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Abstract

Mathematical concepts are paragons of abstraction. The actual
practice of mathematics, though, is decidedly concrete, mate-
rial, one might even say fleshy. This raises the question, What
is the body doing, when the body is doing mathematics? We
answer by analyzing a video corpus of mathematicians in their
natural habitat: at the blackboard, chalk in hand. Mixing quali-
tative and quantitative analyses, we describe systematically the
ways mathematicians use their bodies to write, move, and ges-
ture. Some surprises arise, such as the observation that math-
ematicians point nearly constantly but seldom produce repre-
sentational gestures; and that they spend most of their time
away from the blackboard at which they are writing. We dis-
cuss implications for creativity, mathematical cognition, and
theories of embodied and distributed cognition more broadly.
Keywords: creativity; embodiment; mathematics; insight; ac-
tive perception; gesture

Introduction
Mathematical concepts are paragons of abstraction. And yet
the actual practice of mathematics is decidedly concrete, ma-
terial, one might even say fleshy. Mathematicians pace back
and forth. Their hands become covered with chalk. They
scribble, sketch, erase. They gesture, pointing to an equation
or tracing shapes in the air. Despite the abstraction of math-
ematical concepts, the actual work of mathematical under-
standing and discovery is undeniably embodied. But what,
exactly, are these mathematical bodies doing? What is the
body doing, when the body is doing mathematics?

Here, we address this question using a video corpus of
mathematicians in their natural habitat: at the blackboard,
chalk in hand. Using a combination of qualitative and quan-
titative analysis, we describe what mathematicians are doing
with their bodies as they struggle to prove vexing conjectures.

The body during mathematical reasoning
We know from past research that the body is busy during
mathematical reasoning.

One of the body’s contributions is to transform the environ-
ment through writing — sketching diagrams, writing equa-
tions, and creating other inscriptions (Barany & MacKenzie,
2014; Greiffenhagen, 2014; Marghetis, Samson, & Landy,
2019). Mathematicians report that they rely on these exter-
nal representations (Johansen & Misfeldt, 2020; Poincaré,
1913), and many mathematicians are so serious about chalk

and blackboards that they import one brand, Hagoromo Full-
touch Chalk, from Japan or South Korea (Weisberger, 2019).
Over the course of a single session, a mathematician may cre-
ate dozens of new equations, diagrams, or other inscriptions,
thus populating the blackboard with objects with which they
can then interact (Marghetis et al., 2019). All that chalkboard
scribbling can pay off. The clever choice of a good visual rep-
resentation is often the key to solving an impenetrable prob-
lem (Pólya, 1990). External representations, moreover, can
transform abstract concepts and procedures into much sim-
pler visuo-spatial patterns or motor routines (Hutchins, 1995;
Goldstone, Marghetis, Weitnauer, Ottmar, & Landy, 2017;
Rumelhart, Smolensky, McClelland, & Hinton, 1986). Real-
world mathematical cognition involves a lot of writing.

A second contribution of the body is to gesture. Many
scholars of mathematical learning and reasoning have fo-
cused on representational gestures (Edwards, 2009; Perry,
Church, & Goldin-Meadow, 1988; Núñez, 2006; Marghetis
& Núñez, 2013). Representational gestures use resemblance
to communicate their meaning (McNeill, 2008). For instance,
when a child explains how they solved an equivalence prob-
lem in arithmetic (e.g., 5 + 3 + 4 = [ ] + 4), they might
produce a “grouping” gesture that represents the combina-
tion of 5 and 3 to create 8 (Perry et al., 1988). Explicitly
teaching these gestures to students helps them learn the ideas
they represent (Novack, Congdon, Hemani-Lopez, & Goldin-
Meadow, 2014). Representational gestures, moreover, are not
limited to novices. Mathematicians use metaphorical gestures
to teach concepts such as infinity (Núñez, 2006). And mathe-
matical experts working alone, without an audience of eager
students, still produce representational gestures that reveal
their understanding of highly abstract concepts—for instance
by tracing a dynamic trajectory through the air to evoke the
concept of a continuous function (Marghetis & Núñez, 2013).
From elementary school to PhD-level research, the work of
mathematics is accompanied by gestures that evoke abstract
concepts through shape and movement.

