space.
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Figure 5.19: x-y (left) and x-z (right) plane of example model 4

5.3.2 Optimization results

The GA-accelerated optimization described in the previous chapter was performed on this
example model, with the two separated 8 voxel boxes considered to be the combined object
of interest. The measurement position selection is given the constraint that all positions are
on-axis with the center of the objects in the z-axis with a maximum standoff distance of
3 m. In this case, standoff distance is defined as the maximum standoff from the closer of
the two boxes to a given position. Figure 5.20 left shows the 576 poses (72 positions × 8
orientations) identified by the optimization.

Figure 5.20 right shows the mean sensitivity at each x-y-z position to the object voxels.
The positions to the left and right of the objects experience more attenuation due to the
presence of the second object acting as intervening material. Because of this the positions
on the top and bottom of the two volumes in the y-axis have a relatively high sensitivity.

To determine the best combination of measurement positions, the genetic algorithm is
used with the default crossover parameter and a mutation parameter of 20%. The initial
population consists of 1000 combinations and the population is evolved for 50 generations.
Figure 5.21 shows the optimization metrics for all potential combinations in gray and the
metrics which lie on the Pareto front in cyan. The Nash bargaining solution is used to
identify the best combination of positions, which is shown in purple on the Pareto front plot.
Figure 5.22 shows the poses in the combination identified by the Nash bargaining solution
in purple with degenerate solutions in orange. The positions selected are on the top and
bottom of the box in the y-axis, as expected due to their relatively high sensitivity.
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Figure 5.20: Potential measurement poses identified (left) and mean sensitivity to object
voxels (right) of example model 4

Figure 5.21: Pareto front for example model 4
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Figure 5.22: Optimal poses selected for example model 4

Figure 5.23: Potential measurement poses (left) and sensitivity (right) identified for example
model 4 with increased object separation

5.3.3 Effect of increasing distance between object volumes

The objects in this example model were placed 1 m from one another, and with a minimum
standoff distance of 1 m imposed by the optimization, no poses between the two objects were
considered. To explore the result of increasing the separation distance of the two objects,
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the spacing between the two objects is increased to 3 m and the optimization is computed
again. The size and composition of the two boxes remain the same.

Figure 5.23 left shows the new measurement scene with the objects in blue and potential
poses in gray. With the increased separation distance, there are potential poses between the
two objects. Figure 5.23 right shows the mean sensitivity of all of the x-y-z positions to the
object voxels for this scenario. As expected, the sensitivity of the positions between the two
positions is much higher than the sensitivities on any other side of either of the objects.

Figure 5.24: Pareto front of combinations of three poses for example model 4 with increased
object separation

The GA parameters used to optimize the model with a 1 m separation distance are
also used for this optimization. Figure 5.24 shows the optimization metrics for all potential
combinations of measurement poses in gray and the metrics of combinations which lie on the
Pareto front in cyan. The combination identified by the Nash bargaining solution is shown
in purple. Figure 5.25 left shows the poses in the optimal combination in the x-y plane.

The optimization was also performed for all combinations of 2 positions to compare to
this solution. Figure 5.26 shows the the optimization metrics for all potential combinations
in gray and the metrics for combinations which lie on the Pareto front in cyan. While the
sensitivity mean is not substantially worse for this case, the sensitivity variance is significantly
degraded. This is because for a case with two separated volumes, it is desirable to have at
least two view angles for each of the two volumes, one of which can be shared between the
two. Because there are two volumes in this example model, there should be at least three
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Figure 5.25: Three (left) and two (right) optimal poses selected for example model 4 with
increased object separation

Figure 5.26: Pareto front of combinations of two poses for example model 4 with increased
object separation
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poses in the optimal combination to reduce the variance in sensitivity and ensure uniform
exposure to both of the objects. Figure 5.25 right shows the poses identified by the Nash
bargaining solution.

5.4 Model 5: asymmetrical object

All of the models explored so far consist of one or more uniform volumes. However, in the
real world, objects may not be symmetrical. Therefore it is important to study the effects
that an asymmetrical object has on the optimization.

