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MOTIVATION Measuring cell signaling by mass spectrometry-based phosphoproteomics provides a
promising opportunity to direct cancer therapy development. Despite continued progress in profiling the
phosphoproteomes of patients across different cancer types, challenges inherent to these types of data
hinder the identification of clinically relevant proteomic alterations. Here, we present DDMC: a clustering
and kinase prediction strategy that identifies signaling nodes by grouping phosphosites according to their
phosphorylation signal and amino acid sequence. The cluster centers, by virtue of being summaries of the
phosphorylation changes of those phosphosites, can be used to establish associations with signaling re-
sponses. The sequence features of clusters can be used to identify the upstream kinases regulating
them. In doing so, this method reconstructs signaling networks into biologically meaningful clusters that
can be associated with cell responses and upstream kinase drivers.
SUMMARY
Cell signaling is orchestrated in part through a network of protein kinases and phosphatases. Dysregulation
of kinase signaling is widespread in diseases such as cancer and is readily targetable through inhibitors.
Mass spectrometry-based analysis can provide a global view of kinase regulation, but mining these data
is complicated by its stochastic coverage of the proteome, measurement of substrates rather than kinases,
and the scale of the data. Here, we implement a dual data and motif clustering (DDMC) strategy that simul-
taneously clusters peptides into similarly regulated groups based on their variation and their sequence pro-
file. We show that this can help to identify putative upstream kinases and supply more robust clustering. We
apply this clustering to clinical proteomic profiling of lung cancer and identify conserved proteomic signa-
tures of tumorigenicity, genetic mutations, and immune infiltration. We propose that DDMC provides a gen-
eral and flexible clustering strategy for the analysis of phosphoproteomic data.
INTRODUCTION

Cell signaling networks formed by protein kinases dictate cell

fate and behavior through protein phosphorylation, including

in diseases such as cancer (Hunter, 1995). Measuring cell

signaling by mass spectrometry (MS)-based global phospho-

proteomics provides a promising opportunity to direct therapy

development (Yaffe, 2019), particularly given the accessibility

of these signaling changes to drug targeting. Nevertheless,

despite the rapid accumulation of large-scale phosphoproteo-

mic clinical data, it is still difficult to link signaling events lead-
Cell Repo
This is an open access article und
ing to observed proteomic alterations and phenotypic

outcomes.

One approach to analyze phosphoproteomic measurements

has been to infer the activity of upstream kinases. For instance, ki-

nase-substrate enrichment analysis averages the signals of

groups of known kinase substrates to infer enriched pathways in

biological samples (Casadoet al., 2013). Anothermethod, integra-

tive inferred kinase activity (INKA), infers kinase activity by

integrating the overall and activation loop phosphorylation of ki-

nases alongside the phosphorylation abundance of known sub-

strates. Kinase-substrate relationships are either experimentally
rts Methods 2, 100167, February 28, 2022 ª 2022 The Author(s). 1
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determined or predicted by NetworKIN, an algorithm that uses

sequence motif and protein-protein network information (Linding

et al., 2007; Beekhof et al., 2019; Hornbeck et al., 2019). Finally,

Scansite predicts kinase-substrate interactions using sequence

motifs generated from oriented peptide library scanning experi-

ments (Obenauer et al., 2003). These methods, sometimes in

combination, help to reconstruct signaling pathway activities

from individual samples.

However, due to several limitations, kinase-substrate infer-

ence still provides a limited view of signaling network changes.

Kinase prediction methods are necessarily dependent on having

well-characterized kinase-substrate interactions, butmost of the

phosphoproteome remains largely uncharacterized (Needham

et al., 2019). Just 20% of kinases have been shown to phosphor-

ylate 87% of currently annotated substrates, and around 80% of

kinases have fewer than 20 substrates, with 30% yet to be as-

signed a single substrate (Needham et al., 2019). Insights depen-

dent on this unequal knowledge distribution are less likely to

identify understudied protein kinases. An additional major chal-

lenge, particularly with discovery-mode multiplexed tandem

mass tag (TMT) MS, is missing values. The technique processes

batches of samples with stochastic coverage in each experi-

ment. This means that the portion of the phosphoproteome

quantified in the samples of different TMT experiments varies

(Tabb et al., 2010). Computational tools usually require complete

datasets, and so data are frequently preprocessed by imputing

missing values—inflating the effect of certain measurements or

throwing out any peptides displaying missing values—at the

expense of losing critical information (Chen et al., 2020; Gillette

et al., 2020). Kinase enrichment and prediction methods are

further compromised by this problem.

Clustering methods, such as hierarchical clustering or

k-means, can be used to cluster phosphopeptides based on

similarities in the patterns of their abundance (Mertins et al.,

2016; Chen et al., 2020; Deb et al., 2020). This clustering criterion

results in groups of peptides that display similar phosphorylation

patterns across conditions, but that may be targeted by sets of

different upstream kinases that are not directly inferred by these

methods. The residues surrounding phosphorylation sites have

evolved to become fine-tuned motifs that confer signaling spec-

ificity and fidelity (Zarrinpar et al., 2003; Tan et al., 2009). Clus-

tering based on motif similarity might, therefore, improve model

interpretation by facilitating the identification of upstream ki-

nasesmodulating clusters that display conserved sequencemo-

tifs. On the other hand, clustering peptides based on sequence

alone may result in groups of proteins that, while sharing the

same set of upstream kinases, are differently regulated due to

context. We therefore hypothesized that combining phosphory-

lation status and sequence similarity may enable a balanced

characterization of the cell signaling state.

Here, we present an algorithm known as dual data and motif

clustering (DDMC) that probabilistically and simultaneously

models both the peptide phosphorylation variation and peptide

sequence motifs of peptide clusters to reconstitute cell signaling

networks (Figure 1). A key distinction of DDMC is that it analyzes

multidimensional data, whereas kinase enrichment tools operate

on individual samples, relying on prior knowledge. Importantly,

DDMC clusters are not limited to pre-existent kinase motifs
2 Cell Reports Methods 2, 100167, February 28, 2022
and therefore do not rely on previous kinase-substrate charac-

terization. Thus, DDMC kinase predictions can lead to the asso-

ciation of understudied kinases and phenotypic responses. We

propose that DDMC represents a unified alternative that over-

comes fundamental methodologic issues of current tools. To

test the utility of our method, we analyzed the phosphopro-

teomes of 110 treatment-naı̈ve lung adenocarcinoma (LUAD)

tumors and 101 paired normal adjacent tissues (NATs) from

the National Cancer Institute (NCI)’s Clinical Proteomic Tumor

Analysis Consortium (CPTAC) LUAD study (Gillette et al.,

2020). We characterized the phosphoproteome of patients by

identifying those signaling signatures associated with tumori-

genesis, the presence of specific mutations, and tumor immune

infiltration. In total, we demonstrated DDMC as a general strat-

egy for improving the analysis of phosphoproteomic surveys.

