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Abstract
Rapid and accurate assessment of endotracheal tube (ETT) location is essential in the intensive care unit (ICU) setting, 
where timely identification of a mispositioned support device may prevent significant patient morbidity and mortality. This 
study proposes a series of deep learning-based algorithms which together iteratively identify and localize the position of 
an ETT relative to the carina on chest radiographs. Using the open-source MIMIC Chest X-Ray (MIMIC-CXR) dataset, 
a total of 16,000 patients were identified (8000 patients with an ETT and 8000 patients without an ETT). Three different 
convolutional neural network (CNN) algorithms were created. First, a regression loss function CNN was trained to estimate 
the coordinate location of the carina, which was then used to crop the original radiograph to the distal trachea and proximal 
bronchi. Second, a classifier CNN was trained using the cropped inputs to determine the presence or absence of an ETT. 
Finally, for radiographs containing an ETT, a third regression CNN was trained to both refine the coordinate location of 
the carina and identify the location of the distal ETT tip. Model accuracy was assessed by comparing the absolute distance 
of prediction and ground-truth coordinates as well as CNN predictions relative to measurements documented in original 
radiologic reports. Upon five-fold cross validation, binary classification for the presence or absence of ETT demonstrated 
an accuracy, sensitivity, specificity, PPV, NPV, and AUC of 97.14%, 97.37%, 96.89%, 97.12%, 97.15%, and 99.58% respec-
tively. CNN predicted coordinate location of the carina, and distal ETT tip was estimated within a median error of 0.46 cm 
and 0.60 cm from ground-truth annotations respectively. Overall final CNN assessment of distance between the carina and 
distal ETT tip was predicted within a median error of 0.60 cm from manual ground-truth annotations, and a median error of 
0.66 cm from measurements documented in the original radiology reports. A serial cascaded CNN approach demonstrates 
high accuracy for both identification and localization of ETT tip and carina on chest radiographs. High performance of the 
proposed multi-step strategy is in part related to iterative refinement of coordinate localization as well as explicit image 
cropping which focuses algorithm attention to key anatomic regions of interest.

Keywords Deep learning · Convolutional neural network (CNN) · Endotracheal tube (ETT) · Chest radiograph (CXR) · 
Carina · MIMIC-CXR

Introduction

An endotracheal tube (ETT) is a plastic airway device 
placed through the mouth into the trachea and connected 
to a breathing device to provide mechanical ventilation to 

the lungs. (Fig. 1) [1]. Optimal positioning of an ETT is 
essential for therapeutic effect and is commonly cited to be 
approximately 5 ± 2 cm above the carina [2]. By contrast, a 
misplaced ETT may often result in serious complications 
including the collapse or hyperinflation of a lung [3], the 
overall risk of which may be as high as 40% in the ICU set-
ting [4]. ETT position is typically assessed using a frontal 
chest radiograph. However, due to high clinical volume, the 
delay in average turnaround time (TAT) for emergent chest 
radiographs is approximately 22.89 min [5]. Thus, an objec-
tive and accurate tool for characterization of ETT location 
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on chest radiographs would be an invaluable asset in the 
acute care setting.

In this study, we propose a series of deep learning-based 
algorithms for identification and localization of ETT posi-
tion relative to the carina from chest radiographs. Deep 
learning convolutional neural networks (CNN) are a specific 
form of data-driven machine learning with the capacity for 
self-organized feature extraction. Compared to traditional 
machine learning techniques, supervised deep learning 
approaches can learn relevant, high-order patterns from 
data in an end-to-end manner, requiring only raw input and 
target output pairs of data. In recent years, CNN-based tech-
niques have been recognized as state-of-the-art on various 
medical imaging tasks related to chest radiograph analysis, 
including pneumonia detection [6] and characterization of 
tuberculosis [7].

Given the complexity of the problem, the proposed algo-
rithm is separated into three components in part analogous 
to steps required by a human radiologist to perform a simi-
lar task: (1) coarse localization of the carina (used to focus 
the algorithm on relevant anatomic regions of interest), (2) 
determination of the presence or absence of an ETT, and 
(3) localization of the ETT tip relative to the carina. Each 
individual component of this algorithm is implemented via 
an independently trained CNN. Through this serial cascade 
of deep learning networks, we hypothesize that the iterative 
refinement in model predictions will allow for characteriza-
tion of ETT position with high speed and accuracy.