5.4.1 Model definition

This model is similar to the example model in Chapter 4, except two of the object voxels
are removed such that the object is asymmetrical. The extent of the object is 1 m x 1 m
x 1 m, except for the removed voxels. The voxel pitch is again 0.5 m. This results in
a total of 6 occupied voxels which are assumed to be composed of water, and all other
voxel in the scene are assumed to be unoccupied. The 6 occupied voxels are assumed to be
uniformly distributed with a source which emits 662 keV gamma rays. Figure 5.27 shows
the voxelization of the measurement space. The transparency of the object voxels in the x-z
plane image has been increased for this figure to display the location of the removed voxel.

Figure 5.27: x-y (left) and x-z (right) plane of example model 5
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5.4.2 Optimization results

The GA-accelerated optimization discussed in the last chapter is performed on this example
model, with the 6 occupied source voxels as the object of interest. The measurement po-
sition selection is given the constraint that all positions are on-axis with the center of the
object in the z-axis with a maximum standoff distance of 3 m. Figure 5.28 left shows the
poses identified by the optimization. There are 81 potential x-y-z positions and 8 potential
orientations, resulting in 648 potential poses. There are fewer positions than the example in
Chapter 4 because the top left voxels in the x-y plane are gone, so the maximum standoff
distance filters out positions in the second quadrant. The minimum standoff distance brings
some of the potential poses closer than the previous examples.

Figure 5.28: Potential measurement poses(left) and mean sensitivity to object voxels (right)
plane of example model 5

Figure 5.28 right shows the mean sensitivity at each x-y-z position to the object voxels.
The positions closest to the removed voxels are overall further from the voxels that are
present so their sensitivities are reduced. However, they have direct line of sight to more
voxels and less attenuation in intervening material, so the sensitivity is not dramatically
reduced. The maximum mean sensitivity of the positions is approximately the same as what
was calculated in Chapter 4 (see Figure 4.4), but the summed sensitivity is lower due to two
of the voxels being removed.

To determine the best combination of measurement positions, the genetic algorithm is
used with the default crossover parameter and a mutation parameter of 20%. The initial
population consists of 1000 combinations and the population is evolved for 50 generations.
Figure 5.29 shows the optimization metrics for all potential combinations in gray and the
metrics of the combinations which lie on the Pareto front in cyan. The Nash bargaining
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solution is used to identify the best combination of positions, which is shown in purple on
the Pareto front plot. Figure 5.30 shows the poses in the optimal combination in the x-y
plane. Unlike the solution of the example model in Chapter 4, there are no degenerate
solutions because the problem is asymmetrical.

Figure 5.29: Pareto front for example model 5

5.5 Discussion

In this chapter we investigated a number of simplified example models to examine various
aspects of the optimization code to see how the optimization performs in scenarios that more
closely resemble real world examples. These examples were useful for developing the code,
building out features, and ensuring it performs properly before demonstrating it with a real
measurement.

We see that attenuation is being properly handled, for both self-shielding and external
shields in the measurement scene. Measurement positions which are more shielded are less
likely to be selected as the optimal measurement position. For objects with high attenuation
coefficients, it may be desirable to place the imager closer to the object. It may also be
required to count longer at these positions to get the desired number of counts. We also saw
that the feasibility constraint which removes potential positions that cannot see at least one
object voxel is sensible because it masks out positions which would have a low sensitivity
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Figure 5.30: Optimal poses selected for example model 5

to the object and not get selected in the optimization. This results in less computations,
even in the GA-accelerated code because the sensitivity does not need to be computed for
positions which are not considered and the ray tracing does not need to be performed.

We also saw that it is possible to optimize for two separated volumes. It is worth noting
that in cases where there are N volumes, it is desired to have at least N+1 optimal positions
to properly image the result. This requirement is not included in the code, rather is required
user knowledge to correctly formulate the optimization problem.

Overall these models showed the optimization identified measurement poses which make
sense to place an imager for a radiation imaging measurement, even in more complicated
scenarios than what was explored in Chapter 4.
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Chapter 6

Distributed Source Measurement

The toy models previously discussed show the possibility of using this optimization approach,
but a field measurement must be taken to study the feasibility of the use of the methods in
the field. Many of the nuclear materials accounted for under safeguards agreements are not
point sources, but rather large distributed volumes of source, such as DUF6 cylinders and
tanks of bulk materials during fuel recycling. Even sources that can be considered items,
such as fuel assemblies, occupy a volume. The methods developed for this project assume
that the source occupies some volume that can be described by multiple voxels. Therefore, it
is desired to take a field measurement with a distributed source. The next generation mock
material holdup loop (NGL) described in Chapter 4 of [55] is used as a distributed source to
validate this work.