RESULTS

Constructing an expectation-maximization algorithm
tailored for clustering phosphoproteomic data
In seeking to cluster phosphoproteomic measurements, we

recognized that these data provide two pieces of information:

the exact site of phosphorylation on a peptide sequence and

some measure of abundance within the measured samples.

Both pieces of information are critical to the overall interpretation

of the data. Based on this observation, we built a mixture model

that probabilistically clusters phosphosites based on both their

peptide sequence and abundance across samples (Figure S1).

In each iteration, DDMC applies an expectation-maximization al-

gorithm to optimize clusters that capture the average features of

member sequences and their abundance variation (Figures 1A

and S1). Both information sources—the peptide abundance

and sequence—can be prioritized during cluster fitting by a

weight parameter. With a weight of 0, DDMC becomes a

Gaussian mixture model (GMM) that exclusively clusters pep-

tides according to their phosphorylation signal. With a very large

weight, DDMC primarily clusters peptides according to their

peptide sequences. Clustering both the sequence and abun-

dance measurements ensures that the resulting clusters are a

function of both features, which we hypothesized would provide

both more meaningful and robust clusters.

The resulting clustering provides coordinated outputs that can

be used in a few different ways. The cluster centers, by virtue of

being a summary for the abundance changes of these peptides,

can be regressed against phenotypic responses (e.g., cell phe-

notypes or clinical outcomes) to establish associations between

clusters and response (Figure 1B). Regression using the clusters

instead of each peptide ensures that the model can be devel-

oped despite relatively few samples, with minimal loss of infor-

mation since each peptide within a cluster varies in a similar

manner. One can also interrogate the position-specific scoring

matrices (PSSMs) from the resulting cluster sequence motifs.

Given a set of peptide sequences, PSSMs quantify the amino

acid frequencies across peptide positions and show to what

extent each residue is enriched or depleted per position (Fig-

ure 1A). Thus, a cluster PSSM provides a general representation

of the cluster sequence features and can be readily compared

with other information, such as experimentally generated profiles
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Figure 1. Schematic of the DDMC approach to cluster global signaling data and infer upstream kinases driving phenotypes

(A) DDMC is run to cluster an input phosphoproteomic dataset to generate four clusters of peptides that show similar sequence motifs and phosphorylation

behavior.

(B) Predictive modeling using clusters allows one to establish associations between specific clusters and features of interest.

(C) Putative upstream kinases regulating clusters can be predicted by comparing the experimentally generated specificity profiles of upstream kinases (kinase

PSPL) and the cluster PSSMs PSSM; Position-specific scoring matrix, PSPL; Position scanning peptide library (Hutti et al., 2004; Begley et al., 2015).

See also Figures S1 and S2.
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of putative upstream kinases via position-specific scanning

libraries (PSPLs) (Obata et al., 2000; Snyder et al., 2010). In

this technique, a kinase of interest is individually incubated

with each of 180 different peptide libraries in which each library
contains a central phosphoacceptor residue (S/T or Y), a second

fixed amino acid located any of the peptide residues spanning

positions �5 throughout +4 relative to the phosphorylation site,

and a degenerate mixture containing all natural amino acids at
Cell Reports Methods 2, 100167, February 28, 2022 3
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all other positions. The kinase and peptide libraries are incubated

in the presence of radioactive ATP, which allows the quantifica-

tion of phosphorylation abundance per residue and position and

the identification of the kinase’s ‘‘optimal’’ substrate motif. We

extracted a collection of 42 kinase specificity profiles to identify

which cluster motifs most resemble the optimal motif of putative

upstream kinases (Figure 1C) (Hutti et al., 2004; Miller et al.,

2008; Begley et al., 2015; van de Kooij et al., 2019). However,

as kinase-substrate specificity is also dictated by features

outside of the immediate substrate region, we also note that

our approach is more general than strictly assembling kinase-

substrate predictions, as non-enzymatic specificity information

may be present in the DDMC sequence motifs. This overview

demonstrates how DDMC can take complex, coordinated

signaling measurements and find patterns in the phosphoryla-

tion signals to reconstruct signaling networks and associate

clusters and phenotypes.

DDMC robustly imputes missing values
A major limitation of discovery-mode MS-based phosphopro-

teomic data is the presence of missing values due to the sto-

chastic signaling coverage in each run. In the resulting dataset,

many phosphosites are observed in groups of samples and

missed in others (Figure 2A). To evaluate the robustness of

DDMC in analyzing incomplete datasets, we designed a compu-

tational experiment wherein we synthetically removed random

TMT experiments from the dataset and predicted them using

the peptide-assigned cluster centers. The mean squared error

of imputation was compared with other commonly used strate-

gies, such as the peptides’ mean, filling in zeros, or matrix

completion by principal-component analysis (PCA) (Figure 2A).

We applied this experiment across different numbers of clusters

and sequence weighting to explore the imputation performance.

We observed that increasing the number of clusters consistently

improved performance (Figures 2B and 2C), whereas primarily

prioritizing the sequence information yielded worse imputation

estimates (Figures 2D–2G). However, a weight of 100 still al-

lowed DDMC to accurately predict missing values while incorpo-

rating the sequence information into the clustering criterion

(Figures 2C and 2E–2G). We concluded that DDMC clearly out-

performs many common imputation strategies and imputes

missing values with similar accuracy to matrix completion by

PCA.

DDMC correctly identifies AKT1 and ERK2 as upstream
kinases of signaling clusters containing their substrates
A major benefit of directly modeling the phosphopeptide

sequence information is the construction of cluster motifs to infer

which putative upstream kinases might preferentially target a

specific cluster. To validate this ability, we used DDMC to cluster

the phosphoproteomic measurements of MCF7 cells treated

with a panel of 61 drug inhibitors reported by Hijazi et al.

(2020). We hypothesized that the phosphoproteomic clusters

align to specific and identifiable targeted kinases. Examining

the clusters by PCA, the scores of AKT/PI3K/mTOR targeted in-

hibitors (shown in orange in Figure 3A) and the loading of cluster

16 were clearly opposed (Figures 3A and 3B). The additional in-

hibitors GSK2334470 and LY2584702 were also negatively
4 Cell Reports Methods 2, 100167, February 28, 2022
associated with cluster 1; both inhibit kinases PDK1 and S6K1,

respectively, expected to modulate the AKT/PI3K/mTORC

pathway. A heatmap displaying cluster 1’s phosphorylation

signal across treatments corroborates that the abundance of

these peptides is substantially decreased when treated with

AKT/mTOR/PI3K inhibitors (Figure 3C). Encouragingly, the AKT

profile wasmost closely matched to the PSSM of cluster 1 within

a collection of 42 different kinase PSPL matrices (Figure 3D). In

addition, NetPhorest identified AKT as the eighth top scoring up-

stream kinase of cluster 1, further corroborating DDMC’s predic-

tion (Figure 3E).