The current study
When it comes to the role of the body during mathe-
matical reasoning, much of what we know so far is fo-
cused on novices (Perry et al., 1988) or pedagogical settings
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Figure 1: While copiously writing and gesturing, mathematicians moved from within writing distance (A), to medium distance
where writing is difficult but pointing is easy (B), to a far distance where they could see the entire blackboard (C).

(Greiffenhagen, 2014; Núñez, 2006). When the actual ac-
tivity of mathematical experts has been studied, the focus
has often specifically targeted certain kinds of gestures—for
instance, metaphorical representations of concepts (Núñez,
2006; Marghetis & Núñez, 2013)—or has been impressionis-
tic, self-reported, or anecdotal (Barany & MacKenzie, 2014;
Johansen & Misfeldt, 2020). This raises the question: What
are experts typically doing with their bodies when they are
engaged in creative mathematical reasoning?

Here, we leverage a video corpus of mathematicians work-
ing alone to explore, systematically, the uses of the body
during mathematical reasoning. We focus on three dimen-
sions of bodily activity: writing, gesture, and movement. We
identify when mathematicians create new inscriptions, when
and how they gesture, and how they move around in rela-
tion to the blackboard. To foreshadow our results: We find
that they start by creating new inscriptions, but that this ac-
tivity drops off over time. Experts do gesture abundantly, but
few of these gesture are representational; instead, the over-
whelming majority of gestures are pointing or ‘deictic’ ges-
tures that are meaningful in virtue of what they are pointing
at. Unexpectedly, mathematicians spend a lot of their time
moving—stepping back and forth from the blackboard. By
the end of a work session, our experts have spent more time
standing away from the blackboard, looking at the mess of
inscriptions that they have created, than actually creating new
inscriptions. We end by discussing implications for our un-
derstanding of creativity and mathematical cognition, and for
theories of embodied and embedded cognition more broadly.

Methods
Video Corpus of Mathematicians
We used a video corpus of PhD-level mathematical experts
generating proofs of mathematical conjectures (total corpus
duration: 4 hours and 40 minutes). This corpus was collected
by Marghetis et al. (2019) to investigate mathematical reason-
ing in ecologically valid settings. Mathematicians worked at
the blackboard either in their own office or a seminar room
in their mathematics department. Participants were presented
with up to three mathematical conjectures and asked to gen-
erate proofs while speaking aloud. Conjectures were selected

from the William Lowell Putnam Mathematics Competition,
a major North American mathematics competition, and en-
compassed multiple topics, including Set Theory and Geom-
etry; see (Marghetis et al., 2019) for details.

The entire corpus was coded previously for the creation of
inscriptions (e.g., diagrams, equations) and subsequent inter-
actions with them (e.g., through gesture, gaze, adding anno-
tations, etc.) (Marghetis et al., 2019).

Here we analyze a subset of the corpus that includes N = 6
mathematicians (3 women and 3 men) trying to prove two
conjectures, for a total of 12 proof sessions lasting 4 hours
and 5 minutes. The time series of inscription creation and
interaction included N = 4375 events.

We augmented this dataset with additional coding of two
aspects of the body’s involvement in mathematical reasoning:
movement around the room and hand gestures. To quantify
movement and gesture, for each proof session we selected
random minute-long segments for moment-to-moment video
coding (N = 5 from each session, for a total duration of 60
minutes). If mathematicians were distracted during a ran-
domly selected section (e.g., talking to passing colleagues or
upset by a loud noise outside the room), we replaced it with a
new minute-long segment from that session.

Movement Coding
Mathematicians typically stood at one of three distances: the
distance at which they would typically write on the black-
board; a full arm’s length away from the blackboard; and
even farther away, such that they couldn’t interact with the
blackboard (Figs. 1, 8A). Two independent coders coded lo-
cation. Interrater reliability was substantial (Cohen’s κ = .70,
p < .001); disagreements were resolved by discussion.