6.1 Material holdup loop

Figure 6.1 left shows a schematic of the NGL from [55]. Figure 6.1 right shows a camera
image of the loop. The loop contains two 5 gallon PVC tanks (referred to as tank 1 and
2) and a large 30 gallon PVC inventory tank. The tanks are connected with 3/4 inch PVC
piping with 3/4 inch PVC gate valves to control the flow between tanks. The pipes and
tanks are held up by stainless steel support beams. There is also an Iwaki magnetic pump
which can be used to circulate water through the pipes and into the different tanks. Liquid
source can be injected into the inventory tank and diluted in water for use in experiments.

A series of measurements were taken with this loop to validate the optimization methods
developed in this work. For the measurement, the inventory tank was injected with 5.25 mCi
of F-18 diluted in 15 gallons of water and thoroughly mixed with the mixing loop. F-18
decays to O-18 through positron emission, where the positron annihilates upon collision
with an electron and emits two 511 keV annihilation photons which can be imaged with
Compton imaging.
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Figure 6.1: Schematic (left) and camera image of loop from [55]

6.2 Optimization procedure

Due to the relatively short half-life of F-18 (t1/2 = 109.77 minutes), the optimal measurement
positions where identified and planned in advance of receipt of the isotope to reduce time
between measurements and personnel dose. The point cloud generated by the H420-LAMP
contextual sensors is shown in Figure 6.2. While the tanks of the loop are visible, the
Velodyne LiDAR on the H420-LAMP does not have a high enough precision to effectively
generate a 3D map of the loop which contains the 3/4 inch PVC pipes connecting the tanks.

The Emesent Hovermap has a much better precision of 10 mm, so it was used to generate
a 3D map of the loop and surrounding environment several days before the measurement,
shown in Figure 6.3. The high level of detail captured by this sensor includes the relatively
small pipes between the tanks, as well as clearly defined tank boundaries.

The MMDetection pipeline described in Section 3.2 is used to semantically segment the
objects in the 3D point cloud in Figure 6.3. Figure 6.4 shows the results of using the
PointNet++ model pre-trained on the ScanNet dataset to semantically segment the point
cloud. The floor is correctly identified, as well as the concrete walls. However, many points
are given false labels such as ‘chair’, ‘desk’, and ‘door’. Many of the points are given the
label ‘otherfurniture’. This is a fitting label, as many of the objects in this scene do not
fit any of the labels; however, it is not a useful label for classifying objects. This figure is
only included for informational purposes, and is not used to perform the measurement pose
optimization.

The measurement scenario investigated consisted of source only in the inventory tank
and mixing loop following injection of the source and mixing. The MMDetection pipeline
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Figure 6.2: 3D point cloud map of mock holdup loop generated with the H420-LAMP

Figure 6.3: 3D point cloud map of mock holdup loop generated with the Emesent Hovermap
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Figure 6.4: Semantic segmentation results of mock material holdup loop

described in Section 3.1 is used to identify the inventory in the 3D point cloud shown in Figure
6.3. The volume selected by the TR3D model pre-trained on SunRGBD data is shown in
Figure 6.5. The bounding box returned by the pipeline fully contains the inventory tank.
The voxel grid was constructed with 20 cm voxel pitch, resulting in 557,928 voxels, where
there are 43 voxels which comprise the inventory tank and 3,768 are non-object occupied
voxels. Similar to the example model in Section 5.1, the inventory tank has internal voxels
which are not visible at any position in the scene. The inventory tank voxels are given the
attenuation coefficient of water, while all other occupied voxels are assumed to be steel,
because most of the material in the scene is the stainless steel support structures.

The GA-accelerated optimization is used to identify static measurement poses to quan-
titatively image the inventory tank. Figure 6.6 shows all of the potential measurement
positions identified as feasible in gray. The measurement positions were constrained in the
z-axis by the limits of the tripod that the imager is placed on, and by a maximum standoff
distance of 3 m. Each of these positions has line of sight to at least one of the inventory tank
voxels as determined by the ray-tracing algorithm, and none of them reside in an occupied
voxel. There are 8 potential orientations in 45◦ increments around the z-axis. The complex
nature of this scene results in a fairly restricted number of potential measurement poses due
to the voxel grid occupancy and ray tracing constraints.