As a second test, we extracted the sequences of experimen-

tally validated substrates of ERK2 to create an ‘‘artificial’’

ERK2-specific PSSM positive control (ERK2+ motif) (Carlson

et al., 2011) (Figure 3F). As expected, ERK2 was predicted to

be the upstream kinase with the highest preference for the clus-

ter’smotif (Figure 3G). Given the consistent enrichment of hydro-

phobic and polar residues throughout the entire ERK2 target

motif (Figure 3F), we asked whether randomly shuffling the clus-

ter PSSM positions surrounding the phosphoacceptor residue

would affect the upstream kinase prediction. Randomization

led to a marked increase in the distance between the ERK2

specificity profile and the ERK2+ motif (Figure 3H). Clusters

from the CPTAC dataset that were preferentially favored by

ERK2 showed a similar decline in specificity between the clus-

ters PSSMs and ERK2 PSPL matrix on randomization (Fig-

ure 3H). This experiment shows that position-specific matching

information is contained within the ERK2 target motif despite

the uniform biophysical properties (Figures 3G and 3H). Alto-

gether, these results illustrate two different validation scenarios

in which DDMC successfully identifies the upstream kinases

regulating clusters.

DDMC improves prediction of different phenotypes and
provides more robust clustering
As detailed later (Figures 5, 6, and 7), we used DDMC to analyze

the phosphoproteomes of 110 treatment-naı̈ve LUAD tumors

and 101 paired NATs from the NCI’s CPTAC LUAD study. We

used DDMC with the binomial sequence distance method and

30 clusters (Figures 1 and 2B–2D). We were able to include

30,561 peptides that were not observed in every sample through

our ability to handle missing data but still filtered out 11,822 pep-

tides that were only captured in one 10-plex TMT run. We used

this fitting result throughout the rest of this study. The resulting

cluster motifs can be found in Figure S2.

To evaluate the benefit of including peptide sequence infor-

mation during clustering, we investigated whether different

sequence weights would affect the performance of a regularized

logistic regression model that predicts the mutational status of

STK11, whether a patient harbors a mutation in the epidermal

growth factor receptor (EGFRm), and the level of tumor infiltra-

tion (‘‘hot’’ versus ‘‘cold’’). Three independent DDMC runs

were performed to observe the reproducibility of the prediction

results. We found that for all three phenotypes, optimal predic-

tions were derived when clustering was partly based on the pep-

tide sequence—as highlighted in red circles. In the case of

STK11, the use of the maximum performance is achieved with

a weight of 250. Likewise, EGFRm samples were best classified
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(B–G) A total of five random TMT experiments per peptide were imputed by clustering using a different number of clusters (B–D) or different weights (E–G). Note

that the minimum signal imputation is not shown for clarity since its prediction performance was dramatically worse.
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with a mix weight of 1,000. Finally, the regression model classi-

fying whether a sample is ‘‘hot-tumor-enriched’’ (HTE) or ‘‘cold-

tumor-enriched’’ (CTE) showed the best fitness with weights

spanning from 100 to 750. Together, these results indicate that

observing the motif information during clustering leads to final

clusters that enhance the performance of downstream pheno-

type prediction models (Figures 4A and S3). Note that random

chance is equal to 0.5 and perfect predictions 1.0, so an
improvement of 0.1 (STK11 prediction) is a movement across

20% of this range.

Next, we explored how using different weights affects the over-

all phosphorylation signal and sequence information of the result-

ing clusters. To do so, we compared the model behavior after

clustering the CPTAC data with a weight of 0 (peptide abundance

only), 100 (mix), and 1,000,000 (mainly sequence). First, we hy-

pothesized that the abundance-only model would generate
Cell Reports Methods 2, 100167, February 28, 2022 5
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Figure 3. Validation of upstream kinase predictions

(A and B) PCA analysis of the DDMC phosphoproteome clusters of MCF7 cells subjected to a drug screen (Hijazi et al., 2020).

(C) Heatmap showing the effect of inhibitors on the phosphorylation signal of cluster 16.

(D) DDMC upstream kinase prediction of cluster 16.

(E) NetPhorest upstream kinase prediction of cluster 16.

(F) Resulting PSSM generated using reported ERK2 substrates (Carlson et al., 2011).

(G) Upstream kinase predictions of CPTAC clusters 3, 7, and 21 in addition to the ERK2 motif shown in (F).

(H) Upstream kinase predictions of the same PSSMs after randomly shuffling the motif positions.
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clusters wherein its members would show less intra-cluster vari-

ation in phosphorylation signal and thus a lower mean squared

error (MSE). To test this, we computed the average peptide-to-

cluster MSE of 2,000 randomly selected peptides for each model

across all clusters. We observed a direct correlation between

weight and MSE (Figure 4B). Next, we calculated the cumulative
6 Cell Reports Methods 2, 100167, February 28, 2022
PSSM enrichment by summing the sequence information (bits)

of all cluster PSSMs per model. As expected, increasing the

weight led to a corresponding increase in the cumulative

sequence information (Figure 4C). We additionally observed that

the clustering results generated by DDMC are noticeably different

from those of eight standard clustering methods (Figure S4).
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Figure 4. Sequence information enhances model prediction and provides more robust clustering

(A) Performance of a regression model predicting the mutational status of STK11 and EGFR, and the level of tumor infiltration in LUAD patients using either only

phosphorylation abundance (weight = 0), mainly sequence information (106), or both (0 < w % 106). Error bars indicate the standard error of the mean.

(B) MSE between the phosphorylation signal of 2,000 randomly selected peptides and the center of its assigned clusters using a weight of 0 (p-Abundance), 250

(Mix), or 106 (Sequence).

(C) Cumulative PSSM enrichment across positions comparing the p-Abundance, Mix, and Sequence clustering strategies. Error bars indicate the 95% confi-

dence interval. The bottom and top of the box indicate the 25th and 75th percentiles. The line inside the box is the median.

See also Figure S3
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We compared the classification performance of four regular-

ized logistic regression models fit either the DDMC clusters,

clusters generated by the standard methods GMM and

k-means, or the raw phosphoproteomic data directly. It is worth

noting that unlike DDMC, methods such as GMM, k-means, or

direct regression cannot handle missing values. and thus for

these strategies we used the 1,311 peptides that were observed

in all samples, whereas DDMC was fit to the entire dataset

comprising 30,561 phosphosites. In predicting STK11 muta-

tional status, we found that DDMC fit to the fully observed

1,311 peptides yielded a moderately higher prediction perfor-

mance than k-means, GMM, and DDMC fit to the entire dataset

with missingness (Figure S3A). EGFR mutational status was

noticeably better classified with both DDMC fittings (with and

without missingness) than with k-means and GMM. Direct

regression to the raw signaling data yielded excellent perfor-

mance; however, this strategy assigns thousands of coefficients

to different peptides that vary every time the model is run,

rendering this approach unable to establish a consistent link be-

tween phenotypes and signaling (Figure S5D). These results

show that using DDMC with a mixed weight that similarly priori-

tizes both information sources—peptide abundance and

sequence—leads to more robust clustering of phosphosites

through a tradeoff between phosphorylation abundance and

sequence motifs.