Gesture Coding
We identified all gestures, defined as non-instrumental move-
ments of the hands. Gestures were coded along two dimen-
sions: source of meaning and handshape. Beat gestures —-
meaningless gestures that are entrained with the prosody of
speech — were excluded.

Gesture handshape was coded as one of three possible cat-
egories: index gestures using a canonical pointing handshape,
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Figure 2: Mathematicians first created new inscriptions and
then interacted with them. (A) Time course of inscription
creation. Most inscriptions were created in the first third of
a session. (B) Time course of interactions with inscriptions
(e.g., gesturing, adding annotations). (Bars show mean pro-
portion of total events within each time period ± SEM. Time
was normalized to range from 0 to 1.)

with index finger extended; extended gestures with multiple
extended fingers; and other gestures with other handshapes
(e.g., a fist while holding chalk). Interrater reliability was
substantial (Cohen’s κ = .67, p < .001)

Gesture meaning was coded along three dimensions: de-
ictic, representational, and emblematic (McNeill, 2008). A
‘deictic’ gesture is meaningful in virtue of reference to—or
spatial co-location with—its referent. A canonical example
is a pointing gesture with index finger extended. A ‘represen-
tational’ gesture is meaningful in virtue of resemblance to its
referent, which can be a concrete object (i.e., iconic gesture)
or an abstract concept (i.e., metaphoric gesture). Finally, an
‘emblematic’ gesture is meaningful in virtue of convention,
such as the “thumbs-up” gesture that indicates agreement in
many cultures. For instance, a tracing gesture that outlines
a triangle drawn on the blackboard is both deictic (pointing
to the inscription) and representational (creating the shape of
a triangle). Two independent coders coded each dimension
of meaning for every gesture. No gestures were identified as
emblematic. Interrater agreement was high (presence of de-
ictic meaning: 97% agreement; presence of iconic meaning:
88% agreement). In cases of disagreement, analyses followed
the more experienced coder.

Results
Creating and interacting with inscriptions
Every mathematician wrote extensively, often filling the en-
tire blackboard. Mathematicians front-loaded the creation of
new inscriptions, creating most inscriptions in the first third
of the session (Fig. 2A). Most of the heavy-lifting of fill-
ing the blackboard, therefore, occurred toward the start of
mathematicians’ efforts. This was followed by more subtle
blackboard engagement: glancing at equations, gesturing to-
ward diagrams, adding annotations that elaborated and ex-
tended previous inscriptions. These subsequent interactions
were distributed more uniformly over time (Fig. 2B).

Figure 3: Gestures were mostly deictic and seldom represen-
tational. (A) Nearly every gesture had a deictic component;
few were representational. (B) Sessions varied in the use of
representational gesture. Some sessions had no representa-
tional gestures; in others, most were both deictic and repre-
sentational.

Gesture
What were the mathematicians doing when they were not in-
teracting with the blackboard? Sometimes they stood still.
But often their hands were active still—but instead of writ-
ing, gesturing. All mathematicians in the corpus gestured
regularly while working on their proofs. During the sixty
minute-long segments selected randomly for gesture coding,
mathematicians made a total of 421 gestures (including 12
beat gestures); only four minutes did not include gesture. No
gestures were emblematic.

Nearly every gesture was deictic (M = .96± .01 SE). Few
were representational (M = .17± .05 SE; Fig. 3A, Fig. 4),
though this varied across sessions (Fig. 3B). Indeed, the
most common handshape was some form of pointing (M =
.77± .04 SE), primarily the canonical handshape with index
finger extended (M = .45± .08 SE) or sometimes multiple
fingers extended (M = .31 ± .07 SE; Fig. 5). When ges-
tures were representational, most were simultaneously deic-
tic (71%) — “environmentally coupled gestures” (Goodwin,
2007) that were meaningful in virtue of their relation to black-
board inscriptions (Fig. 6).

Movement
Mathematicians started working on a proof by populating the
blackboard with inscriptions. Subsequently, however, their
bodies adopted a variety of stances: standing slightly away
from the blackboard so they can point easily, or even farther
so the entire blackboard could be surveyed at once (Fig. 7).