The GA used an initial population of 1000 combinations with the default crossover pa-
rameter and a mutation parameter of 20%. Figure 6.6 shows the optimal poses identified by
the Nash bargaining solution in orange, with a degenerate solution shown in blue.
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Figure 6.5: Object detection of inventory tank

Figure 6.6: Potential measurement positions identified for the inventory tank with the op-
timal combination of poses identified by the Nash bargaining solution and its degenerate
solution identified

The optimal poses are mapped out prior to the measurement by placing tape in the desired
tripod foot locations. The measurement poses are verified to be the optimal positions by
taking a sample of contextual data at the positions and using ICP (described in Section
2.2.2.1) to plot the actual imager location in the context of the global cloud collected by the
Emesent which the optimizations were performed on. If the positions were not within 10 cm
or the orientation is not within 10◦of the optimal pose, the imager location is adjusted and
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checked again with ICP.

6.3 Compton imaging results

Data were collected at each of the optimal poses for 10 minutes and 3D Compton imaging
is performed. The imaging algorithm includes double-interaction events which deposited a
total energy of 511 ± 11 keV in the detector. A lever arm cut of 2.1 mm is imposed, which
removes events where interactions are less than 2.1 mm apart. The attenuation through
occupied materials which was calculated during the measurement pose optimization is used
in the reconstruction algorithm.

Figure 6.7: Quantitative Compton image of inventory tank with bottom 10% of activity
suppressed

The Compton image of the inventory tank and its estimated activity are shown in Fig.
6.7. The bottom 10% of activity is suppressed to improve the visibility of the scene. The
source is localized to the position of the water within the inventory tank. The sum of
activity in the inventory tank voxels is 756 µCi of F-18. At the time the measurements were
taken, the activity in the inventory tank was between 806 µCi and 673 µCi over 20 minutes.
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Therefore, the Compton imaging techniques accurately provided a quantification of source
activity in the measurement.

6.4 Discussion of measurement results

This measurement showed the feasibility of using the optimization technique to identify static
measurement poses for a radiation imaging measurement. The 3D object detection tools
described in Section 3.1 were effective in identifying the point cloud points which described
the inventory tank in the measurement scene. This information allowed the construction of
a custom voxel grid, where object occupied voxels could be given attenuation coefficients of
water, and all other occupied voxels could be given attenuation coefficients of steel.

The potential measurement poses identified by the optimization technique were all phys-
ically feasible. Due to the amount of support structures and relatively busy nature of the
scene, the potential poses are fairly restricted. This saves time in the computation as there
are less poses and combinations to be considered.

The 3D Compton image reconstruction correctly localized the emission of the 511 keV
annihilation photons to the location of the water in the inventory tank. Additionally the
reconstructed source activity is within the range of ground truth during the 20 minute
measurement. This result means that the optimization identified measurement poses which
were able to accurately quantify the activity of F-18 within a relatively short amount of
time.

F-18 is a medical isotope and not considered a safeguard-relevant material. It is used
in this analysis because it is relatively cheap and easy to obtain due to its use in medical
imaging. It was selected because its 511 keV emission is well within the Compton imaging
regime for the H420-LAMP. Nuclear material accounted for under safeguards agreements
typically has a much longer half-life than F-18. This means that to quantify safeguards
relevant materials within desired levels of uncertainty, longer measurements would need to
be performed or the imager would need to be placed closer to the object of interest.

In safeguards applications, the gamma-ray emissions are typically lower than the 511 keV
photons in F-18. Some of these gamma rays will still be in the Compton imaging regime of
the H420-LAMP (down to around 350 keV), so the optimization techniques are expected to
perform similarly for those gamma rays. However, for gamma-ray energies below 350 keV,
it would be preferred to use coded-aperture reconstruction techniques. The optimization
is built with coded-aperture constraints in mind, but a coded-aperture response function
would need to be used to calculate sensitivity for optimization. Measurements with lower
energy gamma rays should be performed to ensure the optimization performs as expected
in real world measurements for coded-aperture imaging applications, but it is expected that
the optimization would perform similarly well as it does for the Compton imaging modality.
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Chapter 7

Conclusions

The methods developed in this work demonstrate the improved use of scene data to determine
optimal measurement poses for quantitative gamma-ray imaging of volumetric sources. The
following sections summarize the methods developed and the measurements performed in
the course of this dissertation and discuss opportunities for future work.