Widespread, dramatic signaling differences exist
between tumor and normal adjacent tissue
We explored whether DDMC could recognize conserved

signaling patterns in tumors compared with NAT. The signaling

difference between tumors and NAT samples was substantial,
highlighting the significant signaling rewiring in tumor cells (Fig-

ure 5A). Using PCA, we could observe that NAT samples were

more like one another than to each tumor sample (Figures 5B

and 5C). Nearly every cluster was significantly different in its

average abundance between tumor and NAT (Figures 5C and

5D). Not surprisingly given these enormous differences, samples

could be almost perfectly classified using their phosphopeptide

signatures, with or without DDMC (Figures 5E and S5A–S5C).

However, directly classifying samples using the unclustered

phosphoproteomic data and a regularized logistic regression

model generates phosphosite weights that vary across runs.

For instance, we saw that the associations of peptides MYH9:

S1943-p, IFT140: S1443-p, and NCK1: Y105-p were selected

in two runs but had an opposite association with sample status

(Figure S5D). Using the DDMC clusters, a logistic regression

model identified consistent associations between NAT versus

tumor status and clusters 6, 15, and 20 (Figures 5E and 5F).

With the abundance changes and regression results we

observed, we further explored these three clusters.

Our DDMC results suggest that downregulation of NEKs and

CLK2 promote cilia disassembly and migration in cancer cells,

respectively, while CK1 activity correlates with tumor-specific

signaling regulating cell cycle. Peptides in cluster 6, presumably

targeted by NEK1&4, associate with hepatocyte growth factor

(HGF) receptor signaling as well as cytoskeletal remodeling

phenotypes (Figures 5G and S6A). Even though NEKs are fairly

understudied, NEK1 has an established role in ciliagenesis

and NEK4 is involved in regulating microtubule dynamics

(Moniz et al., 2011; Meirelles et al., 2014). The absence of cilia

in cancer cells promotes malignancy (Plotnikova et al., 2008;

Fabbri et al., 2019), and NEK-regulated cluster 6 displays a
Cell Reports Methods 2, 100167, February 28, 2022 7
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Figure 5. Conserved tumor differences compared with normal adjacent tissue

(A) Hierarchical clustering of the DDMC cluster centers.

(B and C) PCA scores (B) and loadings (C) of the samples and phosphopeptide clusters, respectively.

(D) Phosphorylation signal of tumor and NAT samples per cluster and statistical significance according to a Mann-Whitney U rank test (*p < 0.05; **p < 0.001).

(E) Receiver operating characteristic curve (ROC) of a regularized logistic regression model.

(F) Logistic regression weights per cluster.

(G) Upstream kinase predictions of clusters 6, 15, 20, and 23.

See also Figure S5
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striking phosphorylation decrease in tumor samples compared

with NATs, which might result in cilia disassembly. Interestingly,

cluster 23, also downregulated in tumors, presents a motif

favored by NEK1&3 and shows a marked enrichment of cilia-

related processes (Figures 5D and S6A).
8 Cell Reports Methods 2, 100167, February 28, 2022
Similarly, cluster 15 is dramatically upregulated in NAT versus

tumor samples, contributes toward correctly classifying NAT

samples, and DDMC predicts CLK2 to be the most promising

candidate for regulating its activation. CLK2 is a largely under-

studied dual specificity kinase known to act as an RNA splicing
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Figure 6. Phosphoproteomic aberrations associated with EGFR mutational status

(A) Phosphorylation signal of EGFR WT and mutant samples per cluster and statistical significance according to a Mann-Whitney U rank test (*p < 0.05;

**p < 0.001).

(B and C) ROC of a logistic regression model predicting the EGFR mutational status and (C) its corresponding weights per sample type.

(D) Putative upstream kinases of clusters 5, 16, and 27.

(E) Volcano plot showing the differential protein expression between EGFR WT and mutant samples. Colored dots are statistically significant according to a

Mann-Whitney U rank test (p values < 0.05).
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regulator. Gene set enrichment analysis (GSEA) indicates that in-

tegrin-mediated cell adhesion, cell junction assembly, and orga-

nization are the biological processes with highest enrichment

scores (Figure S6A and S6B). These data are consistent with

the observation that CLK2 downregulation enhanced cell migra-

tion and invasion and upregulated epithelial-to-mesenchymal

transition (EMT)-related genes (Yoshida et al., 2015).

Conversely, the phosphorylation signal in cluster 20 is signifi-

cantly higher in tumors compared with NATs and explains tu-

mor-specific signaling that could be driven by CK1 (Figures 5D

and 5F). CK1 has been identified to induce acquired resistance

to the EGFR inhibitor erlotinib in several EGFR-mutant non-small

cell lungcancer (NSCLC) cell lines (Lantermannet al., 2015). Taken

together, DDMC builds phosphoproteomic clusters that present

signaling dysregulation common to tumors compared with NATs

and identifies putative upstream kinases modulating them.

Genetic driver mutations are associated with more
targeted phosphoproteomic rewiring
Tyrosine kinase inhibitors (TKIs) targeting the receptor tyrosine

kinase (RTK) EGFR are effective treatments in cancer patients
with EGFRm. However, these treatments are limited by drug

resistance, which in some cases is mediated by cell signaling

rewiring that bypasses EGFR inhibition. Thus, we aimed to

identify the phosphoproteomic aberrations triggered by mutant

EGFR.

Most clusters were significantly altered on average, generally

toward higher abundances with an EGFR mutation (Figure 6A).

The cluster centers corresponding to each patient’s tumor sam-

ples, excluding NATs, could successfully predict the EGFR

mutational status by regularized logistic regression. We

observed the largest statistically significant phosphorylation

abundance increase in EGFRm samples with cluster 5 (Fig-

ure 6B). Moreover, the regression model identified clusters 16

and 27 to explain the signaling differences between EGFRm

and wild-type (WT) samples, respectively (Figure 6C). DDMC

identified PKC, PKA, and PIM1, respectively, as putative up-

stream kinases of clusters 5, 16, and 27 (Figure 6D). As elabo-

rated below, our data suggest that EGFRm tumors might be

regulated by two groups of proteins acting downstream of

PKC and PKA, whereas PIM1 might support the signaling of

EGFR WT tumors that are possibly driven by further RTKs.
Cell Reports Methods 2, 100167, February 28, 2022 9
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In different EGFR-dependent tumors, PKC—putative regulator

of cluster 5—has been shown to mediate receptor transactiva-

tion, induce mTOR signaling, and confer acquired resistance to

EGFR inhibitors (Stewart andO’Brian, 2005; Fan et al., 2009; Sal-

ama et al., 2016; Chen et al., 2021). Enrichment analysis of the

global protein expression data across all tumor samples showed

that the heme degradation pathway enzymes BLVRA and

HMOX2, as well as the mitogenic kinase RPS6KA1, among

others, are significantly upregulated in EGFRm samples (Fig-

ure 6E). Consistent with the DDMC prediction, the kinase do-

mains of RPS6KA1 and BVLRA are phosphorylated by PKC

(Meshki et al., 2010; Miralem et al., 2012). GSEA shows an over-

representation of the EGFR, human epidermal growth factor re-

ceptor (HER), and vascular endothelial growth factor receptor

(VEGFR) signaling pathways in cluster 5, which might suggest

crosstalk among the three RTKs’ signaling (Figure S6A).