Overall, mathematicians were most commonly close to the
blackboard, ready to write (Mclose = .47± .05 SE). Nonethe-
less, half the time was equally divided between a medium
and a far distance from the board (Mmedium = .26± .04 SE,
M f ar = .26± .05SE) (Fig. 8B). Interestingly, this pattern var-
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Figure 4: Examples of representational gestures. (A) ‘Small
number’ represented metaphorically by a tiny circle of index
finger and thumb. (B) ‘Geometric coordinates’ represented
by crossed arms. (C) Relative location of two triangles rep-
resented by both hands. (D) ‘Numerical interval’ represented
metaphorically by both hands indicating endpoints. (E) The
spatial transformation of a triangle enacted by the rotation of
thumbs and index fingers. (F) “Pieces have to lock together
to form a triangle” represented by both hands moving away
and toward each other. (Red arrows indicate movement.)

Figure 5: Deictic gestures used a variety of handshapes: (A)
pointing with fists or pent figures, often while holding chalk;
(B) pointing with multiple extended fingers; (C) canonical
pointing handshape with extended index finger.

ied over time, with earlier activity largely dominated by at-
the-blackboard activities (i.e., close), and later activity dom-
inated by away-from-the-blackboard activity (i.e., medium
and far) (Fig. 8C). The variation across individuals was even
greater (Fig. 8D). Some proof sessions were spent almost en-
tirely at the blackboard. In others, the mathematician spent
most of their time too far from the blackboard to write,
whether just an arm’s length away or standing even farther.

Figure 6: Representational gestures were often simultane-
ously deictic. (A) Mathematician moves her hand away from
the board while saying, “I’m imagining [a triangle] coming
out of the chalkboard.” Handshape represents the geomet-
ric figure; initial location indexes a relevant inscription. (B)
A back-and-forth gesture points to an inscribed line (deictic)
while also enacting the line’s shape (representational). (C)
Gesture points to a triangle (deictic) while enacting its bor-
ders (representational). (Red arrows indicate movement.)

Figure 7: Rapid changes in distance within 20-seconds of ac-
tivity for four mathematicians (rows). First panel in each row
shows the starting position; third panel shows the final posi-
tion. Red lines illustrate distance to the blackboard.

Discussion
In our corpus of real-world mathematical activity, mathe-
maticians’ bodies interacted constantly with the surround-
ing world: they created an abundance of inscriptions on the
board, then interacted with them through gesture, speech, and
gaze. This was accompanied by an unexpected amount of me-
andering. Mathematicians repeatedly stepped away from the
blackboard, out of reach, then returned to stand close enough
to write comfortably. Much back-and-forth occurred within
seconds.

The mathematicians’ physical labor followed distinct tem-
poral patterns. The creation of inscriptions was front-loaded
— that is, they created most inscriptions at the start and then
interacting with them regularly throughout the session. This
was reflected in patterns of movement: Mathematicians spent
more time standing close to the board earlier in the session
and more time farther from the board as the session contin-
ued. Despite the abstract nature of mathematical concepts,
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actual mathematical practice appears to be a species of phys-
ical labor.

The body is thus active during creative mathematical rea-
soning. But does all this physical activity help? Or is it a
distraction, perhaps a sign of frustration and failure? We dis-
cuss these questions next.

Why the abundance of inscriptions?
Mathematicians themselves claim outright that inscriptions
are an important part of their creative process (Barany &
MacKenzie, 2014; Johansen & Misfeldt, 2020; Greiffen-
hagen, 2014). For example, one mathematician described his
use of inscriptions as a necessity: “I have something in my
head, but I need to write it down in order for it to be concrete
and correct... What you have in your head is an attempt to
structure information. Or the beginning of it. And then you
start writing it down, and it might not be exactly what you had
expected. You need to change it before it works, or it might
not work” (Johansen & Misfeldt, 2020, p. 7). It makes sense,
then, that the mathematicians in our corpus created so many
inscriptions toward the start of their efforts — exactly when