7.1 Summary

The identification of optimal measurement poses for quantitative gamma-ray imaging is
useful in a variety of applications, including safeguards, where an analyst has limited time
to make decisions about how to measure relevant materials. Placing the imager at poses
with optimal sensitivity to the volume of interest permits shorter measurement times while
still maintaining desired counting statistics, which results in reduced disruption to facility
operation. Additionally, the point-and-dwell measurement mode employed in this work
allows for reduced dose to personnel while measuring radiation data. This tool presents a
way for nuclear safeguards inspections to be carried out more efficiently, allowing safeguards
inspectors to continue verifying NPT compliance with the growing number of countries and
amount of materials under safeguards agreements.

This work demonstrated the feasibility of using contextual data to identify static measure-
ment poses for quantitative gamma-ray imaging. Computer vision techniques are developed
which can identify radiological objects of interest in a 3D point cloud generated in an ini-
tial scene survey, even in complex laboratory scenes. A brute-force optimization method is
developed and tested on a series of example models to consider all potential measurement
poses in a scene, resulting in sensible measurement poses but requiring many computations.
A genetic algorithm is used to accelerate this optimization, and bench-marked against the
brute-force method, showing that it is a feasible acceleration to the problem that identi-
fies the same optimal poses. These GA-accelerated optimization is then applied to a mock
holdup loop with a tank containing F-18 diluted in water. The optimal poses identified by
the algorithm are used to measure the tank and generate a quantitative 3D Compton im-



CHAPTER 7. CONCLUSIONS 83

age from a 20 minute measurement. This technique presents a promising method to inform
operators on optimal device operation in safeguards field measurements.

7.2 Future Work

This work could be improved by leveraging semantic segmentation techniques to inform
attenuation estimates for objects in scenes. The household datasets investigated in this work
are insufficient for semantically labeling the laboratory and industrial scenes which would be
relevant to safeguards measurements. Computer vision techniques are rapidly advancing, so
this is a plausible avenue to pursue in future work. A dataset could be developed with 3D
data from laboratory and industrial scenes and used to train the models used in this work, or
train more advanced models as 3D computer vision techniques become more sophisticated.

As demonstrated in Chapter 6, high resolution point clouds are necessary for successful
use of computer vision techniques. The LiDAR on the H420-LAMP does not have suffi-
cient resolution to identify pipes and small structures in 3D scenes, which will be necessary
in safeguards-relevant measurements where bulk materials may be located inside pipes. A
higher resolution LiDAR, such as what is available on the Emesent Hovermap, is necessary
to correctly identify the object of interest with object detection techniques and to model
attenuation of the scene. Contextual sensors continue to improve, which suggest that con-
textual data collected with state-of-the-art sensors will better capture relevant scene details
in the near future. It is also anticipated that next generation datasets will be collected with
advanced contextual sensors and analyzed with improved computer vision techniques.

Techniques could also be developed to adaptively determine upcoming measurement poses
as information is collected during measurements, rather than computing optimal poses from
an initial scene survey alone. This approach could be useful in facilities where generation
of a 3D map of the scene is prohibited or a very limited amount of time is available to take
measurements.

This work focused on the Compton imaging implementation. Many sources of safeguards
relevance are below the 350 keV threshold where Compton scattering is no longer dominant
and the number of double interaction events is too low for efficient Compton imaging. In
these energy ranges, it would be preferred to use the coded-aperture imaging modality. The
optimization techniques developed in this work allow for optimization of coded-aperture
imaging poses as well, but these techniques would need to be experimentally validated.
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Appendix A

Object Detection

A.1 Object Detection Code

from mmdet3d . ap i s import in i t mode l , i n f e r e n c e d e t e c t o r
import numpy as np

c h e c k p o i n t f i l e = ’ checkpoint . pth ’
c o n f i g f i l e = ’ c o n f i g . py ’
model = in i t mode l ( c o n f i g f i l e , c h e c k p o i n t f i l e )
r e s u l t , data = i n f e r e n c e d e t e c t o r ( model , ’ po in t c l oud . bin ’ )
boxes np = r e s u l t . get (