PKA, which might regulate cluster 16, is crucial for EMT,

migration and invasion, and tumorigenesis (Shaikh et al., 2012;

Coles et al., 2020). This kinase induces the activation of EGFR

and its inhibition leads to a ligand-independent degradation of

the receptor (Chen et al., 2002; Piiper et al., 2003; Oksvold

et al., 2008; Feng et al., 2014). The EGFR and VEGFR signaling

pathways are also enriched in cluster 16 alongside the ATM

pathway (Figure S6A).

PIM1might act upstream of cluster 27, which in turn is upregu-

lated in EGFRWT tumor samples (Figures 6A, 6C, and 6D). PIM1

is an established oncogenic driver, and its inhibition was shown

to re-sensitize cancer cells to radiotherapy as well as c-MET and

ALK inhibition in NSCLC tumors (Kim et al., 2013; Cao et al.,

2019; Trigg et al., 2019; Attili et al., 2020). Interestingly, the

c-MET ligand HGF is more abundant in EGFR WT samples (Fig-

ure 6E). Moreover, activation of the KIT receptor, which can also

mediate bypass resistance to targeted therapies and is enriched

in EGFR WT samples, is reportedly regulated, at least in part, by

PIM1 (An et al., 2016; Dziadziuszko et al., 2016; Ebeid et al.,

2020) (Figures 6D and 6E). In total, our analysis identifies a

consistent association between EGFR activity with established

and previously unknown signaling mechanisms.

Finally, to show that DDMC can accurately predict other geno-

types, we again used the signaling cluster centers with regular-

ized logistic regression to classify the mutational status of

STK11. Inactivating somatic mutations in the tumor suppressor

STK11 leads to increased tumorigenesis and metastasis (Ji

et al., 2007). This context is consistent with our results that clus-

ters 9 (TLK1) and 11 (CK2) are associated with STK11m

signaling, whereas clusters 16 (PKA) and 18 (CK1) are associ-

ated with WT samples (Figure S7).

Exploration of immune infiltration-associated signaling
patterns in tumors
Immune checkpoint inhibitors (ICIs) have emerged as effective

treatment options for NSCLC patients. However, there still is a

need to identify or influence which patients will respond to these

therapies. Patients who do not respond to ICIs often have tumors

with poor immune infiltration either inherently or via an adaptive

process after long exposure to the drug. However, the signaling

mechanism by which malignant cells prevent tumor infiltration

remains elusive. We used our DDMC clusters to explore the
10 Cell Reports Methods 2, 100167, February 28, 2022
shared signaling patterns that differentiate HTE from CTE

LUAD patients. HTE and CTE status per patient was determined

using xCell (Aran et al., 2017; Gillette et al., 2020).

Only cluster 21 had a significantly different abundance be-

tween CTE and HTE samples (Figure 7A); however, infiltration

status could still be accurately classified using combinations of

the DDMC clusters. This predictive performance was mainly ex-

plained by a positive association of cluster 17 with HTE status

and clusters 20 and 21with CTE samples. Other clusters contrib-

uted to explain the signaling differences between both groups

but to a lesser extent (Figure 7B). These results prompted us to

further investigate clusters 17, 20, and 21, which our model in-

ferred were regulated by CK2/TGFBR2, CK1, and ERK2, respec-

tively (Figure 7C). We found that CK2 and TFGBR2 associate

with the regulation of B cell homeostasis in HTE samples,

whereas CK1 and ERK2 correlate with the activity of immuno-

suppressive regulatory T cells (Tregs) in CTE samples.

We performed GSEA on these three clusters using a compen-

dium of gene sets associated with immunological signatures

(Godec et al., 2016). Cluster 17 presents a marked enrichment

of downregulated genes upon lipopolysaccharide stimulation,

an upregulation of B cell- over eosinophil-specific genes, the

enrichment of genes upregulated by an influenza vaccine, and

genes upregulated in immunoglobulin (Ig)D+ B cells. Thus, these

might suggest that CK2 and TGFBR2 could regulate cluster 17 to

direct B cell homeostasis. In line with this interpretation, a recent

study found that CK2 knockout in B cells resulted in lower B cell

receptor signaling, which perturbed B cell differentiation (Wei

et al., 2021). Transforming growth factor (TGF)-b signaling is

involved in several processes regulating B cell maturation. For

instance, a study showed that IgD+ B cells were observed in

the presence of TGF-b signaling, whereas genetic deletion of

the receptor led to complete loss of IgD (Albright et al., 2019).

Consistent with their higher abundance in CTE samples and

negative logistic regression coefficients, both cluster 20 and 21

showed enrichment of several phenotypes describing the induc-

tion of Tregs. ERK2 is known to modulate PD-L1 expression and

its inhibition has been shown to improve anti-PD-L1 blockade in

several cancer types, including NSCLC (Ng et al., 2018; Kumar

et al., 2020; Henry et al., 2021; Luo et al., 2021). Conversely,

while CK1 is associated with tumorigenesis, tumor growth, and

drug resistance in cancer cells, its role in different immune cells

and its ability to promote immune evasion has not been ad-

dressed. Overall, these data demonstrate that the presence or

lack of tumor immune infiltration can be accurately predicted

by the DDMC clusters, which in turn help identify putative up-

stream kinases modulating immune evasion.

DISCUSSION

Phosphorylation-based cell signaling through the coordinated

activity of protein kinases allows cells to swiftly integrate envi-

ronmental cues and orchestrate a myriad of biological pro-

cesses. MS-based global phosphoproteomic data provide the

unique opportunity to globally interrogate signaling networks to

better understand cellular decision-making and its therapeutic

implications. However, these data also present challenging is-

sues because of their incomplete and stochastic coverage,
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Figure 7. Phosphoproteomic signatures correlating with tumor immune infiltration

(A) Phosphorylation abundance of CTE and HTE samples per cluster and statistical significance according to aMann-WhitneyU rank test (*p < 0.05; **p < 0.001).

(B) Mean ROC and coefficients of a logistic regression model predicting infiltration status—cold-tumor enriched (CTE) versus hot-tumor enriched (HTE).

(C) Putative upstream kinases of clusters 17, 20, and 21.

(D) GSEA of immunological processes.

Article
ll

OPEN ACCESS
high-content but low-sample throughput, and variation in

coverage across experiments. Here, we propose a clustering

method, DDMC, that untangles the coordinated signaling

changes by grouping phosphopeptides based on their phos-

phorylation behavior and sequence similarity (Figure 1). To test

the utility of DDMC, we clustered the phosphoproteomes of

LUADpatients and used the resulting groups of peptides to deci-

pher signaling dysregulation associated with tumors, genetic

backgrounds, and tumor infiltration status (Figures 5, 6, and 7).

