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ABSTRACT Software design is a cognitively challenging task. Most software design tools
provide support for editing, viewing, storing, sharing, and transforming designs,but lack support
for the essential and difficult cognitive tasks facing designers. These cognitive tasks include
decision making, decision ordering, and task-specific design understanding. To date, software
design tools have not included features that specifically address key cognitive needs of designers, in
part, because there has been no practical methodfor developing and evaluatingthese features. This
report contains a practical description of several cognitive theories relevant to software design, a
method for devising cognitive support features based on these theories, a basket of cognitive
support features that are demonstrated in the context of a usable software design tool called Argo/
UML, and a reusable infrastructure for building similar features into other design tools. Argo/UML
is an object-oriented design tool that includes several novel features that address the identified
cognitive needs of software designers. Each feature is explained with respect to the cognitive
theories that inspired it and the set of features is evaluated with a combination of heuristic and
empirical techniques.

KEYWORDS Object-oriented software design, critiquing, intelligent user interfaces, designers'
cognitive needs



CHAPTER 1: Introduction

1.1 Background on CASE tools

What are CASE tools. Computer Aided Software Engineering (CASE) is a catchall term to describe virtually
any software development tool. However, it is typically used to refer to software development tools that use
diagrammatic representations of software design. For the purposes of this dissertation, the term is further specialized
to mean tools that support the use of design diagrams in the development of object-oriented software. These tools are
also known as OOAD (Object-Oriented Analysis and Design) tools.

CASE history in a nutshell. Software designers have used diagrammatic representations of their designs since
the earliest days of software development. Over time the nature of these design diagrams has changed and so have
the tools used to produce them. Much like early word processors replaced typewriters, early CASE tools served as
electronic replacements for paper, pencil, and stencil. Many of these early CASE tools became unused "shelfware"
because they did not provide significant value to software designers (livari, 1996). Later CASE tools added
sophisticated code generation, reverse engineering, and version control features. These features add value via
increased automation of some design tasks, for example, converting a design into a source code skeleton. However,
current CASE tools fail to address the essential cognitive challenges facing software designers.

International Data Corporation (IDC), a market research firm that collects data on all aspects of the computer
hardware and software industries, has published a series of reports on OOAD tools. "IDC expects revenues in the
worldwide market for OOAD tools to expand at a compound annual growth rate of 54.6% from $127.4 million in
1995 to $1,125.2 million in the year 2000" (IDC, 1996). Much of this growth is expected to stem from adoption of
OOAD tools by smaller software development organizations.

The need to help designers. Software design is not simply an automateable process of transforming one
specification into another; it also involves complex decision making tasks that require the attention of skilled
designers. Design tools that support designers in decision making are a promising way to increase designer
productivity and the quality of the resulting designs.

Helping designers make good design decisions is important because their design decisions will strongly
influence the amount of implementation and maintenance effort needed later. Support for designers is also important
because many software designers are overworked and pressured to attempt design tasks for which they lack proper
training and experience. This is due in part to the current shortage of trained information technology workers (Fox,
1997; PITAC, 1999).

1.2 Research Method

Sophisticated development tools such as CASE tools have dozens or hundreds of features. Two common ways
that tool builders decide which features to include are by looking at the features that similar tools provide and by
directly observing users. Direct observation of users is followed by interpretation of the observations, generation of
proposed features, and evaluation. The basic difference in my approach is that I generate proposed features based on
published theories of designers' cognitive needs. These theories are themselves based on careful observations of
human activity. The main advantage of using published theories stems from their insights into human design
activities, which are deeper and more widely applicable than those a typical CASE tool builder can glean from direct
observation. My approach is illustrated in Figure 1-1.

This dissertation presents a set of novel design tool features intended to support designers in making and
ordering decisions. Each of these features is motivated by experience in designing software systems and by
published theories of the cognitive challenges of design. Many of these theories have been published in books and
journals on cognitive psychology while others are implicit in the software engineering literature. Using cognitive
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theories to guide the development of design tool features has resulted in several promising new features that I would
not otherwise have been likely to invent.

Each feature is described in the context of Argo/UML, a tool for object-oriented design that uses the Unified
Modeling Language. ArgoAJML is a research system with an emphasis on novel features. It also includes enough
standard CASE tool functionality to be generally useful. Argo/UML is implemented in Java and consists of over
100,000 lines of code in over 800 classes. Preliminary versions of Argo/UML have been distributed via our web site
(www.ics.uci.edu/pub/arch/uml) since July 1998, and have been evaluated or used in dozens of companies and
classrooms. Argo/UML is the fourth in a series of tools that I have developed or enhanced with cognitive support
features. Although Argo/UML is the focus of this dissertation, the design support features described are also
applicable to other design tools. This point will be further discussed in the conclusion.

A good research method should be repeatable. I expect the research method described in Figure 1-1 to be
repeatable by researchers with background similar to my own. Specifically, the method requires researchers to
become familiar with several theories of designers' cognitive needs, to be experienced users of existing design tools
in the target domain, and to have a broad knowledge of standard usability issues. One of the contributions of this
dissertation is a description of the relevant theories in a way that could allow more people to repeat the method.

Advanced user interface features cannot make an unusable design tool into a usable one. Current CASE tools
certainly leave room for improvement in basic usability. For example, they often make poor use of limited screen
space, confuse users with a dizzying array of commands, require excessive use of the mouse rather than the
keyboard, provide commands that are not well matched to the way designers think about the design task, and impose
unneeded modality. 1 have made some efforts to improve the basic usability of Argo/UML, and these efforts are also
grounded in theory and Human-Computer Interface (HCl) guidelines.

1.3 Hypothesis and Contributions

The hypothesis of this dissertation is that cognitive theories of design can inform the development of CASE tool
features that provide cognitive support to designers. Here "CASE tool" refers to object-oriented software design
tools. Implications for other types of software development tools are discussed in the final chapter. Furthermore,
"inform" means that parts of the theories described in Chapter 2 lead to parts of the features proposed in Chapter 4.



Finally, "provide cognitive support" means that each feature's expected benefits can be explained in terms
of the theories of designers' cognitive needs and that the feature has a positive effect on the designers'
mental processes or work products.

The contributions of this dissertation are as follows;

• It describes theories of design cognition in terms understandable and relevant to CASE tool builders
(Chapter 2).

• It proposes a basket of useful CASE tool features. Each feature is inspired and explained by cognitive
theories and HCI guidelines (Chapter 4). Several of these features are novel, while others are
improvements on features that may be found in current CASE tools or research systems.

• It demonstrates the successful application of a theory-based UI design method to a large-scale software
engineering tool.

• It describes the design of a scalable, reusable infrastructure for building the proposed features in design
tools (Chapter 8).

1.4 Organization of the Dissertation

This dissertation consists of nine chapters. The next two chapters present cognitive theories of design
and previous work on design critiquing systems. Chapter 4, the heart of the dissertation, proposes cognitive
support features that address some of the needs identified in the cognitive theories. Chapter 5 demonstrates
how these features might be used. Chapter 6 evaluates the proposed cognitive support features using
heuristic usability methods, while Chapter 7 evaluates the features and approach empirically. Chapter 8
describes the reusable libraries that implement the cognitive support features. Chapter 9 concludes the
dissertation.



CHAPTER 2: Theories of Designers' Cognitive Needs

This chapter presents the cognitive theories that informed the design of cognitive support features in Argo/
UML. As mentioned in Chapter 1, the majority of these theories are drawn from cognitive science Journals and
books. However, some are drawn from software engineering or human-computer interaction literature.

Many of the theories described in this chapter propose a model of human thought, memory, or activity during
problem solving and design. These models are based on lower level cognitive models, observations, and controlled
experiments. However, they are simply models: they are consistent with observations but they do not claim to
identify the root or sole cause of observed behavior. Although many of these theories are widely accepted, none of
them are irrefutable. As in any active research field, new cognitive models and theories will periodically be
introduced. In fact, several of the subsections in this chapter include references to articles questioning the theories
presented. Furthermore, since I am primarily a software engineer rather than a cognitive psychologist, my mastery of
these cognitive theories has its limits. My research method reduces the risk of depending on an incorrect,
inappropriate, or misunderstood theory by drawing from multiple cognitive theories, multiple user interface
guidelines, and the experience of others and myself in using similar tools.

In the following subsections, each cognitive theory is described in terms accessible to software engineering tool
builders, and the implications of the theory on tool building are outlined. The implications can be classified into two
broad levels: first, design tools should avoid interfering with the natural thought processes of designers; and, second,
design tools should actively support these processes when possible.

2.1 Theories of Design Decision-Making

2.1.1 Reflection-In-Action

Description. The cognitive theory of refleetion-in-action (Schoen 1983, 1992) observes that designers of
complex systems do not conceive a design fully-formed. Instead, they must construct a partial design, evaluate,
reflect on, and revise it, until they are ready to extend it further. For example, a software architect usually cannot
decide in advance that a certain component will use particular machine resources. That decision is usually made in
the context of other decisions about inter-component communication and machine resource allocation. Guindon,
Krasner, and Curtis note the same effect as part of a study of software developers (Guindon, Krasner, and Curtis,
1987). Calling it "serendipitous design," they noted that as the developers worked hands-on with the design, their
mental model of the problem situation improved, hence improving their design.

One interesting related effect is "the tyranny of the blank page" (Boucher, 1995). Authors (who are a type of
designer) often find it hard to start from nothing. Starting from a partially specified design (e.g., a rough outline) is
much easier, even if much of this initial template is changed in the course of design. This may be because it is easier
to make design decisions in some context of decisions that have already been made, rather than making &first
decision in a context consisting only of future decisions. This is partly due to the fact that many design problems are
underconstrained and the designer must add constraints or assumptions to properly frame the problem. Here,
however, I am more concerned with the way that a design document plays the role of an external memory that
augments the designer's short and long-term memory.

The need to make decisions in the context of design may be partly explained in terms of more basic theories of
human associative memory structure and access (e.g., Gofer, 1975). People store their memories in mental structures
and use the structures to retrieve memories. Some parts of the structure are more active at a given time, based on
recent accesses. Designers may possess specific design knowledge, but they will not be able to recall and apply it
unless they can activate the proper section of their memory structure. When engaged in the design process, designers
can use aspects of the partially specified design as prompts to activate needed memories. For example, when adding
a new class to an object-oriented design a designer may visually scan the other classes already in the design to decide
what new relationships are needed; each existing class icon serves as a prompt to activate the designer's memory of



relevant domain semantics. More generally, when designers look at their design and ask questions such as "What is
missing hereT or "What is wrong with this part?" they are using information in the external design document as
cues to activate needed parts of their associative memory. Section 2.2 discusses human memory structures in more
detail.

The "reflection" in reflection-in-action can include any type of analysis that raises design issues. While visual
inspection of the design is one of the most frequent types of analysis, domain-specific analyses can provide more
specific cues. Knowing which questions to ask about a design is part of a designer's expertise. Making use of that
expertise depends on being able to recall them from the designer's associative memory at the time when they are
needed. This leads to a cycle of synthesis and analysis: each design decision prompts the designer to apply the
appropriate analyses, and each analysis produces new prompts for the designer to consider new design decisions.

Implications for design support. The theory of reflection-in-action implies several requirements for design
tools. First, the designer should be allowed to easily alternate between synthesis and analysis activities. The designer
should not be forced to complete a synthesis activity without analysis; likewise, the designer should not be locked
into an analysis mode. Furthermore, the tool should support the natural integration of synthesis and analysis by
providing the designer with prompts to recall relevant design knowledge. Many of the cognitive support features in
Argo/UML are inspired by this theory, including design critics, checklists, non-modal wizards, the dynamic "to do"
list, clarifiers, and the create multiple feature.

2.1.2 Opportunistic Design

Description. It is customary to think of solutions to design problems in terms of a hierarchical plan.
Hierarchical decomposition is a common strategy to cope with complex design situations. However, in practice,
designers have been observed to perform tasks in an opportunistic order (Hayes-Roth and Hayes-Roth, 1979;
Guindon, Krasner, and Curtis, 1987; "Visser, 1990). The cognitive theory of opportunistic design explains that
although designers plan and describe their work in an ordered, hierarchical fashion, in actuality, they choose
successive tasks based on the criteria of cognitive cost. Simply stated, designers do not follow even their own plans
in order, but choose steps that are mentally least expensive among alternatives.

The cognitive cost of a task depends on the background knowledge of designers, accessibility of pertinent
information, and complexity of the task. Designers' background knowledge includes their design strategies or
schemas (Soloway et ah, 1988). If they lack knowledge about how to structure a solution or proceed with a particular
task, they are likely to delay this task. Accessibility of information may also cause a deviation in planned order. If
designers must search for information needed to complete a task, that task might be deferred. Here, searching for
information can occur at two levels: physically searching for books, web pages, or knowledgeable colleagues, or
mentally searching for elements of the designer's knowledge that are not immediately accessible. Complexity of a
task roughly corresponds to the number of smaller tasks that comprise it.

On the other hand, opportunistic switching can occur when one task brings to mind the information needed for
another task. In these situations, the designer may defer completion of the original task and embark on a design
excursion to address the second task before the needed information slips out of mind (looses activation). The
designer should eventually return from each excursion to complete the original task, but the need to remember to
return imposes a short-term memory load.

Priorityor importance of a step is the primary factor that supersedesthe least cost criteria.Priorityor importance
may be set by external forces, e.g., an organizational goal or a contract. Designersmay also set their own priorities.
In some observations, designers placed a high priority on overlooked steps or errors (Visser, 1990).

Thus, the theory of opportunistic design outlines a "natural" design process in which designers choose their next
steps to minimize cognitive cost. However, there are inherent dangers in this "natural" design process. Mental



context switches occur when designers change from one task to another. When starting a new step or revisiting a
former one, designers must recall schemas and information needed for the task that were not kept in mind during the
immediately preceding task.

Implications for design support. One implication is that designers would benefit from the use of process
modeling. Common process models support stakeholders in carrying out prescribed activities, e.g., resolving a bug
report. Software process research has focused on developing process notations and enactment tools that help ensure
repeatable execution of prescribed processes. However, in their focus on repeatable processes, process tools have
tended to be restrictive in their enforcement of process steps.

Design tools can allow the benefits of both an opportunistic and a prescribed design process. They should allow,
and where possible augment, human designers' abilities to choose the next design task to be performed.
Furthermore, design tools should aid designers in returning to the prescribed design process after they complete each
opportunistic excursion. Process support should exhibit the following characteristics to accommodate the
opportunistic design process.

Visibility helps designers orient themselves in the process, thus supporting the designer in following a prescribed
process while indicating opportunities for choice. The design process model should be able to represent what has
been done so far and what is possible to do next. Visibility enables designers to take a series of excursions into the
design space and re-orient themselves afterwards to continue the design process.

Flexibility allows designers to deviate from a prescribed sequence and to choose which goal or problem is most
effective for them to work on. Designers must be able to add new goals or otherwise alter the design process as their
understanding of the design situation improves. The process model should serve primarily as a resource to designers'
cognitive design processes and only secondarily as a constraint on them. Allowing flexibility increases the need for
guidance and reminding.

Guidance suggests which of the many possible tasks the designer should perform next. Opportunistic design
indicates that cognitive costs are lower when tasks are ordered so as to minimize mental context switching. Guidance
sensitive to priorities (e.g., schedule constraints) must also be considered. Guidance can include simple suggestions
and criticisms. It may also include elaborate help, such as explanations of potential design strategies or arguments
about design alternatives.

Reminding helps designers revisit incomplete tasks or overlooked alternatives. Reminding is most needed when
design alternatives are many and when design processes are complex or driven by exceptions. As discussed below,
high loads on short-term memory can induce procedural errors by reallocating short-term memory slots that were
used to keep track of pending steps or goals; reminding provides designers with an external and reliable memory for
pending steps and goals.

Timeliness applies to the delivery of information to designers. If information and design strategies can be
provided to designers in a timely fashion, some plan deviations and context switches may be avoided. Achieving
timeliness dependson anticipating designers' needs.Even an approximate representation of designers' plannedsteps
can aid in achieving timeliness.

The theory of opportunistic design has influenced many of ArgoAJML's features. The dynamic "to do" list,
checklists, opportunistic table views, and opportunistic search utility are the features most heavily influenced by this
theory.

2.1.3 Geneplore

Description. Finke,Ward, and Smith (1992) presenta model of creative design activity calledGeneplore.
Geneplore consists of twocyclically recurring phases: generation and exploration. Duringthe generation phasenew



ideas are generated but not evaluated. During the exploration phase the ideas are explored and their implications are
evaluated.

This theory is akin to reflection-in-action, in that it identifies synthesis activities as distinct from analysis
activities. However, reflection-in-action emphasizes the complementary nature of these two activities, whereas
Geneplore warns of possible interference.

Many practical creative techniques are based on separating synthesis from analysis to reduce interference. For
example, Osborn (1953) developed a popular brainstorming technique that involves listing and free association of
ideas in a group setting where participants must withhold criticism until later. Also, Austin (1994) offers four
exercises to break out of writers' block: write sentences using words selected randomly from a dictionary, build a
dialog around one line taken out of some other context, write an informal letter to a friend about the task, or write
vignette about family pictures. These exercises help break writers' block by encouraging the writer to focus on the
generation phase of a task that has no inherent evaluation and then return to the original writing task to generate new
ideas.

Finke, Ward, and Smith (1992) review several proposed techniques for generation of new ideas during the
generation phase, including attribute listing, defining a space of possible attribute values, and visual combination.

Implications for design support The theory of reflection-in-action implies that design tools should
simultaneously support both synthesis and analysis. Geneplore, on the other hand, implies that design support tools
can encourage creativity by helping designers separate synthesis and analysis. Furthermore, brainstorming and other
idea generation techniques have been found to be useful in many fields, but they are usually manual and rarely
directly supported by design tools.

Argo/UML's visual blender feature is directly inspired by this cognitive theory.

2.2 Theories of Human Memory

2.2.1 Associative Recall

Description. Cognitivescientistsuse many alternative models of human semanticmemory. One aspect found in
virtually all of these models is that of associativerecall (e.g.. Gofer, 1975;Ellis and Hunt, 1993). Basically,
associative recall allows people to recall related concepts when they are presented with cues that activate one part of
their memory. For example, people can more easily recall a list of meaningfully related words than a list of random
ones. Collins and Loftus (1975) proposed the Spreading-Activation Model of human memory. In this model,
concepts are connected to others in a network with links of various strengths. Activation of one memory node can
spread to linked nodes, causing them to become somewhat activated as well. Several studies have indicated that

spreading activation can help explain performance on free recall of word lists (e.g., Ross and Bower, 1981).

However, others have cast doubt on the applicability of free recall performance to decision-making and design
processes. Anderson (1996) suggests that subjects often combine concepts into exemplars and then make decisions
based on the exemplars, even if they cannot recall the original concepts. This is just one example of the type of
mental construction that may take place whenaccessinghumanmemory. Theoriesof cognitivefixation also apply to
design and are discussed below.

Implications for design support This theory implies that design toolscan present cues that causedesigners to
retrieve their own related memories. For example,effectivecuing could allow a knowledge-poor tool to aid
knowledge-rich users in applying their knowledge when needed.On the other hand, off-topiccues can also distract
users, causing them to think of things not related to the task at hand.

These cues can be overtly generated by the design tool as help files, examples,error messages, or design
critiques. However, the visible state of the design is itselfa strongcue that is always presentand frequently used.



Nearly every cognitive support feature in ArgoAJML makes use of this theory of associative recall. The clarifier,
opportunistic search, create multiple, and visual blender features relate most directly to this theory. Many user
interface guidelines are also derived from this underlying aspect of human memory.

2.2.2 Limited Short-Term Memory

Description. Another aspect found in virtually all models of human memory is short-term memory (STM).
Miller (1965) first proposed that STM has a capacity of seven plus or minus two items. Using a simple number
ignores the effects of chunking, primacy, and recency. Chunking occurs when people group related items based on
knowledge from their long-term memory, so short-term and long-term memory are obviously linked. Primacy and
recency effects cause people to remember the first and last words in a given list more easily than those in the middle.

The general idea is that designers need to focus on a subset of the design and a subset of design issues. Minor
distractions, such as working through a complex user interface, can take up slots in a designer's short-term memory
and knock out application specific facts. Byrne and Bovair (1997) conducted an experiment that showed that
increased short-term memory loads caused procedural errors in carrying out complex user interface tasks.
Specifically, subjects with high STM loads committed super-goal kill-off errors, i.e., they thought that they had
finished the task when they had really only finished a major step. Furthermore, in discussing comprehension and
problem solving of word arithmetic problems, Kintsch and Greeno (1985) cite an earlier study (Kintsch and Poison,
1979) that showed that "there may be trade-offs between the capacity of the short-term [memory] and the other
resource demands on the [person], so that if the task to be performed is a difficult one, fewer resources are available
for actively maintaining information in the [memory]."

Implications for design support. One implication of this theory is that limited short-term memory resources
are used in both making design decisions and in forming plans for tool usage. This suggests that a design tool user
interface should reduce short-term memory load where possible. In fact, this is a general user interface design
guideline that has also been widely applied to other types of user interfaces (e.g., Shneiderman, 1998). Another way
that design tools can support designers is by augmenting their short-term memory with external memory provided by
the tool. This might be as explicit as prompting the designer to enter textual notes on what he or she wants to
remember, or it may be as implicit as placing the cursor in the proper field to prompt the designer to continue an
interrupted task at the point where it was left off.

Limited short-term memory resources are also used to mentally combine views offered by the tool into task-
specific mental models. Tools might help reduce these short-term memory demands by providing views that better
match the designer's task-specific mental models or by aiding the designer in visualizing combinations of views.

As with associative recall, many user interface guidelines take into account the limited short-term memory of
tool users. Some of Argo/UML's cognitive support features aim to reduce short-term memory loads by simplifying
interactions with the tool or providing reminders. Specifically, Argo/UML's selection-action buttons, create multiple
feature, and broom alignment tool each help simplify the interactions needed for common design tasks. Also, Argo/
UML's clarifiers, dynamic "to do" list, checklists, and design history help remind the designer of information that
they might otherwise forget.

2.2.3 Cognitive Fixation

Description. Cognitive fixation occurs when memory cues block retrieval of related concepts rather than aiding
their retrieval. For example, in one experiment, when subjects were asked to memorize a list of random words and
then cued with some of the same words, retrieval of the other words was actually lower than when no cues were
provided. This effect is explained by Smith, Ward, and Schumacher (1993) as memory retrieval interference between
activation of the cue and of the other words. Several experiments have shown that providing subjects with examples
can reduce novelty in creative tasks, even when subjects explicitly try not to follow the example. For instance,
Jansson and Smith (1991) asked engineering students and professional designers to design a measuring cup for blind
users. They found that subjects tended to fixate on provided examples, even if those examples lacked needed



features. Smith, Ward, and Schumacher (1993) found that subjects fixated on examples just as much when they were
explicitly instructed to make their solution different from the example as when they were given no such instructions.
Furthermore, Ward (1994) found that students and professional writers can often become fixated on self-generated
cues and initial assumptions.

Feeling-of-knowing and tip-of-tongue mental states can also be caused by fixation when an incorrect word
prevents retrieval of the correct word. Smith has conducted several cognitive studies that have induced tip-of-tongue
states and investigated the impact of incubation on these states (Smith, 1994). Here, the term "incubation" refers to a
period of idle time between the initial retrieval failure and subsequent successful retrieval. During this time delay,
subjects are occupied with unrelated tasks. In one study, a twenty-three minute incubation had no significant
reduction of fixation (Smith and Vela, 1991); in contrast, another study found that one minute of incubation
substantially reduced fixation (Meyer and Bock, 1992).

Design novelty and productivity can be reduced when designers fixate on one alternative to such an extent that it
interferes with the generation of other alternatives. This can occur when attempts to think of an alternative to a
design fragment results in reactivation of the same parts of the designer's memory that lead to the current fragment.

Implications for design support Design support tools might address fixation on initial assumptions by
prompting designers to consider alternatives suggested by the tool. However, these prompts may distract the
designer, possibly inducing fixation themselves. On the other hand, short distractions can be useful if they break a
fixation activation cycle by providing an incubation period.

Fixation has not inspired a cognitive support feature directly, but it has been used to explain why some of the
proposed features are expected to succeed or fail. Specifically, design critics, checklists, create multiple, and the
visual blender feature all take fixation into account. The theory of fixation, much like the theory of opportunistic
design, has helped me avoid proposing features that are inconsistent with the theory.

2.2.4 Limited Knowledge

Description. In 1987, Guindon, Krasner, and Curtis (1987) identified several difficulties faced by software
designers;

The main breakdowns observed are: (1) lack of specialized design schemas; (2)
lack of a meta-schema about the design process leading to poor allocation of
resources to the various design activities; (3) poor prioritization of issues leading
to poor selection of alternative solutions; (4) difficulty in considering all the stated
or inferred constraints in defining a solution; (5) difficulty in performing mental
simulations with many steps or test cases; (6) difficulty in keeping track and
returning to subproblems whose solution has been postponed; and (7) difficulty in
expanding or merging solutions from individual subproblems to form a complete
solution. (Guindon, Krasner, and Curtis, 1987)

Several of these difficulties are addressed by other cognitive theories described in this chapter. For example,
difficulty in keeping track of postponed subproblems is discussed along with the theory of opportunistic design, and
difficulty in considering constraints is addressed in the discussion of reflection-in-action. This subsection focuses on
the first two difficulties: lack of domain knowledge and lack of process knowledge.

The next year, Curtis, Krasner, and Iscoe (1988) elaborated on the "thin spread of application domain
knowledge" as one of the main difficulties of developing large software systems. This thin spread is another way of
saying that no singledesignerknows everythingthat he or she will need to know to completea complex design.
Even an expert in a narrow domain will have to step outside that domain to achieve a complete design. Also, leading-
edge or even market-competitive designs usually push the boundaries of what is well known. Because of the thin



spread of knowledge, designers need to interact with other stakeholders on any non-trivial design project to access
the knowledge that those people hold.

Implications for design support The simple fact that no one knows everything implies that design support
tools can help by providing knowledge that designers lack. This knowledge may take the form of explanations, rules,
examples, templates, or suggestions. If the tool does not have built-in knowledge in a given area, it may offer a
suggestion as to where that knowledge may be found or who has it. Critics and checklists are two tool features that
can deliver this knowledge.

In addition to the complexity of the application domain, design tools are themselves complex and designers
require substantial tool-specific knowledge to use them. Even if a given tool is used frequently, it will likely contain
features that are rarely used by any given designer. This suggests that user interface guidelines intended to support
occasional and incremental learning should be applied to high functionality design tools (Fischer, 1989).

2.2.5 Mental Biases

Description. Stacy and MacMillian (1995) argue that people are frequently biased irrationally by their
experience, particularly in regard to the weight that they give to one experience over another. Representativeness
biases cause people to generalize too quickly from a particular experience to the class of experiences, or assign
aggregate properties of the class to individual instances. Availability biases favor ideas that are easily brought to
mind or visible over those that are harder to recall or invisible. Confirmatory biases favor experiences that confirm
one's hypotheses over experiences that disprove it. Mental models that are easier to think about tend to be used more
often than ones that are harder to think about, even if the more difficult models are more appropriate to the decision
at hand.

Implications for design support Design support tools can help by counter-acting some of these biases. For
example, if designers are biased in favor of analyses that confirm the quality of their design, the design tool should
use features such as critics or checklists to prompt them to consider analyses that question that quality. Likewise,
easily invoked computer simulations could help reduce designers' reliance on mental simulation of simplified mental
models.

2.3 Design Visualization Theories

2.3.1 Comprehension and Problem Solving

Description. The theory of comprehension and problem solving observes that designers must bridge a gap
between their mental model of the problem or situation and the formal model of a solution or system (Kintsch and
Greene, 1985; Fischer, 1987). The situation model consists of designers' background knowledge and problem-
solving strategiesrelated to the currentproblem or design situation. The system modelconsists of designers'
knowledge of an appropriate formal description. Problem solving or design proceeds through successive refinements
of the mapping between elements in the design situation and elements in the formal description. Successive
refinements are equated with increased comprehension, hence the name of the theory.

In the domain of software development, designers must map a problem design situation onto a formal
specification or programming language (Pennington, 1987; Soloway and Fhrlich, 1984). In this domain, the situation
modelconsists of knowledge of the application domain and programming plans or designstrategies for mapping
appropriate elements of the domain into a formal description. The systemmodel consists of knowledge of the
specification or programming language's syntaxand semantics. Programming plansor design strategies enable
designers tosuccessively decompose thedesign situation, identify essential elements and relationships, and compose
theseelements and relationships into elements of a solution. At successive steps, designers can acquire new
information about the situation model or about the system model.
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Pennington observed that programmers benefited from multiple representations of their problem and iterative
solutions (Pennington, 1987). Specifically, multiple representations such as program syntactic decomposition, state
transitions, control flow, and data flow enabled programmers to better identify elements and relationships in the
problem and solution and thus more readily create a mapping between their situation models and working system
models. Kintsch and Greeno's research indicated that familiar aspects of a situation model improved designers'
abilities to formulate solutions (Kintsch and Greeno, 1985). These two results were applied and extended in
Redmiles' research on programmers' behavior, where again multiple representations supported programmers'
comprehension and problem solving when working from examples (Redmiles, 1993).

Implications for design support. Dividing the complexity of the design into multiple perspectives allows each
perspective to be simpler than the overall design. Moreover, separating concerns into perspectives allows
information relevant to certain related issues to be presented together in an appropriate notation (Robbins et al.,
1996). Design perspectives may overlap: individual design elements may appear in multiple perspectives.
Coordination among design perspectives ensures that elements and relationships presented in multiple perspectives
may be consistently viewed and manipulated in any of those perspectives. Overlapping, coordinated perspectives aid
understanding of new perspectives because new design materials are shown in relationship to familiar ones
(Redmiles, 1993).

Good designs usually have organizing structures that allow designers to locate design details. However, in
complex designs, the expectation of a single unifying structure is a naive one. In fact, complex software system
development is driven by a multitude of forces: human stakeholders in the process, product functional and non
functional requirements, and low-level implementation constraints. Alternative decompositions of the same complex
design can support the organizing structures that arise from these forces and the different mental models of
stakeholders with differing backgrounds and interests. Using diverse organizing structures can help support
communication among stakeholders with diverse backgrounds and mental models. Such communication is key to
developing complex systems that are robust and useful.

It is my contention that no fixed set of perspectives is appropriate for every possible design; instead perspective
views should emphasize what is currently important to the designer. "When new issues arise in the design, it may be
appropriate to use a new perspective on the design to address them. While I emphasize the evolutionary character of
design perspectives, an initial set of useful, domain-oriented perspectives can often be identified ahead of time
(Fischer et al., 1994).

2.3.2 Secondary Notation

Description. Design diagrams in any given field follow a formal syntax that assigns meaning to specific
graphical shapes, connections, and labels. Beyond formal syntax, a set of diagramming conventions exists within
each design community. However, there are other visual aspects of diagrams that are left to the designer's discretion.
These may include the color, size, location, spacing, and alignment of diagram elements. Designers use these
unassigned visual aspects in a "secondary notation" that expresses relationships that are of concern, but that are not
covered by the formal notation (Green and Petre, 1996).

Programmers using conventional programming languages express their program to the compiler through formal
syntax, but they also use naming conventions, indentation, and blank lines to aid communication with other
programmers. These informal structures form a "secondary notation" that can aid the reader in identifying
commonalities between different program elements and in breaking down large structures into understandable
chunks.Likewise, in a design diagram, objects can be aligned to show logical structure, grouping,correspondence,
or emphasis.

Green and Petre (1996) point out that visual similarity between two design fragments can define a visual
"rhyme" that cues the reader to expect deeper semantic correspondence. For example, in Figure 2-1, alignment
implies grouping and correspondence of steps. Formally, the diagram consists of a single set of undifferentiated
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Figure 2-1. State diagram with alignment as secondary notation

states. But designers experienced in using this type of diagram should perceive two sets of states with corresponding
parts.

Implications for design support The observation that designers use secondary notation identifies an important
usability requirement for design diagram editors. Specifically, design editors should actively help designers in
maintaining elements of secondary notation. However, the interfaces of most of these tools are inspired by generic
drawing tools and do not provide specific support for secondary notation. In contrast, programmers' text editors such
as emacs (Stallman, 1979) do actively support indentation and alignment as secondary notation. Argo/UML's broom
alignment tool and selection-action buttons help achieve secondary notation in UML diagrams.