’ p r e d i n s t a n c e s 3 d ’ ) . get ( ’ bboxes 3d ’ ) . cpu ( ) . numpy( )
np . save ( ’ f i l e n a m e ’ , boxes np )

Listing A.1: MMDetection Object Detection Pipeline
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A.2 Object Detection Results

Figure A.1: Object detection by VoteNet model pre-trained on SunRGBD data

Figure A.2: Object detection by VoteNet model pre-trained on ScanNet data
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Figure A.3: Object detection by H3D model pre-trained on ScanNet data

Figure A.4: Object detection by GF3D model pre-trained on ScanNet data with 6 layers
and 256 proposals
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Figure A.5: Object detection by GF3D model pre-trained on ScanNet data with 12 layers
and 256 proposals

Figure A.6: Object detection by GF3D model pre-trained on ScanNet data with 12 layers
and 256 proposals with twice model backbone weig h
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Figure A.7: Object detection by GF3D model pre-trained on ScanNet data with 12 layers
and 512 proposals with twice model backbone weig h

Figure A.8: Object detection by FCAF3D model pre-trained on S3DIS data
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Figure A.9: Object detection by TR3D model pre-trained on SunRGBD data

Figure A.10: Object detection by TR3D model pre-trained on ScanNet data
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Figure A.11: Object detection by TR3D model pre-trained on S3DIS data
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Appendix B

Semantic Segmentation

B.1 Semantic Segmentation Code

from mmdet3d . ap i s import in i t mode l , i n f e r enc e s egmento r
import numpy as np

c h e c k p o i n t f i l e = ’ path/ to / checkpoint . pth ’
c o n f i g f i l e = ’ path/ to / c o n f i g . py ’
model = in i t mode l ( c o n f i g f i l e , c h e c k p o i n t f i l e )
res , data = in f e r ence s egmento r ( model , ’ po in t c l oud . bin ’ )
mask = r e s . get ( ’ p r e d p t s s e g ’ ) . cpu ( ) . numpy ( ) [ ’ pts semant ic mask ’ ]
l o g i t s = r e s . get ( ’ p t s s e g l o g i t s ’ ) . cpu ( ) . numpy ( ) [ ’ p t s s e g l o g i t s ’ ]
np . save ( ’ mask f i l e name ’ ,mask )
np . save ( ’ l o g i t s f i l e n a m e ’ , l o g i t s )

Listing B.1: MMDetection Semantic Segmentation Pipeline
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B.2 Semantic Segmentation Results

Figure B.1: Semantic segmentation by PointNet++ model pre-trained on ScanNet data with
single-scale grouping and x-y-z and color input
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Figure B.2: Semantic segmentation by PointNet++ model pre-trained on S3DIS data with
single-scale grouping and x-y-z and color input

Figure B.3: Semantic segmentation by PointNet++ model pre-trained on ScanNet data with
multi-scale grouping and x-y-z input
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Figure B.4: Semantic segmentation by PointNet++ model pre-trained on ScanNet data with
multi-scale grouping and x-y-z and color input

Figure B.5: Semantic segmentation by PointNet++ model pre-trained on S3DIS data with
multi-scale grouping and x-y-z and color input
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Figure B.6: Semantic segmentation by PAConv model pre-trained on S3DIS data with x-y-z
and color input

Figure B.7: Semantic segmentation by CUDA implementation of PAConv model pre-trained
on S3DIS data with x-y-z and color input
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Appendix C

Optimization code

C.1 Pareto front Python code

import numpy as np

de f p a r e t o f r o n t (x , y , maximize x , maximize y ) :
’ ’ ’
Find Pareto Front i e r o f a 2 dimens iona l opt imiza t i on

Parameters
−−−−−−−−−−
x : np . array

1 s t l i s t o f opt imiza t i on v a r i a b l e s
y : np . array

2nd l i s t o f opt imiza t i on v a r i a b l e s
maximize x : boolean

whether to maximize or minimize x
maximize y : boolean

whether to maximize or minimize y

Returns
−−−−−−−
p f r o n t : np . array

Pareto f r o n t o f the two metr i c s
’ ’ ’

# s o r t the l i s t in e i t h e r ascending or descending order o f x
z = np . c [ x , y ] [ np . a r g s o r t ( x ) ]
z = z [ : , : : − 1 ] i f maximize x e l s e z
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# s t a r t Pareto f r o n t with the f i r s t va lue in the so r t ed l i s t
p f r o n t = [ z [ 0 ] ]