Materials and Methods

Data

The MIMIC-CXR Database v2.0.0 is an open-source critical 
care cohort of chest radiographs in DICOM (Digital Imag-
ing and Communications in Medicine) format with free-text 
radiology reports and was used for analysis in this project 
[8–10]. The full dataset contains 377,110 images corre-
sponding to 227,835 reports of 65,389 patients performed 
at the Beth Israel Deaconess Medical Center in Boston, MA, 
between 2011 and 2016.

Using a natural language processing (NLP) technique 
based on regular expressions, all patient reports from the full 
dataset were parsed to identify the presence or absence of an 
ETT. From the initial cohort of 227,835 studies, a subset of 
8000 patients with an ETT and another 8000 patients with-
out an ETT were identified based on high probability NLP 
predictions. These 16,000 studies corresponded to 24,010 
chest radiographs in the dataset, from which a total of 17,050 
frontal radiographs were isolated using DICOM headers. 
This final dataset was split into five separate cross-validation 
folds for training. Importantly, all patients with repeat exam-
inations were placed into identical cross-validation folds.

Annotation

First, all 17,050 frontal radiographs were visually inspected 
to confirm the presence or absence of an endotracheal tube 
as labeled by the NLP algorithm. Second, a randomly chosen 
subset of 7396 frontal images were manually annotated to 
identify (1) the coordinate location of the carina and (2) the 
coordinate location of the distal ETT tip if present. Finally, 
for all patients with an ETT, the measured distance of the 
ETT tip relative to the carina as documented in the radiology 
free-text report was recorded. All annotations were reviewed 
for accuracy by a board-certified radiologist.

Image Preprocessing and Augmentation

All images were zero-padded until the original matrix was 
equal in height and width. Subsequently, the square-padded 
image was resampled to a uniform matrix size of 512 × 512. 
All images were normalized independently with a z-score 
transformation by subtracting the image mean and scaling 
by the image standard deviation.

During the training process, data augmentation was 
applied dynamically to all images to improve model general-
izability. First, the image mean and standard deviation values 
used for data normalization were randomly scaled between 
90 and 110%. Additionally, random image translations and 

Fig. 1  Frontal chest radiograph Single frontal radiograph demon-
strating position of an endotracheal tube (ETT; solid white outline) 
relative to the trachea and proximal right and left bronchi (solid black 
outline). Optimal positioning is commonly evaluated by characteriz-
ing the distal ETT tip (solid white arrow) relative to the carina (dotted 
white arrow)
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scales were applied to both original image input and ground-
truth coordinate points, with values ranging from 0 to 14 
pixels in displacement.

CNN Architecture

A total of three different CNN algorithms were created 
(Fig. 2). The first algorithm comprised of a regression loss 
function network designed to output the estimated (y, x) 
coordinate of the carina. From this information, a 256 × 128 
crop of the upper airway was generated. Using this cropped 
input, a second CNN binary classifier network was used to 
predict the presence or absence of ETT. Finally, for radio-
graphs containing an ETT, a third CNN regression network 
was designed to output the estimated (y, x) coordinates of 
the carina and the tip of the distal ETT.

For ease of model development, a common CNN back-
bone architecture was used for all three target tasks, with 
slight modifications in input matrix shape and loss func-
tion between each network. Each convolutional operation in 
the network is implemented using simple blocks, defined as 
serial application of a 3 × 3 convolutional operation, batch 
normalization and a LeakyReLU activation function [11]. 
After a brief architecture hyperparameter sweep, the final 
network topology comprised a total of 30 convolutional 
blocks (Fig. 3). Subsampling was implemented via convolu-
tional operations with a stride of 2. A total of 7 subsampling 
operations were performed; with each decrease in feature 
map size the corresponding channel depth was increased 
from 48 to 128.

Carina Localization The first CNN algorithm was designed 
to predict the x- and y-coordinates of the carina on all fron-
tal chest radiographs. The model input was the original 
squared-padded 512 × 512 resampled raw radiograph image. 
The network was designed with a regression type loss func-
tion using mean squared error (MSE) to minimize the loss 
between the final logit score and the expected normalized 
coordinate point.

ETT Classification The second CNN algorithm was designed 
for binary prediction of the presence or absence of ETT tube. 
The model input utilized the initial prediction of carina loca-
tion to create a focused crop of the distal trachea and proxi-
mal bronchi. Specifically, this crop was defined as a rectan-
gle with a 2:1 aspect ratio (height-to-width) spanning 50% 
and 25% of the original radiograph, respectively, and cen-
tered around the carina as shown in Fig. 2. After cropping, 
the image is resampled to a uniform 256 × 128 matrix shape. 
Using this input, the network was trained with a standard 
binary softmax cross entropy loss function.