2.3.3 Viewing as an Acquired Skill

Description. Diagrammatic design representations are not necessarily understandable to anyone at first glance.
Diagrams have a certain immediacy of communication, but only to those who have experience in reading that type of
diagram. Due to the thin spread of application knowledge, not all stakeholders can be assumed to have the skills
needed to read all diagrams produced in a given project or to produce diagrams that fit the norms of the design
community (Petre, 1995).

Implications for design support. One implication of Petre's observation is that design diagramming tools
should take the norms of the design community into account. For example, an object-oriented design tool should
follow the norm of laying out subclasses below their superclasses. In Argo/UML, selection-action buttons encourage
the designer to follow conventions during diagram construction. Another implication is that some designers may
need support in understanding diagramming conventions. For example, a legend or link to on-line help might aid
designers who are new to the domain.
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2.4 User Interface Guidelines

2.4.1 Style Guidelines and Usability Heuristics

Many different types of user interface guidelines have been proposed. Some of these are specific rules that
define a given window system look and feel, others are more general-purpose heuristics. Tables 2-1 through 2-5
present excerpts from some well-known sets of guidelines and heuristics.

Table 2-1: Usability guidelines from Mac Look and Feel (Apple 1993)

Metaphors: Use metaphors involving concrete, familiar ideas.

Direct Manipulation: Allow people to feel that they are directly controlling the objects represented by the
computer.

See-and-Point: Users interact directly with the screen, selecting objects and performing activities by using
a pointing device.

Consistency: Use the standard elements of the Macintosh interface to ensure consistency within your
application and to benefit from consistency across applications.

WYSIWYG (What You See Is What You Get): Make sure that there is no significant difference between
what the user sees on the screen and what the user receives after printing.

User Control: Allow the user, not the computer, to initiate and control actions.

Feedback and Dialog: When a user initiates an action, provide some indicator that your application has
received the user's input and is operating on it.

Forgiveness: People need to feel that they can try things without damaging the system.

Perceived Stability: Provide a clear, finite set of objects and a clear, finite set of actions to perform on those
objects. When actions are unavailable, they are not eliminated but are merely dimmed.

Aesthetic Integrity: Design your products to be pleasant to look at on the screen for a long time.

Modelessness: Allow people to do whatever they want when they want to in your application.

Table 2-2: Usability guidelines from Java Look and Feel (Sun, 1999)

The most effective method of laying out user interface elements is to use a design grid with blank space to
set apart logically related sets of components.

Use headline capitalization for most names, titles, labels, and short text. Use sentence capitalization for
lengthy text messages.

Specify keyboard shortcuts for frequently used menu items to provide an alternative to mouse operation.
Be aware of and use common shortcuts across platforms.

Avoid the use of a second level of sub-menus. If you want to present a large or complex set of choices,
display them in a dialog box.
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Table 2-3: Usability guidelines from Nielsen (1995)

Visibility of system status

Match between system and the real world

User control and freedom

Consistency and standards

Error prevention

Recognition rather than recall

Flexibility and efficiency of use

Aesthetic and nominalist design

Help users recognize, diagnose, and recover from errors

Help and documentation

Table 2-4: Usability guidelines from Constantino and Lockwood (1999)

Structure: put related things together and separate unrelated things

Simplicity: make common tasks simple

Visibility: keep all options and materials for a given task visible

Feedback: keep users informed of actions, state, and errors

Tolerance: accept reasonable inputs, reduce the cost of errors

Reuse: do similar things in similar ways

Table 2-5: Usability guidelines from Shneiderman (1998)

Recognize human diversity

Strive for consistency

Enable frequent users to use shortcuts

Offer informative feedback

Design dialogs to yield closure

Offer error prevention and simple error handling

Permit easy reversal of actions

Support internal locus of control

Reduce short-term memory load

Several of these heuristic guidelines coincide with the cognitive theories of design. For example, Nielsen's
heuristic that recognition is better than recall can be explained by the cognitive theory of associative memory:
specifically, users will find it easier to recall an abstract concept when they are presented with a visual cue that they
associate with that concept.

Style guidelines and usability heuristics may have a basis in experience and underlying cognitive theories, but
they are stated with an emphasis on ease of technology transfer and application. Nielsen motivates his set of ten
usability heuristics with the comment that "even the best method will have zero impact on the product if it does not
get used" (Nielsen, 1993). Non-expert interface designers are likely to achieve better results more easily when
following established guidelines than when inventing new interactions without guidance. However, general-purpose
guidelines and heuristics have not by themselves resulted in very satisfactory CASE tool user interfaces. For
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example, Rational Rose adheres to the MS Windows user interface guidelines fairly closely and it imitates some of
the dialog boxes found in other popular development tools, yet the overall usability of Rose is low due to its modality
and lack of specific support for common design tasks.

2.4.2 Fitts' Law

Description. Fitts' Law addresses the low-level physical and cognitive task of indicating a position in a two-
dimensional space. Briefly stated, the time required for one to move one's hand (or mouse) from a starting region to
a target region depends on the distance moved and the size of the target region (Fitts, 1954). Moving to a distant
target takes longer because of the distance traveled, and moving to a small region takes more time because of the
need for precise positioning.

Implications for design support This theory calls into question any user interfaces that requires the user to
move the mouse to small and distant target areas. Yet, many examples of such interfaces are found in daily use. For
example, a standard scrollbar has very small and distant target areas to scroll up and scroll down. The difficulty of
using such an interface goes unnoticed by most users until they are exposed to an easier alternative. For example, the
"wheel mouse" sold by Microsoft and other companies allows users to scroll without changing the mouse position.

Software design tools typically focus on design diagrams that contain both graphical elements and structured
text. Editing of these diagrams entails substantial switching between mouse and keyboard input devices.
Furthermore, many current CASE tools use complex, modal dialogs that force designers to interact with small
widgets. All this can add up to substantial arm and wrist stress and a perception of difficulty in using the tool.

Since design tools are used daily by designers, the cumulative effects of physical stress and perceived difficulty
can be substantial. Design tools should reduce the effort needed for common operations. Knowing which operations
are most common and in which contexts they will be performed requires design tool builders to use their knowledge
of domain-specific design tasks. For example, selection-action buttons in Argo/UML aid designers in constructing
common types of nodes and edges in design diagrams.
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CHAPTER 3: Previous Work in Cognitive Features for Design Tools

3.1 Previous Work on Design Critiquing Systems

3.1.1 Definitions of Design Critiquing Systems

A design critic is an intelligent user interface mechanism embedded in a design tool that analyzes a design in the
context of decision-making and provides feedback to help the designer improve the design. Feedback from critics
may report design errors, point out incompleteness, suggest alternatives, or offer heuristic advice. One important
distinction between critics and traditional analysis tools is the tight integration of design critics into the designer's
task: critics interact with designers while they are engaged in making design decisions.

Table 3-1: Selected sefinitions of critiquing systems

Langlotz and Shortliffe (1983) describing ONCOCIN: "A critique is an explanation ofthe significant
differences between the plan that would have been proposed by the expert system and the plan proposed by
the user."

Miller (1983) on ATTENDING: "A critiquing system is a computer program that critiques human
generated solutions."

Fischer et al. (1991) on Janus: "Critics operationalize Schoen's concept of a situation that talks back. They
use knowledge of design principles to detect and critique suboptimal solutions constructed by the
designer."

Sumner, Bonnardel, and Kallak (1997) describing VDDE: "Critiquing systems embedded in [design]
environments augment designers' cognitive processes by analyzing design solutions for compliance with
criteria and constraints encoded in the system's knowledge-base."

Table 3-1 shows some of the definitions of critiquing systems found in the literature. I have added italics to each
definition to highlight key phrases that differentiate it from the others.

The definition in Table 3-1 given by Langlotz and Shortliffe defines critiques as explanations of differences.
Their system, ONCOCIN, arose from an effort to increase the explanation producing power of an existing expert
system. The emphasis was on the system's solution; the doctor's solution was used only to choose which parts of the
system's solution needed to be explained. The hope was that better explanation capabilities would make the system
more acceptable to its users.

Miller's definition of critiquing system places more emphasis on the user's solution. Miller's system,
ATTENDING was developed in an effort to make medical consulting expert systems more acceptable to their
intended users, much like ONCOCIN.

The first two definitions in Table 3-1 are early ones that do not imply much interaction between the designer and
the system. In contrast, the definition given by Fischer and colleagues introduces a cognitive aspect that shifts the
primary focus away from simple observations of user acceptance and to the cognitive needs of human designers.
Support for Schoen's theory of reflection-in-action implies a tight integration of critics into design tools and a
significant level of interaction between designers and critics during design tasks. It is this definition of critiquing that
is closest to my own.

The last definition is representative of much of the more recent work in critiquing that consists of the application
of the critiquing approach to new domains. It speaks of applying arbitrary criteria and constraints, and critiquing is
viewed as a user interface approach that is distinct from the underlying knowledge-base.
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Figure 3-1. Phases of the ADAIR critiquing process

My definition of critiquing differs from those in Table 3-1 in several ways. I position critiquing as an intelligent
user interface mechanism that can add value to standard direct-manipulation or forms-based design tools, rather than
as a more acceptable repackaging of expert system technology. Like Fischer's definition, I require that critics
providecognitivesupport for human decision-making, but I do not limit that support to a single theory of design.All
of the definitions in Table 3-1 stop at informing the designer of the existence of problems; I go a step farther by
defining the goal of critiquing as helping to carry out design improvements. I use the term "constructive" to
emphasize that a critic provides this additional level of support.

Definition. A design critic is an intelligent user interface mechanism embedded in a design tool that analyzes a
design in the context of decision-making and provides feedback to help the designer improve the design.

A critiquing system includes more than merely critics. A critiquing system must support the application of
critics during design. However, most also include support for critic authoring, management of the feedback from
critics, or a strategy for scheduling the application of critics.

3.1.2 Previous Work on Critiquing Processes

The definitions of critiquing systems given in Table 3-1 imply a simple detect-advise process: (1) critics detect
potential problems in a design, and (2) these critics advise the designer of the problems. Critiquing systems can be
evaluated based on their support for these two phases, but they must also be evaluated with respect to the relevance
of their design feedback to the designer's current task, and support for guiding or making design improvements.

Some previous research efforts have extended the detect-advise critiquing process. The Janus family of
critiquing systems adds a new phase to the beginning Ofthe detect-advise critiquing process: appropriate critics are
activated based on a specification of design goals. The TraumaTIQ system, like Janus, activates critics based on
design goals; however, in TraumaTIQ goals are inferred from the user's actions rather than stated directly. Sumner,
Bonnardel, and Kallak (1997) define a critiquing process with three major steps: analyzing the design, signaling
design errors, and delivering rationale that explains the problem and possible solutions. In addition to the phases of
the detect-advise process, this process outlines the improvement activities of the designer. As described below, I
have attempted to merge and extend these process models to clarify the role of critics and document the functionality
of the Argo critiquing system. The resulting process model is described below.

3.1.3 Phases of the ADAIR Process

The ADAIR critiquing process is named after the five phases that make up the process: Activate, Detect,
Advise, Improve, and Record. Design support systems and designers repeatedly work through these phases over the
course of a design. The phases are shown in Figure 3-1 as a linear sequence, however, some phases may be skipped
in certain situations, and multiple instances of the process may be concurrently active at any given time. The ADAIR
phases are not necessarily contiguous: other work often intervenes.

The ADAIR process is useful in evaluating the completeness of design support provided by a given approach or
system. In fact, the majority of this chapter uses the ADAIR process to structure its evaluations and comparisons.
Not all of the reviewed approaches and systems support all phases, but in cases where a given approach or tool does
not support a given phase, it can usually be improved by adding support for that phase.
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Activate. In the first phase, an appropriate subset of all available critics is selected for activation. Critics that are
relevant and timely to the designer's current decisions should be activated so as to support those decisions.
Increasing support for activation tends to make the advice provided by the system more useful to designers and
reduces the amount of feedback presented that is not useful.

Detect Second, active critics detect assistance opportunities and generate advice. The most common type of
assistance opportunity is the identification of a syntactic or simple semantic error. Other opportunities for assistance
include identifying incompleteness in the design, identifying violations of style guidelines, delivery of expert advice
relevant to design decisions, or "advertisements" for applicable automation.

Advise. Third, design feedback items are presented to advise the designer of the problem and possible
improvements. This phase is central to the concept of supporting the designer's decision-making. Feedback may take
the form of message displayed in a dialog box or feedback pane, or it may take the form of a visual indication in the
design document itself (e.g., a wavy, red underline). Much of the potential benefit of critiquing is associated with this
phase: the feedback item improves the designer's understanding of the status of the design, the explanation provided
improves the designer's knowledge of the domain, and the designer is directed to fix problems. This ultimately
results in more knowledgeable designers and better designs. Realizing these benefits requires effective means for
designers to manage feedback and careful phrasing of problem descriptions and suggestions.

Improve. Fourth, if the designer agrees that a change is prudent, he or she makes changes to improve the design
and resolve identified problems. Fixing the identified error is likely to be one of the most frequent forms of
improvement. Other types of improvement clarify the fact that the feedback is irrelevant rather than directly change
the offending design elements. For example, the designer might change the goals of the design in reaction to an
improved understanding of the problem or solution domain. Design support systems can aid designers in making
improvements by providing suggestions for improvements or corrective automations that fix the identified problem
semi-automatically.

Record. In the final phase, the resolution of each feedback item is recorded so that it may inform future
decision-making. Having a record of problem resolutions is important later in design because each design decision

interacts with others. Critics help elicit design rationale aspart of the normal design process byacting as foils' that
give designers a reason to explain their decisions. A recent evaluation of a critiquing system found that experienced
designers often explained their decisions in response to criticism with which they disagreed (Sumner, Bonnardel, and
Kallak, 1997).

3.1.4 Comparison of Critiquing Systems

This subsection briefly reviews nine different critiquing systems. Table 3-2 characterizes these critiquing
systems according to their support for the phases of the ADAIR process. Each system is given a score from zero to

1. In acting terminology, a foil is a minor character that allows a major character to be expressed through
dialog.
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three points for four of the five ADAIR process phases. For the detection phase, each system is described as using
comparative, analytic critiquing, or both.

Table 3-2: Summary comparison of critiquing systems

System
Activate

ADAIRCril

Detect

iquingProces

Advise

s Phase

Improve Record

ONCOCIN Comparative ★

ATTENDING family Both ★★ ★

Janus family ★★ Analytic ★★ ★ ★

Framer ★★ Analytic ★★ ★★

CLEER Analytic ★

VDDE * Analytic ★ ★

TraumaTIQ ★★ Comparative ★★

AIDA ★ Both ★

SEDAR ★★★ Analytic ★★ ★★

Comparative critiquing supports designers by pointing out differences between the proposed design and a design
generated by alternative means, for example, a planning system with extensive domain knowledge. In contrast,
analytic critiquing uses rules to detect assistance opportunities, such as problems in the design.

Fischer offers the following critic classification dimensions: active vs. passive, reactive vs. proactive, positive
vs. negative, global vs. local (Fischer, 1989). Active critics continuously critique the design, whereas passive critics
do nothing until the designer requests a critique. Reactive critics critique the work that the designer has done,
whereas proactive critics try to limit or guide the designer before he or she makes a specific design decision. Positive
and negative critics supply praise and criticism, respectively. Critics that analyze individual design elements are
termed local critics, while critics that consider interactions between most or all of the elements in a design are termed
global critics. The systems reviewed are split roughly evenly between use of active and passive critics. Only SEDAR
provides proactive critics, all other reviewed critiquing systems are reactive. ATTENDING, Framer, Janus, and
CLEER offer praise, although it plays a minor role in these systems. On the scale from local to global, a vast
majority of the critics in the systems reviewed are near the local end and consider one or a few design elements at a
time.

Below, each of these critiquing systems is discussed in roughly chronological order.

ONCOCIN. In 1980, Teach and Shortliffe conducted a survey of doctors' attitudes regarding computer based
clinical consultation systems (Teach and Shortliffe, 1981). Some of their conclusions at that time were that (1)
doctors are accepting of systems that enhance their patient management capabilities, (2) they tend to oppose
applications that they feel infringe on their management roles, (3) such systems need human-like interactive
capabilities, and (4) 100% accuracy in the system's advice is neither achievable nor expected.

These findings suggested a new direction for computing systems that support clinical practice (Fagen, Shortliffe,
and Buchanan, 1980).These systems follow the traditional expert system user interface paradigm and were
evaluated primarily in terms of their knowledge content, rather than their impact on practice. The critiquing concept
arose from the realizations that the system should supportdoctors without infringingon their decision-making
authority and that systems that were not 100% accurate could play a useful supporting role.

The next year, Langlotz and Shortliffe reported on the conversion of ONCOCIN, an expert system for the
management of cancer patients, to the critiquing approach. Initial versions of the system functioned as an expert
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system that produced plans that essentially consisted of a set of drugs and dosages. The intended users felt
"annoyed" at having to override the system's advice when they did not agree with the generated treatment plan
(Langlotz and Shortliffe, 1983). ONCOCIN was converted into an embedded critic: rather than use the system
primarily to generate treatment plans, doctors were intended to routinely enter their own plans into ONCOCIN and
the system offered criticism as a side benefit.

The ATTENDING family. At about the same time that ONCOCIN was being developed at Stanford, Miller
was developing the ATTENDING system at Yale. Like ONCOCIN, much of the emphasis of ATTENDING was on
prevention of the negative effects of the traditional expert system user interface. "ATTENDING avoids the social,
medical, and medicolegal problems implicit in systems which simulate a physician's thought processes, and thereby
attempt to tell him how to practice medicine" (Miller, 1983).

ATTENDING advises an anesthetist in the proper design of an anesthetic plan to be executed during surgery.
ATTENDING prompts the designer (in this case, an anesthetist) to enter a description of the problem (a patient's
conditions) and a proposed solution. ATTENDING then produces two or three paragraphs of natural language
criticism and praise of the plan. Any part of the proposed treatment plan that does not trigger criticism is praised; this
is done on the assumption that a more positive tone will enhance acceptance of the tool.

The Janus family. The Janus family consists of several versions of a household kitchen design environment,
named successively Crack (Fischer and Morch, 1988), Janus (Fischer et al., 1992), Hydra (Fischer et al., 1993), and
KID (Fischer, Nakakoji, and Ostwald, 1995). Designers use these systems by choosing a floor plan layout and
placing cabinets, counters, and appliances in that floor plan. One panel of the Janus user interface window shows the
current state of the kitchen, while other panels show a palette of available design materials, example floor plans, and
feedback from critics. Additional windows are used for argumentation and specification of design goals. A library of
IBIS-like arguments about alternative design decisions is available (Fischer et al., I99I). Goal specification sheets
prompt the designer to provide information through a structured set of choices, for example, "How large is the family
using this kitchen?", and "Is the cook right- or left-handed?" Furthermore, designers using Hydra can select a
critiquing perspective (i.e., critiquing mode) to activate critics relevant to a given set of design issues and deactivate
others.

Framer. The Framer design environment (Lemke and Fischer, 1990) supports user interface window layout
created with GLIM (the Common Lisp Interface Manager). One panel of the Framer window is used to edit the
current state of the design. A checklist panel shows a static list of tasks to be performed in the design process, with
one checklist item marked as the current task. A panel titled "Things to take care of presents the system's advice for
improving the design. Beside each piece of advice are buttons to explain the problem, dismiss the criticism, and, in
some cases, automatically fix the problem. The two main contributions of Framer are its use of a process model to
activate critics and the fact that it offers corrective automations.

CLEER. Configuration assessment Logics for Electromagnetic Effects Reduction (CLEER) is loosely
integrated with a computer aided design (CAD) system for placement of antennas on military ships (Silverman and
Mezher, 1992). The placement of antennas on ships affects the performance of the antennas, the radar profile of the
ship, and the function of other shipboard equipment. Designers using CLEER position antennas in a CAD model of a
ship. When the designer presses an "Evaluate" button, feedback from critics is displayed in a scrolling log window.

CLEER does not automatically activate critics and has no user or design task model. Analytic critics in CLEER
detect problems with mechanical and electromagnetic features of the design. Silverman and Mezher propose an
enhanced version of CLEER that would use decision networks to add support for activation, advisement, and
improvement (Silverman and Mezher, 1992).

VDDE. The VoiceDialog Design Environment (VDDE) (Bonnardeland Sumner, 1996) is a design environment
for voice dialog systems, for example, the menu structure of a voice mail system. VDDE applies stylistic guidelines
to help the designer comply with standards, and it can compare two voice dialog designs for consistency with each
other.
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Critics in VDDE display their feedback as one-line messages in a scrolling log window. A separate control panel
window is used to configure the critiquing system. VDDE does not automatically activate critics based on a user or
goal model. Instead, designers directly specify which sets of critics should be active, their priorities, and how
actively they should be applied. Unlike Hydra, multiple sets of critics can be active simultaneously.

Sumner, Bonnardel, and Kallak (1997) did an exploratory study of four professional voice dialog designers
using VDDE. One unexpected observation was that designers anticipate critics and change their behavior to avoid
them. This is positive if designers are avoiding decisions that are known to be poor. However, the designer's
understanding of the rule may be inaccurate and lead to "superstitious" avoidance of some decisions. The fact that
designers rapidly internalize criticism emphasizes the need for each criticism to provide a clear explanation. Another
observation was that experienced designers tended not to change their designs in response to criticism. Instead, they
stated why they thought that their decisions were correct. This can be interpreted as a negative result in that
suggested changes were not carried out. However, if critics act as foils that prompt designers to externalize their
design rationale and expertise, the effect could be exploited to support the recording of design decisions.

TraumaTIQ. TraumaTIQ is a stand-alone system that critiques plans for treatment of medical trauma cases,
such as gunshot wounds (Gertner and Webber, 1998). One emphasis of TraumaTIQ is the time-critical nature of its
domain.

A doctor or scribe nurse enters treatment orders into the system as they are performed. TraumaTIQ infers the
doctor's treatment goals from these orders and generates its own treatment plan. If substantial differences are
detected between the generated plan and the entered orders, TraumaTIQ presents a dialog box with a few concise,
natural language critiques. Each piece of advice contains a brief explanation and is sorted by urgency in the output
window.

AIDA. The Antibody IDentification Assistant (AIDA) is a tool intended for use by medical laboratory
technicians to categorize blood samples (Guerlain et ah, 1995). The antibody identification task is primarily a
problem solving task: the technician must interpret a panel of tests carried out on a batch of blood samples and
classify each clinically significant antibody as ruled out, unlikely, likely, or confirmed. In forming a complete
solution, technicians must first make a partial solution, use their limited knowledge to evaluate it in terms of how
well it explains the data, and then revise their solution.

Traditionally, the identification task is done by filling in a grid on a paper form; AIDA's user interface is
centered on an electronic version of this form. A separate critiquing feedback dialog box is presented when the
practitioner reaches certain steps in the design process and the proposed solution differs from one generated
automatically by the system.

Since AIDA is capable of generating its own solution to most antibody identification problems, one might
wonder why a human user is involved in problem solving at all. The reason stems from the fact that the system is not
completely competent in solving all problems. If the system were to be totally automated, the human user would still
have to solve the problem independently to decide whether to accept the machine generated solution. Humans do a
very poor job at this task, and frequently err by assuming that an incorrect solution is correct, or by following the
system's explanation "down the garden path" to the same incorrect solution. Furthermore, users of automated expert
systems can be expected to reduce their skill level over time due to the lack of practice. However, verifying the
correctness of an automatically generated solution to the antibody identification task can require more skill than
designing a new solution. Roth, Malin, and Schreckenghost refer to this as the "irony of automation" (Roth, Malin,
and Schreckenghost, 1997).

Guerlain et al. evaluated AIDA by asking thirty-two professional laboratory technicians from seven different
hospitals to solve four difficult problems (Guerlain et al., 1995). Half of the subjects were assigned to use AIDA with
the critics turned on and half worked with the critics turned off. In total, the group that did not use critics had twenty-
nine errors in their solutions, while the group using critics had only three errors. These three errors arose in one of
the problems where the system's knowledge was incomplete and it could not generate a correct solution. Despite this
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incompleteness, the critic-using group still did better on that problem than did the control group, which produced
eight errors.

SEDAR. The Support Environment for Design and Review (SEDAR) is a critiquing system for civil
engineering (Fu, Hayes, and East, 1997). Specifically, it supports the design of flat and low-slope roofs. Many
guidelines for roof design are available to practitioners, yet approximately 5% of roofs constructed in the U.S. fail
prematurely, in part because of design errors.

SEDAR is tightly integrated into a CAD program. While designers work with the CAD program to enter their
design decisions, critics check the design for problems. The presence of problems is indicated by a status message,
and a dialog box that lists outstanding problems can be accessed through a menu. SEDAR can visually suggest a
design improvement by drawing a new design element in one corner of the screen with an arrow to the general area
where the new element should be placed. However, the designer must still use the normal CAD tool commands to
make a new instance of the suggested design element and place it into the design.

SEDAR provides three activation strategies: error prevention, error detection, and design review. The error
prevention strategy works before designers commit to certain design decisions, for example, as soon as the designer
begins placing a mechanical unit in the design, illegal areas are visually marked-off on the design diagram. The error
detection strategy implicitly applies active critics to the design as changes are made. The design review strategy
provides a batch of criticism for use by reviewers after the design is considered complete.

SEDAR is unique among the critiquing systems reviewed here in that it identifies two classes of project
stakeholders; designers and reviewers. SEDAR's authors outline a broader design process in which the design
document is repeatedly passed between designers and reviewers, causing many project delays. Unfortunately,
SEDAR supports each group of stakeholders independently: there are no critics that advise designers how to make
designs that are easier to review. For example, there is no critic that warns the designer to avoid using mechanical
equipment that is not familiar to the reviewers.

3.1.5 State of the Art of Critiquing Systems

Research on critiquing systems has been motivated by three main observations: (1) in certain domains it is
impractical to build expert systems that are acceptable to users, (2) human designers sometimes make costly errors
that could be avoided with better tool support, and (3) design is a cognitively challenging task that could be eased
with tool support to help designers overcome specific difficulties. The earliest system reviewed, ONCOCIN, was
built as a reaction to user rejection of expert systems in the medical treatment planning domain. Most of the reviewed
critiquing systems, including CLEER and SEDAR, focus on identifying specific types of errors and trying to warn
designers about these errors. The Janus family and the Argo family of design environments address the much
broader scope of cognitive support.

The critiquing systems reviewed have primarily been research systems that have seen little practical use. Each
system explores some aspects of design support while ignoring others. Also, the critiquing systems reviewed have all
been fairly limited in the number of critics and the scope of their domain. To date, no "industrial strength" critiquing
system has been implemented and deployed. In part, this is because little work has been done on the software
engineering issues of developing reusable infrastructures, development methodologies, or authoring tools for
creating critiquing systems. Argo/UML is the first design critiquing system to successfully scale up in terms of
complexity and in the size of its user base.

Overall, existing critiquing systems provide incomplete support for designers' cognitive needs. In most of the
systems reviewed, design critics detect and highlight errors, but they require designers to do much of the work of
activation, feedback management, design improvement, and recording.
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CHAPTER 4: Proposed Cognitive Features

As described in Chapter 1, my basic research method has been to (1) find and understand published cognitive
theories of design, (2) invent new design tool features that address the cognitive needs identified by the theories, (3)
build design tools that include these features, and (4) evaluate the impact of these features on designers. I have tried
to build design tools that are realistic test-beds for the cognitive support features, i.e., the latter two tools described
below are full-scale, useful tools, not toy examples or prototypes.

To date, I have constructed four design tools with cognitive support. Argo/C2 (Figure 4-1) is a software
architecture design environment. Argo/C2 includes critics that remind software architects of the C2-style guidelines
(Taylor et. al, 1996), a dynamic "to do" list, and a process model. Stargo is an object-oriented design tool using the
OMT (Object Modeling Technique) notation (Rumbaugh et al., 1991). Stargo includes critics and a dynamic "to do"
list. Prefer (Figure 4-2) is a state-based requirements specification tool using the CoRE notation (Faulk et al., 1994),
which is based on the SCR notation (Henninger, 1980). Prefer includes design critics and a dynamic "to do" list.

Argo/UML (Figure 4-3) is the fourth and most ambitious tool. It is an object-oriented design tool using the UML
(Unified Modeling Language) notation (OMG, 1997). Argo/UML's user interface consists of four panes named
(clockwise from upper-right) the main pane, the details pane, the "to do" pane, and the navigator pane. The main
pane is used for drawing design diagrams and editing tabular views of the design. The details pane contains several
tabs. Most of the "details tabs" have an upward pointing arrowhead and show information about the currently
selected object in the main pane. However, the first details tab has a left facing arrowhead and shows information
about the currently selected object in the "to do" pane. The "to do" pane contains the designer's "to do" list
(described below). The navigator pane allows the designer to see all the elements of the design and their relationship
to other elements in the context of the selected navigational perspective (described below).
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Argo/UML is a useful tool and a showcase for over a dozen cognitive support features. These features are

covered in the following subsections and summarized in Table 4-1. For each feature, I provide background
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information, describe how the feature is used, and explain its theoretical and experiential motivations. This chapter
concludes with a discussion of how the features interact.

Table 4-1: Summary of proposed cognitive features

Knowledge Support Features

§4.1.1. Critics and Control Mechanisms Implemented, Deployed, Evaluated

Catch design errors early and provide constructive advice

§4.1.2. Non-modal Wizards Implemented, Deployed, Evaluated

Provide procedural guidance to resolve identified problems

§4.1.3. Context Sensitive Checklists Implemented, Deployed

Help catch design errors early, less specific than critics

§4.1.4. Design History Partly Implemented

Helps review past criticisms, manipulations, and resolutions

Process Support Features

§4.2.1. "To Do" List and Clarifiers Implemented, Deployed, Evaluated

Presents criticism and advice in a usable, organized format

§4.2.2. Opportunistic Search Utility Partly Implemented, Deployed

Helps designers find requested design elements and additional related elements

§4.2.3. Opportunistic Table Views Implemented, Deployed

Dense, task-specific views that facilitate systematic scanning and data entry

Visualization Support Features

§4.3.1. Navigational Perspectives Implemented, Deployed

Tree-structured views of the design emphasizing alternative relationships

§4.3.2. Broom Alignment Tool Implemented, Deployed, Evaluated

Helps designers establish and maintain alignment as secondary notation

§4.3.3. Model-based Layout Described, Mock-up

Automatic diagram layout that emphasizes semantic properties of the design elements

Construction Support Features

§4.4.1. Selection-Action Buttons Implemented, Deployed, Evaluated

Context-sensitive buttons that provide easy access to common construction actions

§4.4.2. Create Multiple Described, Mock-up, Evaluated

Rapidly create design elements by instantiating reusable design fragments

§4.4.3. Visual Blender Described, Mock up

Inspires creative design decisions by visually combining design concepts

4.1 Knowledge Support Features

4.1.1 Design Critics and Criticism Control Mechanisms

Background. Critics are active agents that continually check the design for errors or areas needing
improvement. Critics can deliver knowledge to designers about the implications of, or alternatives to, a design
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decision. Critics simply advise the designer; they do not prevent the designer from taking action. In this way, they
support the designer in working through invalid intermediate states of the design. Designers need not know that any
particular type of feedback is available or ask for it explicitly. Instead, they simply receive feedback as they
manipulate the design. Feedback is often valuable when it addresses issues that the designer had previously
overlooked and might never seek to investigate without prompting.

Each critic performs its analysis independently of others. Each checks one predicate and delivers one piece of
design feedback. Critics encapsulate domain knowledge of a variety of types. Correctness critics detect syntactic and
semantic flaws. Completeness critics remind the designer of incomplete design tasks. Consistency critics point out
contradictions within the design. Optimization critics suggest better values for design parameters. Alternative critics
present the designer with alternatives to a given design decision. Evolvability critics consider issues, such as
modularization, that affect the effort needed to change the design over time. Presentation critics look for awkward
use of notation that reduces readability. Tool critics inform the designer of other available design tools at the times
when those tools are useful. Experiential critics provide reminders of past experiences with similar designs or design
elements. Organizational critics express the interests of other stakeholders in the development organization. These
types serve to aggregate critics so that they may be understood and controlled as groups. Some critics may be of
multiple types, and new types may be defined, as appropriate, for a given application domain. Table 4-2 shows some
of the object-oriented software design critics implemented in Argo/UML.