Figure 8: Mathematicians’ changing proximity to the board.
(A) Three categories of distance from the blackboard: close
enough to write; arm’s length away; beyond arm’s length. (B)
Mean proportion of time spent at each distance. (Error bars
= SEM). (C) Mean proportion of time spent at each distance
(y-axis) in periods ranging from start to end of proof sessions.
Horizontal axis shows normalized time within each session.
(D) Individual differences in proportion of time spent at each
distance. Each stack represents one proof session, ordered by
proportion of time spent close to the blackboard.

they are first trying to make sense of the problem. By trans-
forming their inner thoughts into concrete external artifacts,
they begin the process of seeing if their understanding makes
sense.

Once created, these inscriptions can become an integral
part of reasoning. The stability of external representations
can offer structure to an otherwise nebulous process of ab-
stract reasoning. Inscriptions can function as material an-
chors for abstract concepts, thus facilitating understanding
and affording further manipulation and reasoning (Hutchins,
1995, 2005; Fauconnier & Turner, 2002). Mathematicians fill
blackboards not just to communicate, therefore, but to under-
stand, reason, and discover.

Why the abundance of gestures?
The mathematicians gestured a lot. Much of the literature on
gesture in mathematical reasoning have focused on represen-
tational gestures — iconic gestures that represent geometric
shapes, for instance, or metaphorical ones that represent more
abstract concepts such as infinity (Marghetis & Núñez, 2013;
Edwards, 2009; McNeill, 2008; Walkington, Woods, Nathan,
Chelule, & Wang, 2019; Núñez, 2006; Nathan & Walking-
ton, 2017). The majority of the mathematicians’ gestures, by
contrast, were deictic gestures that pointed to the blackboard
or made connections between inscriptions.

Deictic gestures are associated with successful mathemat-
ical reasoning, from basic counting to more advanced high
school mathematics. When children are first learning to
count, deictic gestures help them anchor their attention to a
sequence of objects (Alibali & DiRusso, 1999). As students
progress to more complicated mathematical concepts, their
teachers’ deictic gestures help them “link” different repre-
sentations to create a deeper understanding (Richland, 2015;
Alibali & Nathan, 2007). Here we show that deictic ges-
tures are ubiquitous even at the highest levels of mathematics,
among research mathematicians engaged in creative thought.
We suspect these expert gestures play a similar role to the
one they play for mathematical neophytes: self-regimenting
one’s own attention by directing the whole body toward an
inscription, and sometimes helping to establish and explore
links between inscriptions.

Why the abundance of movement?
Perhaps our most surprising observation was how frequently
and expansively mathematicians moved around the room. Ev-
ery mathematician spent time at each of the three distances
that we studied — within writing distance, slightly farther but
within reach of the board, and too far to reach – often mov-
ing through all three distances in a matter of seconds. One
deflationary account of this movement is that it is aimless
wandering, perhaps driven by boredom or fatigue. The fact
that every mathematician moved so much, however, makes
us suspect that something else is at play.

There is an active literature on the impacts of move-
ment and physical posture on creativity (Frith, Miller, & Lo-
prinzi, 2020; Matheson & Kenett, 2020; Sargent, LePage,
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Kenett, & Matheson, 2023; Slepian & Ambady, 2012; Le-
ung et al., 2012; Andolfi, Di Nuzzo, & Antonietti, 2017;
Hao, Yuan, Hu, & Grabner, 2014)). Some of these bene-
fits reflect the role of movement in transforming the envi-
ronment, since transformations of the environment can sug-
gest new ideas or helpfully manipulate the available informa-
tion (Kirsh, 2014; Kirsh & Maglio, 1994; Vallée-Tourangeau,
Ross, Ruffatto Rech, & Vallée-Tourangeau, 2021; Weller,
Villejoubert, & Vallée-Tourangeau, 2011; Glucksberg, 1964;
Duncker, 1945). The movements performed by the mathe-
maticians here, however, do not have this instrumental char-
acter. Mathematicians moved back and forth without actu-
ally interacting with their surroundings. Unlike the scrabble
player who shuffles his tiles in the hope of stumbling upon a
suggestive combination (Kirsh, 2014), these mathematicians
wandered without leaving a trace. Why?