Carina and ETT Localization The third CNN algorithm was 
designed both to predict the x- and y-coordinates of the 
endotracheal tube and to refine the existing prediction of 
the carina. The model input was the same cropped 256 × 128 
image centered along the carina as in the second CNN algo-
rithm. The network was designed with a regression type loss 
function using mean squared error (MSE) to minimize the 
loss between the final logit score and the expected normal-
ized coordinate points.

Fig. 2  Serial multi-step CNN architecture  A total of three different 
CNN algorithms were created. A The first algorithm comprised of a 
regression loss function network designed to output the estimated (y, 
x) coordinate of the carina. From this coordinate position, a 256 × 128 
crop of the upper airway was generated. B Using this cropped input, 

a second CNN binary classifier network was used to predict the pres-
ence or absence of ETT. C Finally, for radiographs containing an 
ETT, a third CNN regression network was designed to output the esti-
mated (y, x) coordinates of the carina and the tip of the distal ETT. 
Abbreviations: CAR carina, ETT endotracheal tube
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Implementation

Training was implemented from random weights initialized 
using the Xavier uniform distribution [12]. Optimization 
was implemented via the Adam method [13] with a learn-
ing rate of 0.0005 and a batch size of 12. Approximately 4 
epochs were required for algorithm convergence for each 
experiment. After training the model with the learning rate 
of 0.0005 for 3 epochs, learning rate was divided by 10 and 
the model was trained for one more epoch to fine-tune the 
weights.

For all development purposes throughout this study, 
Google CoLab RRID:SCR_018009 was used with a Python 
Version 3.6 RRID:SCR_008394 runtime type and a GPU 
hardware accelerator. TensorFlow [14] Version 2.2.0 
RRID:SCR_016345, an open-source software library, was 
used to develop the CNN algorithms.

Statistics

A five-fold cross validation technique was used to estimate 
model performance. For all regression tasks, algorithm per-
formance was reported using both mean and median absolute 
distance between predicted and ground-truth coordinates 
in real-world distances (cm). In addition, the interquartile 

range (25th and 75th percentile predictions) for prediction 
accuracy was calculated. For the binary classification task, 
overall accuracy as well as sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), 
and area under the receiver operating characteristic curve 
(AUROC) were calculated. In addition, the 95% confidence 
interval for each of these metrics was determined.

Results

From the original 17,050 frontal radiographs, a total of 8848 
ETT positive and 8202 ETT negative images were identi-
fied and used in this study. Based on NLP analysis of the 
radiology reports, the mean, median, 25th percentile, and 
75th percentile of the distal ETT tip from the carina were 
4.29 cm, 4.10 cm, 3.00 cm, and 5.30, cm respectively.

Carina Localization After aggregating cross-validation 
cohort results, the mean, median, 25th and 75th percentile 
absolute errors in prediction of carina location were 1.33 cm, 
1.10  cm, 0.67  cm, and 1.68  cm, respectively (Table  1; 
Fig. 4A). Note that this initial coarse prediction is used pri-
marily as a preprocessing step to localize the attention of 
the algorithm to the relevant portions of the image. Final 

Fig. 3  Common CNN backbone  For ease of model development, 
a common CNN backbone architecture was used for all three target 
tasks, with slight modifications in input matrix shape and loss func-
tion between each network. The final network topology comprised 
a total of 30 convolutional blocks, defined as serial application of a 

3 × 3 convolutional operation, batch normalization, and a LeakyReLU 
activation function. Subsampling was implemented via convolutional 
operations with a stride of 2. A total of 7 subsampling operations 
were performed; with each decrease in feature map size the corre-
sponding channel depth was increased from 48 to 128

Table 1  Cumulative 
performance metrics for CNN 
localization tasks reported using 
absolute distance errors (cm)

Task Mean Median 25th percentile 75th percentile

Carina coordinate (initial) 1.33 1.10 0.67 1.68
Carina coordinate (final) 0.64 0.46 0.27 0.77
ETT coordinate (final) 0.82 0.60 0.35 1.01
Carina-ETT distance (annotations) 0.86 0.60 0.28 1.14
Carina-ETT distance (radiology reports) 0.86 0.66 0.31 1.16
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prediction of carina location is performed in subsequent 
steps. Overall inference time for the full cohort was approxi-
mately 0.025 s per exam.