Table 4-2: Examples of critics in Argo/UML

Priori^ Knowledge Type Headline

High Semantics Remove {namej's Circular Inheritance

Medium Alternative Consider Combining Classes

Medium Completeness Add Operations to {name}

Medium Completeness Add Trigger or Guard to Transition

Medium Completeness Choose a Name

Medium Completeness Define Class to Implement Interface {name}

Medium Evolvability Reduce States in Machine {name}

Medium Presentation Make Edge More Visible

Medium Presentation Revise Name to Avoid Confusion

Medium Semantics Remove Aggregate Role in N-way Association

Medium Semantics Remove Unneeded Realizes from {name}

Medium Syntax Capitalize Class Name {name}

Medium Syntax Revise Package Name {name}

Medium Tool Change Multiple Inheritance to Interfaces

Low Alternative Consider using Singleton Pattern

Low Consistency Singleton Stereotype Violated

Formalizing the analyses and rules of thumb used by practicing software designers could produce hundreds of
critics. To provide the designer with a usable amount of information, a subset of these critics must be selected for
execution at any given time. Critics must be controlled so as to make efficient use of machine resources, but our
primary focus is on effective interaction with the designer. Specifically, designers should be able to easily view
relevant and timely feedback items without having to sort through inrelevant items. Furthermore, the elapsed time
between a design manipulation that introduces an error and the presentation of feedback identifying the error should
be as short as possible, and ideally, should be short enough to maintain a feeling of inter-activity.
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Criticism control mechanisms are predicates used to limit execution of critics to when they are relevant and
timely to decisions being considered by the designer. Attributes on each critic identify what type of design decision it
supports. Criticism control mechanisms check those attributes against the design goals and process model.
Computing relevance and timeliness separately from critic predicates allows critics to focus entirely on identifying
problematic conditions in the product (i.e., the partial design) while leaving cognitive design process issues to the
criticism control mechanisms. This separation of concerns also makes it possible to add value to existing critics by
defining new control mechanisms.

Description. Designers using Argo/UML do not usually interact with critics or criticism control mechanisms
directly. Instead, they simply see the feedback produced by critics presented via the "to do" list and ciarifiers
(described below). However, designers can directly edit the user model that is used by criticism control mechanisms.
Figure 4-4 shows Argo/UML's decision model editor: designers can prioritize the types of decisions involved in
object-oriented design, and the critics that support those decision types will be activated or deactivated based on that
model. Also, designers can enable or disable individual critics by using the Critic Browser window (Figure 4-5).
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Mapping to theory. Critics are motivated by the theories of reflection-in-action and opportunistic design.
Critics provide automated support for reflection-in-action by doing some of the analysis work that would otherwise
be the responsibility of the designer. This can help average designers work like expert designers because the critics
prompt them to consider the same issues that expert designers consider. Critics can also help all designers avoid slips
or oversights than can occur when working under pressure.

The theory of opportunistic design predicts that when a designer is blocked by not knowing how to solve a
problem they encounter, they tend to switch to an alternative design task. Critics can help designers avoid context
switches and follow through on their original design plans if the critic detects the problem and offers the designer
advice leading to a solution. However, designers will naturally switch tasks opportunistically during the course of
design. When they do, critics can provide a "safety net" that allows them to deviate from the specified process
without fear of forgetting to complete all details and correct all problems as they go.

Furthermore, the automatic application of critics addresses the confirmation biases and fixation effects that
designers may experience during construction of designs. Alternative critics prompt designers to consider specific
alternatives to decisions they have made. Ideally, the suggested alternative is itself an improvement. However,
considering the alternative can cause the designer to activate previously inactive memory structures and bring new
parts of his or her knowledge into play. This can help designers break out of the cyclic memory activations
associated with fixation, even if the critic does not directly offer a better solution.

Possible extensions. No widely useful critic implementation language has been proposed to date. A potential
extension to this dissertation would explore the possible advantages of special purpose critic languages as compared
to the use of general-purpose languages like Java. Many researchers have investigated end-user programming (e.g.,
Girgensohn, 1992; Riesbeck and Dobson, 1998). However, no critic language has been successfully demonstrated as
useful to practicing designers. One key goal and point of comparison is the capability for practicing designers to
easily specify improvements to critics. Figure 4-6 shows my proposed graphical notation for specifying critics and
wizards. The flow of control starts at the left-most node and proceeds to the right, taking all branches, until a
condition is not satisfied. Rounded rectangles indicate conditions that must be satisfied. If control reaches a bull's-
eye node, the critic fires and generates feedback. Rectangular nodes describe user interface panels presented to the
user as a step in the wizard. Parallelogram nodes are actions that modify the design or user model. It is expected that
practicing designers using this notation will be able to easily propose changes that add a new case where the critic
should fire or that place a new restriction on an existing case.

4.1.2 Non-modal Wizards

Background. Critics that simply identify problems leave the full responsibility for fixing those problems with
the designer. Often, when a critic identifies a specific problem, there is a specific, automatable solution to that
problem. For example, one critic identifies class names that begin with lowercase letters as unconventional in UML;
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one simple and automatable solution to this problem is to capitalize the first letter of the class name. Not all solutions
can be implemented in a single step, however. Some solutions will require the designer to make decisions about how
the problem should be resolved. For example, one Argo/UML critic identifies multiple inheritance as incompatible
with Java code generation; the suggested fix involves several steps to convert one superclass into an interface and
move method definitions down into subclasses. Argo/UML's non-modal wizards aid designers in solving identified
problems by guiding them through the steps of the solution without unnecessarily constraining them.

Description. ArgoAJML uses non-modal wizards to aid designers in carrying out suggested design
improvements. Argo/UML's wizardsare similar to wizardsfound in other developmenttools and desktop
applications: they guide the designer through a sequence of steps and decisions in a predefined task (Dryer, 1997). A
wizard typically performs design manipulations on the designer's behalf; but in some cases, suggested fixes consist
solely of step-by-step instructions (i.e., cue cards) to the designer. The designer uses "Next" and "Back" buttons to
move among steps, and branches are taken based on the state of the design and the values entered into the wizard. As
the designer progresses through the steps, a blue progress bar is drawn on the Postit note icon for the affected
feedback item in the "to do" list.

Unlike wizards found in other tools, Argo/UML's wizards are non-modal and apply changes immediatelyrather
than at the final step. The designer is free to leave the wizard at any time to perform direct manipulations on the
design or use another wizard.The designermay return to a partiallycompletedwizard at any time. The ability to
directly manipulate the design is necessary for wizards that simply direct the designer through a series of manual
steps. Non-modal wizards also allow designers to opportunistically perform other design manipulations that are
logically relatedto the steps of the wizard. For example, in working through a wizardfor removing multiple
inheritance, the designer may choose to workoutsideof the wizard to movesomemethods to an entirely different
location in the inheritancehierarchy. Once the designer has begun using a wizard, the "to do" item that gave rise to
the wizard will not be removed until the wizard is finished or canceled.

Non-modal wizards in Argo/UMLprovide a spectrum of investment choices ranging from low effort cue cards
to traditional wizards with substantial automation to push-button corrections. As with checklist and critics, the tool
builderand the organization usingthe tool can make the decision to investmoreeffort in knowledge support based
on feedback from designers using the initial low investment versions. Those cue card wizards that are found useful
thenbecome candidates for further investment in autoihation. If a given wizard proves very often useful andrequires
no additional information from the designer, it may even be applied automatically to correct problems without
explicit confirmation.

Argo/UML's support for non-modal wizards is also motivatedby a concern for the authoring cost neededto
build them. Argo/UML providesseveral options for wizard authoringwith a range of cost and value. Simple
suggestions on howto solvethe identified problem can be authored as textual cuecards without programming From
there, partial automation andsome wizard user interface elements canbe provided by reusing existing wizard steps.
Custom user interface elements or new automated design manipulations can be built by extending the existing
framework. Finally, "push-button"automated solutions may be developed for some kinds of design problems. The
decision to invest more effort in additional automation can be made based on experience with earlier versions.

Mapping to theory. Wizards in Argo/UML and other tools address the fact that designers have limited
knowledge. While the problem descriptions generated by criticsaugment designers' analytical knowledge, wizards
augment designers' procedural knowledge of how to fix problems. This proceduralknowledge exists at two levels:
general design manipulation strategies andspecific tool commands. Each of these levels of procedural knowledge is
discussed below. Thecognitive theories of reflection-in-action, opportunistic design, andcomprehension and
problem solving also helped inspire this feature.

At the strategic level, experienced designers are likely to posses a well-stocked library of design manipulation
strategies. For example, whenreplacing a designelementwitha newone, it is usually best to configure the new
elementwhile referring to the existing one, then delete the old elementrather than deleting the old element first and
relying on one'sshort-term memory to construct a corresponding new element. Wizards cancontain knowledge
abouteffective strategies andguide designers in following them. Thissupports less experienced designers who may
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not possess appropriate strategies, and it helps all designers execute strategies under stress or when distracted. As
discussed in Section 2.2.4, Guindon, Krasner, and Curtis (1987) identified the lack of knowledge about design
strategies as one of the main difficulties facing large software design projects.

At the tool-specific level, even experienced designers may lack knowledge of new or rarely used design tool
features. For example, if a wizard tells the designer to access the pop-up menu on a certain design element, the
designer will learn that a pop-up menu is available; this might not have been obvious otherwise. In addition to
teachingdesigners about the design tool's user interfaceon demand, wizards may also providespecial-purpose user
interfaces that are not otherwise available. For example, if one step in a wizard requires the designer to move
methods from one class to another, it can present a user interface with two scrolling lists of methods and method
movement buttons. Keeping such rarely used, special-purpose user interface panels in wizards and out of the main
menus and toolbars helps to reduce the apparent complexity of the tool and may lower initial learning costs. The
usefulness of special-purpose, task-based user interfaces is also indicated by the theory of comprehension and
problem solving. In particular, a wizard step can aid designers' comprehension of their design if it brings together
design elements to highlight an interaction or design trade-off that is not clear in task-independent views.

Basedon the theory of reflection-in-action, I choseto makeArgo/UML's wizards take action in eachstepso that
the designercan reflect on the implications of each design decisionas it is being made. Since designdecisions
interact, it is likelythata changeto onepart of the design will forcethe designerto consider a cross-cutting issue that
affects other parts as well. Once the designer is considering the cross-cutting issue, it may be easier for him or her to
make a design exeursion to deal with all the affected design elements before continuing on with the initial wizard.
Basedon the theory of opportunistic designI suspected that normal, modalwizards mightforce the designer to
follow through on a potentially eostly train of thought. By making wizards non-modal, Argo/UML allows designers
to switchtasks to pursue those with lowercognitive costs.Non-modal wizards and the "to do" list helpdesigners
return from design excursions by keeping partially resolved items in the "to do" list and indieating them with a
visible progress bar.

4.1.3 Context Sensitive Checklists

Background. Conducting design reviews and inspections is one of the most effective waysof detecting errors
during software development. In a recent editorial. Glass (1999) reviewed the results of controlled studies on the
effectiveness of inspections and summed up the three best software engineering practices as "inspections,
inspections, inspections." A design reviewtypically consists of a smallnumberof designers, implementers, or other
project stakeholders holding a meeting to reviewa software development artifaet. Manydevelopment organizations
have developedchecklistsof commondesign problemsfor use in design review meetings.Porter and Johnson(1997)
found that reviewers inspectingcode without meetingwerejust as effectiveas design review meetings. I have added
a checklist feature to Argo/UML that is much in the spirit of design review checklists. However, Argo/UML's
checklists are integrated into the design tool user interface and the design task.

Description. A softwaredesignerusing Argo/UMLcan see a review checklist for any design element.The
"Checklist" tab presents a list of cheek-off items that is appropriate to the currently selected designelement.For
example, when a class is selected in a design diagram, thechecklist tab shows items thatprompt critical thinking
aboutclasses (Figure 4-7). Designers may checkoff itemsas theyconsiderthem.Checked itemsare kept in the list
to show whathas already beenconsidered, whileunchecked itemspromptthe designerto consider new design
issues. Argo/UML supplies eleven different checklists with two hundred possible items in total.

The items in thelistarephrased in concrete andspecific terms whenever possible. Forexample, "Does the name
'Student' clearly describe theclass?" and"Is 'Student' a noun or noun phrase?" In contrast, paper-based checklists
mustuse generic terms (e.g., "Is the name of the class a noun or noun phrase?") andrely on human interpretation of
those terms. Clearly humans areable to interpret generic terms; however, doing so is anadditional cognitive
operation that can be avoided with tool support.
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Figure 4-7. Context sensitive checklist

Each checklist itemcan have a guard condition thatdetermines if the itemis appropriate based on the design
context. A checklist itemis only shown to thedesigner if its guard expression evaluates to true; this helps keep
checklistsof manageable size and increasestheir perceivedrelevance. For example, one checklist item for Attributes
(i.e., instance variables ofa class) prompts thedesigner toconsider breaking complex variables down into parts (e.g.,
a telephone number couldbe represented as a single attribute, or it could be broken down intoareacode, prefix,
number, andextension). The guardcondition for this item checks that the selected attribute's type is not boolean,
since booleans cannot be broken down into smallerparts. Unlike a critic's predicate, the guard conditionof a
checklist itemis optional. Checklists withoutguardconditions are usedto promptthe designer to consider issues that
are frequently useful but that cannot be evaluated by the system.

Mapping to theory. Checklist items are motivated by many of the same cognitive needs that motivatecritics
and thedynamic "todo" list (described below). Like critics, checklists support reflection-in-action by asking
questions about thedesign thatthedesigner might notaskonhisor herown. Like "todo" lists, checklists support
opportunistic design by listing out issues and allowing the designer to choose which issue to address next.

Checklist itemstend to be generic prompts for the designer to apply their own knowledge. In contrast, critics
typically identify more specific problems and supply knowledge that the designer may lack. These generic prompts
can leadto distraction by raising issues that require knowledge that is very different than what thedesigner hasin
mind. Thispotential disadvantage is mitigated by making checklists less intrusive. Thepresentation of checklist
items (Figure 4-7) is much less intrusive than the clarifiers (described below) and "to do" list items that are used to
present feedback from critics.

Checklists arealso motivated by the need fora lowcostway to build up Argo/UML's knowledge baseof advice.
None of thecritiquing systems discussed in Chapter 3 included large knowledge bases, inpartbecause critiquing
systems require thecritic author to fully specify each critic at considerable effort. In contrast, Argo/UML supports
several authoring options with a range of effort and value. Checklist items that do not have guards can be authored
with the lowest cost since they are simply textual. I expect that in many cases anorganization's existing design
review checklists can be put into Argo/UML by simple cut and paste. Once a checklist item has been defined,a
guard condition can be added with a single line of code. The next step up in terms of effort and value is a critic with
an initial predicate. From there the predicate can be refined to increase the critic's relevance. Additional value in the
form of detailed explanations, special clarifiers (described below), cue cards, or wizards can be achieved with
incremental effort. The decision to investeffort in refinement can be basedon experience and feedback from
designers.

Possible extensions. Checklists could bemade more useful by collecting and summarizing the results of
informal design reviews. Forexample, designers might specify a confidence level rather than asimple checkmark for
some checklist items. These confidence levels would then besummarized and ranked sothat the parts of the design
with the lowest designer confidence could beexamined again. Checklists might also be extended by adding support
for wizards thathelp the designer understand thedetails of the issue raised, andthatprovide automation to aid the
designer inachieving the desired design quality. These checklist wizards would have many of the same advantages
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as the wizards associated with critics; namely, they would provide many task-specific user interfaces without
complicating the normal user interface and would also be non-modal.

4.1.4 Design History

Background. Because design decisions are interrelated, rationale for past decisions is a key part of the design
contextof new decisions.For example,a softwarearchitect building an HTMLediting application might initially
choose the most full-featured implementation of a table editing component, only to find that it is incompatible with
the spell-checking component. In deciding how to resolve the problem, the architect must know why that particular
spell-checking component was used. Blindly replacing the spell-checking component with a more flexible one risks
violating the implicit assumptions of related decisions.

Design history is a time-ordered list of the events leading up to the currentstate of the design, including design
manipulations, criticisms offered, and criticisms resolved. I intend a design history to include less information than a
design rational in that a history focuses on whathappened and need not address in detail why thingshappened.
Certainly, knowing why past design decisionswere made would provide strongersupport for current decisions;
however, the cost of recording whathappened is much lower, and seeingwhathappened can cue the designer's
memory of why certain decisions were made. Furthermore, including criticism and criticism resolutions in the
history helps to capture some of the reasons why certain design changes were made.

In addition to informing currentdecision-making, design historyis also needed to avoidrepeating any criticism
that is resolved by actions outsideof the design tool.For example, if the spell-checking component is a "beta"
versionrather than a fully tested product, then an organizational critic might advise the designer that all use of beta
components require special commitments from the quality assurance manager.The designer might discuss it with the
managerand agree that it would be acceptableto use the beta version in this case. The designer would then dismiss
the critic's "to do" item,possibly entering a briefexplanation. The samecriticism shouldnot be presented again for
the spell-checking component, despite the fact that the design is in the same state that caused the critic to fire
initially.

Onechallenge faced by designrationale systems is that designers maynot take the time to enter information
(Lee, 1997). Critics helpelicitdesign rationale as part of the normal design process by acting as foils thatgive
designers a reason to explain theirdecisions. A recentevaluation of a critiquing system found that experienced
designers oftenexplainedtheir decisionsin response to criticismwith whichthey disagreed(Sumner, Bonnardel, and
Kallak, 1997).

Description. The "History" tab at the bottom of the ArgoAJML main window shows a time-ordered list of
design history items. Items are recorded foreach "to do" itemraised, eachdesign manipulation performed, andeach
"to do" item resolved. These "to do" items normally contain criticismsfrom design critics, and their resolutions
normally containcommentsfrom designers that justify decisions or links to histoiy items for manipulations that
resolved the problem.

The history list can display all history itemsin time order or it can be focused onjust those history itemsthat
relate to the selected design element. The designer can reviewdesignhistory by selecting an item in the history list
on the left sideof the "History" tab. Doing so displays a description of the history itemin the textareaat theright
and updates a list of related design elements. Clicking on a related design element will select that element in the
diagram pane and allow the user to view its properties.

In addition to building a design history, resolutions to identified problems aresometimes used to adjust Argo/
UML's user model and goals model. Forexample, if the system under design is only intended forexperimental use,
the criticism that beta components require special testing commitments might beresolved by thearchitect pressing
the "Dismiss" button and choosing "It'snotrelevant tomy goals" (Figure 4-8). Inresponse, Argo/UML immediately
opens the goals model window so that it may be updated. If the architect chooses "It's not of concern at the

33



•rlhis itenrshouidberemoved because :

I ts not rdevant to my goals..

«1 is not of concom d the momemi

Reason given below;^:

<Enter Rationale Here>
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moment," ArgoAJMLopens the decision model window. Keeping the user model and goals model accurate requires
frequent updates. Yet, we cannot assume designers will make the effort to update them without prompting.

Mapping to theory. Argo/UML's design history feature is inspired by the observations that design decisions are
. interrelated, that designers may have difficulty recalling past design decisions when that knowledge is needed, and

that providingthe right cues can aid in associativememoryretrieval.Furthermore, to the extent that a design history
support building a design rationale, the design history can help inform new decisions with knowledge about past
decisions that the designer would not otherwise possess.

Possible extensions. Future extensions to this feature might include a way for the tool to infer causal links
betweenthe design manipulations and the problemsthat they cause or resolve.Also, the design history user interface
could provide better views of the design history that better suit specific recurring tasks. The same basic ideas used in
the navigational perspectives on the design itself, could be used to constructtask-specific views of the designhistory.

4.2 Process Support Features

4.2.1 Dynamic "To Do" List and Clarifiers

Background. Once a critic generates design feedback, that feedback must be presented to the designer in a
usable form without unduly distracting the designer from the task at hand.

Some current CASE tools, such as Rational Rose, follow the familiarparadigmof textual compiler error
messages. The difficulty with textual feedback logs is that they are usually structured linearly in the order the
messages were generated and cannot be organized according to the designer's interests. Furthermore, textual error
messages are either too short or too long: they cannot be used effectively to both teach concepts to designers who
lack needed knowledge and to conveniently prompt designers who have the needed knowledge but were not able to
recall it at the time needed. Also, textual error logs are normally presented in a scrolling text widget that is distinct
from the design diagram drawing area. Section 7.1 summarizes the result of a pilot Argo/UML user study which
indicated that designerstend not to move their eyes from the designdiagramto other panes of the same window.

Description. In Argo/UML, the "to do" list user interface presents feedback to the designer. The "to do" items
on the list are grouped into categories such as by priority, by design decision type, by offending design element, or
by critic knowledge type. The designer can choose the categorization scheme from a menu above the "to do" list. A
count of items on the "to do" list is displayed next to this menu. If the number of items is above 50 or ICQ, then the
count is displayed on a yellow or red background to make it moreevident. When the designer selectsa pending
feedbaek item from the lower left pane, the associated (or "offending")design elements are highlighted in all
diagrams and details about the identified problem and possible resolutions are displayed in the "ToDoItem" tab. If
the designerdouble-clicks on a "to do" item,Argo/UML jumps to the offending designelements and the diagram
with the offenders becomes the currently displayed diagram.
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The designermay use the toolbar buttons in the "ToDoItem" tab to add a new item as a personal reminder,
follow links to background domain knowledge relevant to the issue at hand, snooze the critic (disable it for a limited
time), sende-mail to the person who authored the critic, or dismiss the feedback item. Links to background
information ande-mailcontactwithexpert designers providea designcontext that the designercan use to resolve the
issue at hand. Providing contact information forrelevant stakeholders helps to situate theproblem and possible
solutions in the context of the development organization.

User testing with an early version of ArgoAJML demonstrated thatdesigners arelikely to focus onthediagram
pane to theexclusion of the"todo" listpane. Designers were observed to build on incorrect design decisions despite
the fact that criticism of those decisions was listed in another pane in the same window. Clarifiers were added to
Argo/UML to makecriticismmore evident to designers engagedin design construction. Clarifiersare icons or other
visual indications of errors that are displayed directly on thedesign diagram. Argo/UML uses wavy, red underlines
(a familiar indication ofspelling errors) to indicate errors that occur at a specific part ofa design element. A yellow
Postit note icon is used to indicate errors thatrelate to anentire design element. Errors related to missing or invisible
design elements currently do not have clarifiers. Visual cutter is limited by only displaying clarifiers on the currently
selected design element. Designers will encounter clarifiers in thenormal course of manipulating thedesign with the
mouse andkeyboard. A feedback itemheadline is displayed as a tool-tip if thedesigner briefly positions the mouse
pointer over a clarifier.

Mapping to theory.Thedynamic "to do" list userinterface supports cognitive needs identified by the theories
of reflection-in-action and opportunistic design. According to thetheory of reflection-in- action, when designers
reach a breakdown (apoint in the design session where they are notimmediately able to move forward), they may
instead reflect on thecurrent stateof the design. Argo/UML's dynamic "to do" list helps designers evaluate the
current status of the design by listing potential errors.

Thepresentation of theoutstanding item count and itscolor areindications of how confident thedesigner should
be in his or herdesign. This makes accessible animportant aspect of the design thatis notvisible in the design
document itself, and cues designers to make meta-cognitive decisions, such as when to switch from construction to
reflection.

Argo/UML's dynamic "to do" list also supportsopportunistic design. As mentionedin the discussion of critics,
the"to do" listaids designers in opportunistically switching between tasks byproviding a listof suggested tasks to
choosefromand by providing a "safetynet" that allows designers to morefreely switch tasks with less fear of
skipping needed steps.

Clarifiers serve thesame basic purpose as thedynamic "todo" list and address thesame cognitive needs of
designers. Clarifiers help address the limited visual scope of the human eyeby providing visual feedback in a
location where the designer is focusing his or her attention.

Related work.Rogers (1995) describes an automatic "todo" list used in theCORRECT requirements tool that
is very similar to the"todo"listused in Argo/C2. The window consists of two panes: an upper pane thatlists all
pending "to do" items anda lower panethat shows thedetails of the selected item. Rogers alsosuggests that the
details should include instructions onwhat the designer should do tofix the problem and that the tool might offer to
fix simple problems automatically. Thedynamic "to do"list inArgo/C2 has these capabilities. It also allows the
designer tosend email feedback toexperts, add personal reminders, and todismiss orhush particular items. Argo/
UML takes several steps further byproviding alternative perspectives on the "todo" listand automatically
customizing the text ofeach item tothe particular identified problem. Clarifiers and non-modal wizards are closely
linked to Argo/UML's "to do" list items and provide additional support notfound in CORRECT.

4.2.2 Opportunistic Search Utility

Background. Design documents are complex webs ofdesign elements and relationships. These relationships
include explicit relationships for the structure and behavior ofthe system being designed. However, design
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Figure 4-9. Argo/UML's opportunistic search utility window

documents also include implicit constraints and dependencies between design elements that must be maintained. In
some cases these implicit relationships can be made explicit in the design document, but that approach can only be
carried so far before the document becomes cluttered and difficult to work with.

Many software analysis tools have been built to produce dependency graphs as output. Two difficulties with
these tools is that their graphs rapidly become out-of-date as the software is changed, and there is some effort
involvedin knowinghow to use the analysis tool, recognizingthat its results are needed, and interpretingthe results.

The related element generation rules used in Argo/UML's Opportunistic search utility stand in the same
relationship with traditional dependency analysis tools as design critics do with traditional design error detection
tools. Both cognitive support features address the same basic goals as their traditional counterparts. However, both
cognitive support features are much better integrated into the design tool and the design process.

Description. Argo/UML provides a search utility that works in a way familiar to MS Windows (tm) users: the
top part of the search window consists of several tabs where different search criteria are entered; the bottom part of
the search window shows search results. Clickingonce on a query result selects it. Double clicking on a query result
causes the main Argo/UML window to display a diagram that contains the selected design element.

The main special feature of Argo/UML's opportunistic search utility is the list of elements shown below the
query results (Figure4-9). This list containsdesignelements that are related to the query result selected in the upper
list. The relateddesign elements includethose that are likely to need updatingif the selectedquery result is updated,
or that should he checked before modifications are made. The set of related design elements are generatedusing
predefined rules provided by a domain expert. These rules could include executing external software analysis tools
to produce dependency graphs; however, such rules have not been implemented in Argo/UML.

One other interesting aspect of Argo/UML's search utility is that it stores multiple sets of answers. The bottom
half of the window is a tab widget and a new tab is added to store the results of each search. Tabs can also he deleted
by pressing the "Clear Tabs" button or "torn off by double clicking on the tab label.

Mapping to theory. At a practical level, Argo/UML's opportunistic search utility can prompt designers to
considerrelated model elements that they would otherwisehe very likely to skip. Like several of Argo/UML's
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visualization features, the opportunistic search utility makes explicit some design relationships that are needed for
specific design tasks but that are not visible in the design notation itself.

On the cognitive level, Argo/UML's opportunistic search utility supports opportunistic design by offering
designers alternatives that are likely to be related to their current mental context. The cognitive theory of
opportunistic design predicts that designers will often prefer to pursue related design tasks immediately if they
require the same mental context, i.e. they have low cognitive cost.

On the other hand, presenting design elements that are weakly related to the current task can distract designers
from their current task by prompting them to change their mental context, causing many mental context switches and
the associated cognitive cost. To mitigate this potential disadvantage, Argo/UML presents the related elements via a
user interface that keeps the original query results visible. This aids the designer in returning from small design
excursions.

The opportunistic search utility may also help average designers work more like experts if it prompts them to
activate the same memory structures that experts activate. The various features of Argo/UML that help designers
think more like experts are discussed further in scene 4 of the usage scenario in Chapter 5.

Possible extensions. An interesting future extension to this feature would be to automatically infer the related
element generation rules from logs of expert usage. This would make the feature similar to "recommender systems"
found on the internet, such as Yenta (Foner, 1997). Inferring related design elements based on experience might
lower authoring costs while increasing the relevance of provided elements. At the least, it would provide a way to
check the related element rules offered by experts.

4.2.3 Opportunistic Table Views

Background. Most widely used software design notations, including the Unified Modeling Language, are
primarily diagrammatic notations. Diagrams are effective ways of communicating designs because they have
immediate visual impact and several secondary notation possibilities. However, diagrams have low visual density,
which has been identified as a limiting factor in the adoption of visual programming languages. Furthermore,
diagrams tend to be rather difficult to edit and systematically scan. The high effort needed to construct a diagram in
most CASE tools encourages designers to use a given diagram for more design tasks than those for which it is well
suited. Several of the features described in this dissertation address the weaknesses of diagrams by improving the
way diagrams are constructed or by complementing them with non-diagrammatic design views.

Description. Argo/UML supports UML class diagrams, state diagrams, use case diagrams, activity diagrams,
and collaboration diagrams. It complements these diagrammatic representations with task-specific table views. Each
table view selects relevant attributes of design elements and presents them in a dense format. For example, one table
view of a state machine shows states as rows with the name, entry, and exit actions of each state in columns. Another
table view shows the transitions as rows with the trigger, guard, effect, source, and destination as columns (Figure 4-
10).

As with familiar spreadsheet interfaces, one cell is considered the active cell at any given time and the cursor
keys and mouse can be used to move the current cell. In addition to highlighting the active cell, the entire current row
or column may be highlighted to help the designer keep track of the type of systematic scanning he or she is doing.
The "Instant Replay" button provides an "instant replay" of recent activity: it briefly highlights the most recently
active cells and their entire rows or columns in the same order that the designer accessed them.

Mapping to theory. As with navigational perspectives (described below), one of the goals of Argo/UML's
tabular view feature is to provide views that support common design tasks. In particular, tables are easier to
systematically scan or fill in than are most diagrams.
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Figure 4-10. Tablular view of state machine transitions

However, designers work opportunistically as well as systematically. For example, if a designer is
systematically checking that each state has sensible entry and exit actions and finds one with a problematic
assumption, he or she may opportunistically switch to looking over the entire design for other elements which
depend on that same assumption. In the best case, a design excursion may merely cause the designer to switch from
horizontal to vertical scanning in the same table. In the more general case, the excursion may cause the designer to
access other diagrams or tables. These design excursions are natural and common; unfortunately, returning from an
excursion imposes the cognitive difficulty of recalling one's prior plans. "Instant replays" are one kind of visual
prompt that can help the designer recall a previous mental context.

4.3 Visualization Support Features

4.3.1 Navigational Perspectives

Background. The UML standard defines several different diagram types. Each of these presents related design
elements in an appropriate notation and supports specific design tasks. The set of UML diagram types is based on
experience with previous object-oriented design notations and the practical needs of designers. I chose to use the
UML standard set of diagram types rather than invent new ones. Designers may spend a significant fraction of time
working with one diagram. Nonetheless, different diagrams in the same design document relate to each other, and
when building complex designs, the designer will eventually need to build mental structures that combine elements
from multiple diagrams. For exahiple, designers may need to mentally relate elements in two diagrams of different
types. Also, related elements may be divided among multiple diagrams simply to keep each diagram a reasonable
size.

Many design tools and IDEs (integrated development environments) use interfaces that include a large tree
widget that presents a "table of contents" of the design document and allows fairly direct access to any design
element, regardless of how the design document is broken down into diagrams. These "table of contents" views
support designers in finding individual design elements regardless of which diagram the elements reside in; however,
standard "table of contents" views provide little help for visualizing semantic structures in the design.

ArgoAJML augments these standard, task-independent views of the design with task specificones. In particular,
this subsection discusses the "navigational perspectives" cognitive support feature. Beyond providing a simple
"table of contents," Argo/UML's navigational perspectives highlight tree structured relationships in the design
document that may be difficult to understand from looking at design diagrams themselves. Argo/UML gives the
designer a much richer set of alternative tree-structured views of the project, and provides a language for designers to
customize those perspectives or add new ones.
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Figure 4-11. (a) "Package-centric" navigational perspective,
(b) "State-centric" navigational perspective,

(c) "Transition-centric" navigational perspective

Description. A designer using Argo/UML initially sees the package-centric navigational perspective but choose
a new navigational perspective from the menu above the navigation tree (Figure 4-11a). For example, if the designer
is working to define the possible states of a particular class, the state-centric navigational perspective shows states as
the children of classes and state transitions as the children of states (Figure 4-1 lb). This emphasizes the states and
makes the transitions secondary. Once the designer has a firm understanding of the states, he or she may wish to
emphasize the transitions. The transition-centric navigational perspective shows the transitions as the children of the
class and the states as the children of the transitions (Figure 4-1 Ic).