We have a speculation, one that we are currently testing in
the lab: By adjusting their distance from the board, mathe-
maticians actively manipulate the visual information that is
available or salient. When they step towards the board, they
enforce a kind of visual focus on whatever inscriptions are
immediately in front of them. When they step away, they
adopt a holistic view of the whole blackboard, thus juxtapos-
ing inscriptions that are scattered across the board.

This visual access to multiple inscriptions can facilitate
the discovery of unexpected connections. Discovering a
novel connection can instigate a change in perception of a
puzzle or concept. Indeed, discovering unexpected connec-
tions is known to be integral to high-level creativity in gen-
eral and to mathematical creativity in particular (Hadamard,
1954; Simonton, 2012, 2021; Tabatabaeian, Deluna, Landy,
& Marghetis, 2022; Pólya, 1990). The mathematician Henri
Poincaré (1913) described the process of mathematical cre-
ation as the creation of combinations of mathematical facts,
combinations which hopefully reveal “unsuspected kinship
between other facts, long known, but wrongly believed to
be strangers to one another”(p. 386). We suspect that the
mathematicians’ wandering is a strategy for cultivating such
unexpected discoveries.

This hypothesis is supported by the observations that when
away from the board, mathematicians often stare intently at
the board, moving their gaze from one inscription to the next
as if trying to uncover hidden connections. In fact, one math-
ematician actually mumbled, while far from the board, “I’m
scanning the board for a piece of information that I over-
looked.” By moving around, therefore, mathematicians can
surprise themselves unexpected information and connections.
We are testing this hypothesis, derived from naturalistic ob-
servation, in a series of controlled lab experiments. If our
speculation bears out, then mathematicians’ “aimless” wan-
dering may not be so aimless.

Toward a full description of situated reasoning
The current study was limited by the existing frameworks
of gesture studies and methods of human-annotated analysis.

Every theoretical framework makes some phenomena pop
while others fade from awareness. Traditional taxonomies of
gesture, for instance, focus on binary relations between form
and meaning — referring by pointing, referring in virtue of
resemblance, etc. The mathematicians’ gestures, however,
often figured in complex webs of meaning, acting as inter-
mediaries between multiple external referents or ideas, much
like the gestures used by teachers to connect multiple rep-
resentations of the same concept(Richland, 2015; Alibali &
Nathan, 2007). While these ‘linking’ gestures may resem-
ble traditional pointing gestures, they play a more compli-
cated role than merely directing attention to a single target.
must consider the role of gestures within these larger webs of
meaning.

The description of situated reasoning offered here was lim-
ited by its methods: careful annotation by humans. Recent
developments in computer vision and machine learning have
unlocked new horizons in the study of real-world situated ac-
tivity (Cao, Simon, Wei, & Sheikh, 2017). Machine learning
tools for human pose estimation offer a complementary ap-
proach to quantifying the range of physical labor involved in
situated reasoning — writing, wandering, gesturing — with
the possibility of extracting a moment-by-moment record of
where and what a reasoner is doing while interacting in their
natural habitat, be it a mathematician’s office, a scientist’s
laboratory, or an artist’s studio. In combination with tradi-
tional human annotation, these tools for movement analysis
promise a future in which even the most elaborate forms of
situated reasoning may be described both in great detail and
as part of an integrated theory of abstract thought.

Conclusion
Mathematics is manual labor (Marghetis, Edwards, & Núñez,
2014). Much as a spider spins a web to increase its chances
of snagging a meal, the creative mathematician constructs a
notational niche — a web of equations, diagrams, and other
inscriptions. The mathematician can then explore this world
of ideas, quite literally moving from one idea to the next by
wandering about. To fully understand this kind of distributed
cognition ecosystem (Hutchins, 2010), we must look beyond
the confines of the mathematician’s skull. The most abstract
insights, it turns out, emerge from physical labor in a material
world.
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