ETT Classification After aggregating cross-validation cohort 
results, the overall accuracy, sensitivity, specificity, PPV, 
NPV, and AUROC of the algorithm for differentiating the 
presence or absence of ETT were 97.14%, 97.37%, 96.89%, 
97.12%, 97.15%, and 99.58%, respectively (Table 2). Overall 
inference time for the full cohort was approximately 0.005 s 
per exam.

Carina and ETT Localization After aggregating cross-
validation cohort results, the mean, median, 25th, and 
75th percentile absolute errors in prediction of carina 
location was 0.64 cm, 0.46 cm, 0.27 cm, and 0.77 cm, 
respectively. The mean, median, 25th, and 75th percen-
tile absolute errors in prediction of distal ETT tip were 
0.82 cm, 0.60 cm, 0.35 cm, and 1.01 cm, respectively 
(Table 1; Fig. 4B). Overall inference time for the full 
cohort was approximately 0.015 s per exam.

The final outputs generated by the third CNN algorithm 
were used to estimate the position of the ETT tip relative to 
the carina. Using manually annotated ground-truth annota-
tions, the mean, median, 25th, and 75th percentile absolute 
errors in prediction of ETT to carina distance were 0.86 cm, 
0.60 cm, 0.28 cm, and 1.14 cm, respectively. In addition, 
the CNN-derived estimate of ETT to carina distance was 
compared to measurements documented in the original 
MIMIC-CXR radiology report. In this analysis, the mean, 
median, 25th and 75th percentile absolute errors in predic-
tion were 0.86 cm, 0.66 cm, 0.31 cm, and 1.16 cm, respec-
tively (Table 1).

Discussion

A serial cascaded CNN approach trained on 17,050 patient 
images demonstrates high accuracy for localization and 
assessment of ETT position. Compared to a global binary 
classifier which may simply predict adequate or inadequate 
positioning, the proposed deep learning algorithm can pro-
vide explicit feedback regarding the exact position of the 
ETT relative to the carina, helping guide clinical decision 
making. Based on evaluation of both ground-truth manual 
annotations as well as radiology reports, the CNN algorithm 
can generate automated and accurate predictions within 
6 mm of expected location in less than one second.

Previous works have evaluated the deep learning in 
chest radiographs [15] including in the diagnosis of pneu-
monia [16], tuberculosis [17], thoracic diseases [18], and 
lung abnormalities [19]. More recently, several works have 
applied deep learning techniques to characterization of 
ETTs. In an initial study, Lakhani et al. [20] utilized a global 

Fig. 4  CNN model predic-
tions Estimate of carina 
location by initial first-step 
CNN algorithm (A), which is 
subsequently refined by the final 
CNN algorithm (B). In addi-
tion, the final CNN algorithm 
produces an estimate of the 
coordinate location of the distal 
ETT. Manually annotated posi-
tions are shown as the white 
circles, while the CNN-derived 
estimates are shown as the black 
circles

Table 2  Cumulative performance metrics for CNN binary classifica-
tion

Statistic Value 95% Confidence interval

Accuracy 97.14% 96.88 to 97.38%
Sensitivity 97.37% 97.01 to 97.69%
Specificity 96.89% 96.49 to 97.26%
Positive predictive value 97.12% 96.77 to 97.44%
Negative predictive value 97.15% 96.78 to 97.48%
AUROC 99.58% 99.48 to 99.68%
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CNN classifier for binary assessment of ETT position with-
out explicit localization. Frid-Adar et al. [21] localizes the 
entire course of the ETT using a fully-convolutional CNN 
model for semantic segmentation trained with a combination 
of both real and synthetic data, however does not character-
ize the location of the distal ETT tip relative to the carina. 
Finally, Huo et al. [22] uses traditional computer vision 
techniques to assess ETT position with a sensitivity of 0.85 
for ETT detection and an accuracy of 0.81 for ETT localiza-
tion within 10 mm of ground-truth annotations. This current 
work, leveraging an approximate 15-fold increase in data 
and end-to-end deep learning techniques, yields improved 
performance metrics with over 0.97 sensitivity for ETT 
detection and a median error of 6 mm from ground-truth 
annotations.