Argo/UML contains several predefined navigational perspectives that support various tasks in object-oriented
software design. For each of these tasks I have identified questions about the design that the designer must answer
during that task. One such perspective is the transitions-paths perspective: it shows initial states as the children of
classes and successor states as the children of states. This helps the designer answer the question "if the object leaves
this state, where can it go?" A related question is "how can the object get into this state?" Argo/UML does not
provide a predefined perspective to answer this question, but the designer can use a configuration window to define
new perspectives to answer new questions as they arise.

Argo/UML's navigational perspective configuration window is shown in Figure 4-12. The top pane lists
currently defined perspectives. The lower left pane lists all predefined navigation rules, while the right pane lists
those navigation rules that are included in the selected perspective. Each navigation rule generates children of tree
nodes. For example, the rule "Class->Initial States" will be applied to any tree node that represents a class and will
generate one tree node for each initial state in the state machine for that class. The set of possible navigation rules is
large but finite; the UML standard meta-model (i.e., design representation) includes about 100 associations, each of
whichcan havea corresponding navigation rule. Navigational perspectives are generated by applying all applicable
rules whenever a tree node is expanded by the user.

Mapping to theory. The cognitive theory of comprehension and problem solving indicates that designers need
visualizations that are specific to the design task they are working on. This applies to both the diagrams and other
design visualizations, such as the navigation tree and table views (described above).
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When designers do not have design views that present all the elements and relationships needed for a given
design task, they must combine elements from different design views to build a mental structure suitable for the task.
Building such a structure in short-term memory (STM) requires mental effort and uses up STM resources needed for
storing task plans and relevant knowledge. Mental visualization of complex structures can be error-prone if items are
lost from STM. In fact, if the designer does a moderate amount of work on each element of the design element
structure in his or her STM, elements are likely to be "pushed out" as STM resources are used in considering the first
few elements.

For example, consider a designer who is checking that each class in an object-oriented design has a "save to
disk" method that properly takes into account all composite and aggregate classes. The is-part-of hierarchy of a
complex system is likely to involve elements and relationships from several class diagrams. The designer is further
burdened by the need to determine whether each aggregate class should be saved as part of another class (by value)
or independently (by reference). Since keeping a large is-part-of hierarchy in STM taxes limited resources, the
designer is likely to need to refresh memory by repeatedly scanning all the diagrams involved. Such repeated
scanning is itself a time-consuming and error-prone process.

In contrast, Argo/UML's predefined navigational perspective for aggregation automatically constructs and
presents the structure in question. The designer can simply expand the tree structure to the desired level of detail and
progress systematically, line-by-line, with very little STM load.

Possible extensions. Navigational perspectives are an exciting and potentially very useful feature. Rather than
pursue this particular feature as far as possible, I have opted to explore a broad set of proposed features. A possible
extension to this dissertation would be to implement and evaluate the following enhancements to Argo/UML's
navigational perspectives. First, the navigation pane could be split to show two trees with the second tree rooted at
the selected node in the main tree. This might allow designers to see details of part of the tree without losing sight of
the context of the parent node. Alternatively, the lower half of the navigation pane might show a list of the most-
recently-used design elements to aid designers in flipping back and forth between two elements when comparing
them. Also, the composition of navigational perspectives from rules might be made more powerful by allowing
hidden tree levels, i.e., levels that are traversed on the way to the desired elements but that are not shown themselves.
Finally, on-line documentation describing each perspective is likely to greatly help designers in selecting the proper
perspective for their task, as would a task-oriented listing of available perspectives and rules.
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4.3.2 The Broom Alignment Tool

Background. Designers typically prefer diagrams that look neat and orderly. Careful alignment of diagram
elements can also serve as a form of secondary notation, as discussed below. Most design tools provide features to
help align diagram elements with each other. Such features include nudging, grids, gravity, constrained movement,
alignment commands, and guidelines. Nudging allows precise manual positioning of diagram elements. Alignment
grids are found in virtually all drawing tools, and are used to restrict movement of elements to evenly spaced
coordinates. Grids help align objects with each other by aligning each of them with invisible grid lines. Gravity
causes an element being moved to snap to nearby stationary elements. Computer Aided Design (CAD) tools and
high-end illustration programs often define gravity points at the comers, centers, and other geometrically important
points on shapes. Gravity mainly helps establish adjacency (i.e., touching) relationships, but it can also be a step in
aligning objects. Horizontally or vertically constrained movement allows users to interactively change one
coordinate without accidentally changing the other. For example, if the tops of two objects are aligned using gravity,
a constrained movement command can separate them horizontally while keeping the tops aligned. Alignment
commands are found in the menus and toolbars of most drawing tools (e.g., align tops, align left edges, align
centers). These commands explicitly move the selected objects into alignment with each other. Lastly, guidelines are
typically found in page layout tools and are non-printing diagram elements that cause other elements to snap to them.
Argo/UML provides nudging, grids, alignment commands, and a novel "broom" tool.

Each of the standard alignment features has its own disadvantages. For example, alignment commands demand
that designers select the objects to be aligned, then issue an alignment command. Selecting objects may require
multiple selection actions. These selection actions may accidentally change the spacing between objects, and in some
UML tools, it may accidentally activate editing of the labels on a target object. Issuing an alignment command
requires designers to imagine the resulting positions of the objects based on command names and icons. Some tools
provide an alignment dialog box with a preview function but this introduces additional modality into the user
interface. Argo/UML provides these standard alignment features and tried to mitigate their disadvantages (e.g., label
editing is disabled if multiple objects are selected). Moreover, Argo/UML also provides a novel alignment feature
that avoids these disadvantages.

Argo/UML's broom alignment tool is specialized to support the needs of designers in achieving the kind of -
alignment used in UML diagrams. It is common for designers to roughly align objects as they are created or by using
simple movement commands. The broom is an easy way to precisely align objects that are already roughly aligned.
The broom also takes advantage of the fact that, in design diagrams, objects are typically aligned along the X- or Y-
axis rather than along arbitrary, diagonal lines. Furthermore, the broom's distribution options are suited to the
observed needs of UML designers: making related objects appear evenly spaced, packing objects to save diagram
space, and spreading objects out to make room for new objects. The broom also makes it easy to change from
horizontal to vertical alignment or from left-alignment to right-alignment. While the broom is useful in a UML
design environment, several of its aspects may also suit the needs of diagramming tasks in other design domains.

Description. The T-shaped icon in Argo/UML's diagram toolbar invokes the broom alignment tool. When the
mouse button is pressed while in broom-mode, the designer's initial mouse movement orients the broom to face in
one of four directions: north, south, east, or west. After that, mouse drag events cause the broom to advance in the
chosen direction, withdraw, or grow in a lateral direction. Like a real-world push broom, the broom tool pushes
diagram elements that come in contact with it. This has the effect of aligning objects along the face of the broom and
provides immediate visual feedback (Figure 4-13). Unlike a real-world broom, moving backwards allows diagram
elements to return to their original position. Growing the broom makes it possible to align objects that are not near
each other. When the mouse button is released, the broom disappears and the moved objects are selected to make it
easy to manipulate them further.

If the designer presses the space bar while using the broom, objects on the face of the broom are distributed (i.e.,
spaced evenly). Argo/UML's broom supports three distribution modes: objects can be spaced evenly across the space
that they use, objects can be packed together with only a small gap between them, or objects can be distributed
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Figure 4-13. Aligning and distributing objects with the broom

evenly over the entire length of the broom's face. Repeatedly pressing the space bar cycles among these three
distribution modes and displays a brief message indicating the operation just performed (Figure 4-13).

The fact that the broom pushes objects that it touches relieves the designer of the need to select target objects.
This reduces the number of mouse movements needed and avoids accidental movement or editing of target objects.
Argo/UML further reduces mouse movement by allowing users to invoke the broom by a control-drag rather than by
using the toolbar button. Since objects are moved interactively, designers can see and judge the results of their
actions immediately, without the need to interpret geometric terms (e.g., "align left edges"). The fact that objects
return to their original positions when the broom withdraws allows designers to quickly undo undesired movements.
Cycling through distribution commands also gives immediate visual feedback and reduces the need for designers to
interpret geometric terms.

Mapping to theory. Alignment and spacing are important aspects of the secondary notation of design diagrams.
Althoughthe precisepositionsof diagramelementson the screendo not hold formal semanticmeaningin UML, it is
a powerful visual cue that humans follow when reading UML diagrams. For example, the alignmentand spacing of
states in Figure 2-1 implies a temporal correspondence between certain parts of two parallel state machines, even
though the formal syntax of UML does not provide any formal means of representing or conveying that relationship.

Overall, the straightforwardphysical analogy between the broom alignment tool and real-world push brooms
aids designers in understanding and anticipatingthe results of their actions. Shneiderman finds that users delight in
using tools that provide "visibility of the objects and actions of interest; rapid, reversible, incremental actions; and
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replacement of complex command-language syntax by direct manipulation" (Shneiderman, 1998). At the cognitive
level, users may find interfaces with Shneiderman's characteristics to require less planning, thus preserving short-
term memory resources for task-level plans and relevant domain knowledge.

Alignment and spacing are two of the most practical visual aspects of a UML diagram to use for secondary
notation. They do not rely on color, which may be difficult to print. They allow the sizes of diagram elements to be
small, thus saving space. Alignment can clearly represent two informal aspects of the design: in Figure 2-1, X-axis
alignment implies temporal correspondence while Y-axis alignment implies group membership. Alignment and
spacing of diagram elements in a group are visually localized and thus reusable in different parts of the diagram for
different meanings: ten groups of aligned objects on one page is readable, whereas ten color-coded or size-coded
groups would be difficult to read.

Possible extensions. The broom mode can be enhanced by adding new types of alignment and distribution that
are appropriate for a given diagram type. For example, pushing a class hierarchy upward might align classes in the
bottommost row of the hierarchy along the face of the broom, but push superclasses in advance of the broom face so
as to maintain the tree shape of the hierarchy. Also, the broom could be improved by using information about the
connectivity of diagram nodes when breaking distribution ties. For example, if a set of horizontally aligned states is
pushed leftward until the states are all on top of each other and then spread out by pressing the spacebar, the resulting
order of states is essentially random since they all had the same coordinates at the time of the distribution. This may
cause many state transitions to cross each other. Connectivity information could help select an ordering that avoids
edge crossings.

Related work. Raisamo and Raiha (1996) describe an alignment feature called the alignment stick that uses the
same basic metaphor as Argo/UML's broom. However, Argo/UML's broom is unique in its ability to easily undo
accidental movements and its support for both alignment and even spacing. Also, the intent of the alignment stick
research was to explore the use of two-handed input mechanisms: a mouse is used to control the position of the stick,
while a trackball is used to control the length and orientation of the stick. In contrast to the UML diagram focus of
Argo/UML's broom, the alignment stick is not domain-specific and does not emphasize rectilinear alignment over
diagonal alignment. Raisamo (1999) later extended his work on the alignment stick to produce several other
interactive tools related to artistic drawing, for example, the carving stick removes some of the area of shapes when
it touches them.

4.3.3 Model-based Layout

Background. Many current CASE tools provide a feature to automatically lay out diagram elements. Dozens of
layout algorithms have been devised (e.g., Bertolazzi, Di Battista, and Liotta, 1995). The layout algorithms are
typically domain-independent and seek to optimize domain-independent metrics, such as reducing the number of
line crossings. Some layout algorithms can be customized with constraints (e.g., Graf and Neurohr, 1995; Ryall,
Marks, and Shieber, 1997) that can be used to maintain domain-specific layout conventions. For example, class
diagrams in UML are usually drawn with superclasses above subclasses.

The design process is made up of episodes in which the designer addresses different aspects of the design.
Within each episode, task-specific questions about the design must be answered. For exainple, when considering an
error condition in which a state machine should transition to a fail-safe state, the designer must answer the question
as to which states can give rise to the error.

The domain-independent layouts provided by current tools do not support designers in answering task-specific
questions. Designers must visually scan diagrams looking for elements involved in their current task. Continuing the
example above, the designer must look at each state in the state diagram, recall the meaning of that state, and
consider whether the error could arise in that context. This kind of visual scanning is somewhat error-prone because
the designer may skip a diagram element accidentally,especially if the short-term memory load of evaluating a given
element is high. Furthermore, since the scan order is not correlated with the semantic properties of the elements,
considering successive diagram elements may require different parts of the designer's knowledge to be activated.
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Figure 4-14. (a) Standard automated layout of a state diagram,
(b) Model-based layout of a state diagram

leading to a short-term memory effect analogous to thrashing in computer memories. As noted in Section 2.2.2, high
short-term memory loads can induce procedural errors, namely super-goal kill-off, which can cause the designer to
fail to completely scan the diagram.

Description. Model-based layout is a proposed feature for Argo/UML that is intended to help designers answer
task-specific questions about the design. It is an automated layout feature which makes use of standard layout
algorithms, but adds further constraints that position diagram nodes in diagram regions based on semantic properties
relevant to the task at hand.

Figure 4-14a shows an example of a state machine diagram for an alarm clock as it might appear after a standard
automated layout. Each state is shown with its state invariant condition. If the designer wanted to check each state in
which the alarm was ringing, he or she would have to visually scan each state in the diagram and interpret the
meaning of each invariant. Verifying completeness of non-existence properties, e.g., that no state allows both ringing
and snoozing, always requires a complete scan. Furthermore, designers are likely to mentally factor the search
criteria to simplify initial scans and come back to candidate states. For example, a designer might first scan for all
states where ringing is allowed and then reconsider them in terms of whether snoozing is allowed. When using this
strategy, short-term memory loads and the associated risk of skipping important elements increase with the
complexity of the search criteria.

Figure 4-14b shows how the same state diagram would appear after model-based layout. Each row and column
is labeled with the name of one of the variables used in the state invariants or the negation of that variable. The
intersection of each row and column defines a rectangular region. States are constrained to appear within all
appropriate regions. As long as the region constraints are satisfied, standard layout algorithms are used to improve
readability, e.g., by reducing edge crossings. In this example, the rows and columns are arranged as they would be in
a Karnaugh map (Ercegovac and Lang, 1985). To answer questions about states in which the clock is both ringing
and snoozing, the designer need only scan states within the ringing and snoozing region. Furthermore, in contrast to
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the global scanning approach, increasingly narrow search criteria tend to make scanning easier with model-based
layout. Even if the designer must scan the entire diagram for some reason, diagram nodes are grouped by relevant
semantic properties, thus helping to reduce the potential for short-term memory thrashing.

Layouts constrained to the cells of Karnaugh-maps arepossible only whenthe constraining model attributes are
a small number of boolean variables or conditions. In the more general case, any diagram region can be associated
with an arbitrary condition; conditions are joined with logical-and where these regions overlap; and diagram nodes
that satisfy the condition for a given region are placed within that region. Diagram nodes that satisfy the conditions
of two disjoint regions are shown in both of them, while nodes satisfying two adjacent regions are positioned to
straddle the common boundary. Diagram nodes that do not satisfy any region constraint are placed outside of any
region. For example, a UML class diagram could be arranged on a Venn diagram with three circles labeled with the
names of three members of the unit testing team.

Designers specify how these layouts are constructed by using one of the tabs in the model-based layout window.
The first tab contains on-line documentation for this feature. The second tab assumes a row and column layout and
prompts the designer to enter the conditions for each row and column. Exact sizes are not specified; rather, they are
determined by the nodes that fall within any given region. That is to say, a cell will be exactly wide enough to
comfortably fit the nodes that logically belong there. The third tab (Figure 4-15) allows the designer to take more
control by specifying the size and location of rectangular, circular, and polygonal regions and their conditions. In
each tab, several predefined layout options are provided based on experience with object-oriented design and new
layouts may be saved for later reuse. The automated layout algorithm will do the best that it can to position nodes
within these specified regions. If a region is too small for all the nodes that belong there, then some of the nodes will
overlap others. Both tabs contain a preview of the resulting layout with a number shown in each region indicating
how many nodes will be positioned there.

Once the designer indicates that all layout constraints have been specified, a new diagram is generated with the
requested layout. In this diagram, each node may be manually moved, but only within the constraints of its logical
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region. Row and column layouts may be adjusted by changing the size of a row or column. In turn, this will cause
nodes in subsequent rows and columns to shift.

Mapping to theory. The reasoning leading to this feature is described above. To sum up, model-based layout
allows designers to more effectively answer task-specific questions that arise during design. Designers working with
diagrams arranged via model-based layout are expected to scan semantically defined regions rather than scanning the
entire diagram. This is expected to allow them to answer task-specific questions more quickly, using fewer short-
term memory resources, and with fewer oversights.

4.4 Construction Support Features

4.4.1 Selection-Action Buttons

Background. Argo/UML provides a toolbar of diagram elements that works very much like those found in other
CASE tools. For example, the class diagram toolbar contains buttons for making new classes, new interfaces, new
relationships between classes, and others. This is familiar to people who have used other CASE tools or drawing
applications, but it is actually a rather poor interface for constructing structtired diagrams because small targets that
are far from the central work area are hard to select with the mouse. Furthermore, toolbar actions are typically too
fine-grained and must be combined to achieve basic design manipulations. Although these difficulties with toolbars
are straightforward, the ubiquitous use of toolbars may have prevented CASE tool developers from pursuing better
interfaces. ArgoAJML provides a new feature that builds on the familiar concept of a toolbar but avoids its
disadvantages.

Description. When the user selects a node in a UML diagram, several handles are draw on it to indicate that it is
selected and to provide user interface affordances to resize the node. Argo/UML also displays some "selection-action
buttons" around the selected node. Figure 4-16 shows the handles and selection-action buttons on a UML class.

Selection-action buttons offer common operations on the selected object. For example, a class node has a button
at 12-o'clock for adding a superclass, one at 6-o'clock for adding a subclass, and buttons at 3-o'clock and 9-o'clock
for adding associations. These buttons support a "click or drag" interaction: a single click creates a new related class
at a default position relative to the original class and creates a generalization or association; a drag from the button to
an existing class creates only the generalization or association; and, a drag to an empty space in the diagram creates
a new class at the mouse position and the generalization or association. Argo/UML provides some automated layout
support so that clicking the subclass button multiple times will position the new classes so that they do not overlap.

Selectioii-actionbuttons are transparent. They have a visibly recognizable rectangular shape and size and they
contain an icon that is the same as the icon used for the corresponding type of design element on the standard toolbar.
However, these icons are unfilled line drawings with many transparent pixels. This allows selection-action buttons to
be overlaid onto the drawing area without overly obscuring the diagram itself. Also, the buttons are only drawn when
the mouse is over the selected node; if any part of the diagram is obscured, the mouse can simply be moved away to
get a clearer view of the diagram.
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Most CASE tool user interfaces are inspired by MacDraw-style drawing tools. These tools give the user total
control over the order of their actions, but no support for ordering actions effectively. Typically, the toolbar buttons
correspond to tiny actions, and it is up to the designer to form a plan that combines these tiny interface actions to
achieve a task-level goal. For example, the designer might think, "I want a base class with a subclass." The plan for
doing that requires three normal toolbar clicks, two diagram clicks, and a drag. But if the designer wants a base class
with five subclasses, he or she is likely to change the plan to reduce from eleven toolbar clicks to only two toolbar
double-clicks (one to lock class mode and one to lock generalization mode). Expert users do this easily, but
beginners have trouble and get distracted from the larger design task. With selection-action buttons, the tool "knows"
that once you have a class it is likely that you will add a subclass. Adding subclasses can be done with as little as one
selection-action button click per subclass, and there is much less need to plan or optimize user interface actions.

Mapping to theory. At the cognitive level, selection-action buttons are a real improvement over existing
toolbars for two reasons.

First, Fitts' Law basically states that the time it takes to move the hand or mouse from one region to another
depends on the distance moved and the size of the target region. Current toolbars are very poor in this respect since
they are frequently used, far away from the work area, and have small target regions. In contrast, selection-action
buttons are located very near the location in the diagram where the mouse is positioned. Also, it is reasonable to have
bigger buttons since they are translucent and do not require dedicated screen area.

Second, simpler user interface interactions distract less from the design task. Byrne and Bovair (1997) describe
an experiment that showed that people who have other things on their mind are likely to make procedural errors in
complex user interface tasks. In particular, they commit super-goal kill-off errors, i.e., they finish one difficult part of
the task and then forget about their overall goal.

4.4.2 Create Multiple

Background. Creation of design elements is a task that occurs at the beginning of every design project and
recurs often throughout the project. In fact, email conversations with several Argo/UML users have indicated that
they encounter difficulties in constructing their design diagrams before they get the benefit of Argo/UML's other
cognitive support features. The "Create Multiple" feature proposed in this section is a novel user interface feature
that automates and informs low-level construction activities.

One form of domain knowledge that can be applied to aid designers in construction is design patterns. The basic
idea of design patterns is that certain design fragments have been found to be frequently useful in a wide range of
design problems (Gamma et al., 1995). If a given fragment is known to be frequently useful, then it is reasonable that
a designer will want to include it in the design at hand. In addition to the recurring design fragment itself, a design
pattern includes an explanation of why the fragment is useful and the situations where it is applicable. Making design
patterns easy for designers to choose and apply is expected to reduce the overall knowledge burden of designers
during construction tasks.

The user interfaces of most current CASE tools provide equal access to all features of the tool. For example,
standard toolbars are a user interface element that provides equal access to all features and does not take advantage
of the task-specific context or knowledge of the design domain. Also, most CASE tool user interfaces force the
designer to frequently switch between keyboard and mouse input devices to alternatively place design elements and
specify their names and properties. The create multiple feature helps designers specify design fragments by using
just the keyboard to fill in a form. This is expected to reduce interaction time and effort for a common task as well as
the feeling that arises of fighting with the tool when tools have difficult interfaces.

Description. "Create Multiple" is a proposed Argo/UML feature that is intended to help designers easily create
designfragments rather than individual designelements.Thesedesign fragments consist of multipledesignelements
and their relationships.
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A designer opens the "Create Multiple" window via a menu command. The window consists of several tabs. The
first tab offers on-line help on how to use this feature. The second tab, "By Name" (Figure 4-17), allows the designer
to select a design fragment by name and to enter customization parameters. The set of design fragments offered by
Argo/UML depends on the type of the current diagram. For example, if the designer is working on a class diagram
and chooses "Class Inheritance Hierarchy", the customization section will prompt the designer to enter the names of
the classes in the hierarchy, and pressing the "Create" button will add the new classes and the proper inheritance
relationships to the current diagram.

The third tab, "By Form", support better visualization of specific design fragments and their combinations
(Figure 4-18). In this tab, several design elements are shown in the context of one or more interwoven design
fragments. For example. Figure 4-18 shows classes in both an inheritance hierarchy and a containment hierarchy,
along with the composite pattern (Gamma et al., 1995). Although the tab shows a diagram, the position of the
diagram elements cannot be changed and items cannot be removed or added. Instead, emphasis is placed on editing
the names and properties of the available elements. Initially, all elements are shown with gray outlines and empty
names. Whenever a name or other property is filled in, the element's color is changed to black. When the designer
presses the "Create" button, all black elements are created and added to the current diagram. The names of design

48



y/Help Name\^ y/ By Form

Design Fragments: Inheritance and Containment

Course

ugrad

Summary:

New Classes: 4

New Generalizations: 5

Student

Grad

Existing Classes: 2
Existing Generalizations: 1

I

More Info

Create Cancel

Figure 4-18. Mock-up for creating design fragments by form filling

patterns are shown near the elements that participate in those patterns. Clicking on one of these names brings up on
line help describing the design pattern and explaining its applicability.

Regardless of which tab is used, the bottom of the "Create Multiple" window shows a summary of the elements
that will be created when the designer presses the "Create" button. For example, in Figure 4-18 the summary
indicates that the designer has specified four new classes and two existing ones. Whenever a name in the "Create
Multiple" window matches the name of an existing design element it is assumed that the existing element should be
used rather than creating a new one. This allows the designer to graft new fragments onto the existing design. The
name fields use combo boxes to aid the user in entering the names of existing design elements; the list of offered
names is filtered to include only appropriate elements, and the names of any appropriate elements that were selected
appear at the top of the list.

Some elements in the presented design fragment use check boxes to indicate whether they should be created or
not. This allows for the creation of unnamed design elements. Also, some elements of the design fragment may be
mutually exclusive alternatives. For example, in a fragment that could include a direct connection or a mediator
class, a "Use Mediator" checkbox would insert a class in the middle of the diagram if checked; otherwise, the
mediator class is shown in gray and black associations are drawn directly between the cooperating classes.

Mapping to theory. The "Create Multiple" feature is inspired by the theories of designers' limited knowledge,
reflection-in-action, associative memory, Fitts' Law, and limited short-term memory. These are discussed, in order,
below.

Design patterns are a form of knowledge that is specific to the domain of object-oriented software design.
Patterns can also be identified in specific application domains. However,a given designer has limited knowledge and
is unlikely to be aware of all the design patterns that are applicable to the design at hand. Even an expert designer
may have difficulty recalling known design patterns at times when they are applicable. Forms in the "Create
Multiple" window prompt designers to consider applicable patterns in the normal course of construction. The links
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to on-line documentation provide further knowledge support. Several design support tools have been built to help
detect or document design patterns (e.g., Seemann and von Gudenberg, 1998; Keller et al., 1999). However, none of
these tools effectively use patterns to aid construction.

Some tools offer design template files as a form of knowledge support for construction. However, these design
templates are difficult to combine with each other and with elements of the design at hand. The grafting behavior of
the "Create Multiple" feature addresses the fact that designers will not know what design patterns are appropriate
until they have partially specified the design. The need to make design decisions in the context of a partially
completed design rather than at the start of the design process is identified by the theory of reflection-in-action.

When design patterns are offered, they provide a visual cue to the designer to consider how that pattern might fit
into the design at hand. For example, when the designer sees the composite design pattern offered, he or she is cued
to recall or imagine the composite relationships that belong in the design at hand. Each element with an empty name
is a prompt for the designer to think of candidates for that position in the design fragment.

Since the "Create Multiple" window consists of standard widgets for text entry, it can be operated entirely via
the keyboard rather than the mouse. This provides an important alternative to standard diagram creation features that
are heavily mouse-oriented. Most software designers are experienced typists and are expected to appreciate the
keyboard-only option. Since the designer may select target fields by using the tab key, rather than the mouse, the size
and location of the fields is not so critical and small elements can be used. This is in contrast to mouse-centric editing
interfaces in which smaller target areas increase selection time as described in Pitts' Law (Pitts, 1954).

Furthermore, since the positions of nodes cannot be changed in the "Create Multiple" window, there is no need
to provide distinct user interface modes for diagram editing and property editing. Instead, a single, familiar form-
filling interaction mode is used. It is expected that using a "mode-less" interface will reduce the need for the designer
to plan his or her interactions with the tool, and thus will keep more short-term memory resources available for task-
level planning.

Possible extensions. One possible extension to this feature would be to build more knowledge about the
applicability of each design pattern into the tool itself. This could be done by augmenting each pattern with a guard
condition that would disable patterns that are inappropriate for the design goals or the initially selected design
elements. Those patterns that are appropriate could be grouped or automatically ranked according to their suitability
for achieving specific design goals.

Two other possible extensions would be to supply wizards that prompt the designer for additional pattern
creation parameters as needed, and to define critics that are related to the pattern as a whole rather than the individual
design elements that comprise it.

Related work. The literature on design patterns has focused on collecting patterns into pattern catalogs (e.g..
Gamma et al., 1995). Ideally, the resulting collections define a "pattern language" consisting of the key design
patterns for a given domain (Alexander et al., 1977). This approach serves to document the patterns used in a given
design community, and it builds agreement among those designers who choose to study the pattern language, but it
does not strongly support designers in applying design patterns. To be more effectively used, design patterns must be
more readily available to designers at the time when they are needed. Also, the pattern language approach requires
that designers learn the patterns before they are needed. In contrast, the "Create Multiple" feature offersdesign
patterns directly in the tool that designers use to build the design, and it offers designers the ability to choose from
the visually offered patterns rather than recall one by name.

Goad andcolleagues (1999) propose a set of design patterns for business applications. Goad hasbuiltsupport for
these design patterns and others into the Together/J UML tool. Constructive pattern support in Together/J is similar
to the "By Name" method of pattern selection proposed for Argo/UML.In each feature, the tool contains knowledge
about available design patterns and offers them to the designer.However,Together/J presents only the names of each
design pattern rather than offering them visually. This helps automate the design construction task, but it assumes
that the designer has fairly complete knowledge of the available patterns and their applicability. In contrast, Argo/
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Figure 4-19. Mock-up of the visual blender window

UML's form filling method offers design patterns visually, in a way thatprompts designers withpotentially useful
design fragments without requiring foreknowledge of a pattern language. Furthermore, Together/J grafts new
elements into the design in a preprogrammed way that cannotbe specified by the designer. In contrast, Argo/UML
considers grafting as a key part of patternapplication.

4.4.3 Visual Blender

Background. Designis a creative activity. Creativity in object-oriented design need not be the bold creativity
found in the arts or the paradigm shiftsneeded for major scientific discoveries. It is simplythe dailycreation of
solutions to design problems.

Designers often come up with new ideas for solutions while brainstorming with other stakeholders using a
whiteboard. Whiteboards fit the Geneplore theory in that they allow for generation of ideas without evaluation.
However, whiteboards are passive and do not help designers who need help in being creative. Discussing designs
with other stakeholders can lead to novel combinations of ideas that neither person would have thought of alone.
However, such meetings require at least two designers to work together, and they might be made more effective if
the participants brought more creative ideas that they generated independently before the meeting.

Description. Argo/UML's proposed visual blender feature is intended to help individual designers generate
creative ideas by exploring combinations of existingideas.It does this by presenting visual images thatemphasize
the combination or interactionof design concepts. The various parts of each image are labeled with terms taken from
the partially specified design or a list of terms entered by the designer.

Designers activate the visual blender window (Figure 4-19) via a menu command. The window consists of
several tabs. The first tab contains on-line documentation for this feature. The second tab lists a set of terms to

display on the images.These terms are initially taken from the namesof elements in the current design, but the
designeris free to edit the list. The third tab and any additional tabs show the images. The "New Tab" buttoninserts
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CHAPTER 5: Usage Scenario

The goals of this chapter are to demonstrate that Argo/UML is a useful and usable object-oriented design tool
and to demonstrate the use of its cognitive support features in the context of a plausible design session.

Design of any real-world software system is a long-term process consisting of many hours of work spread over
several design sessions. Opportunities for different kinds of cognitive support are distributed over the entire design
process. The scenario in this chapter is composed of five scenes that demonstrate how cognitive support may be
provided at different stages of design. Each scene is presented using a condensed timeline to quickly reach the point
of cognitive support; actual usage is not expected to be so densely packed with cognitive support opportunities.

The example design problem addressed by the designer in this seenario is the design of a university telephone
enrollment system. This is a fairly standard design exereise that has been used in introductory books on UML (e.g.,
Quatrani, 1998; Booch, Rumbaugh, and Jacobson, 1999).

This scenario assumes that the designer is already familiar with the application domain and object-oriented
design techniques, and that he or she has had some experienee with Argo/UML. Furthermore, it is assumed that he or
she has a general solution approaeh in mind.

5.1 Scene 1: Initial Construction, Error Detection, and Correction

Setting. In this scene, the designer dives right into eonstruction of the design by placing design elements into a
design diagram. Argo/UML supports construetion in many of the same ways as standard CASE tools, but provides
extra support for construction as well as error deteetion, error eorrection, and reminding.

Steps. Figure 5-1 shows the screen that a designer first sees after starting Argo/UML. Argo/LTML provides the
standard type of CASE tool interaction that object-oriented designers are familiar with. The designer can place
design elements into a diagram by elicking on a toolbar button and then clieking in the diagram. Relationships can be
defined by selecting the type of relationship from the toolbar and then dragging from one design element to another.
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Figure 5-1. Argo/UML initial screen
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The designer knows that classes will be needed to represent students, classes, and rooms. These are easily
created via the toolbar buttons. After the designer names one of the new class icons "Class", a wavy red underline
clarifier is shown under the name. The designer moves the mouse pointer over the wavy red underline and sees a
small pop-up window stating "Change Class to a Non-Reserved Word." In this case, the headline of the detected
problem is enough to prompt the designer to change the name to "Course". The designer names the other classes
"Student" and "Room".