# loop through the so r t ed l i s t
f o r xy in z [ 1 : ] :

i f maximize y :
# f i n d h igher va lue s o f y and add to Pareto f r o n t
i f xy [ 1 ] >= p f r o n t [ − 1 ] [ 1 ] :

p f r o n t . append ( xy )
e l s e :

# f i n d lower va lue s o f y and add to the Pareto f r o n t
i f xy [ 1 ] <= p f r o n t [ − 1 ] [ 1 ] :

p f r o n t . append ( xy )

re turn np . array ( p f r o n t )

Listing C.1: Pareto front code

C.2 PyGMO Problem Formulation

from t o o l s import c a l c s e n s i t i v i t y

c l a s s meas pos opt imizat ion :
de f i n i t ( s e l f ,

N,
ob jec t xyz ,
object dxyz ,
meas pos ,
response ,
E,
d i s t unocc ,
d i s t 1 ,
d i s t 2 ) :
’ ’ ’
Parameters
−−−−−−−−−−
N: i n t

number o f optimal measurement p o s i t i o n s
ob j e c t xyz : np . array

array o f ob j e c t voxe l c en t e r x−y−z coo rd ina t e s
ob j ec t dxyz : np . array
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array o f voxe l p i t c h e s in x , y , and z
meas pos : np . array

array o f p o t e n t i a l measurement poses
[ x , y , z , r o l l , p itch , yaw ]

re sponse : np . array
de t e c t o r re sponse

E: num
gamma ray energy in keV

d i s t unocc : np . array
unoccupied d i s t anc e in m − a i r a t t enuat ion

d i s t 1 : np . array
occupied d i s t ance o f ob j e c t mate r i a l in m

d i s t 2 : np . array
occupied d i s t ance o f non−ob j e c t mate r i a l in m

Returns
−−−−−−−
meas pos opt imizat ion : pygmo . Problem

pygmo Problem ob j e c t
’ ’ ’

# save parameters to c l a s s f o r use in computations
s e l f . ob j e c t xyz = ob j e c t xyz
s e l f . ob j ec t dxyz = objec t dxyz
s e l f . meas pos = meas pos
s e l f .N = N
s e l f .E = E
s e l f . r e sponse = response
s e l f . d i s t 1 = d i s t 1
s e l f . d i s t 2 = d i s t 2
s e l f . d i s t unocc = d i s t unocc

de f f i t n e s s ( s e l f , x ) :
# x i s index o f measurment p o s i t i o n
x = x . astype ( ’ i n t ’ )
meas pos = s e l f . meas pos [ x ]
d0 = s e l f . d i s t unocc [ x ]
d1 = s e l f . d i s t 1 [ x ]
d2 = s e l f . d i s t 2 [ x ]

# c a l c u l a t e s e n s i t i v i t y at each pose to each voxe l
s e n s i t i v i t y = c a l c s e n s i t i v i t y ( meas pos ,

s e l f . ob jec t xyz ,
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d0 ,
d1 ,
d2 ,
s e l f . ob ject dxyz ,
r e sponse=s e l f . response ,
E=s e l f .E)

# minimize s e n s i t i v i t y var iance
i f s e l f .N == 1 :

f 1 = s e n s i t i v i t y . var ( )
e l s e :

f 1 = s e n s i t i v i t y . sum( a x i s =0). var ( )

# maximize s e n s i t i v i t y mean
i f s e l f .N == 1 :

f 2 = − s e n s i t i v i t y . mean ( )
e l s e :

f 2 = − s e n s i t i v i t y . sum( a x i s =0).mean ( )

re turn [ f1 , f 2 ]

de f ge t nob j ( s e l f ) :
# return number o f o b j e c t i v e s
re turn 2

de f g e t n i x ( s e l f ) :
# number o f i n t e r g e r dimensions
re turn s e l f .N

de f get bounds ( s e l f ) :
# pre computed measurement p o s i t i o n s f o r index ing meas pos
min bounds = i n t (0 )
max bounds = i n t ( l en ( s e l f . meas pos )−1)

re turn ( [ min bounds ] ∗ s e l f .N, [ max bounds ] ∗ s e l f .N)

Listing C.2: PyGMO Problem Formulation
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