Compared to previous efforts which primarily use global 
classification and/or segmentation approaches, this study 
uses a landmark-based coordinate regression strategy for 
carina and ETT localization. Landmark-based coordinate 
regression algorithms have been successfully implemented 
in various radiology tasks. Noothout et al. [23] and Tan et al. 
[24] utilized this technique for localization of key cardiac 
and vascular anatomy on CT angiography. Theriault-Lauzier 
et al. [25] followed a similar approach to infer the location 
and orientation of the aortic valve annular plane. Ma et al. 
[26] leveraged a coordinate regression method for charac-
terization of the carotid artery bifurcation anatomy. In this 
work, we extend the use of landmark-based regression to 
implement both a hard-attention mechanism as well as sup-
port device localization.

The serial cascaded CNN approach, in part inspired by 
the attention mechanism of a human radiologist, allows the 
algorithm to focus on the relevant portions of the image after 
first localizing key anatomic regions of interest. This itera-
tive reduction in search space yields significant improve-
ments in algorithm performance, with a median absolute 
error difference in carina localization of 1.10 cm compared 
to 0.46 cm before and after image cropping. In addition, 
focusing the algorithm on a specific sub-region of the 
image allows for analysis at a relatively high-resolution in 
a memory-efficient manner. In fact, even though the second 
and third CNN input is smaller in matrix size than the first 
CNN input, the real-world size of each individual pixel was 
smaller (e.g., higher resolution) in the later models.

Several parameter combinations were tested to optimize 
the common CNN network backbone. After a hyperparam-
eter sweep, optimal permutations tended to favor relatively 
increased modeling capacity in the initial few layers of the 
network as implemented through more convolutional layers 
and increased feature map depth. This observation can likely 
be explained by the need for fine-detail, high-frequency 
features to accurately identify small structures such as the 
carina and an ETT on chest radiographs. Such features can 

only be learned in the earliest layers of the network topol-
ogy, prior to significant feature map subsampling. In our 
top-performing model, a total of 5 convolutional blocks 
were used before the first subsample, and a total of 4 con-
volutional blocks were used before the second subsample. 
By contrast, most top-performing networks in non-medical 
imaging domains such as the ImageNet Challenge perform 
aggressive subsampling in the initial CNN layers and instead 
retain the majority of modeling capacity in the deepest con-
volutional feature maps. Additionally, the incremental ben-
efit of data augmentation for regression tasks was observed 
to be approximately 25% across various experiments, a value 
higher than comparable classification tasks in part related 
to the improved sampling of latent space afforded by data 
augmentation for the continuous-variable output regression 
tasks.

Overall algorithm performance was higher for the task 
of carina localization (within a median error of 0.46 cm) 
compared to ETT localization (within a median error of 
0.60 cm). We suspect that this difference is primarily due 
to the inherent difficulty of identifying these two structures. 
The carina, while subtle in appearance, is identified in a 
reliable location with consistent anatomic landmarks across 
most patients. An ETT by contrast may exist in varied loca-
tions and may often be confused with other support devices 
that demonstrate similar course and/or density. In future 
studies, we anticipate that the performance of ETT locali-
zation will be improved with more training data that may 
better reflect the heterogeneity of possible appearances and 
locations.

There are several limitations acknowledged by the current 
study design. While a large number of exams were used to 
train the proposed deep learning models, the current cohort 
of radiographs were derived from a single institution. As 
such, further evaluation is needed to assess performance 
across a wide variety of manufacturers and image proto-
cols. Additionally, the current algorithm is designed to 
evaluate frontal chest radiographs only, while in practice a 
chest radiograph exam may in fact contain alternative pro-
jections. While this is relatively infrequent in the ICU set-
ting, and may sometimes be sorted using DICOM headers, 
a more robust strategy to identify relevant model inputs will 
be needed before such a tool can be fully integrated into the 
clinical workflow.

Conclusions

Rapid and accurate assessment of ETT location is criti-
cal, where timely identification of a mispositioned support 
device may prevent significant patient morbidity and mor-
tality. A serial cascaded CNN approach demonstrates high 
accuracy for both identification and localization of ETT tip 
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and carina on chest radiographs. High performance of the 
proposed multi-step strategy is in part related to iterative 
refinement of coordinate localization as well as explicit 
image cropping which focuses algorithm attention to key 
anatomic regions of interest. Future work includes ongo-
ing efforts at our institution for clinical integration of the 
deep learning tool, including optimization of user interface 
to minimize workflow disruption and improve overall clini-
cal response time.
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