Additional wavy red underlines are shown in the other compartments of each class icon and a yellow Postit note
appears at the top left of each class. The designer moves the mouse cursor to check out these other errors and sees,
for example, "Add Attributes to Student" and "Add Associations to Student." The designer recognizes both of these
as prompts to specify additional aspects of the model.

The designer uses the familiar toolbar button style of interaction to define associations between Course and
Room to model course locations. Then he or she adds an association from Course to Student to model course

enrollment. Building the model to this point has required a fair amount of clicking and dragging, so the designer
decides to use the selection-action buttons on Course to define the waiting list relationship between Course and
Student.

At this point, the designer recalls the requirement that three types of students need to be treated differently, so he
or she uses the subclass selection-action button on Student to define three subclasses with three mouse clicks. After

the new classes are named "ugrad", "Grad", and "Extension", the design appears as shown in Figure 5-2.

The designer continues to build the model by creating a new class for professors. Since using selection-action
buttons seems easier than using the toolbar, the designer decides to drag from the association selection-action button
on Course to create a new class and then names it "Prof. Then, the designer recalls the requirement that graduate
students may also teach classes and renames the current class "Teacher". Next, the designer clicks the subclass
selection-action button on class Teacher to create a new subclass for professors and the designer drags on the
subclass selection-action button to make a new generalization edge to the existing Grad class.

At this point, the designer feels that substantial work has been done quickly and that it is now time to fill in some
of the blanks that were left. While class Grad is selected, several clarifiers are shown, prompting the designer to
point at them with the mouse. Pointing at the yellow Postit note in the upper left of the Grad class produces a pop-up
window with the text "Change Multiple Inheritance to Interfaces." In this case, the prompt is not enough to tell this
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Grad has multiple base classes, but Java does not support multiple inheritance.
You must use interfaces instead.

This change is required before you can generate Java code.

To fix this, use the "Next>" button, or manually (1) remove one of the base
classes and then (2) optionally define a new interface with the same method declarations
and (3) add it as an interface of Grad, and (4) move the method bodies from the old base
class down into Grad.

Figure 5-3. "To do" item description

particular designer what to do. So he or she uses a pop-up menu to get a list of all outstanding criticism on class Grad
and selects the one labeled "Change Multiple Inheritance to Interfaces." This item is the first item on the pop-up
menu because the designer opened the pop-up menu with the mouse over its yellow Postit note.

When the item is selected from the pop-up menu, the ToDoItem tab at the bottom section of the screen now
changes to show the detailed description of the detected problem (Figure 5-3). The designer does not understand the
steps described in the third paragraph but thinks that the item is probably not relevant at this stage in the design
process. He or she decides to investigate the provided wizard to see if resolving the item can be done easily. Pressing
the "Next>" button at the bottom of the ToDoItem tab produces the first step of the wizard. The designer notices that
the blue progress bar on the "Change Multiple Inheritance to Interfaces" item in the "to do" list has only moved a
small amount, and decides that fixing this particular problem might require more learning and effort than he or she
wants to spend on it at this time. Instead, the designer presses the "Add Item" button on the ToDoItem toolbar and
enters a personal reminder to learn more about multiple inheritance in Java before it is time to implement the design.

Summary. In this scene, Argo/UML allowed the designer to directly manipulate the design in familiar ways.
Meanwhile, Argo/UML provided knowledge support that helped detect errors and incompleteness in the design and
guided the designer in resolving identified problems. Furthermore, selection-action buttons supported construction
by providing a style of interaction that better matched the goal structureof the design construction task. In the final
part of this scene, the designer added a reminder to Argo/UML's "to do" list to defer a decision for which he or she
lacked needed knowledge.

5.2 Scene 2: Cleaning up the Design to Communicate Intent

Setting. Now the designer has placed a number of design elements and relationships in the design diagram. But
the visual organization is unclear. In this scene, the designer cleans up the design diagram to more clearly
communicate its intent.

In this design problem, different levels of emphasis must be shown, Course is a central concept and its
importance should be indicated as such in the design diagram. In contrast, rooms in this system are secondary.
Likewise, the enrollment relationship is more fundamental to the design than is the waiting_list relationship. Also,
rooms must relate to facilities records that are supplied daily via a file transfer from a facilities management system,
while course information can be edited at any time via an applet on a web page.

Steps. The designer moves class Course to be slightly above the center of the design diagram. This visually
implies that class Course is a central concept of the design. It also puts some of the classes too close together and
makes some associations diagonal rather than rectilinear.
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The designer then uses the mouse to move the other classes into their proper positions around class Course.
Dragging the classes into position causes them to be somewhat misaligned with each other. The designer then uses
the broom alignment tool to restore the visual groupings as shown in Figure 5-4. In particular, since the classes for
undergraduate students, graduate students, and university extension students all fulfill the same role in the
framework, the designer establishes a visual group for them. This is done by pushing them upward with the broom
until they are horizontally aligned, then pressing the space bar to make them evenly spaced.

One convention of object-oriented design diagrams is that important relationships should be drawn with short,
straight edges, while less important relationships are often drawn using bent edges. The designer accomplishes the
straight edge effect for the enrollment association by dragging on a point on the association to add a new vertex.
When the vertex.being dragged is near a node, such as class Course, the segment of the edge between the node and
the mouse is automatically kept straight or rectilinear. The new vertex is automatically removed on mouse release
because it is collinear with the endpoints of the edge. For the less important waiting_list association, the designer
drags a point on the association to the left. The result is a two-segment angled association that appears secondary to
the straight association.

Based on prior experience, the designer feels that the means by which data will be supplied will play an
important role in upcoming design decisions. Since the UML notation does not define a way of documenting
information sources, the designer uses two unstructured graphical elements to indicate these sources. A UML
comment node could be used to textually describe the data source, but the graphical annotations shown in Figure 5-5
illustrate the concurrency and data volume of each source in a way that will make a more immediate impression on
the designer's colleagues.

Summary. In this scene, the designer used the broom alignment tool to help establish visual properties that
emphasize some aspects of the design over others. This helped to communicate the intent of the design by adding
new information in the form of secondary notation. In this case, the secondary notation was expressed with the
position of elements on the page, alignment, spacing, and the straightness of edges. Informal annotations helped to
add further information that was important to this design, even though it could not be expressed using the standard
design notation.
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5.3 Scene 3: Answering Questions that Arise During Design

Setting. As the design process progresses, a multitude of design decisions must be made. Each of these
decisions must be informed by the designer's understanding of the problem domain, solution domain, and the state of
the partially Completeddesign. Designers formulate and reformulate their understanding of the state of the design as
different design issues are addressed. Previous work on program comprehension has proposed a hypotheses-driven
model in which programmers alternatively form questions and answer those questions (Brooks, 1983; Koenemann
and Robertson, 1991). This scene demonstrates some of the questions that can arise while working with a UML
design and how ArgoAJML'scognitive support features might support designers in answering them.

In this scene, the designer has been working on the design for some time and its complexity has grown to, say,
fifty classes and fifty associations spread over several class diagrams. Figure 5-6 shows one of these diagrams. At
this stage in the design process, visually scanning design diagrams is no longer a reasonable way for the designer to
answer his or her questions about the state of the design.

Steps. One of the critics offers the advice that the designer should consider combining two classes. The designer
is puzzled as to why that advice is offered and looks at its detailed description. The critic suggests combining the
Room and Reservation classes because instances of class Room will always be allocated in a one-to-one
correspondence with instances of class Reservation. The designer realizes that the multiplicity of the held_in
association is not specified correctly: each room should be able to have zero or more reservations. This prompts the
designer to fix the problem at hand and then ask the broader question, "Does every association have the right
multiplicity?"

Opportunistic table views help answer this question by presenting the design in a dense format that encourages
systematic scanning. The designer clicks on the "As Table" tab at the bottom of the main editor window and selects
the "Associations vs. Properties" table view (Figure 5-7). Using this view, the designer considers each row of the
table by looking at the name of the association, its source multiplicity, and its destination multiplicity. As an aid to
systematic scanning, the designer turns on Argo/UML's row highlighting option and moves the selected cell down
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Figure 5-7. Table view of associations and their properties

the table, row by row. Moving the selection causes each row to be highlighted in turn, thus helping the designer keep
his or her place.

While scanning the associations, the designer finds that the enrollment association has the right multiplicity, but
its aggregation is wrong. This prompts the designer to ask the question, "What about the aggregation of the other
associations?"

To answer this question, the designer can simply scan down the table again, this time looking at a different
column. The designer begins to do this visually, without moving the currently selected cell or changing the
highlighted row. However, at some point the designer may need-torefer to requirements or project-related email that
is outside the Argo/UML tool. If that happens the designer is likely to move the selected cell to the current row of
interest to avoid losing his or her place. From there, systematic scanning can continue either visually or by
continuing to use row highlighting as an aid. Once the designer completes the design excursion to satisfactorily
answer the second question, he or she must return to the original question of multiplicity. ArgoAJML's "instant
replay" feature helps the designer recover from the design excursion by rapidly repeating the sequence of recently
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Figure 5-8. Aggregate classes navigational perspective

highlighted rows. This tells the designer how much progress was made on the first scan of the table and where to
pick up again.

Eventually the designer feels that it is time to implement persistence. A natural question that arises in this
recurring design task is "what are the aggregation hierarchies in the design?" This question is hard to answer if
aggregationrelationshipsare not emphasizedin a diagram or if they are spread over multiple diagrams. Navigational
perspectives help answer this question by presenting tree views of tree-structuredrelationships in the design.
Aggregationof classes is one of the predefinednavigationalperspectivesbecause it is known to be frequently useful
in object-oriented design. The designer can simply select the "Aggregate Classes" item from the list of available
perspectives above the navigation tree. This results in the tree view shown in Figure 5-8.

Another design issue that relates to aggregation hierarchies is how objects can be serialized and communicated
between distributed components. In addition to understanding aggregation, the designer must ask "Which classes
reside on both the client and the server?"Model-based layout is a proposed feature that could help to answerthis
question by reorganizing the layout of diagram elements but still present them in thesamecontext. For example,
model-based layout could make the client/serverdivision visually clear, while still showing associations between
classes. It does this by automatically positioning elements whileconstraining them to appearin diagram regions
based on model properties. In this example, the designer could choose the "Layout Diagram..." menu command and
fill out a dialog box as described in Section 4.3.3. A mock-up of how the resulting diagram might look is shown in
Figure 5-9.

Summary. In this scene, the designer asked several questions about the stateof the partially completed design
and answered themwith the help of cognitive supportfeatures. Opportunistic table viewshelped the designer
systematically scanthe tableandrecover from certain kinds of design excursions. Then, navigational perspectives
made important hierarchical structures in the design clearlyevident. Finally, model-based layouthelpedmakehidden
properties of the design visible, while still maintaining the overall context of the design diagram.

5.4 Scene 4: Considering the Important Issues

Setting. Sometimes designers don't ask the right questionsabout their designbecauseof oversights or lack of
expert knowledge. This scene consists of four short interactions thateachshow how Argo/UML might prompt the
designerto workmore like an expert. The emphasis here is on the waysthe tool can communicate guidance to
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Figure 5-9. Mock-up of model-based layout

designers; the contents of the provided guidance is assumed to be insightful and informative, but it need not always
be authoritatively correct.

Steps. Simplicity is one design quality valued by many object-oriented design experts. As the design document
grows, expert designers tend to look for ways to simplify the design to make it more understandable, maintainable,
and extensible. In contrast, novice designers are less able to recognize and combat unneeded design complexity.
Unneeded complexity can become evident when the designer reflects on the partially completed design after having
worked hands-on with the design and increased his or her understanding of the design issues. Revisiting the example
used in previous scenes, the designer will at some point notice the criticism of class Room. The suggestion to
"Consider combining classes" prompts the designer to simplify the design where possible. In this case, the designer
may change the multiplicity, as described above, or the designer could decide to simplify the design by having a
single RoomReservation class. The actual decision should be based on the designer's understanding of the problem
domain and the relative importance of different aspects of the system.

Another thing that differentiates expert from novice designers is that experts know the limits of their tools and
languages and know where they break down and when to step beyond them. For example, when looking at the design
checklist items provided for the cummulativeUnits attribute of class Student, the designer will see the checklist item
"Does any other value need to be updated when this value is changed?" This prompts the designer to keep in mind
the dependencies that are not represented in the standard UML design notation. Specifically, the designer is
prompted to consider whether an attribute such as classStanding should be updated whenever cummulativeUnits is
changed.

Expert designers also know to keep in mind how their task fits into the overall development process and their
own role in the development organization. Organizational critics can prompt designers to consider issues that are
important to the designer's organization, regardless of whether they are important to the designer. For example, one
potential organization-specific critic might warn designers that incorporating untested components requires approval
from the testing lead. This criticism cues the designer to consider how his or her design decisions will affect other
project stakeholders, namely the testing staff. Taking the time to change the design or consult with the testing lead
may not be in the designer's short-term interests, but more accurate planning and coordination is in the overall
interest of the development organization.
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When expert designers work hands-on with a design, they tend to keep in mind a great number of relationships
and design details that are then used to inform design decisions. Less experienced designers may have difficulty
keeping in mind the same information or recognizing the value of recalling certain details when making future
decisions. For example, when reviewing the design of the server side of the university enrollment system, the

designer might use ArgoAJML's search utility tofind all classes that reside inserver components^. If the designer
selects the row for class Course in the main query result table, then class Prerequisite will also be listed in the related
result table. Seeing class Prerequisite prompts the designer to recall the relationship between Course and
Prerequisite, and to consider whether class Prerequisite should be on the client or server.

Summary. These four short interactions have shown how features of Argo/UML can help all designers work
more like expert designers. Design critics and checklist items convey expert advice to designers engaged in the
design process. In particular, organization-specific critics inform the designer of the implications of design decisions
to the larger development process. Furthermore, ArgoAJML's opportunistic search utility helps designers notice the
same relationships that expert designers keep in mind when working with the design.

5.5 Scene 5: Resolving Open Issues Before Reaching a Milestone

Setting. The design process usually progresses in a very complex, iterative way; however, there are some clear
milestones along the way. This final scene gives an example of how ArgoAJML can support the designer in resolving
open issues to reach a design milestone.

Steps. Eventually, the designer will feel that the structural aspects (classes and associations) of the design are
nearly done. In this scenario, it is assumed that the next phase of the design will address a very different set of issues
related to the dynamic behavior of the system. Before making the switch to thinking about these behavior issues, the
designer wants to finalize the structural issues as much as possible. As the design nears this milestone, the designer
asks, "What is left for me to do?" This question might also arise when the designer is approaching a deadline or even
the end of the workday. Alternatively, when the designer realizes that the design is far from reaching the next
expected milestone, the designer might ask, "What needs to be fixed or finished?"

ArgoAJML's "to do" list helps answer both of the questions above by displaying all outstanding criticisms in an
organized way. Furthermore, ArgoAJML can help the designer realize that the design is far from being complete and
correct: if the number of outstanding criticisms gets too large, ArgoAJML will change the color of the item count
above the "to do" list. This provides a meta-cognitive prompt for the designer to switch from constructing new
design elements to reflecting on the design and resolving identified problems.

In trying to reduce the number of outstanding items, the designer systematically moves down the list of items
and considers each one in turn. Some "to do" items identify errors or incomplete parts of the design. The designer
corrects some of these immediately while others require more thought. Some items on the "to do" list contain advice
that the designer chooses not to follow in this case or suggested corrections that the designer feels are too risky or
difficult. The designer skips past some of these items, leaving them on the list; other items are explicitly declined by
pressing the Resolve button on the ToDoItem toolbar. Personal reminders that the designer added previously are now
reviewed and some of them are resolved. Over time, the "to do" list is reduced to a few items that are not relevant to

the milestone.

Once the explicitly identified criticisms have been resolved, the designer continues to look over the design to try
to detect any remaining issues. When considering each design element, the designer looks for common problems
based on past experience. Design checklists help augment the designer's own experience with that of expert
designers. One example of this is presented in Scene 4.

2. ArgoAJML's search utility has not been implemented enough to perform the particular query in this
example.
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After the designer has covered each element of the design document, he or she can gain further confidence in the
state of the design by reviewing the design decisions that led up to this point. The history tab contains a time-ordered
list of all criticisms raised and how they were resolved. The designer browses the list, giving particular attention to
item resolutions that introduced new problems and how those secondary problems were resolved. The designer also
uses the design history to check decisions that were not covered by earlier reflection on the design document because
they did not result in design elements. For example, the designer's decision to not include a university administrators
class might be documented only in the history. While reviewing past decisions, the designer asks "Why did I do it
that way?" Comments entered into design history can help answer that question.

By this point, explicit criticisms have been resolved, checklist items have been considered, and the design
history has been reviewed. The designer has also reflected on his or her own decisions and may be better able to
apply that experience in the future. Now the designer feels ready to move on to the next set of design issues.

Summary. In this scene, several Argo/UML cognitive support features helped the designer to resolve
outstanding design issues, and to feel confident about the structural aspects of the design. Design critics pointed out
errors, incompleteness, and other issues that are mechanically detectable. The "to do" list allows opportunistic
browsing of outstanding items, but in this scene it was used to systematically browse and resolve those items. Then,
design checklists helped prompt and guide reflection on broader design concerns by being at-hand, by supporting
systematic review, and by containing items authored by experts. Finally, ArgoAJML's design history feature helped
the designer review the decisions that lead up to the current state of the design.

5.6 Discussion

The five scenes of the usage scenario presented in this chapter demonstrate how Argo/UML's cognitive support
features can help designers in carrying out common design aetivities. These activities include design construction,
error detection, error correction, reminding, clarifying the intent of the design, answering questions that arise during
design, asking the types of questions that expert designers ask, eleaning up the design by resolving outstanding
issues, and reviewing design decisions. Two other cognitive support features were not discussed in the scenario: the
create multiple feature could have be used during construction (scene 1) and the visual blender feature could have
been used to answer questions about creative alternatives (scene 3).

As noted at the beginning of this chapter, each scene is condensed to quickly get to the point of support. In actual
design tasks, support opportunities are expected to be more widely spread out over time. However, one key aspect of
many of the proposed cognitive support features is that they play an active role in identifying, or even creating,
support opportunities. For example, design critics and clarifiers prompt designers to correct errors and create an
opportunity for procedural support in error correction. Also, the highlighted number of outstanding items above the
"to do" list serves to prompt the designer to switch to reflection on the design, thus identifying the need to
systematieally address open issues and creating an opportunity to support that need. Another example is the
opportunistic search utility which prompts the designer to think of related elements when the designer requests a
simple search, thus turning a normal design activity into an opportunity for cognitive support.
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CHAPTER 6: Heuristic Evaluation of Cognitive Features

Heuristic evaluation of user interfaces is a practical approach for identifying potential usability problems
(Nielsen, 1993). In such an evaluation, a usability expert reviews the design systematically using a checklist of
common usability problems and issues. This chapter presents a heuristic evaluation of Argo/UML's cognitive
support features.

Method and Goals. Each of the following sections evaluates one proposed cognitive support feature in detail
using a variation of the cognitive walkthrough method. A cognitive walkthrough is a theory-based user interface
usability evaluation that breaks down an interaction into detailed steps and evaluates each step in terms of the
following four criteria (Warton et al., 1994):

• Will the user try to achieve the intended effect?

• Will the user notice that the correct action is available?

• Will the user associate the correct action with the desired effect?

• If the correct action is performed, will the user see that progress is being made toward solving the task?

The programming walkthrough (Bell, Rieman, and Lewis, 1991), a modification of the cognitive walkthrough,
considers mental steps performed by the user and refines a model of the knowledge and skills needed by users. This
model is called a doctrine. An initial doctrine for Argo/UML is shown in Table 6-1. It is assumed that typical Argo/
UML users will have the knowledge described in the initial doctrine. This doctrine, along with the cognitive theories
described in Chapter 2, is used to justify the usability of each step in the user interface tasks below. In cases where
the initial doctrine is insufficient to justify a step, a new piece of knowledge is added to the doctrine. Each addition to
the doctrine is examined again to see if it poses an unreasonable barrier to usage. The final section of this chapter
empirically verifies the reasonableness of some additions with a user survey.

Table 6-1: Initial doctrine for Argo/UML

Argo/UML users are familiar with UML and have object-oriented design experience, but they lack
complete knowledge of either.

Argo/UML users have used other desktop applications and are comfortable using standard user
interface elements such as dialogs, forms, menus, popup menus, progress bars, standard wizards,
tabbed panes, text editing fields, tool bars, tree widgets, tool tips, scroll bars, and direct-manipulation.

Argo/UML users are familiar with UML modeling tools and their user interface elements, including
diagram editors, table-of-contents widgets, search dialogs, and property sheets.

I have modified the programming walkthrough method to better suit the evaluation of Argo/UML's cognitive
support features. First, the evaluation that follows pays special attention to the knowledge needed to perform each
step and the knowledge gained in each step. Second, the steps for each user task, or use case, are presented concisely
in a table that describes both the required user actions and the tool's reactions. In those tables, minor task variations
are handled as alternative steps, while major variations are addressed in separate use cases. Also, optional steps are
marked as such. Third, fairly straightforward steps are addressed briefly; the four questions of the cognitive
walkthrough method are used implicitly on each step and only identified problems are discussed. Fourth, the level of
detail is chosen to fit the specificity of the proposed cognitive support feature. For example, non-modal wizards are a
generic approach to providing procedural support for fixing identified design problems; the evaluation of non-modal
wizards will focus on those aspects that differentiate them from standard wizards rather than the specifics of an
individual non-modal wizard.
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The standard cognitive walkthrough method emphasizes the need for the user to recognize progress on an
explicit task. Thisisneeded inpartbecause users often abandon partially completed tasks if they feel thatthey areon
the wrong path. Many of the usecasesconsidered below aid designers in achieving explicitgoals. Several of the
steps, however, support challenges endemic to thedesign taskwithout requiring that thedesigner form an explicit
goal before beginning the interaction. Also, many steps areoptional because they offer additional support in cases
where thenormal interaction fails to provide enough to guide thedesigner. Forexample, interactions with design
critics viaclarifiers canhelp designers toform goals related to improving thedesign, and when simple cues arenot
enough toprompt the designer tofix identified problems, additional information can beaccessed inoptional steps. In
fact, mixed initative onthepartof thedesigner and thetool isessential to design support systems thattryto augment
the designer's own decision-making.

6.1 Walkthrough of "To Do" List and Clarifiers

Argo/UML users can access the feedback provided by critics via clarifiers or via the "to do" list. Tables 6-2 and
6-3 show the steps for each of these two use cases.

Table 6-2: Steps for using a clarifier and the "to do" item tab

Step User Action System Reaction

A-1 Select a diagram element Display selection handles and clarifiers

A-2 Form interest in the identified problem

A-3 Position mouse over clarifier Display "to do" item headline tool tip

A-4 Read the headline and understand the issue raised

A-5 Optionally, right-click to access a popup menu Display pop-up menu

A-6 Optionally, select headline from the popup menu Show item text in the "to do" item tab

A-7 Read "to do" headline or item text and understand the

issue; form the intention and plan to fix the problem

Table 6-3: Step for using the "to do" list and the "to do" tab

Step User Action System Reaction

B-1 Form interest in solving an outstanding design
problem

B-2 Browse headlines in the "to do" list

B-3 Form interest in a particular criticism

B-4 Select a headline Show item text in "to do" item tab

B-5 Read the "to do" item text and understand the issue;
form the intention and plan to fix the problem

Justification ofSteps. The first use case begins with an action (A-1) that Argo/UML users perform very often
during theirwork. The tool's reaction to this action includes drawing the standard selection handles found in other
direct-manipulation diagram editors, butalso includes drawing clarifiers. The wavy-red underline is themost
common clarifier inArgo/UML, and it is a familiar indication of trouble to users ofother recent desktop
applications. This leads the user directly to stepA-2. If the userhasencountered the identified errorbefore, the
clarifier may be enough to prompt the designer to fix the problem without further interaction with the clarifier.
Otherwise, instep A-3, the designer requests additional information via a tool tip. Tool tips are common user
interface elements that users often access when presented with a new user interface element. Even if the user does

64



not suspect the availability of a tool tip at first, he or she is likely to accidentally trigger one while working with the
diagram and thus learn of its availability. The designer is next expected to read the critique headline tool tip and
understand, to some degree, the issue raised. If the designer understands the issue described in the headline well, he
or she may jump to step A-7, resulting in a plan to fix the problem without further interaction. Alternatively, the
designer can access the details of the criticism by opening a popup menu (step A-5), selecting the feedback item
from the "Critiques" sub-menu (step A-6), and reading the "to do" item text displayed in the "to do" item tab. The
expected interaction with clarifiers suggests the following additions to the ArgoAJML doctrine:

• Users will realize that there is a popup sub-menu with criticisms that can he selected for additional details.
It is unlikely that users will realize this initially. In fact, Rieman, Franzke, and Redmiles (1995) observe that
"users are reluctant to extend their search beyondthe readily availablemenus and controls." The "Critiques" sub
menu will, however, be noticed when the popup menu is activated for other purposes. Since the "Critiques" sub
menu is always present on the popup menu and always contains a list of outstanding criticisms for the selected
design element, users should be able to learn of its existence and purpose. I also believe this step to be reasonable
because it was inspired by observations of Argo/UML users who saw clarifiers and tried to interact with them. In
fact, it was an ArgoAJMLuser who suggested that clarifiers should have popup menus. The reasonableness of
this addition has been tested with the user survey described in Section 6.12.

• Users are able to form an intention and plan to fix the problem identified in "to do" item descriptions. A
study of the VDDE system found that negatively phrased criticismwas not effective in promptingdesigners to
fix identified problems. In contrast to VDDE, ArgoAJML's feedback is phrased positively andincludes specific
descriptions of why the criticismshouldbe relevantto the designer's goals and how to go about resolving the
problem. In the end, the effectiveness of feedback text is up to the author of each critic.

The seconduse case begins with the designer taking the initiative to review and resolve identified problems.
Step B-2 requires the designer to look at items in the "to do" pane in the lower-left quadrant of the main ArgoAJML
window. The designer eventually takes an interest in a particular "to do" item (step B-3) and selects it (B-4). This
causes the text of the "to do" item to be displayed in the "to do" item tab. From there, the designer must understand
the issue and form a plan to fix it. This interaction with the "to do" list suggests two new doctrine additions:

• Users will eventually seek to resolve outstanding design problems. This can be safely assumed based on the
cognitive theories of reflection-in-action and opportunistic design.

• Users know that items in the lower-left pane are "to do" item headlines. Since it is already assumed that
users are familiar with standard user interface elements and desktop applications, it is fair to assume that users
will knowthat itemsin a tree widgetcan be safelyexpanded and selected. Once usersexplorethis widget they
will see the "to do" itemheadlines and full descriptions. Theseheadlines and descriptions serveas examples that
demonstratethe purpose of the "to do" list and the "to do" item tab. The majority of users surveyed were able to
correctly explain the purpose of the "to do" list.
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6.2 Walkthrough of Non-modal Wizards

Table 6-4 shows the use case for non-modal wizards. This use case assumes that the "to do" item text has

already been accessed and understood, as described above. This starting point is needed because wizards are only
presented after a "to do" item description has been presented.

Table 6-4: Steps for non-modal wizards

Step User Action System Reaction

C-I Desire support for problem resolution

C-2 Click "Next>" in the "to do" tab Display the first wizard panel

C-3 Use widgets in each step of the wizard Update the design document and wizard
progress bar on each step

C-4 Optionally, leave the wizard to work with other
features or even other wizards

C-5 Optionally, return to a partially completed wizard

Justification of Steps. The first step of using a non-modal wizard is choosing to use it. Then, the designer must
click "Next>" to move from the problem description to the first step of the wizard. "Next>" and "<Back" buttons are
familiar to anyone who has experience with standard wizards. Indeed, the availability of these two buttons is a strong
cue to the user to apply his or her knowledge of standard wizards. In step C-3, the designer interacts with the widgets
within a particular wizard, while the tool makes immediate updates to the design. Although the usability of each
particular wizard could be evaluated with a separate walkthrough, I am more concerned with the usability of the
aspects of the non-modal wizard approach that distinguish it from the standard wizard approach. In particular, the
immediate update of the design is unique to non-modal wizards. Immediate updates are part of the direct-
manipulation paradigm and are encouraged by the guidelines proposed by Shneiderman (1998) and others.

The last two steps in Table 6-4 are both optional, and it is expected that the designer will work on other tasks
between steps C-4 and C-5. In step C-4, the designer may leave the wizard to use other features of the tool, such as
the diagram editor, menu commands, other items in the "to do" list, or even other wizards. At first, designers using
Argo/UML may apply their knowledge of standard wizards and assume that they must finish the wizard or cancel it.
After a little experiencewith non-modal wizards, however,designers will encounter a cue eard wizard that explicitly
directs them to use other tool features. Also, the fact that non-modal wizards do not overlapthe main editing window
is a strong indicator that other tool features are always available. Designers must desire working with other features
and they must feel sure that they will not lose work by leaving a wizard. The cognitive theory of opportunistic design
indicates that designers will deviate from prescribed processes, such as the steps of a wizard, when needed
information must be looked for elsewhere. Designers who have become familiar with Argo/UML's "to do" list will
know that items are never removed without being resolved. This leads to step C-5, where the designer may return to
a partially completed wizard. This is done by selecting the "to do" item via a clarifier or the "to do" list as described
above. Designers may return to a partially completed wizard simply by investigating the clarifier or "to do" list as
theydid originally, or theymayexplicitlyseek outa particular"to do" item that they wishto finish. The walkthrough
for the former case is presented above. In the latter case, designers should be able to scan down the "to do" list and
identify partially completed wizards when they see blue progress bars. This interaction suggests the need for two
additions to the Argo/UML doctrine:

• Users desire semi-automatic problem correction. The reasonableness of this assumption depends on the
specifics of the problem identified, the difficulty of resolving the problem, and the value added by the wizard.
Certainly, designers who have previously perceived wizards as providinghigh value are likely to apply that
perception to non-modal wizards in Argo/UML. The furtherexploration of this assumption with a user survey
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indicated that about half of all users do desire aid in solving identified problems, especially when the problem is
difficult or if the wizard makes fixing the problem very easy.

• Users recognize the small blue bars on "to do" item icons as progress bars. There is a strong similarity
between ArgoAJML's "to do" item progress bars and the standard progress bars found in other applications: both
are rectangles that extend from left to right as the user makes progress in a multi-step task. The position of Argo/
UML's small progress bars, however, is unusual and may prevent users from realizing that they are progress bars.
Surprisingly, a clear majority of surveyed users recognized these progress bars.

6.3 Walkthrough of Context Sensitive Checklists

The user interface steps for using context sensitive checklists are much more simple than those needed for
accessing criticism via clarifiers or the "to do" list. The mental steps, however, can be more difficult because
checklist items can address broader design issues and are less closely linked to the state of the design. Table 6-5
summarizes the steps for using context sensitive checklists.

Table 6-5: Steps for using context sensitive checklists

Step User Action System Reaction

D-1 Select a design element Highlight the element; update the checklist tab

D-2 Form interest in addressing common
problems related to the selected element

D-3 Select "Checklist" tab, if not already shown Display the checklist for the selected design element

D-4 Read checklist items and consider issues

D-5 Optionally, request more information Display a help window

D-6 Optionally, check off the items considered Display checkmarks

Justification of Steps. The first step requires the designer to select a design element as he or she normally
would do. In addition to drawing selection handles, Argo/UML also fills the checklist tab with a checklist
appropriate to the selected design element. If the checklist tab is already showing, this change will be seen
immediately; otherwise, the designer will have to select the checklist tab (step D-3). The designer must desire
information on common design problems (step D-2) before he or she can be expected to select the checklist tab. This
leads to the following addition to the Argo/UML doctrine:

• Users desire tbe guidance provided by design checklists. Designers are expected to need knowledge support
because they have limited knowledge and because they may have difficulty in applying the knowledge they
possess. The knowledge in checklists, however, may not appeal to designers. The assumption that designers
desire checklists has been tested with survey questions. Seven of the twenty users who answered the relevant
survey question indicated that they would like to use checklists often, another nine additional users would use
checklists occasionally.