Previous efforts in regressing MS-based phosphorylation

measurements against phenotypic or clinical data have been

based on the ability of certain regression models such as

PLSR or LASSO to robustly predict using high-dimensional

and correlated data (Kourou et al., 2015). While these models

can generally be predictive with such data, they are not easily

interpretable (Figure S5D). We hypothesized that clustering

large-scale MS measurements based on biologically meaningful

features and using the cluster centers could enhance the predic-

tive performance of the model while providing highly interpret-

able results, wherein clusters constitute signaling nodes

distinctly correlated with patient phenotypes. Here, we demon-

strate that DDMC enhances model prediction and interpretation

(Figures 3, 4A, and S3).
A key benefit of DDMC is that the identified clusters are not

limited to pre-existing motifs and are therefore not dependent

on prior experimentally validated kinase-substrate interactions.

This method could therefore likely improve our understanding

of the signaling effects of understudied kinases. For instance,

our model predicts that NEKs promote, at least in part, a cluster

with strikingly increased signaling in NATs compared with tu-

mors. Further exploration of this cluster led us to hypothesize

that the lack of NEK signaling in tumor samples might be associ-

ated with the absence of cilia in lung tumors (Figures 5G and

S6A). In addition, we show that cluster 20 greatly contributes

to explain a low immune infiltration status andmight be regulated

by the kinase CK1, which to our knowledge has not been studied

in this context. While DDMCmodels the peptide sequence infor-

mation without any constraints or assumptions defined by prior

knowledge, the method could be easily adapted to populate

clusters with the substratemotif information of specific upstream

kinases. This ‘‘fixed’’ method could help improve granularity

within a specific kinase signaling pathways.

An additional major challenge during the analysis of large-

scale signaling data is missingness. Statistical tools often require

complete datasets and, while researchers can use standard

methods to impute missing values such as the peptides’ mean
Cell Reports Methods 2, 100167, February 28, 2022 11
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signal, imputation strategies generally work best when missing

values only comprise a small fraction of the dataset (Chen

et al., 2020; Deb et al., 2020; Gillette et al., 2020). In this study

we show that DDMC can model a dataset of 30,561 peptides af-

ter filtering out any phosphosites that were not captured in more

than one TMT run (up to �80% of missingness) by imputation

during the expectation-maximization (EM) fitting process (see

STAR Methods). Furthermore, DDMC clearly outperforms the

imputation performance of using the peptides’ mean or constant

zero and provides similar results to PCA imputation (Figure 3).

This important feature could offer the possibility of conducting

pan-cancer phosphoproteomics studies using readily available

large-scale clinical phosphoproteomic data by overcoming the

fractional overlap in peptide coverage.

More generally, DDMC is tailored tomodel any biological data-

sets that combine a given signal with sequence information. In

addition to TMT multiplex liquid chromatography-tandem MS

datasets (as used here), this method may be equally useful

with other techniques such as targetedMS via data-independent

acquisition (Venable et al., 2004; Gillet et al., 2012). Beyond

phosphoproteomics, DDMC can also be used to cluster tran-

scription factor motifs or neoantigen sequences coupled with

their gene or protein expression data. The benefit of building al-

gorithms combining different information sources is evident in

previously published approaches. For instance, INKA predicts

active kinases by integrating scores reflecting both phosphoryla-

tion status and substrate abundance (Beekhof et al., 2019). A

similar approach to that taken here could be applied with other

generative algorithms, such as probabilistic PCA or probabilistic

generative adversarial networks, with similar benefits. Inte-

grating yet other information may reveal further improvements

in the dimensionality reduction and interpretation of other high-

throughput molecular measurements.

In total, we show that combining the information about the

sequence features and phosphorylation abundance leads to

more robust clustering of global signaling measurements. Use

of the DDMC clusters to regress against cell phenotypes led to

enhanced model predictions and interpretation. Thus, we pro-

pose DDMC as a general and flexible strategy for phosphopro-

teomic analysis.

Limitations of this study
Our present analysis is limited to a single clinical phosphoproteo-

mics dataset. Examining other datasets, and integrating

phosphoproteomics measurements with other molecular mea-

surement modalities, will reveal new insights and other ways to

improve the model. For instance, it remains unclear how

DDMC might perform with smaller cohorts or with measure-

ments across different cancer types.

DDMC interpretation is enhanced by comparing the resulting

cluster PSSMswith kinase specificity data such as PSPL to iden-

tify putative upstream kinases for each cluster. Validation exper-

iments showed that DDMCwas able to correctly associate AKT1

and ERK2 with clusters containing their respective substrates

(Figure 3). Kinase specificity is defined by additional features

beyond the phosphosite motif, however, such as kinase-sub-

strate co-localization, regulation by phosphosite-binding do-

mains (e.g., SH2, PTB domains), or docking. These other kinase
12 Cell Reports Methods 2, 100167, February 28, 2022
regulatory processes could compromise kinase-cluster associa-

tions established by DDMC. Refined methods of quantifying ki-

nase specificity, alongside adjustments to DDMC to account

for these other regulatory processes, could improve both up-

stream kinase predictions and the resulting peptide clustering

(Shah et al., 2018).
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Shah, N.H., Löbel, M., Weiss, A., and Kuriyan, J. (2018). Fine-tuning of sub-

strate preferences of the Src-family kinase Lck revealed through a high-

throughput specificity screen. eLife 7, 1–24. https://doi.org/10.7554/elife.

35190.

Shaikh, D., Zhou, Q., Chen, T., Ibe, J.C., Raj, J.U., and Zhou, G. (2012). CAMP-

dependent protein kinase is essential for hypoxia-mediated epithelial-mesen-

chymal transition, migration, and invasion in lung cancer cells. Cell Signal 24,

2396–2406. https://doi.org/10.1016/j.cellsig.2012.08.007.

Mok, J., Kim, P.M., Lam, H.Y.K., Piccirillo, S., Zhou, X., Jeschke, G.R., Sher-

idan, D.L., Parker, S.A., Desai, V., Jwa, M., et al. (2010). Deciphering protein

kinase specificity through large-scale analysis of yeast phosphorylation site

motifs. Sci. Signal. 3, ra12. https://doi.org/10.1126/scisignal.2000482.

Stewart, J.R., and O’Brian, C.A. (2005). Protein kinase C-{alpha} mediates

epidermal growth factor receptor transactivation in human prostate cancer

cells. Mol. Cancer Ther. 4, 726–732. https://doi.org/10.1158/1535-7163.

MCT-05-0013.

Tabb, D.L., Vega-Montoto, L., Rudnick, P.A., Variyath, A.M., Ham, A.J., Bunk,

D.M., Kilpatrick, L.E., Billheimer, D.D., Blackman, R.K., Cardasis, H.L., et al.

(2010). Repeatability and reproducibility in proteomic identifications by liquid

chromatography-tandem mass spectrometry. J. Proteome Res. 9, 761–776.

https://doi.org/10.1021/pr9006365.

Tan, C.S., Pasculescu, A., Lim, W.A., Pawson, T., Bader, G.D., and Linding, R.