In step D-4, the designer must read a checklist item and consider the design issue it raises. Whether this step is
reasonable or not depends on the wording of specific checklist items. Two factors that increase the effectiveness of
checklist items are (1) the fact that checklist items are context sensitive and contain specific design terms rather than
vague pronouns, and (2) the availability of on-line help for many checklist items. In step D-5, the designer may
access additional information that explains the issue raised in more detail. In the final step, the designer may check
off items as they are considered. This serves as a reminder of progress and prompts the designer to go through the
checklist systematically. The option to check off items suggests that the following should be added to the Argo/UML
doctrine:
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• Users will check off checklist items as reminders to themselves. This assumption may be problematic because
users typically do not take actions that are not perceived as making progress toward a goal. Checking off items is
not required and users may feel no desire to perform unneeded steps. Experienced designers, however, are well
aware of the effectiveness of systematic consideration of common problems and the need for reminders during
complex design tasks. This doctrine addition is also tested with user survey questions. Almost all surveyed users
were able to guess the purpose of the check boxes and half said that they would use them.

6.4 Walkthrough of Design History

Designers can access information about past design decisions using Argo/UML's "History" tab as described in
Table 6-6.

Table 6-6: Steps for using design history

Step User Action System Reaction

E-1 Desire review of design history

E-2 Select the "History" tab Display design history tab

E-3a Select "Global" Display list of all history items

E-3b Select "Selected Element" Display list of history items related to selected
design element

E-4 Read and understand history items

E-5 Optionally, select a history item Display details of that item and list the design
elements involved

E-6 Optionally, select a design element from
the related list

Highlight the item in the diagram pane

Justification of Steps. First, the designer must form the desire to review the history of design choices. The
cognitive theory of reflection-in-action indicates that designers do reflect on the state of the design, but it is not
obvious that they would seek out design history. Once they have formed the desire to review past design decisions,
they must recognize the "History" tab as providing that information (step E-2). In steps E-3a or E-3b, the designer
selectsglobalhistory or chooses to view a subsetof the historyrelated to the selecteddesignelement.This step
seems reasonable because the labels are clear and because the designer can safely experiment with these two settings
and understand their effects immediately. Step E-4 is a difficult step that requires the designer to read a one line
description of a history item and form an understanding of its meaning. Specifically, designers must recognize
history items that relate to current design decisions. Once the designer recognizes a relevant history item, he or she
can view its details by selecting it (step E-5). These details include the full text of the history item and a list of the
design elements that were involved in the criticism or modification. The designer may optionally follow a trail of
history items by selecting one of the listed design elements to see its history (step E-6).

• Users will eventually want to review design history. This assumption is one of the more serious barriers to
usage of this feature. Expert designers can be expected to desire design histories, but the majority of users might
never desire them. A potential refinement would be to make the history feature more proactively advertised with
a "tip of the day" or a visual indication of relevant history in the design diagram itself.

• Users will find the "History" tah when they want to view design history. Identifyingthe proper tab shouldbe
easy for usersonce they have formed the desire to access history. It is likely,however, that they will initiallyscan
the interfacewhen first learning to use the tool and not realize the meaning of the history tab. One possible
improvement would be to supply descriptive help when the history tab is first accessed.
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• Users will recognize items in the history tab as past criticisms, changes, and resolutions. Some of the items
in the history list are "to do" items and have headlines that can be recognized by users familiar with the "to do"
list. Once users recognize that some of the items are past criticisms, the inference that the others are also
historical items should be straightforward. The meaning of the particular types of history items will probably
only be discovered after reading the text of a few items.

• Users will recognize if and how history items relate to current design decisions. This is the basic assumption
underlying the value of this feature. The tool can help users identify which design elements were involved in a
given part of the design history and which history items relate to current design elements. But, the user must
ultimatelymake the connectionbetweenthe historical facts and present design goals. One possible improvement
would be knowledge-based aids for history analysis.For example,"history critics" could be defined as a form of
critic that identify problematic patterns in the design history, such as one item being constantly revised over time.
Design elements that are revised too often are usually design bottlenecksthat will require further attention if not
removed.

6.5 Walkthrough of Opportunistic Search Utility

Table 6-7 shows the steps needed to use Argo/UML's opportunistic search utility. This feature is an
improvement on the standardsearchutilitiesfound in many commercial UML tools and other widely used desktop
applications. This walkthrough emphasizes the aspects that differ from standard search utilities.

Table 6-7: Steps for using the opportunistic search utility

Step User Action System Reaction

F-I Open the Search window Display Search window; show help tab

F-2 Enter search criteria Enable "Search" button

F-3 Press "Search" button Perform search; display search results in new tab

F-4 Review search results

F-5 Select search result Display related design elements in lower table

F-6 Optionally, form an interest in related
design elements

F-7 Review related design elements

Justification of Steps. Designerscommonly use search utilities in programming and design tools as a means of
navigationand to get an overview of a certain aspect of the design. In step F-1, the designer opens the search window
via a menucommand or keystroke. Argo/UML makesfinding the searchcommandeasy by placing it under the Edit
menu, which is the same place that it is found in many other tools. As soon as the search window is displayed, the
"Help"tab is displayed in the lower halfof the window. Thehelptab explains the non-standard aspects of the search
utility. In step F-2, the designerenters searchcriteria, such as a wild-card expressionfor the names of design
elementsto find or the type of elementto find. Most searchcriteriafieldsare standardand straightforward, but some
may be difficultto understand or use. The emphasis here, however, is on the cognitivesupportprovidedwhen the
designerreviewsthe searchresults. In step F-3, the designerpressesthe Searchbuttonand Argo/UML createsa new
tab with the search results.The new tab is labeledwith a concisesummary of the search criteria. The designerthen
proceeds toreview the search results (step F-4). Results are displayed ina table with one result ineach row. A
designer familiar with standard desktop toolsshould havenotrouble recognizing or understanding thesearch results,
andhe or she will naturally clickon a search resultto learnmoreaboutit (stepF-5).When the designer selects a
searchresult, the opportunistic searchutility alsodisplays relateddesignelements in a secondtable in the lowerhalf
of theresults tab.Thefact that the items in the lowertableare related to theselected resultshould be clearsincethey
appear after a selection is made. However, the nature of the relationship couldbe unclear. StepF-6 in Table 6-7
requires the designer to forman interest in a related item. Notethat the exactnatureof therelationship neednot be
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understood, so long as the designer forms an interest. In fact, it is expected that designers may see coincidental
relationships in addition to the rules used by Argo/UMLto generate these items. Finally, the designer may review a
related result in context by double clicking on it. This step should also be natural to designers who have used other
search utilities. This use case suggests the following additions to the Argo/UML doctrine:

• Users will understand the search window help tab. Even thoughthe help tab is presented on the first use of the
search utility, users may not read or understand it. However, it is reasonable to assume that users will
successfully access the help tab if they encounter problems later.

• Users will associate the label on the result tab with the search criteria. The two key factors that shouldmake
the searchresulttab labelsrecognizable are (1) that theyinclude searchtermsenteredby the designerand (2) that
theyinclude theasterisk ("*")symbol, which is normally interpreted as a search wild-card character. Only oneof
the surveyed users failed to understand the meaning of the tab labels.

• Users will form their own understandings of the relationship between the selected search result and the
related results. The exact meaningof therelationships canbe veryhard to guessby simplylookingat examples.
However, users should not need to understandthe rules by whichrelated design elements are discovered.Having
some obvious relationship rules can help reinforce the fact that the bottom table contains related elements. For
example, the attributes, associations, and operations of a class are obviously related to the class itself. If such
obvious rules are omitted, the user is likely to question their initial understandingof the meaning of the related
elements table. So long as basic rules are in place,advanced rules shouldnot pose a problem. Surprisingly, eight
out of elevensurveyed users who wereshown a singlescreenshot wereable to formreasonable understanding of
the meaning of the related result items.

6.6 Walkthrough of Opportunistic Tahle Views

The walkthrough of Argo/UML's opportunistic tableviews consists of a singleusecase with several optional
steps. The use case is described in Table 6-8.

Table 6-8: Steps for using opportunistic table views

Step User Action System Reaction

G-I Form the desire to use a table view

G-2 Select the "As Table" tab Display a table view

G-3 Optionally, change table perspective Display a table perspective

G-4 Optionally, select highlighting mode Update highlighting

G-5 Select and edit table cells Display table values and highlighting

G-6 Optionally, press replay button Re-display recent highlighting

Justification of Steps.A designer using Argo/UML canedit anysemantic aspect of the design viaeithera
diagram view and properties tab or via a tabular view. The diagram view is the default and more familiar of the two.
Making thechoice to usea tabular design view may require meta-cognitive insight on thepart of thedesigner: i.e.,
the designermust realizewhen there is an advantage to using the tabular view.

Once thedesigner hasformed thedesire to usea table view, he or sheselects the "AsTable" tab (step G-2).
Choosing the "AsTable" tab should be easy because the label is clear, it is centrally located, andusers know that
they can safely explore tabs. Themostcommonly useful table perspective is shown bydefault. Designers may
optionally switch to an alternative table perspective from a choice widget (step G-3). Next, thedesigner may adjust
the highlighting mode to better fit his or her systematic scanning behavior (step G-4). Thinking of one's scanning
behavior in advance definitely requires meta-cognitive awareness that the designer maynot have. However, even if
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stepG-4is notcarried out, thedefault row-by-row highlighting mode is theone most likely to be useful. In stepG-5,
thedesigner uses the tableas normal. This includes selecting andediting tablecells to accomplish someediting task.
Sinceit is assumed that the designer specifically chosethe tableviewinstead of the diagram view, it is likely thathe
or she will perform a task that takes advantage of the tabular nature of the table view. For example, the designeris
likely to systematically scan thedesign or make a series of editsto corresponding parts of the design. While the
designer is carrying outthattask, heorshemay need additional information from some other partof thedesign. The
theory of opportunistic design indicates that designers arelikely to switch tasks to work with other parts of the
design togather needed information. Upon returning from such a design excursion, thedesigner may use the"Instant
Replay" button to request a replay of themost recent activity in the table view (step G-6). The intent of thereplay
feature is to helpthe designersee wherehe or she left off and thus re-establish a partof the mental taskcontext.
However, the effectiveness of the instant replay animation needs to be verified.

Theexpected interaction with opportunistic table views suggests thefollowing additions to the Argo/UML
doctrine:

• Userswillunderstand the advantagesofa tabular viewand choose it over a diagram when appropriate.
This is one ofthe biggest assumptions of the opportunistic table views feature. Asdiscussed below, a survey of
users indicated thatthey did notform a desire tousetables when systematically checking a design diagram. It
seemslikelythat users could learn the valueof tableswith experience, but encouragement will be needed for
most users to recognize thatvalue. Potential refinements to address thisbarrier to usage include "tip of theday"
dialogs or coaches that watch the user's actions andsuggest more effective strategies.

• Users willnotice the "As Table" is tab. Noticing the "As Table" tab should be easyfor users because it is
shown in an area of the main window whereusers access many different Argo/UMLfeatures. All but one of the
surveyed users were able to access the table view.

• Users will notice the choice ofalternative tableperspectives in the tabletab. Finding thetable perspective
choice is notdifficult because it is located above thetable, near thecolumn headers. In many desktop
applications, tableviews arecustomized viathe column headers, so that is a natural placeto look. All of the
surveyed users whoresponded to the relevant question gaveanswers that indicated that they wouldbe able to
change the table perspective.

Userswillplan systematicscans of the design. Expert designers certainly do perform systematic scans of the
design and make systematic changes. However, teaching designers this expert behavior will require more support
than iscurrently provided by this feature. Apotential refinement would bea task-tool-matching dialog orhelp
file. Thatservice would allow theuserto select a task-level goalfroma listof supported tasks and thenadvise the
user on which perspectives to scan during that task.

Users will recognize the purpose of the "Instant Replay" button. The majority of users surveyed did not
understand the meaning of this button label. A possible refinement would be to relabel this button "Show recent
highlights". However, themajority of surveyed users thought thatpressing the"Instant Replay" button was a safe
operation, andoncethey sawthe instantreplay animation, theyunderstood it's meaning.

• Users -will seewherethey leftoffbasedon the instant replayanimation. Users can beexpected tounderstand
the instant replay animation inthe context ofuse because it simply replays actions that the designer recently
performed. There was some confusion among surveyed users astowhether thefinal row highlighted was therow
that they should continue to work on orifthat row had already been considered. Allowing designers to be off-by-
one is acceptable if it results in a rowor column being considered twice, butit is notacceptable if it results ina
row or column being skipped. For that reason, the animation shouldstop short and not includethe most recent
row selected.
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6.7 Walkthrough of Navigational Perspectives

Designers use Argo/UML's navigational perspectives by performing the steps described in Table 6-9.

Table 6-9: Steps for using navigational perspectives

Step User Action System Reaction

H-1 Form question about a design structure

H-2 Choose a perspective to help answer question Update Navigation pane

H-3 Expand tree widget in navigation pane Show tree according to chosen perspective

H-4 Understand tree and use it to answer questions

Justification of Steps. As with several of Argo/UML's cognitive support features, the designer must first realize
that he or she needs a certain type of information. In the case of navigationalperspectives, the designer must form a
question about a design structure (step H-1). The theory of reflection-in-action and other cognitive theories suggest
that raising and answering questions about the design is a key part of the design process. In step H-2, the designer
must choose a navigational perspective from the choice widget above the navigation tree. To accomplish this step,
the designer must first recognize that the choice widget is the proper affordance. Then, the designer must choose a
perspective that will help answer the question raised based on the name of the perspective. Some of the perspective
names are very clear because they use standard terms like "inheritance," while others may not be so clear. If this is
the first use of the selected perspective, it will be completelycollapsedand must be expanded (step H-3). Expanding
the tree should be natural because, at this point, the tree has obviously changed, and expanding is the normal
operation on a collapsed tree. In step H-4, the designer must understand the design structure that is shown. As with
the opportunistic search utility, there is the possibility that the designer will see a different structure than the one
intended. This could be useful, or it could be misleading. This use case has identified the following doctrine
additions:

• Users will form questions about design structures that the navigational perspectives can help answer.
Many of the predefineddesign perspectives are specificallydesigned to address commonly occurringdesign
questions by making key design structures clearly visible. For example, the inheritance and reachability
perspectives are useful in answering many common questions.

• Users will recognize the perspective choice widget. The position of the perspective choicewidgetdirectly
abovethe navigation tree shouldmake it easyfor users to find andrecognizethis widget. One potential
refinement would be to label the perspective choice widget with "Perspective:", as is done in the ObjectDomain
tool.

• Users will choosean appropriate perspective based on its name. As noted above, some of the perspectives
have very clear names than use standard terms for key design structures. Once the user uses one perspective
successfully, they can be expected to explore the others. However, if the user does not understand a given
perspective, he or she is unlikelyto use it when needed. In a surveyquestion related to systematicscanningof all
associations in the design, two out of eight surveyed users indicated that they would attempt to use the
"association-centric" perspective. Argo/UML, does not providea predefined "association-centric" perspective,
so the users must have understoodthe naming conventionsused by other perspectives to invent a new name
fitting the same convention.

• Users will understand the design structure heing shown in the navigation pane. Someperspectives are clear,
others are not. Understanding a perspective that is not clear based on its namealone will requirea designer to
understand the design structure being shownin the tree widget. This could be a problem, especially if the
designer forms an incorrect understanding of the tree structure. It is possible that designers will look at the
navigationalperspectiveconfigurationwindow to gain an understanding of a perspective, but that is unlikely.
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One refinement that would help overcome this barrier to usage would be to attach a descriptive comment to each
navigational perspective. In cases where a perspective has no comment, a default description could be generated
by combining short descriptions of the rules that make up the perspective.

6.8 Walkthrough of Broom Alignment Tool

Table 6-10 shows the steps needed to use ArgoAJML's broom alignment tool. This walkthrough is specified at a
lower level of detail than most of the others because the broom uses a novel interaction that does not make use of

standard widgets.

Table 6-10: Steps for using the broom alignment tool

Step User Action System Reaction

I-l Mentally visualize diagram elements in semantic groups

1-2 Form desire to express semantic groups as visual groups

1-3 Drag diagram elements roughly into desired positions

I-4a Enter broom mode via broom toolbar icon

I-4b Enter broom mode via control-click in diagram area

1-5 Drag the mouse in the diagram area Draw broom

1-6 Push diagram elements into alignment Move diagram elements

1-7 Optionally, drag backwards to undo unwanted
movements

Move diagram elements back toward
their original position

1-8 Optionally, press spacebar Evenly space the elements on the broom

1-9 Release the mouse button Exit broom mode, go to selection mode

Justification of Steps. The cognitive theory of secondary notation indicates that designers will desire diagrams
that makeeffective use of visualproperties such as alignment and spacing. Based on this theory, steps I-l and1-2
should occur naturally. Since it is assumed that designers are experienced with diagramming tools, step 1-3 should
not be a problem. In fact, designers are likely to movediagram elements into rough alignment as a way to quickly
evaluate the visual impact of a given layout. In step 1-4, the designer can use the toolbar button for the broom mode
(step I-4a) or use control-drag (step I-4b). The toolbar button provides a visual affordance to start broom mode, but
the designermay havedifficulty recognizing the broommodeicon.The control-drag option is less likely to be
discovered, but it might be learned from the documentation. Once the designer has changedmodes in the diagram
editor, he or she is likely to click or drag in the diagram area (step 1-5). Furthermore, a message in the status bar of
the mainArgoAJML window brieflyexplainsthe broomandpromptsthe designerto drag. The statusbar message is,
"Push objectsaround. Return togglespulling.Spacebar distributes." If the designermerely clicks,a blue plus-sign is
shown until the user eventually drags the mouse. Dragging produces an immediate visual effect that indicates that
something is happening. The shape of the broom tool provides a pushing affordance that should lead designers to
step 1-6. Even if the shape of the broom does not immediately suggest its behavior, the designershouldnaturally
discover and understand the broom's push-to-alignaction. In step 1-7, the designer may optionallyundo the
movementof diagram elementsby moving the broomin the oppositedirection as the original drag.Again, the
existence of this feature is not obvious, but it is likely to be invoked accidentally, and once it has been seen its
usefulness will.be obvious. Alignment by itselfdoes notcompletely achieve the goalof forming visual groups; even
spacing is also needed. Designers may evenly space thediagram elements on the broom bypressing thespacebar
(step 1-8). The availability of this action is not obvious, but it is mentioned in the status bar whenever the broom is in
use. Oncethe designer haspressed thespacebar, its effect is immediately visible, and themessage "spaceevenly" is
shown behind the broom. The final step (1-9)is simply to release the mouse button.
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Users will desire alignment and even spacing in UML diagrams. When asked to select the most readable of
threediagrams, the majority of surveyed usersselected one that used alignment as an effective secondary
notation. Even if designersare not awareof theirdesire for secondary notation, they very oftenspendtimetrying
to get their diagrams to look neat and orderly by aligning diagram elements.

Users will move diagram elements into rough position whiledeciding on layout. Whenaskedhowthey
would improve a poor layout to make it more clear, the majority of users indicated that they would move nodes
into alignment. Also, the laboratory studyof alignmenttools showedthat most subjects movednodes intorough
alignment. Users who are familiar withstandard alignment tools oftenmove nodes intoroughalignment so that
the effectof standardalignmentcommand, such as "align tops," will be more predictable.

Users will associate the broom mode icon with the broom. This assumption is veryunlikely to be met by first
timeuserssince the broomis not related to any commonly useddesktopapplication feature. In a surveyof users,
very few knew the meaning of the broom icon, and the tool tip "Broom" did not provide much assistance.
However, once the functionality of the broom has been discovered and understood, the icon can become familiar
because it shows the recognizable shape of the broom. One refinement to this feature would be a more
descriptive tool tip such as, "Broom alignment tool."

Users will feel safe in experimenting with broom mode. The surveyed users indicated that they thought that
the broom icon was a safe button to press. This is implied because of the location of the broom icon next to the
selection mode iconon the toolbar. Onceusers are in broom mode andmovesomeobjects around, theywill
realize that the broom does affect the state of the design, but it does so in a safe and understandable way.

Users will discover that control-drag also starts broom mode. It is very unlikely that users will discoverthis
without beingtold explicitly. Onerefinement would be to adda tooltip, "tipof the day," or statusbar tip to
explain that the broom can also be accessed via control-drag.

Users will gness that the broom can pnsh objects based on the shape of the broom. Based on the survey
results, a majority of users will guess the functionality of the broom when they first see it. Furthermore, in actual
usagethe fact that the broomis attached to the mousepointershouldlead to immediate experimentation, so it is ,
reasonable to assumethat even thosewhodo not understand it immediately will understand it after usingit once.
Theshapeof thebroom alsoindicates thedirection of alignment andthescope of its interaction withthediagram
elements.

Users will understand the push-into-alignment metaphor. The majority of users surveyed understood the
functionality of the broomafter seeing twoscreenshots of its use. It seems very reasonable to expectusers to
understand the push-into-alignment metaphor.

Users will understand that backing up allows objects to return to their initial position. Based on four
screenshots of the broom reversing direction, surveyed users were able to understand this aspectof using the
broomvery clearly. In actual usage, the rate of understanding is expected to be even highersince
experimentation and visual feedback will be immediate.

Users will realize that pressing the spacebar will distribute objects. It is unlikely that the user willdiscover
thisfeature without beingtold. Argo/UML already includes a status bar message telling the user to press the
spacebar, however status bar messages are often ignored, especiallywhen the user is involved in a direct
manipulation. It is possible, however, that the user would eventually notice the message and try to use the
spacebar. One possible refinement would betoprovide help onusing the broom when it is first used, ortosimply
leave a status barmessage visible after thebroom mode has been exited, if spacing was notperformed.
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6.9 Walkthrough of Model-hased Layout

Expected usage of Argo/UML's proposed model-based layout feature consists of the two use cases described in
Table 6-11 and Table 6-12.

Table 6-11: Steps for using grid-based layout

Step User Action System Reaction

J-1 Form desire to automatically redo diagram layout

J-2 Issue "Layout Diagram..." command Open "Model-based Layout" window

J-3 Select "Grid-Based" tab Show tab, including attribute fields, preview
pane, and "Layout Diagram" button

J-4 Choose attributes to be used in layout Update preview pane

J-5 Divide attribute value ranges Update preview pane

J-6 Optionally, order attribute value ranges on axes Update preview pane

J-7 Press "Layout Diagram" button Layout diagram using grid constraints and
simple geometric rules

Table 6-12: Steps for using region-based layout

Step User Action System Reaction

K-I Form desire to automatically redo layout

K-2 Issue "Layout Diagram..." command Open "Model-based Layout" window

K-3 Select "Region-Based" tab Show tab, including constraint field, region drawing
pane, and "Layout Diagram" button

K-4 Draw regions to be used in layout Update region drawing pane

K-5 Assign constraints to regions Update region drawing pane

K-6 Press "Layout Diagram" button Layout diagram using constrained regions and simple
geometric rules

Justification of Steps. Both use cases beginwith the desire to automatically redo the layoutof a diagram. This
desire occurs naturally during design and is commonly found and used in other CASE tools. Likewise, the second
step is also reasonable. The final step in each usecase is also very straightforward. Even if all the other steps are
skipped, the designer can simply press the "Layout Diagram" button to produce a layout that is as good as that
produced by other CASE tools. Even if a designer does not initially desire model-based layout, it is likely that they
will discover this cognitive support feature eventually through normal usage.

In step J-3, the designer must select the "Grid-Based" tab. Accessing a clearly visible tab should not be a
problem because exploring tabs is always a safe operation. Next, the user must choose attributes to control the
layout. Since this aspectof Argo/UML's model-based layout is not found in other tools,designers may not
understand whatis being requested. Furthermore, designers mayhavedifficulty choosing the particular model
element attributes needed to achieve the desired layout. Oncethe attributes are selected, value ranges must be
defined. For someattributes, this can be trivial or automatic; for others, determining appropriate valueranges may
require trial-and-error. The layoutpreviewpanequickly showsa roughapproximation of the layoutto help designers
explore alternatives. In step J-6, the designer mayreorder the rows or columns or move a given attribute from a row
to a columnor from a columnto a row. Reordering shouldbe easy to accomplish via the up and down buttonsto the
right of the attribute list. The first use case suggests the following addition to the Argo/UMLdoctrine:
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Users will beable to selectmodel element attributes to controlmodel-based layout. Model-based layout uses
theattributes ofmodel elements, such asname, visibility, isAbstract, or tagged values. Before theuser can pick
anattribute to use, he or shemustform a question about thedesign thatcanbe answered byseeing thediagram
laidoutin a particular way. Designers may have difficulty bridging thegapfrom questions to layout. One
potential refinement to this feature that could reduce this gap would be tooffer predefined model-based layouts
that help answer common design questions. Another refinement would betodocument each predefined layout
with a description of its purpose.

In step K-3, thedesigner selects the"Region-Based" tab. Then, in steps K-4 and K-5, thedesigner must define
geometric regions forthe layout and assign constraints to them. It is expected that steps K-4 and K-5 will bedone
repeatedly as the designer refinesthe layout. Thefollowing additions to the Argo/UML doctrine are needed for the
designer to successfully define and refine the region-based layout:

• Users will understand the region-based layoutcoucept. This assumption relies onthe users' previous
experience with diagram layout in other contexts. Users who have prepared technical charts and diagrams in the
pastare likely tohave encountered this concept. Other users may also beable to use this feature after they have
learned theconcept from thehelp taborfrom experimenting with theGrid-Based layout specification tab.

• Userswillbe able to specify coustraints for regions. Software designers arevery familiar with boolean
conditions, sothe actual constraint expression itselfshould notbea problem. A bigger problem is theuser's need
tobridge the gap between visualization goals and constraint choices. One refinement that could help address this
problemwouldbe to providepredefined constraints with descriptive comments.

Users will understand theinteractions between regions. The rules for interactions between regions may seem
complex orunexpected to some users. Users should beable tolearn these rules bydirectly manipulating the
regions in thepreview paneandseeingthe approximate layout immediately. The interaction rulesshould alsobe
clearly explained in the help tab.

6.10 Walkthrough of Selection-Action Buttons

The walkthrough of Argo/UML's selection-action buttons consists of one use case with three alternative
conclusions.

Table 6-13: Steps for using selection-action buttons

Step User Action System Reaction

L-1 Form desire to expand an existing node

L-2 Select a diagram node Show handles and appropriate SABs

L-3a Click a selection-action button Create node and edge in the default position

L-3b Drag from a SAB to empty space Create node and edge in the position indicated

L-3c Drag from a SAB to a target node Create edge between original and target nodes

Justification ofSteps. Designers naturally form the desire to add new nodes and edges to the diagram as part of
the diagram construction process. Newdiagram elements may be the initialelements in newclusters of related
elements, or they may elaborate on existing clusters of classes Or states. The standard toolbar interface must be used
for initial diagram elements. However, if the designer wants to elaborate on existing diagram elements by adding
new related elements (step L-1), he or she can use the selection-action buttons.
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Selection-action buttons are implemented as an enhancement to normal diagram element selection. As such, the
designer willencounter themduringthe normal course of selecting diagram elements (stepL-2).StepsL-1 andL-2
may be reversed if the selection-action buttons serve as a prompt for the designer to consider adding new elements.

Thedesigner canchoosethreealternatives for the final step. In alternative L-3a, the designer simplyclicks the
selection-action ashe or she would clicka toolbar button. Thishasthe immediate effect ofproducing a new diagram
node and edge of the appropriate type in a default position near the originally selected node. In alternative L-3b, the
designer drags from the selection-action button to the desired position of the new node. This alternative is not
immediately obvious because buttons are usually not dragged. However, once the designeris familiar with
alternative L-3a, heor shemaybe dissatisfied with thedefault position andseekto specify theposition viadragging.
Alternative L-3bmight also be discovered accidentally if the designer tries to clickandquickly movethe mouse to
select the new node. While the designer is dragging, a rubberband line is drawn to give immediate feedback and the
status barshows themessage, "Dragto define an edge (and a new node)." Thefinal alternative, L-3c, requires the
designer to dragfrom a selection-action button to an existing node. This results in a newedgebetween the two
nodes. Designers may attempt thealternative interaction simply because it seems to be an obvious way to
accomplish thisgoal. Thestatus barmessage also suggests that it is possible to define a new edge without defining a
new node. Furthermore, the rubberband linefeedback mechanism is the same oneused when adding an edge
between nodes in many diagramming tools, so it mayprompt the designer to assume that the samefunctionality is
available in this context.

Users will recognize the function of each selection-action button as a variant of the standard toolbar
buttons. In fact, it is likely that the meaning of the standard icons is clearer when they are used as selection-
action buttons because their position suggests their function. For example, the generalization tool has an icon
consisting of a vertical line witha hollow, triangular arrowhead. This shapeis the standard shapeused in UML,
yet it is not very easily distinguished from other types of arrowheads used in UML. When the same icon is shown
at the top of a class node, its meaningshouldbe clearerbecause its positionsuggests the normal direction of
generalization edges, and becauseonly the mostcommonly usedoptionsare offered to the user.

Userswilldiscover the option to drag the selection-action buttons. Users are expected to discover theoption
todrag because thenormal tools forcreating edges involve dragging. Surveyed users did notindicate that they
would immediately discover thisaspectof theselection-action buttons. Instead, mostusers would always use the
single-click aspect and then position the newly created class.

Users will consider dragging from node to node to make a new edge without making a new node. Once
users have dragged fromselection-action buttons, the option to drag to an existing nodeseems fairlynatural. All
but oneof the subjects in the selection-action button laboratory studyseemed to haveno problem with this.
Likewise, only two out of fourteen surveyed usershad a problem with this aspectof the selection-action buttons.
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6.11 Walkthrough of Create Multiple

Table 6-14 and Table 6-15 show the steps needed to use Argo/UML's create multiple feature.

Table 6-14: Steps for creating multiple design elements by pattern

Step User Action System Reaction

M-1 Form desire add several related

design elements quickly

M-2 Issue "Create Multiple..." command Open "Create Multiple" window

M-3 Select "By Name" tab Show a list of available pattern names, description and
parameter panes, summary pane, and "Create" button

M-4 Select pattern by name Display pattern description and parameters

M-5 Optionally, request more
information on pattern

Open help window

M-6 Supply element names and any
other pattern parameters

Update summary pane

M-7 Press "Create" button Add specified design elements to current diagram

Table 6-15: Steps for creating multiple design elements by form

Step User Action System Reaction

N-1 Form desire add several related design
elements quickly

N-2 Issue "Create Multiple..." command Open "Create Multiple" window

N-3 Select "By Form" tab Show a list of available forms by name, form pane,
summary pane, and "Create" button

N-4 Select form by name Display selected form with data entry fields and
pattern explanation links

N-5 Optionally, click on pattern name link Open help window

N-6 Supply element names and any other
form parameters

Update summary pane and color elements black

N-7 Press "Create" button Add specified design elements to current diagram

Justification of Steps. As withthe model-based layoutusecases,bothof the use casesfor createmultiplebegin
with forming a desire, followed by opening a secondary window, and end with pressing a button to confirm the
operation. These three steps should not be a problem because they are familiar to users who have experience with
other desktop applications.

In step M-3, thedesigner mustselectthe "ByName" tab. This stepseems reasonable because the designer
cannot do anything in the help tab, and becauseexploringtabs is always a safe operation. Next, the user must select
a pattern by name from a list. This could be a difficult stepbecause thedesigner may notrecognize themeanings of
the pattern names. Evenif designers do not initially understand every pattern, theycan be expected to explore some
of the patterns in thelist because list selection is always a safe operation. In stepM-5, the designer may optionally
request more information about the selected pattern. This step should not be difficult because the "More Info" button
is clearly visible. In step M-6, the designer supplies names for new design elements to be created and the names of
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existing elements onto which the new elements will be grafted. The reasonableness of this step depends on the
specific prompts provided by each design pattern configuration panel.

Step N-3 in the second use case requires the designer to select the "By Form" tab. Again, this should not he a
problem.Next, the designer must select a form by name from a list. It is not expected that the designer will be able to
choosethe correctform on his or her initial attempt, instead the designeris expectedto explore variousforms until
he or she sees one that looks relevant. A designer must gauge the relevance of a particular form to his or her
immediate needsbased on the brief description of the form and the design structures that are visuallyevident in the
form. Once a form is selected, the designer may optionally click on one of the design pattern links to access more
informationon the intent and applicability of that design pattern. Clicking on an underlined link should not be a
problem for users that are familiar with web browsers. In step N-6, the designer fills in the form with the names of
new design elements and the names of existing elements to graft the new elements onto. The process of entering the
names should not be a problem because it only involves using standard text entry widgets. However, choosing which
widgets to fill in and which to leave blank requires the designer to understand the grafting rules. These two use cases
suggest the following doctrine additions:

• Users willrecognizepattern names. Much of the objectoriented design community hasstudied design patterns,
so some users will definitely be able to recognizeand pick design patterns by name.In fact, the Together/J design
patterns feature relies on users having this knowledge. Other users may not recognizepattern names and will
needto explorethe items on the list.The quality of the descriptions and the labelsof the patternparameters is key
to this exploration process. Users who have difficulty with the "by pattern" use case may find the "by form" use
case easier.

• Users willunderstand grafting rules. The grafting rulesare fairly simple, theyareexplained in the helptab of
the create multiple window, and their results are immediatelypreviewed in the summary pane. Together, these
threeaspectsof the create multiplefeatureshouldmake it possible for users to understand the grafting rules.

• Users will recognize forms that fit their mental image of the design structure they wish to create. Designers
often visualize the resulttheydesirebefore theybeginconstructing it. The visual presentation of design patterns
in the createmultiple window should make it easyfor designers to match theirmental images. Geometric layout
differences between the designer'smentalimageand the offered formmightbe addressed by refiningthis feature
to include an option to flip theform horizontally or vertically. Also, the forms offered by the createmultiple
feature can alsohelpshapethe designer's desireto createrelateddesignelements. Designers are likelyto become
familiar with the forms offered by the create multiple feature and use it when they recall that a given form is
appropriate for their current need.

6.12 Discussion and Validation

Performing the cognitivewalkthroughs of the proposedfeatures has been a productive step in my feature
generation method. Breaking down the user's expected interaction witheachfeature has forced me to thinkthrough
all the details and has highlighted severalpotential problems and refinements. One of the main dangersof user
interface design is assuming that the user knows everything that the user interface designer knows. Several of the
elements of the Argo/UML doctrine may be barriers to usage. I haveconducted a set of user surveys to probe the
knowledge of ArgoAJML users and determine which elements of thedoctrine are, in fact, problematic. Removing
these problems will require refining the cognitive support features to eliminate the need for certain knowledge or
skills. The surveys and refinements are discussed below.

User surveys. One straightforward way to determine if ArgoAJML users possess a given piece of knowledge is
simply to ask them questions thatrequire thatknowledge. In August 1999,1 conducted an anonymous survey of
registered ArgoAJML users. Thesurvey consisted of threequestionnaires withten to twelve questions each. Mostof
thequestions presented a screenshot andasked the userfor his or herthoughts on the purpose of eachparticular
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Imagine that you are using Argo/UML. You select a class in the class diagram editor.
When the class is selected you see a wavy red underline under the name of the class.
What do you think the wavy red underline indicates?
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Figure 6-1. A survey question on clarifiers

widget. An example question is shown in Figure 6-1. Some questions used three parts to test the degree of
knowledge support provided by a feature: the first part asked how the designer would address a given problem, the
second part asked the designer to explain the purpose of particular feature, and the third part described the support
provided by the feature and asked again how the designer would address the problem in light of that support.

For each questionnaire, I constructed a set of web pages with one question per page. Each page included a text
field or multiple choice widget and a "Submit" button. Subjects were instructed give their first thoughts if they did
not know the answer, and they were told not to return to previously answered questions. For each questionnaire, an
email message with the web page address was sent to a subset of registered Argo/UML users. Approximately one
hundred and fifty messages were sent for each questionnaire, and they were sent to users in alphabetical order. This
method of validating the cognitive walkthroughs yielded very rapid results: for each questionnaire, I received more
than a dozen responses within the first two days.

Survey results. The results of particular questions are described above. Tables 6-16 through 6-18 summarize the
survey results. The first questionnaire probed the issues raised by the walkthroughs of clarifiers, the "to do" list, non-
modal wizards, and checklists. The second questionnaire probed the issues raised by the walkthroughs of Argo/
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UML's opportunistic search utility and table views. The third questionnaireprobed the issues raised by the
walkthroughs of the broom alignment tool and selection-action buttons.

Table 6-16: Questionnaire results for clarifiers, "to do" list, wizards, and checklists

Question Success Partial Failure

Recognize meaning of clarifier 15 0 6

Able to access clarifier tool tip 13 2 5

Tool tip enough information to fix 18 0 3

Able to access "to do" item via pop up menu 13 1 5

Meaning of "to do" list 10 5 4

Desire to fix problem identified 19 0 1

Description had enough information to fix 19 0 1

Desire for wizard to fix problem 9 wizard, 11 manual

Desire for future wizards 13 wizard, 7 manual

Understand how to use wizard 17 1 1

Recognized non-modal wizard progress bar 13 1 5

Understood "to do" item count 0 19 1

Expected frequency of attention to feedback 14 episodic, 3 immediate, 3 end of project

Desire to use checklists 4 unlikely, 9 a few, 7 a lot

Understood purpose of checkmarks 18 1 1

Desire to check off checklist items 10 often, 6 rarely, 4 never

Table6-16shows that the majority of the assumptions added to the Argo/UML doctrineare reasonable or
marginal. One possible problem is that a fair fraction of users confused the "to do" list with the checklist tab. Also,
the countof items at the top of the "to do" list wasclear, but the useof a plusor minus sign to indicate the trendof

81



the size of the "to do" list was not clear to anyone. The non-modal wizard progress bar was recognized much more
easily than I would have expected.

Table 6-17: Questionnaire results for opportunistic search and table views

Question Success Partial Failure

Start search 10 1 I

Expected search results 12 0 0

Understood search tabs 9 I I

Understood related results 8 0 3

Use related results 8 yes, 3 no

Systematic strategy 4 search utility, 2 nav perspective, 1 table, 1 visual

Access table view 9 I 1

Understand table 11 0 0

Find table perspectives 10 0 0

Scanning behavior 2 visual scan, 9 select each row

Recognize instant replay button I 4 4

Instant replay safety 4 dangerous, 7 safe

Understand instant replay 5 3 2

Resume from excursion 7 2 I

Table 6-17 shows the results of the questionnaire on the opportunistic search utility and opportunistic table
views. The search utility seemed understandable to the majority of users. However, a fair number of users had
difficulty with the related results table. When asked how they would systematically scan all the associations in the
design, the most common answers were to use the search utility or navigational perspectives. This indicates that
many designers will not realize that tables are an effective user interface for systematic design review. However, it
may have been biased by the fact that the proceeding questions all dealt with the search utility. When the surveyed
users were asked how they would access and use the table views, the majority gave answers indicating that they
would be able to use these features. The "Instant Replay" button was not very recognizable, but it was assumed to be
safe, and about half of the surveyed users understood its purpose once its animation was seen. The animation
question probablywould have been answered more positively if an actual animation had been shown in the question
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ratherthana sequence of four smallscreenshots. In general, the survey results are pessimistic because theyask
questions about usage without allowing the users to actually work with the tool.

Table 6-18: Questionnaire results for broom and selection-action buttons

Question Success Partial Failure

Diagram style choice 13 aligned, 5 unaligned

Recognize broom icon 2 5 7

Recognize broom safety 6 dangerous, 10 safe

Recognize "broom" tool tip 2 4 9

Predict broom action 9 1 4

Understand broom action 14 0 1

Understand broom reverse 12 0 2

Recognize selection-action buttons 11 1 2

Predict selection-action button action 11 2 1

Guess drag option 1 12 1

Connect existing classes 7 5 2

Table6-18 shows the results of the questions on using the broom and the selection-actionbuttons. First, the
surveyed users shows a marked preference fordiagrams that used alignment asa secondary notation as opposed to
misaligned diagrams. Few users could recognize the broom icon, and the tool tip "broom" did not provide any help.
However, once users sawthe broom in the diagram pane, almost two-thirds wereable to predict its behavior. Once
they were shown screenshotsof the broom in action, all but one user recognized its usefulness. A second user had
trouble understanding that reversing the broom direction served as a kind of undo, otherwise it was clear to all users.
Most users recognized the selection-action buttons asvariants ofthe toolbar buttons and could predict that pressing a
selection-action button would create new design elements that were related to the current selection. When asked how
they would createa newclassat a desired position on the diagram, mostuserssaid that theywould first usea
selection-action button to create theclass in itsdefault position and then move theclass to thedesired position. More
users were able to guess the possibility of creating a new edge by dragging from the selection-actionbutton of one
class to another existing node. However, several users said that they would preferto use thestandard toolbarbuttons
to create edges betweenexisting classes. Again, the survey is pessimisticin its evaluation because users are asked to
explain what they would dorather than actually use thetool. Forexample, if users were actually using Argo/UML,
the difficulty of using the standard tool bar buttons would encourage them to use the selection-action buttons.
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CHAPTER 7: Empirical Evaluation of
Cognitive Features

This chapter presents empirical studies of ArgoAJMLusage. The following five sections describe three
laboratory usability studies, observationsof classroom usage, and a summary of feedback from internet users.

My feature generation approach produces fairly independent features. I have demonstrated these features in the
context of the ArgoAJML tool, but they can be applied to other design domains and tools. To evaluate individual
features, I have used controlled laboratory studies that focus on specific design tasks. To evaluate the overall tool, I
have gathered and analyzed feedback from actual users.

7.1 Pilot User Study

Goals. The goals for the pilot user study were to practice the skills needed to conduct user studies and to resolve
any serious usability problems that might interfere with further studies.

Setting. In June 1998,1 conducted a pilot laboratory study on one of the first releasedversionsof ArgoAJML.
This study was approved by the UCI humansubjects researchcommittee as study HS98*224. Twosubjectswere
asked to use ArgoAJML to complete the task shown in Figure 7-1. Subjects were given brief demonstrations and
instruction on using ArgoAJML and then proceeded to use the toolas best they could. Subjects werecarefully
observed and the problemstheyencountered were noted.The tool was updatedto addressproblemsidentified with
the first subject before the second subject was observed.

Results. Thisstudy resulted in progress on bothof its goals: myunderstanding of tool evaluation improved, and
the tool itself was improved to help clear the way for further evaluation.

The biggestchangein my evaluation plansresultedfrom the waysubjects dealt with theproblemstatement. The
problem statement givenwasmeant to be somewhat complex andopen-ended so as to givesubjects a reason to make
design decisions. However, it alsoprovided enough concrete facts thatsubjects felt they needed to enter thosefacts
into their designs beforeproceeding with any creativedesign work. Sincethere were many facts to enter, the entire
testing session was taken up by transcription rather than design decisions. In fact, subjects usedtheproblem
description sheet to checkoff design elements as theyentered them. As a result, later laboratory studies focused on
smaller tasks involving individual design features rather than large design tasks involving the whole tool.

The secondchangein evaluation plans resulted from the failure of subjects to effectively follow the think-aloud
protocol. Initially, I had hopedthat subjectswould report theirown thought processes and that I coulduse that data to
measure the perceived complexity of their task and identify any difficulties. As it turned out, subjects lapsed into
silence whenever they encountered difficulty.

The third major realization about laboratory user testing was that ArgoAJML simplywas not ready to be
evaluated as a complete tool. At thattime, toomany missing features, basic usability problems, andoutright defects
made testing for subtleadvantages impossible. All of the problems detected in the pilot study have now been
addressed, but the emphasis remains on evaluating individual features in laboratory studies and evaluating the
overall tool via interactions with actual users.

Two major improvements toArgoAJML resulted from thepilot user study. First, theneed fordirect text editing
in thediagram pane was seento be of key importance. At thetime of thepilotstudy, direct textediting was not
supported: subjects needed to selectdesign elements fromthe navigator paneand edit theirproperties in the
"Properties" tab. Now, ArgoAJML users may edit names, attributes, operations, and state transitions directly in the
diagram pane. Second, the need for clarifiers became obvious because subjects worked through anhour ofdesign
construction without ever switchingmental modes to reflect on the design.The theory of reflection-in-action
indicates that designers will periodicallyswitch between reflectionand construction,but there is no reason to believe
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that they will do so unaided within a one hour laboratory session. Clarifiers appear directly in the diagram editing
pane and visually prompt designers to consider feedback from critics during design construction.

7.2 Broom User Study

Goals. The goal of this second laboratory study was to evaluate the ergonomic and cognitive impact of the
broom alignment tool. This study also served to test the usefulness of a technique for measuring short-term memory
load.

Setting. In January 1999, Michael Kantor and I conducted a laboratory study that compared the broom
alignment tool with standard alignment commands. This study was approved by the UCI human subjects research
committee as study HS98*552. We later published a conference paper that reported the results of this study
(Robbins, Kantor, and Redmiles, 1999).

In this study, subjects were asked to position diagram nodes into visual groups to reflect various semantic
groupings. Nodes were initially placed near the top of the diagram in no particular order or grouping. For each
diagramming task, subjects worked once with the broom and once with the standard alignment tools, in random

You are a professional software designer working at a company that has recently been given a
contract to design and implement a new registration system for universities like UCI. Your task is to read
the requirements given below and come up with a design.

TELE has been such a success that the company that developed TELE has been bought by Microsoft
and will now develop similar systems for sale to many universities. TELE-2 is substantially similar to
TELE, but will not handle fee payment or grades, and TELE-2 will keep track of teaching assistants.
TELE-2 should be flexible and extensible enough to be customized to the needs of different universities.

The purpose of the TELE-2 system is to keep track of information about (1) courses offered at the
university, (2) the relationship between courses, and (3) the administrators, faculty, staff, and students
involved in each course. TELE-2 will have a menu-based user interface that can be accessed via

telephone or the web, but you will not work on that part of the project.

Courses are taught by an instructor and attended by six or more students. Courses can be lectures,
seminars, tutorials, or independent study. Courses may have associated discussion sections, lab sessions,
or studio sessions. Courses may have restrictions on the students who are able to enroll. For example,
some courses are only open to undergraduates who major in that subject, and some courses are only open
to honors students.

Professors or lecturers teach courses. Graduate students teach the sessions associated with courses.

Lab sessions must also have a Professor who is responsible for the safety of the lab. Courses and their
associated sessions are held in a room. Each room has a seating capacity. Students may enroll in courses
if there is available seating; otherwise they are placed on a waiting list.

Figure 7-1. Task for pilot study
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order. This allowed us to compare, for each subject, whether the broom or standard commands were better for the
task. Ten subjects each repeated this with three separate diagrams. One of these diagrams is shown in Figure 7-2.

On the second and third diagrams, we tested the short-term memory of our subjects to see if the memory load
was greater for one tool than for the other. Before each diagramming task, subjects memorized a set of six random,
two-digit numbers, and at the beginning and end of each task they were asked to recall the numbers. The expectation
was that more numbers would be forgotten when using a tool that requires more short-term memory to use. This
technique for measuring short-term memory load was inspired by a recently published experiment (Byrne and
Bovair, 1997).

Results. In all thirty trials, the mouse was moved a greater distance when using the standard tools than when
using the broom. On average, the mouse was moved 86% farther when using the standard tools. This was largely due
to movement to a toolbar of alignment buttons at the top of the drawing area. In contrast, control-drag was used to
invoke the broom. This difference would be reduced if keystrokes were assigned to each alignment command;
however, that would require eight new keystroke bindings and may force users to move their hands between the
mouse and keyboard more.

Figure 7-3 charts the distance that subjects dragged the mouse. Since the broom involves dragging the mouse
and dragging can be relatively difficult, we were concerned that the broom might be more physical tiring. However,
over all trials, subjects dragged an average of 12,592 pixels while using standard tools and only 10,809 while using
the broom, which is 16% shorter. Using a paired t-test, we found the difference to be significant with P < 0.003. A
large part of the dragging needed for standard tools was done while dragging out selection rectangles. The shorter
dragging distance for the broom resulted largelyfrom the fact that objects do not need to be explicitlyselected before
they are aligned with the broom.

Achieving layouts that show grouping and correspondencerequires planning: performing alignments in the
wrong order can force users to undo previous work. Since using the broom involves fewer planned steps, we
expected a lower short-term memory load when using the broom. In fact, the majority of subjects indicated that they
found the broom more "natural." However, we found no significant difference in the short-termmemory effects of
the tools compared.We believe that our test for short-term memory load was not sensitive enough to detect the
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Figure 7-3. Mouse dragging with the broom or standard alignment tools

differences between the tools. In fact, subjects recalled all numbers perfectly in twenty-six out of forty tasks. This led
to a refined version of the short-term memory load test in the next study.

7.3 Construction User Study

Goals. The goal of this user study was to evaluate the support provided by Argo/UML's selection-action
buttons. In particular, this study focused on measuring the match between designers' diagram construction tasks and
the user interface affordances provided by selection-action buttons.

Setting. This study was approved by the UCI human subjects research committee as study HS99*1210 and was
carried out in August 1999. The study consisted of five subjects performing prespecified diagram construction tasks
under two conditions. Under one condition, subjects used standard diagram construction toolbar buttons. Under the
other condition, subjects were encouraged to use the selection-action buttons for most of the construction. As in the
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earlier broom study, each subject was asked to do each task twice; once under each condition, in random order.
Short-termmemory load was also measured usinga refinement of the technique used in the broomstudy.

Results. The subjects in this study were all able to accomplish the diagramming tasks with either the selection-
action buttons or the standard toolbar. Only one subject had a difficult time with the selection-action buttons. The
primarydifficulty was in making the buttons appearrather than actually using them. Surprisingly, many of the
subjectsformed mistaken assumptions about the actionneeded to get the selection-action buttonsto appear. Also, all
but one of the subjects used each of the three aspects of the selection-action buttons. Since the task was a
transcription task rather than a design task, subjects tended to work systematically from upper-right to lower-left
rather than expanding on logical clusters.

Subjects made more mistakes on the unconventional diagramming task than on the conventional one. For
example, several subjects mistakenly used association links rather thanhorizontal generalizations. No subject,
however, made the same mistake more than once, and several said that they understood that the directions of the
lineswere"misleading" on this task. Bent edges caused users to clickon the first vertex of the edge, resulting in
placement of a new node. Subjects alsomade several mistakes when using thestandard toolbar buttons, including
using the wrong type of edge and forgetting the current mode. Some users double-clicked in the toolbar to lock in a
node creationmodeand then accidentally createdextra nodes while attempting to reposition existingnodes.

The study results suggest three possible refinements to the selection-action button feature. First, the buttons
should appear andstayvisible whenever a nodeis selected, evenif thenodehasbeenslightly moved during selection
or if the mouse has been moved away from the node. Second, when dragging to specify the location of a new node,
the mouse coordinates should be used as one corner or the center of an edge rather than the center of the node.Third,
the dragging behavior of selection-action buttons mightbe modified to allow the creation polygonal edges by
clicking in empty space to add a vertex and using double-click in an empty space to create a new destination node.

7.4 Classroom Usage

Goals.Thegoal of thisempirical evaluation is to gather anecdotal experience from classroom usage at UCIand
other universities. Oneof my reasons for developing Argo/UML wasto producea freely available tool that couldbe
used in university classrooms andthatwould help teach good design. Actually aiding theteaching of software design
skills requires much more than simply using aneducational license for a standard commercial UML tool. Argo/
UML's strong basic usability and cognitive support features can help address the needs of users who are new to UML
and object-oriented design. In addition to actually using Argo/UML, several students have made contributions to
Argo/UML's development as part of project courses, independent studycourses, or researchprojects.

88



Setting. ArgoAJML, Argo/C2, and GEF have been used in several courses at UCI and at other universities.
Table 7-1 summarizes classroom usage of these tools. The uses outside of UC Irvine were found by searching for
"Argo/UML" and "GEF" on popular web search engines and by reviewing email messages sent from university
users of GEF and Argo/UML.

Table 7-1: Known classroom usage of the Argo family

School Date Course Usage

UC Irvine Summer 1999 Student research project

UC Irvine Spring 1999 ICS 227 Integrated Argo/C2, Argo/UML, and other
tools

UC Irvine Spring 1999 ICS 125 Enhanced Argo/UML

UC Irvine Spring 1999 ICS 121 Class used Argo/UML

UC Irvine Fall 1998 Independent
study

Enhanced Argo/UML

UC Irvine Fall 1998 ICS 125 Class used Argo/UML

UC Irvine Winter 1998 ICS 125 Enhanced GEF

UC Irvine Winter 1998 ICS 125 Enhanced Argo/UML

UC Irvine Fall 1996 ICS 125 Developed initial version of GEF

U. Twente, The Netherlands 1999 Student research project

U. Waterloo, Canada 1999 Student research project

U. Mulhouse, France 1999 Survey of UML tools

U. Frieberg, Germany 1999 Student research project

U. Vrije, Brussels 1999 Master's thesis

U. Bologna, Italy 1999 Master's thesis

Oregon State Spring 1999 CS 562 Grad seminar discussion topic

Syracuse U. Spring 1999 GEF used in research project, mentioned in
paper at Supercomputing '98

UC Berkeley 1999 Research project inspired partly by GEF

U. Macow, Macow 1998 Student project used GEF

UCLA Winter 1997 GEF used in research project

Duke U. Winter 1997 Student project used GEF

Syracuse U. Fall 1997 CSP714 GEF used in project course

Purdue U. Summer 1997 GEF used in student research project

North-Eastern U. Summer 1997 GEF used in student research project

CMU Summer 1997 GEF evaluated for research project

Results. Classroom usage of Argo/UML at UC Irvine has been a practical success in that students have been
able to completetheir assignments. In the Fall 1998offering of ICS 125, individual students reported lost data, slow
performance on machines in their team offices, and a few basic usability problems. Noneof the studentsreported
dissatisfaction with the cognitive supportfeatures, which probablyindicates that they were not frequently used.
However, one of the goals of cognitive support is not to interfere with basic tool usage, and this goal seems to have
been achieved.
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In the Spring 1999 ICS 121 course that used Argo/UML, students were able to begin using the tool rapidly and
complete their assignments. Very few problems of any kind were reported, and those that were reported mainly
requested new functionality (e.g., a special kind of cut and paste) or environmental difficulties (e.g., printing in the
CS 3rd floor lab).

Student projects that enhanced GEF and Argo/UML have generally been successful. Three ICS 125 projects
have enhanced Argo/UML with new diagram types, and each of these projects has produced some code that is
worthy of incorporation into the distributed version. Students involved with the projects have generally reported a
feeling of satisfaction that they were contributing to a project that other students would continue to evolve and use.
Undergraduate independent study course have produced several contributions, including a key part of Argo/UML's
support for the XMI file format. Research projects by UCI graduate students have built on code in the Argo family to
produce ArchStudio and Argus-I.

7.5 Internet Usage

Goals. One of the goals of my research is to have an impact on what CASE tool users expect from their tools
and what CASE tool vendors provide. Research on design critiquing systems and other forms of cognitive support
has been carried out for over fifteen years, yet most users of desktop applications have never encountered a system
with critics. I have tried to transfer my ideas from the research environment to industry by demonstrating them in the
context of a useful tool. As discussed below, measurable progress on this goal has been made, but it is far from
complete.

Setting. This section presents anecdotal and statistical data on usage of Argo/UML by internet users. Here,
"internet users" refers to people who downloaded Argo/UML and who are not educational users. These users were
self-selected and their feedback was voluntary. Most of these users found the Argo/UML web site by searching the
internet for the terms "UML" or "CASE", while others learned of the site from other users.

Whenever anyone downloads Argo/UML, they enter registration information that includes their email address.
From July 1998 until January 1999,1 followed up on each registration by sending an email message that stated
"Thank you for your interest in Argo/UML," and asked "What is your interest in CASE tools?" After initial contact,
I continued to receive feedback from many users. Since Argo/UML is not yet fully developed, users have often
encountered difficulty that prompted them to ask questions, olfer comments, or report bugs. This data is also •
voluntary and comes from self-selected subjects.
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Figure 7-5. Number of new Argo/UML registered users by month in 1999

Results. The first and most surprising result is that Argo/UML's registered users include thousands of people
from all around the world. This indicates that Argo/UML is at least reaching many of the potential CASE tool users
whose expectations I seek to raise. Figure 7-5 shows the number of new registered users each month.

One reason that so many users found the Argo/UML web site is that it is listed in many search engine databases
and CASE tool index web pages. Searching for "Argo/UML" on leading internet search engines yields over one
hundred hits on pages outside of UCI. These sites are hosted in well over a dozen countries, and they typically offer
links to the Argo/UML home page and brief descriptions of the tool in English, German, French, or Japanese.

Between July 1998 and August 1999,1 have received a total of one-hundred twenty-five bug reports on Argo/
UML. The number of bug reports helps to define a lower bound on the number of people who have actually used
Argo/UML. Typically, only one, two, or three bug reports are submitted by the same person, and a total of seventy-
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four distinct people have submitted bug reports. Of course, many more people have used Argo/UML without
submitting any bug reports.

Table 7-2: Some quotes from Argo/UML users

My company bought a CASE tool called ... COOL. Of course, users had less polite names for it. I'm
not sold on CASE since I feel you spend more time working the tool than doing design, but I'm still
open.

I was showing Argo/UML to my boss, and we were both impressed with the design guidance
features. The idea of the checklists and critiques, especially with the future possibility of tailoring
them for a user's specific strengths and weaknesses, seems to add to potential reliability of the
produced models.

The selection-action buttons are really fantastic time-savers. I can't believe that no on thought of
them before.

I have used Object Domain, PepperSeed,... I have never found a really good UML tool, so I am
always on the lookout for... ease-of-use and speed.

I've used ObjectTeam, COOL, Rose, P-Plus. I think they are all detractive to UML. I'll try Argo/
UML, as it seems to have a nice look and feel!

Argo/UML looks like a very promising product. I'm a software engineer currently using Rose. I am
exploring alternative tools because it is too expensive to have a copy at home, and using it can be
frustrating.

I especially love the critiques that pop up when the mouse hovers over a diagram element. Table
views are an extremely nice touch.

Table 7-2 presents some excerpts from email messages sent from Argo/UML users. Feedback from users has
been uniformly positive about Argo/UML's cognitive support features. I have received very few negative email
messages. One negative message complained about the need to provide one's name and email address during
registration. Some other negative messages basically said that Argo/UML was not ready for use in their organization.
I believe that the later type of comment occurred because Argo/UML's overall impression of commercial quality can
lead users to forget that it is a research project.

The following observations are drawn from 783 email messages I received from 602 distinct Argo/UML users:

• As with classroom usage, the majority of user complaints and bug reports identified missing functionality or
outright implementation defects. No one has ever reported that design critics or any other cognitive support
feature has interfered with their work.

• Many comments came from sophisticated CASE tool users who had experience using several commercial tools,
but more came from first time users who were starting to learn UML and object-oriented modeling. Comments
from experienced CASE tool users often focused on the perceived difficulty of using tools like Rational Rose.
Usability and subjective satisfaction seem to be key factors in whether CASE tools become shelfware.
Developers new to modeling often stated that they were the first person in their development organization to use
modeling and that they saw Argo/UML as potentially helpful in learning UML.

• The zero cost of Argo/UML generated more enthusiasm than did the cognitive support features. Emphasis on
cost is somewhat unexpected since CASE tool users typically do not pay for the tools themselves. Also, most
software designers are highly paid, so marginal increases in productivity could result in savings much greater
than the initial cost of the tool. Furthermore, much of the cost of CASE tool adoption is in training rather than
tool price (Huff, 1992). All of these reasons should make CASE tool purchasers insensitive to prices. In fact, that
price assumption is reflected in the state of the CASE tool market where tools typically cost $2000 to $6000 per
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seat. However, given the other user comments on dissatisfaction with CASE tool usability, it seems that price
sensitivity may stem from the broader pereeption that CASE tools are not worth using.

One very interesting segmentof the Argo/UML user population is made up of people who are employees of
CASE tool vendors. I have hadreceived email from employees of Rational (makers of Rose), Togethersoft (makers
of Together/J), MicroGold (makers ofWithClass), ObjectInsight (makers of JVision), and ObjectDomain (makers of
ObjectDomain). In fouroutof five cases, these email contacts have been with leaddesigners or company presidents.
For themostpart, theemail messages have briefly expressed interest in Argo/UML without stating any specific
views on its cognitive support features. However, therehave been twocaseswhere Argo/UML features have
influenced the features of commercial tools.
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CHAPTER 8: A Scalable, Reusable Infrastructure

Software development tools are complex software systems that are difficult to build. CASE tools must include
detailed design representations, sophisticated user interface elements, and bindings to specific programming
languages. These tools are difficult to build in a research setting because of the effort and breadth of understanding
required. Yet, research on CASE tools is needed to produce better and more usable tools. One of the goals of my
work is to provide an infrastructure for further development of CASE tools in research settings.

My approach to providing a CASE tool infrastructure consists of three main elements: (1) I developed
frameworks for several aspects of the CASE tool application domain; (2) I demonstrated the use of these frameworks
in a useful CASE tool; and, (3) I organized an open source development project that has brought together and
facilitated the work of researchers interested in CASE tool development. This chapter explains the frameworks that
make up Argo/UML's infrastructure.

"Aframework is a collection of abstract and concrete classes and the interface between them, and is the design
for a subsystem" (Wirfs-Brock and Johnson, 1990). Abstract classes are classes that provide only a partial
implementation of the interface that they declare. Each abstract class must be subclassed with concrete classes that
completely implement the declared interface. Frameworks embody knowledge about the application domain and
outline an appropriate implementation while still avoiding commitment to particular implementation details. Free
(1995) emphasizes that every reusable software artifact consists of parts that remain constant across uses and parts
that are adapted to a particular application. In each of the frameworks discussed below, I have kept a clear distinction
between the abstract classes in the framework that provide reusable infrastructure and the concrete classes in Argo/
UML that specialize that framework.

I chose the framework approach over several alternative approaches described in the literature (e.g., Krueger,
1992) because class frameworks present a low barrier to reuse: the framework approach is well known to many
object-oriented software designers and requires no special tool support. The result has been widely successful in the
case of my graph editing framework. I have also successfully reused my Argo critiquing framework in several design
tools. The frameworks for navigational perspectives, checklists, and code generation have yet to be reused ouiside of
Argo/UML.

8.1 Graph Editing Framework

8.1.1 Introduction

All of the diagram display and editing features in Argo/UML and Argo/C2 are implemented as part of a reusable
Java framework called GEE (Graph Editing Framework). Work on GEF began in Spring 1996 and the first version
was released via a web site later that year. Since then, GEF has evolved substantially and has been used in dozens of
research projects. GEF currently consists of about 24,000 lines of Java code in 160 classes. Argo/UML's
implementation of five diagram types (class, state, use case, activity, and collaboration) extends GEF with an
additional 10,000 lines in 56 classes.

Many software engineering tools include connected graphs in their user interfaces, and many researchers have
developed connected graph editors. Two notable class frameworks for diagram and graph editing are HotDraw (Beck
and Johnson, 1994)and Unidraw (Vlissides and Linton, 1990). GEF takes this previous work into account but
emphasizes extensibility, simplicity, and a high-quality user experience. HotDraw and Unidraw both achieve great
extensibility by using flexible, abstract concepts. I limited the number and flexibility of GEF'sconcepts to make the
framework more understandable. Over time,GEFhas been applied to many diagram types and its look and feel
provide a better user experience, but these extensions havenot required a generalization of GEF'sbasic concepts.
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8.1.2 Design Overview of GEF

Figure 8-1 gives an overview of GEF's design. There are six major concepts in GEF. (1) The Editor class acts as
a mediator that holds the other pieces together and routes messages among them. (2) Figs (short for figures) are the
primitive shapes; for example, FigCircle draws a circle and FigText draws text. (3) Layers contain Figs in back-to-
front order. (4) Selections keep track of which Figs are selected and the effect of each handle; for example,
SelectionResize allows the bounding box of a Fig to be resized, while SelectionReshape allows individual points of a
FigLine or FigPoly to be moved. (5) Cmds (short for commands) make modifications to the Figs; for example.
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public void deselect(Fig f)
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Figure 8-1. UML class diagram of GEF
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CmdGroup removes the selected Figs from their Layer and adds a new FigGroup in their place. (6) Modes are
objects that process user input events (e.g., mouse movement and clicks) and execute Cmds to modify the Figs; for
example, dragging in ModeSelect shows a selection rectangle, while dragging in ModeModify moves the selected
objects. I have made central those concepts that are familiar to diagram editor users and avoided those that are
unfamiliar or too abstract; for example, GEF does not use the decorator pattern (Gamma et al., 1995) or attempt to
offer general purpose constraint solving (e.g., Sannella, 1994).