(2009). Positive selection of tyrosine loss in metazoan evolution. Science 325,

1686–1688. https://doi.org/10.1126/science.1174301.

Trigg, R.M., Lee, L.C., Prokoph, N., Jahangiri, L., Reynolds, C.P., Amos Burke,

G.A., Probst, N.A., Han, M., Matthews, J.D., Lim, H.K., et al. (2019). The target-

able kinase PIM1 drives ALK inhibitor resistance in high-risk neuroblastoma in-

dependent of MYCN status. Nat. Commun. 10, 5428. https://doi.org/10.1038/

s41467-019-13315-x.

van de Kooij, B., Creixell, P., van Vlimmeren, A., Joughin, B.A., Miller, C.J.,

Haider, N., Simpson, C.D., Linding, R., Stambolic, V., Turk, B.E., and Yaffe,

M.B. (2019). Comprehensive substrate specificity profiling of the human nek

https://doi.org/10.1038/nature06030
https://doi.org/10.1038/nature06030
https://doi.org/10.1016/j.phrs.2013.01.005
https://doi.org/10.1016/j.phrs.2013.01.005
http://refhub.elsevier.com/S2667-2375(22)00019-4/sref34
http://refhub.elsevier.com/S2667-2375(22)00019-4/sref34
http://refhub.elsevier.com/S2667-2375(22)00019-4/sref35
http://refhub.elsevier.com/S2667-2375(22)00019-4/sref35
http://refhub.elsevier.com/S2667-2375(22)00019-4/sref35
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.1016/j.csbj.2014.11.005
https://doi.org/10.3390/ph13010009
https://doi.org/10.1158/0008-5472.CAN-15-1113
https://doi.org/10.1016/j.cell.2007.05.052
https://doi.org/10.1016/j.cell.2007.05.052
https://doi.org/10.1016/j.apsb.2021.03.010
https://doi.org/10.4331/wjbc.v5.i2.141
https://doi.org/10.1038/nature18003
https://doi.org/10.1074/jbc.M110.128371
https://doi.org/10.1126/scisignal.1159433
https://doi.org/10.1126/scisignal.1159433
https://doi.org/10.1074/jbc.M111.326504
https://doi.org/10.1186/1747-1028-6-18
https://doi.org/10.1186/1747-1028-6-18
https://doi.org/10.1126/scisignal.aau8645
https://doi.org/10.1016/j.tranon.2018.08.005
https://doi.org/10.1016/j.tranon.2018.08.005
https://doi.org/10.1074/jbc.M005497200
https://doi.org/10.1093/nar/gkg584
https://doi.org/10.1186/1471-2121-9-16
https://doi.org/10.1186/1471-2121-9-16
https://doi.org/10.1016/S0006-291X(03)00055-X
https://doi.org/10.1016/S0006-291X(03)00055-X
https://doi.org/10.1158/0008-5472.CAN-07-5838
https://doi.org/10.1158/0008-5472.CAN-07-5838
https://doi.org/10.1038/s41388-019-0950-z.PKC
https://doi.org/10.1038/s41388-019-0950-z.PKC
https://doi.org/10.1038/nbt1146
https://doi.org/10.7554/elife.35190
https://doi.org/10.7554/elife.35190
https://doi.org/10.1016/j.cellsig.2012.08.007
https://doi.org/10.1126/scisignal.2000482
https://doi.org/10.1158/1535-7163.MCT-05-0013
https://doi.org/10.1158/1535-7163.MCT-05-0013
https://doi.org/10.1021/pr9006365
https://doi.org/10.1126/science.1174301
https://doi.org/10.1038/s41467-019-13315-x
https://doi.org/10.1038/s41467-019-13315-x


Article
ll

OPEN ACCESS
kinome reveals unexpected signaling outputs. eLife 8, e44635. https://doi.org/

10.7554/eLife.44635.

Venable, J.D., Dong, M.Q., Wohlschlegel, J., Dillin, A., and Yates, J.R. (2004).

Automated approach for quantitative analysis of complex peptide mixtures

from tandem mass spectra. Nat. Methods 1, 39–45. https://doi.org/10.1038/

nmeth705.

Wei, H., Yang, W., Hong, H., Yan, Z., Qin, H., and Benveniste, E.N. (2021). Pro-

tein kinase CK2 regulates B cell development and differentiation. J. Immunol.

207, 799–808. https://doi.org/10.4049/jimmunol.2100059.

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., Feng, T., Zhou, L., Tang, W.,

Zhan, L., et al. (2021). clusterProfiler 4.0: a universal enrichment tool for inter-

preting omics data. Innovation 2, 100141. https://doi.org/10.1016/j.xinn.2021.

100141.
Yaffe, M.B. (2019). Why geneticists stole cancer research even though cancer

is primarily a signaling disease. Sci. Signal. 12, eaaw3483. https://doi.org/10.

1126/scisignal.aaw3483.

Yoshida, T., Kim, J.H., Carver, K., Su, Y., Weremowicz, S., Mulvey, L., Yama-

moto, S., Brennan, C., Mei, S., Long, H., et al. (2015). CLK2 is an oncogenic

kinase and splicing regulator in breast cancer. Cancer Res. 75, 1516–1526.

https://doi.org/10.1158/0008-5472.CAN-14-2443.

Zarrinpar, A., Park, S.H., and Lim, W.A. (2003). Optimization of specificity in a

cellular protein interaction network by negative selection. Nature 426,

676–680. https://doi.org/10.1038/nature02178.

Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch. SIGMOD Rec. 25,

103–114. https://doi.org/10.1145/235968.233324.
Cell Reports Methods 2, 100167, February 28, 2022 15

https://doi.org/10.7554/eLife.44635
https://doi.org/10.7554/eLife.44635
https://doi.org/10.1038/nmeth705
https://doi.org/10.1038/nmeth705
https://doi.org/10.4049/jimmunol.2100059
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1126/scisignal.aaw3483
https://doi.org/10.1126/scisignal.aaw3483
https://doi.org/10.1158/0008-5472.CAN-14-2443
https://doi.org/10.1038/nature02178
https://doi.org/10.1145/235968.233324


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

LUAD phosphoproteomics, proteomics,

and clinical data

Gillette et al., 2020 https://cptac-data-portal.georgetown.edu/

study-summary/S056

Upstream kinase PSPLs Begley et al., 2015; Horn et al., 2014; Miller

et al., 2008; Obata et al., 2000; van de Kooij

et al., 2019

https://netphorest.info/download.shtml

Software and algorithms

Python v3.9 Python Software Foundation https://python.org/

R The R Foundation https://r-project.org/

NetPhorest Horn et al., 2014 https://netphorest.info/download.shtml

Bioinfokit 0.3 NA https://pypi.org/project/bioinfokit/0.3/

clusterProfiler 4.2 Wu et al., 2021 https://guangchuangyu.github.io/software/

clusterProfiler/

DDMC This paper https://doi.org/10.5281/zenodo.5856274

fancyimpute v0.5.5 NA https://github.com/iskandr/fancyimpute
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Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Aaron Meyer (ameyer@
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Materials availability
This study did not generate new unique reagents.

Data and code availability

d No new standardized datasets were generated by this study.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication. The DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Expectation-maximization (EM) algorithm architecture
We constructed a modified mixture model that clusters peptides based on both their abundance across conditions and sequence.

The model is defined by a given number of clusters and weighting factor to prioritize either the data or the sequence information.

Fitting was performed using expectation-maximization, initialized at a starting point. The starting point was derived from k-means

clustering the abundance data after missing values were imputed. During the expectation (E) step, the algorithm calculates the prob-

ability of each peptide being assigned to each cluster. In the maximization (M) step, each cluster’s distributions are fit using the

weighted cluster assignments. The peptide sequence and abundance assignments within the E step are combined by taking the

sum of the log-likelihood of both assignments. The peptide log-likelihood is multiplied by the user-defined weighting factor immedi-

ately before to influence its importance. Both steps repeat until convergence as defined by the increase in model log-likelihood be-

tween iterations falling below a user-defined threshold.

Phosphorylation site abundance clustering in the presence of missing values
Wemodeled the log-transformed abundance of each phosphopeptide as following amultivariate Gaussian distribution with diagonal

co-variancematrix. Each dimension of this distribution represents the abundance of that peptide within a given sample. For example,

within a data set of 100 patients and 1000 peptides, using 10 clusters, the data is represented by 10 Gaussian distributions of 100
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dimensions. Unobserved/missing values were initially indicated as NaN and subsequently imputed using the method SoftImpute

(using the package fancyimpute) upon model initialization. During every iteration of the EM algorithm, the missing values are then

updated according to the current model. Any peptides that were detected in only one TMT experiment were discarded.

Sequence-cluster comparison
PAM250

During model initialization, the pairwise distance between all peptides in the dataset was calculated using the PAM250 matrix. The

mean distance from each peptide to a given cluster could then be calculated by:

w =
1

n
ðP , vÞ

where P is the n3 n distance matrix, n is the number of peptides in the dataset, v is the probability of each peptide being assigned to

the cluster of interest, and w is the log-probabilities of cluster assignment.

Binomial enrichment

We alternatively used a binomial enrichment model for the sequence representation of a cluster based on earlier work (Schwartz and

Gygi, 2005). Upon model initialization, a background matrix i 3 j 3 k was created with a position-specific scoring matrix of all the

sequences together. Next, a data tensor TTwas created where i is the number of peptides, j is the number of amino acid possibilities,

and k is the position relative to the phosphorylation site. This tensor contained 1 where an amino acid was present for that position

and peptide, and 0 elsewhere.

Within each iteration, the cluster motif would be updated using v, the probability of each peptide being assigned to the cluster of

interest. First, a weighted count for each amino acid and position would be assembled:

k = ðTu,vÞu

Because peptides can be partially assigned to a cluster, the counts of each amino acid and position can take continuous values.

We therefore generalized the binomial distribution to allow continuous values using the regularized incomplete Beta function:

M = Bðk v!k1 � k; k + 1;1�GÞ
Finally, the log-probability of membership for each peptide was calculated based on the product of each amino acid-position

probability.

w = logðT 3 MÞ
We confirmed that this provided identical results to a binomial enrichment model for integer counts of amino acids but allowed for

partial assignment of peptides to clusters.

Quantifying the influence of sequence versus data
The magnitude of the weight used to scale the sequence and data scores is arbitrary. We do know that with a weight of 0 the model

only uses the phosphorylationmeasurements. Alternatively, with an enormously largeweight themotif information is prioritized. How-

ever, we do not know to what extent each information source is prioritized in general. Therefore, to quantify the relative importance of

each type of data, we calculated our clustering results at each weighting extreme, and then calculated the Frobenius norm of the

resulting peptide assignments between those and the clustering of interest.

Generating cluster motifs and upstream kinase predictions
For each cluster we computed a position-specific-scoring matrix (PSSM). To do so, we populated a residue/position matrix with the

sum of the corresponding cluster probabilities for every peptide. Once all peptides were accounted for, the resulting matrix was

normalized by averaging the mean probability across amino acids and log2-transforming to generate a PSSM. In parallel, we

computed a PSSM including all sequences that served as background to account for the different amino acid occurrences within

the data set. Then, we subtracted each cluster PSSM with the background PSSM to generate the final enrichment scores. Positive

scores represent enriched residues while negative scores represent depleted amino acids across positions. Next, we extracted

several kinase specificity profiling results (PSPL) from the literature (Miller et al., 2008; Alexander et al., 2011; Begley et al., 2015;

van de Kooij et al., 2019). The distance between each cluster PSSM and kinase PSPL motif was calculated using by the Frobenius

norm of the difference between both matrices, considering only positive enrichment scores. Motif logo plots were generated using

logomaker (Kinney, 2019).

Evaluate clustering by imputation of values
To evaluate the ability of our model to handle missing values, we removed random, individual TMT experiments for each peptide and

used the model to impute these values. We then computed the mean squared error between the actual values and predictions made

by each method. We calculated the reconstruction error across different combinations of cluster numbers and weights using the

same process.
Cell Reports Methods 2, 100167, February 28, 2022 e2
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Associating clusters with molecular and clinical features
To find clusters that tracked with specific molecular or clinical features we implemented two different strategies: logistic regression

and hypothesis testing. For binary problems such as tumor vs NAT samples or mutational status we used l1-regularized logistic

regression and theMann-Whitney U rank test. In the former, we tried to predict the feature of interest using the phosphorylation signal

of the cluster centers, whereas in the latter, for each cluster we split all patients according to their specific feature and tested whether

the difference in the median signal between both groups was statistically different. We performed Bonferroni correction on the

p-values computed by the Mann-Whitney U rank test. GSEA analysis was performed using clusterProfiler (4.0.2) implemented in

R. The enrichment method used was ‘‘enrichWP’’ or ‘‘enrichGO’’ (WikiPathway or GeneOntology gene sets) with the p-value adjust-

ment method was set to Bonferroni (Wu et al., 2021).

QUANTIFICATION AND STATISTICAL ANALYSIS

All the statistical and quantification descriptions of each analysis can be found in the corresponding figure legends and results sec-

tions. The statistical enrichment of phosphorylation abundance between different binary phenotypes (tumor vs NAT, mutation vsWT,

or HTE vs CTE) was calculated using theMann-Whitney U rank test, with each subjects tumor treated as an independent observation

(N = 110). The test results were adjusted formultiple tests via Bonferroni’s correctionmethod. ‘‘*’’ means that the p-value is lower than

0.05 but higher than 0.001 and ‘‘**’’ that it is lower than 0.001. The volcano plot showing up- and down-regulated proteins in EGFR

mutant vsWT samples was generated after calculating their log2 fold-change and p-values according to aMann-Whitney U rank test

using Bonferroni’s correction for multiple tests. Biokit v.2.0.8 was used to generate the volcano plot using the default log fold change

and p-value cutoffs set to 1.0 and 0.05, respectively.
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