Initially, I implemented a generic connected graph representation as the underlying model for GEF diagrams.
After using GEF in several applications, I found that most applications have existing data structures that can be
interpreted as graphs. For example, Argo/UML has the UML meta-model and Prefer had its own data structure to
represent state-based requirements. In the revised GEF, GraphModels manage the mapping from Figs in a diagram to
application objects in an underlying data structure. GraphModels themselves do not hold much data; rather, they
interpret existing data structures as graphs. For example, StateDiagramGraphModel interprets UML States as nodes
and UML Transitions as edges. GEF's GraphModels are analogous to mediators found in Java's Swing user interface
library. For example. Swing tree widgets use TreeModels and table widgets use TableModels to interpret underlying
data structures as trees or tables.

Rather than represent diagrams as nodes and edges, GEF represents diagrams as ports, nodes, and edges. Ports
are connection points on nodes, and edges go from a source port to a destination port. The inclusion of ports in the
graph model was inspired by my previous experience with OBPE (Robbins et al., 1996). Some diagram types assign
semantics to the point where an edge meets a node. Ports allow GEF to represent the semantics of these diagram
types. For example, Argo/C2 represents a C2 component as a node and the top and bottom interfaces of the
component as two ports. Most UML diagrams do not assign meaning to the point where an edge meets a node. In
these cases, Argo/UML uses a single, invisible port that is the same size and shape as the overall node.

8.1.3 Implementation of Multiple Diagrammatic Views

Like many user interface systems, GEF loosely follows the Model-View-Controller (MYC) design pattern to
support multiple views (Krasner and Pope, 1988; Gamma et al., 1995). As with many MYC implementations, GEF
sometimes combines the view and controller roles into the same object. GEF's GraphModels play the role of the
model: they provide access to the semantic state of the diagram and send notification messages when that state
changes. Layers and Figs act as models for the visual properties of the diagram, including coordinates, colors, and
back-to-frontordering. GEF's Editors, Layers, and Figs provide most of the functionality of the view role by
displaying the diagram. Other view functionality is provided by GEF's Modes and Selections, which also contribute
graphics for interaction feedback. GEF's Modes and Selections primarily play the role of controller; however, GEF
provides the option for Figs and model elements to perform some event handling.

GEF uses composition structures for models, views, and controllers. CompoundGraphModel is an abstract class
that combines simple graph models into more complex ones. Layers and FigGroups (including FigNodes) are
compositions of views (i.e.. Figs). GEF's ModeManager is composed of several controllers (i.e.. Modes). The
ModeManager is unusual in that it maintains a stack of active Modes rather than a single current Mode. Each Mode
in the stack is asked to handle an incoming event until one of them successfully handles it. The last-in-first-out
nature of the stack supports temporaryModes, such as ModeBroom, that are pushed onto the stack to process events
in a short interaction and then popped off.

The MYC design pattern is an extension of the Observer-Observable design pattern (Gamma et al., 1995). In
MYC, the model plays the role of an observable object that sends notifications of changes, and the view plays the
role of an observer that reacts to these change notifications. GEF uses the Observer-Observable pattern at three
levels:

• GEF's Figs and Layers act as observablesfor Editors to observe.This allows multiple diagram windowsto show
the same diagram.Multiple windows on the same diagram are not often used, but carefully implementing this
feature avoids potentially confusing inconsistencies when multiple windows are used. For example, a designer
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using ArgoAJML may create a new view of a diagram by double clicking on the "As Diagram" tab. This displays
the diagram in the main pane of the Argo/UML window and also in a new, larger diagram window.

• GEF's GraphModels act as observables for GBP's Figs and Layers to observe. This allows for multiple
diagrammatic views of the same connected graph. Each of these views may show a different projection of the
connectedgraph and may use a different notation. For example, one ArgoAJML class diagram may show some
of the classes in a given package and anothermay show a partially overlappingset of classes in the same
package. ArgoAJML does not take advantage of GEF's ability to use different kinds of Figs to present the same
GraphModel elements, but that feature could be used to support alternative notations such as GMT (Rumbaugh
et al., 1991), or the Booch Notation (Booch, 1991).

An application's underlying data structures (e.g., ArgoAJML's implementation of the UML meta-model) act as
observables for GEF's GraphModels to observe. This allows the same design representation to be viewed and
edited in very different ways. For example, the dual of a graph could be edited via an alternative GraphModel
that interprets data structure elements as edges rather than nodes and nodes rather than edges.

8.1.4 Implementation of the Broom Alignment Tool

The broom alignment tool is a fairly straightforward extension to the basic GEF classes. The broom is
implemented as a subclass of class Mode that interprets mouse movements and keystrokes as commands that change
the position of the broom and move graph nodes that are on the face of the broom. A state machine for the broom
mode is shown in Figure 8-2, and each state is explained in Figure 8-1.

Table 8-1: Description of broom states

State Name Description

Initial Plus-sign drawn in blue.
On drag, direction determined.

Pushing Broom drawn in blue.

On drag, update touching list, move each touching object to broom position
or original position, expand broom size if dragged laterally.

Space-Evenly Broom drawn without tail.

Space touching objects evenly within their original bounding box.

Pack Broom drawn without tail.

Store original location of touching objects. Space touching objects with
fixed gaps starting from left or top of broom.

Spread-Out Broom drawn without tail.

Space touching objects evenly along the length of broom.

Original Broom drawn without tail.

Return touching objects to their stored original location.

8.1.5 Implementation of Selection-Action Buttons

Selection-action buttons are implemented as a fairly straightforward extension to GEF's Selection classes. Class
SelectionWButtons implements the display and click-or-drag behavior of all selection-action buttons, while the
subclasses of SelectionWButtons define the buttons that are appropriate to each particular type of object.
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Figure 8-2. Broom states

The selection-action buttonsare treated the same way that resizing handles are treated: whenModeModify
detects that the user has clickedor draggedon a handleit sendsa message to the SelectionWButtons objectaskingit
to process the event.When a selection-actionbutton is clicked, a new node is created along with an edge betweenthe
current node and the new node. When a selection-actionbutton is dragged, a new ModeCreateEdgeAndNode is
created and pushed onto the ModeManager's stack. ModeCreateEdgeAndNode draws a rubberband line while the
user drags and then creates a new edge and possibly a new node when the mouse button is released.

8.2 Argo Kernel

8.2.1 Introduction

The Argokernel is a class framework that provides infrastructure for knowledge supportfeatures in applications
such as Argo/C2, Prefer, and Argo/UML. An earlier Smalltalk-80version of this critiquing framework was used in
the StargoOMT tool and the initial version of Argo/C2. The framework focuses on representation and algorithms
that supportdesigncritics,criticismcontrol mechanisms, checklists, the dynamic"to do" list, clarifiers, non-modal
wizards, design history, and a user model.

The Argo kernel currently consists of just under5000 lines of Java code in 34 classes. Argo/UML specializes
the Argokernel with classes for 74 critics,6 wizards, and 3 clarifiers totaling 8300linesof Javasourcecode. Argo/
UML also defines 11 checklists totaling just over 1000 lines.

8.2.2 Design Overview of the Argo Kernel

Figure 8-3 gives anoverview of theArgo kernel's design. Thekey classes areDesigner, Agency, Critic,
ControlMech, ToDoItem, ToDoList, andHistory. A single instance of class Designer represents the userof the
design tool; it includes identifying information, preferences, a ToDoList, anda usermodel. Class Agency is a utility
class that provides methods for scheduling and applying critics. Design criticsare instances of classCritic, while
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detect design improvement opportunities. ToDoItems are stored in the designer's ToDoList. A single instance of
class History stores a time-ordered list of HistoryItem objects; a given HistoryItem object can store information
about a criticism that was raised, a criticism resolution, or a design manipulation.

Class Wizard and interface Clarifier enhance the basic Argo kernel by providing reusable infrastructure for non-
modal wizards and clarifiers, respectively. Clarifier is an interface, i.e., a Java language construct similar to a class,
but consisting only of method declarations without bodies. Clarifier builds on a standard Swing interface for
displaying icons and adds methods to detect when the mouse is over the clarifier. Clarifiers are implemented using
the Singleton pattern to avoid the overhead of being allocated and freed each time new clarifiers are needed (Gamma
et al., 1995).Since they are shared singletons,clarifiershold no long-termstate informationabout the design element
or ToDoItem that they present, and instead, only keep that information for the duration of each display operation.
Making clarifiers singletons complicates their design somewhat, but it helps maintain good interactive performance
by reducing the time needed to display the currently selected design element.

The Argo critiquingframework provides a default design representation that can be used if the application does
not already have a design representation data structure. Instances of class DesignMaterial represent the design
elements, while instances of class Design represent the overall design or meaningful subsections. DesignMaterial
instances store a dictionary of named properties and a list of observer objects needed for the DesignMaterial to play
the role of observable in the Observer-Observable design pattern (Gamma et al., 1995). Applications can use class
DesignMaterial directly, or make specialized subclasses if needed. In the initial version of the Argo critiquing
framework, these classes played a major role and their use was required. But now, the default design representation
is not used in the Prefer and Argo/UML tools because these tools have their own design representation data
structures. When existing data structures are used, the application must supply a class that implements the
ChildGenerator interface to allow the critiquing routines to walk the design representation. Also, existing data
structures may send notification of state changes to help focus critiquing; however, critiquing will still work without
change notifications, albeit more slowly.

8.2.3 Implementation of Design Critics and Criticism Control Mechanisms

Critics are iinplemented as Java classes subclassed from class Critic. Class Critic defines several methods that
may be overridden to define and customize a new critic. Each critic's constructor specifies the headline, problem
description, and declares relevant decision categories. The main method is predicate() which accepts a design
element to be critiqued and returns true if a problem is found. Most of the critics implemented in Argo/UML go no
further than overriding predicate(). However, the default methods for generating a "to do" item and a clarifier can
also be overridden. Anothercustomizable aspectof critiquingis the determination of whena previouslyproduced
"to do" item should now be removed from the "to do" list because, e.g., the identified problem has been resolved.

Criticism control mechanisms are also implemented as Java classes that implement a predicate function.
However, in this case, the predicate accepts a critic rather than a design element and returns true if the critic should
be enabled. Several criticism control mechanismshave been implementedand are jointly applied to the critics. All
control mechanisms must agree that a critic should be enabled, otherwise, it is disabled.

The scheduling and application of critics operatewithina critiquing thread of control so as not to interruptor
delay normaluser interaction withArgo/UML. The intent of the scheduling algorithm is to minimize response time
to design manipulations that introduce errors and to make productive use of otherwise idle computer time. The
critiquing thread executes an endless loop of threemain steps: (1) recomputing the set of active critics, (2) applying
critics to design elements in the "hotqueue," and(3)applying critics to a few design elements in the "warmqueue."
The overall CPUutilization of thecritiquing thread is kept to an average of approximately twenty percent. The warm
queueis essentially the open list of a standard breadth-first tree traversal that startsat the objectrepresenting the
entire design project andeventually touches every design element. Forall but thesmallest design projects, this
traversal takes much longer than thedesired interactive response time of about onehalfof a second. Thehotqueue
contains only design elements thatarelikely togenerate new feedback and is typically short enough to becompletely
clearedwithinhalfa second. Designelementsare promoted to thehot queuein responseto designmanipulations that
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Figure 8-4. CPU load imposed by critics on a 233MHz computer with Windows NT

have the possibility of introducingproblems. Applicationof critics to elements of the hot queue is further focused by
applying only those critics that are registered as having interest in the type of design manipulation that promoted the
design element.

One key trade-off in a critic scheduling algorithm is the amount of knowledge the scheduler has about each
critic. With no knowledge as to what causes a particular critic to produce feedback, the scheduler can do no better
than periodically applying all critics to all design elements. With complete knowledge about the analysis performed
by individual critics, the scheduler can apply exactly those critics that will produce feedback as the result of a given
design manipulation. Requiring less knowledge about critics helps to keep the scheduler simple and reduces the
development effort needed to add a critic. Providing more knowledge about critics allows the critiquing system to
work more efficiently and reduces application times. The Argo critiquing framework requires that all critics register
interest in specific types of design elements and allows critics to register interest in specific types of design
manipulations. If the critic author chooses not to specify which design manipulations should trigger the critic, or
does so incorrectly, the critic will still be applied eventually.

The approach to implementing critics described above is somewhat similar to the way expert systems are
implemented (Lee, 1990;Subramanianand Adam, 1993). I have chosen a set of trade-offsbased on experience with
building and using design support systems. My approach also allows critic authors to use a standard programming
language rather than a limited rule language. Critics are allowed to have their own state, arbitrary side effects, and
may even invoke native executables or communicate with external servers. This allows critic authors to repackage
existing analysis tools as critics. In contrast, most expert system rule languages or constraint languages do not offer
these possibilities. One possible extension to this framework would be to extend the general critiquing framework
with specific support for a rule or constraint language, such as OCL (Object Constraint Language) (Warmerand
Kelppe, 1999).

8.2.4 Implementation of Checklists

Argo's implementation of checklists is somewhat similar to its implementation of design critics, however,
checklists are much simpler.The key classes implementingchecklists are shown in Figure 8-5. The CheckManager
is a utility class that keeps track of all known checklists and the status of each. The checklist viewer uses the
CheckManagerto find the checklist that is appropriatefor the currentlyselected design element.An instance of class
Checklist contains a collection of Checkltems. EachCheckltem instance has a category string, a description string,
and a guard predicate. The predicate object implements a method predicate() that determines whether that
Checkltem will be displayed to the user. ChecklistStatus instances keep track of which items in a checklist have been
marked as already considered by the designer.

Unlike critics, checklist items provide more general advice and they are almost alwaysdisplayedto the user; i.e.,
their guard conditions are almost always true. The evaluation of checklist item guard conditions is not scheduled,
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Figure 8-5. UML class diagram of Argo checklists

instead it is done whenever the designer changes the currently selected design element. A possible improvement
would be to only evaluate those guards for checklists that are visible on the screen.

8.2.5 Implementation of Wizards

Class Wizard is an abstract base class for non-modal wizards. It provides some code to implement features
common to all wizards and declares some methods without providing method bodies; actual wizards must implement
these methods with code specific to each wizard.

All non-modal wizards consist of a set of user interface panels that are constructed as needed when the designer
presses the "Next>" button to move on to the next step of the wizard. By convention step zero is the problem
description of the ToDoItem, step one is the first panel displayed after the user presses "Next>", and so on. The
problem description panel is not stored in this wizard, only the panels that are specific to the wizard are stored. This
allows for the designer to rapidly browse many "to do" items without incurring the overhead of creating wizard
panels that may never be used.

Specific wizards are implemented as subclasses of class Wizard. These subclasses construct user interface
panels for each step of the wizard as needed, implement predicates that enable or disable the "Next>" and "Finish"
buttons, and implement the actions to be taken when the designer moves from step to step. On each forward step (the
"Next>" button), class Wizard calls doAction() if the current step has never been completed before, and redoAction()
if the designer has backed up and is now moving forward through a previously completed step. On each backward
step (the "<Back" button), class Wizard calls undoAction() to reverse the effects of a previous doAction() or
redoAction(). Specific wizards must implement doAction(), redoAction(), and undoAction() as appropriate, but they
do not need to implement the logic that maps buttons to actions or determines when a step has previously been
completed.

8.3 Views and Navigation

8.3.1 Introduction

Figure 8-6 shows the ArgoAJML main window. This section discusses the implementation of several of Argo/
UML's non-diagrammatic design views.

A recurring theme in the implementation of Argo/UML's design views is the use of the Model-View-Controller
design pattern (Krasner and Pope, 1988; Gamma et al., 1995) where the view and controller roles are played by a
user interface widget, and the role of the model is played by a mediator class. These mediator classes define task-
specific views of the underlying design representation and contain very little state information themselves. The use
of mediator classes is one of the standard ways to use the Swing user interface library (Eckstein, Loy, and Wood,
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Figure 8-6. ArgoAJML main window

1998).Mediator classes observe the design representation and react to change notifications by sending their own
change notifications that cause the view to be redrawn.

The Argo/UML source code for views and navigation consists of about 30,000 lines of code in 193 classes. The
majority of that code is reusable infrastructure in the form of base classes and utility classes; the remainder of the
code specializes the reusable infrastructure to the UML meta-model and the object-orienteddesign task.

8.3.2 Design Overview of Argo/UML Views and Navigation

Figures 8-7 through 8-9 show UML class diagrams of the implementationof Argo/UML'sviews. The main
window is implemented by classProjectBrowser which consists of four panes: the navigator pane which shows
navigational perspectives, the editor pane which shows diagrams and table views, the details pane which contains
several tabs showing details of the selected design element, and the "to do" pane which presents feedback from
critics usinga dynamic "to do" list metaphor. The navigation pane, "to do" pane, and table views are discussed
below. Secondary windows, such as the search window, are accessed through menu items in the menus of the main
window.

The fourmainpanesare always present in Argo/UML. The specific tabs shownin the editor pane and thedetails
pane, however, are determined at system start-up time by a configuration file. Class ConfigLoader parses the
configuration fileandloadsthe classes thatimplement the various tabs. Each lineof theconfiguration file contains a
list of alternative tab classes, which ConfigLoader attempts to instantiate. Usinga configuration file allows new tabs
to be addedor existing tabs to be removed without recompiling Argo/UML.

Providing alternative implementations of sometabs allows Argo/UML to run in a somewhatdegraded modeif
requested library classes are not available. For example, the "Source" tab displays the Java source code that will be
generated for the selectedmodel. If Argo/UML is runningin the JDK (Java Development Kit) environment, the
source code will be colorized (keywords, strings, and comments are shown in different colors), but if Argo/UML is
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running in the JRE (Java Runtime Environment), the source code will be shown in black text only. In the example,
the degraded mode is needed because the JRE does not provide the Java parsing library classes needed for
colorization.

8.3.3 Implementation of Navigational Perspectives

Navigational perspectives are implemented as combinations of child generation rules. Argo/UML uses the
Swing user interface library, which defines a TreeModel interface for use with its tree widget. Each TreeModel
object implements methods to access or compute the children of a given tree node. Argo/UML adds a
TreeModelComposite class to combine TreeModels and defines a set of approximately thirty traversal rules, each of
which is itself a simple TreeModel.

Each of the traversal rules also includes two methods used to check the composition of navigational
perspectives: prerequisite and provided. The prerequisite method returns a set of design element types, one of which
must already be present in the set of types that the perspective can generate. The provided method returns a set of
design element types that can be generated by the rule. For example, the "Class->Initial States" rule has Class in its
prerequisite set and State in its provided set. All navigational perspectives start at the object representing the entire
design project and include Project in the set of design element types that can be reached. The addition of each rule
adds to the set of reachable types. Rules with prerequisites that do not intersect the set of reachable types cannot be
legally added and cause the rule addition button in the configuration window to be disabled.

Argo/UML uses standard JavaBeans event notifications to keep the navigator pane up-to-date when the design
changes. As the designer expands or collapses the tree, the navigator pane adds or removes itself from the listener
sets of the newly displayed or hidden design elements. When a design element changes state, it sends an event that
causes the navigator pane to recompute the children of that element according to the current navigational perspective
and to update the screen. This algorithm can be made scalable because it only needs to expend effort on tree nodes
that are visible on the screen, regardless of the size of the design, the number of possible design perspectives, or the
depth of the tree.

8.3.4 Implementation of the Dynamic "To Do" List and Clarifiers

Figure 8-7 shows the classes that implement the dynamic "to do" list. The "to do" list perspectives are
implemented in much the same way as the navigational perspectives. However, the "to do" list perspectives are
optimized for addition or deletion of items in batches, because the critiquing and item resolution threads work in
cycles that produce batches of "to do" items.

Clarifiers are associated with the critics that produce each feedback item. The set of clarifiers to be displayed on
a selected design element is computed simply by scanning the "to do" list for items that apply to the element, and
drawing the clarifiers of the associated critics.

8.3.5 Implementation of Opportunistic Table Views

Argo/UML's table views are implemented by the classes shown in Figure 8-8. TablePanel is a base class for
specific table views. It provides features common to all table views, including the labels and widgets at the top of the
view that display the name of the view, show the number of rows, and allow the designer to change table perspective

orconfigure the table orrow filter.^ JSortedTable isa specialized version ofthe standard Swing table widget that
allows the user to sort the table by clicking on a column heading. Specific table views (e.g.,
TablePanelUMLClassDiagram) define the set of table perspectives (e.g., classes as rows or associations as rows) and
any secondary tables (e.g., the tables of attributes and associations for the selected class).

3. Table configuration and row filtering are not implemented.
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Figure 8-7. Classes implementing Argo/UML's "to do" list

Table perspectives areimplemented as subclasses of class TableModelComposite, which implements theSwing
TableModel interface bycombining several column descriptors. Forexample, TableModelStateByProps consists of
column descriptors forthename of thestate, itsentry and exitactions, its parent state, and its stereotype.
ColumnDescriptor is an abstractbaseclass for specific columndescriptors. It keeps track of the column name, the
type of value thatwill be displayed, and whether thetablecells in thatcolumn should be editable. Specific column
descriptors, such asColumnName, implement accessor methods toget orset the appropriate value in a row object.
Argo/UML currently provides thirty column descriptors to access themostcommonly used model attributes; a set of
approximately one hundred column descriptors wouldprovide complete access to all of the attributes definedin the
UML semantics specification (OMG, 1997).

8.3.6 Implementation of Opportunistic Search

Figure 8-9 shows theclasses thatimplement Argo/UML's opportunistic search utility. Class FindDialog defines
the layout of the widgets in the search window. Each widget in the top part of the window contributes a predicate
object that isused toselect search results. Forexample, the name field contributes a PredicateStringMatch object that
selects only model elements with names that match the pattern entered in the name field. The individual predicates
are combined into aPredicateFind object that performs a logical-and toselect only those model elements that satisfy
all predicates.

When the designer presses the "Search" button, a new TabResults iscreated toperform the search and display
the results. The TabResults appears as a new tab in the lower half of the search window. TabResults defines two
tables: one for the search results and one for model elements related to the selected search result. The search result
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Figure 8-9. Classes implementing ArgoAJML's opportunistic search utility

table is filled by traversing the design and applying the search predicate to each model element. The traversal is
pruned if the designer specifies constraints on the packages or diagrams to he searched. The related elements table is
filled by applying the rules in class ChildGenRelated. The rules in ChildGenRelated are currently implemented as
Java code; a possible extension of this part of Argo/UML's infrastructure would allow designers to specify rules in a
language such as OCL (Warmer and Kelppe, 1999).

8.4 Design Representation and Code Generation

8.4.1 Introduction

The preceding sections have described how Argo/UML presents design information to the user and provides
knowledge support. This section covers how ArgoAJMLrepresents design elements internally and in external file
formats.
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8.4.2 Design Overview of Design Representation and Code Generation

Figures 8-10 through 8-12 show some of the classes that implement Argo/UML's design representation and the
classes involved in processing model files and generating source files.

A recurring theme in this section of ArgoAJML's implementation is the use of appropriate standards. UML
(Unified Modeling Language) is a standard promoted by the Object Management Group (OMG 1997). XML
(Extensible Markup Language) is a standard for structured file formats promoted by the World-Wide-Web
Consortium (W3C, 1998). XMI (XML Model Interchange format) is a standard way of storing UML designs in
XML files and is also promoted by the Object Management Group (OMG 1998). PGML (Precision Graphics
Markup Language) is a standard XML file format promoted by the World-Wide-Web Consortium for representing
graphics that consist of primitive graphical elements such as lines, rectangles, and text (W3C, 1998). As will be
further discussed in Chapter 9, leveraging standards guides development and reduces the need to develop and
document new approaches.

8.4.3 Implementation of the UML Meta-Model

The UML standard consists of three main specifications: a notation guide that specifies the visual appearance of
UML diagrams, a semantics specification that details the UML meta-model, and the OCL (Object Constraint
Language) specification that adds a first-order predicate logic language for expressing constraints on UML models.
The UML meta-model is itself a UML model that specifies how a UML design can be represented.

Figure 8-10 show some of the classes that implement Argo/UML's version of the UML meta-model. These
classes were initially generated from a Rational Rose(tm) model provided with the UML 1.1 standard. As a result,
Argo/UML strictly adheres to the UML standard, including all the names of packages, meta-classes, attributes, and
associations. Leveraging the standard saved development resources that are very limited in an academic setting.
Furthermore, strict adherence made it easier to support the XMI standard, which is itself generated from the UML
standard.

Limited modifications were made to the meta-model to make it fit the Java language and the GEF library. For
example, multiple inheritance used in the standard meta-model was replaced with Java interfaces and single
inheritance; also, an assumption in GEF required the addition of a Realization meta-class that is analogous to the
Generalization meta-class. Fortuitously, recent changes to the UML standard match Argo/UML better than the
earlier version (OMG, 1999).

Argo/UML's implementation of the UML meta-model uses JavaBeans-style method naming and change
notifications. For example, the attribute "concurrency" of meta-class Operation in the UML meta-model is accessed
with methods getConcurrencyO and setConcurrencyO in the Argo/UML implementation. Also, whenever the
concurrency of an operation is changed, a standard JavaBeans property change event is fired with information about
the name of the property that changed, its old value, and its new value.

Argo/UML's implementation of the UML meta-model consists of 9900 lines of Java source code in 103 classes.
Test cases based on the examples in the UML specification add another 1800 lines in 15 classes.

8.4.4 Implementation of XMI and PGML File Formats

Argo/UML uses XMI files to store design representations. Using the XMI standard has helped keep the focus of
Argo/UML on cognitive issues by allowing issues of interoperability, version control, and repositories to be
deferred. Argo/UML uses IBM's XML parser to read XMI files using a straightforward set of tag handlers. It
generates XMI files using a new "little language" called TEE (Templates with Embedded Expressions). One TEE
template is associated with each meta-class and consists of plain text to be echoed to the output file and embedded
OCL (Object Constraint Language) expressions. Each OCL expression is evaluated with respect to a design element
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Figure 8-10. Some UML meta-model classes
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and results in a bag of objects. Each result object is output in sequenceand may use its own template.Table 8-2 gives
two simplified examples of the TEE templates used to generate XML

Table 8-2: Some TEE templates for generating XMI files

Template for Meta-class: Model
<Model XMI.id == '<ocl>self.id</ocl>'>

<name><ocl>self.name</ocl></name>

<visibility XMI.value ='<ocl>self.visibility</ocl>7>
<isAbstract XMI.value ='<ocl>self.isAbstract</ocl>7>

<isLeaf XMI.value='<ocl>self.isLeaf</ocl>7>
<isRoot XMI.value='<ocl>self.isRoot</ocl>7>

<ownedElement> <ocl>self.ownedElement</ocl> </ownedElement>

</Model>

Template for Meta-class: Class
<Class XMI.id = '<ocl>self.id</ocl>'>

<name><ocl>self.name</ocl></name>

<visibility XMI.value ='<ocl>self.visibility</ocl>7>
<isAbstract XMI.value ='<ocl>self.isAbstract</ocl>7>

<isLeaf XMI.value='<ocl>self.isLeaf</ocl>7>
<isRoot XMI.value='<ocl>self.isRoot</ocl>7>

<isActive XMI.value = 'false7>

<feature>

<ocl>self.behavioralFeature</ocl>

<ocl>self.structuralFeature</ocl>

</feature>

<taggedValue>

<ocl>self.taggedValue</ocl>
</taggedValue>

</Class>

I chose not to use XMFs ViewElement, presentation, geometry, and style tags to representdiagrams. Instead,
Argo/UML uses the PGML (Precision GraphicsMarkup Language) standard file format for diagrams (W3C, 1998).
This has the advantage of being betterdefinedand may allow users to view Argo/UML diagrams in future web
browsers.

The UMLstandard is still evolving and the XMIstandardis evolving with it. The UML 1.4specification will be
released next year with a new draft of the XMI specification.Further revisions to UML are scheduled over the next
few years. PGML hasalso evolved and hasnow been superseded by SVG (Scalable Vector Graphics) (W3C, 1999).
The template expansion technique andTEEfiles are expected to make upgrading Argo/UML's file generation
capabilities fairly easy.

The TEEfile format and the useof embedded OCLexpressions hasproven remarkably flexible and useful,
despite thefact thatonlya smallsubsetof OCLis supported. Onepossible extension to theArgo/UML system would
be to generate HTML reports to document designs ontheweb. Another extension would be to replace thecode
generation scheme discussed below with a more customizable one. Both of these canbe accomplished with TEE
files.

Figure 8-11 shows theclasses that implement Argo/UML's XML fileparsing. Altogether, Argo/UML's code to
parse andgenerate XMI andPGML files consists of 4000lines of Java code in 8 classes, 3 XML DTD (Document
Type Definition) files totaling 3900lines, and 3 TEEfiles totaling 2000lines.
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Figure 8-11. Classes implementing XML file processing

8.4.5 Implementation of Code Generation

Figure 8-12 shows the Argo/UML classes involved in code generation. Code generation in Argo/UML is
supported with a language independent abstract base class and Java-specific subclasses. Class Generator is an
abstract base class that is similar to the Visitor design pattern (Gammaet al., 1995).However, the logic to traverse
the design representation is intermixed with node processing logic. Class GeneratorJava is a Java-specific subclass
that generates Java source files. Class GeneratorDisplay generates simplified Java code to be displayed in the
"Source" tab and in the textual labelsof UMLclass icons and otherparts of UMLdiagrams.

Each of theJava-specific classes implements methods thatgenerate sourcecodefor designelements of a given
type. Since thecode generation logic is coded inJava, the only way to customize it is bychanging the code or by
adding newcodegeneration preferences. Onepossible extension to theArgoAJML system would be to useTEEfiles
to generatesourcecode from templates, as is done for XMI and PGML files. This would greatlyease simple
customizations. For example, with templates onecan easilycontrol the indentation of the generated code or the
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Figure 8-12. UML class diagram of classes for code generation.

position of opening and closing braces. Furthermore, easily customized code generation might be useful in
generating code other than the classes directly modeled. For example, a designer could generate property sheets by
using a set of templates that generate one user interface window for each class in a design and one widget in that
window for each attribute of the corresponding class.

Altogether, Argo/UML's code generation facilities consist of 2000 lines of Java code in 7 classes.
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CHAPTER 9: Conclusion

This chapter reflects on the feature generation approach described in the dissertation, reviews my contributions,
and outlines possible research extensions.

9.1 Reflections on the Approach

Design is a cognitively challenging task and designers can benefit from tools that support their cognitive needs.
There is a substantial body of theory that describes these cognitive needs in the cognitive science literature. These
theories are the result of many direct observations and laboratory studies. As I learned more about these theories, I
became more interested in their underlying assumptions and practical implications.

The strong internal validity of these theories makes them good inputs to my feature generation approach.
However, each theory only addresses one aspect of the overall cognitive challenge that designers face. Relying on
any one theory alone can leave other cognitive needs unaddressed. So, multiple theories must be taken into account
when designing a new feature. For a given feature, some theories provide positive guidance as to what the feature
should do, while others provide negative guidance as to what the feature should not do. Furthermore, the cognitive
theories do not specifically deal with user interface issues, so standard usability guidelines are also needed.

My feature generation approach has risks. Specifically, it requires practicing tool builders to gain a partial
understanding of cognitive theories and then apply that knowledge. Since CASE tool builders typically do not have a
background in cognitive psychology, there is a significant chance of misunderstanding. Three aspects of the
approach help mitigate this risk. First, supporting multiple theories helps to avoid the risk of relying too strongly on
an incorrect, misunderstood, or misapplied cognitive theory. Second, evaluation techniques sueh as cognitive
walkthroughs and user studies can find usability problems early. Third, cognitive support features are intended to
support the designer in his or her design tasks; they should not interfere with the normal usage of the design tool and
any potential interference is evaluated very closely.

The central and most difficult part of my feature generation approach is the invention of new features. How does
one span the gap from theories to features? Although the gap may seem large, I have found the approach to be very
productive. In some cases, features have been directly inspired by the theories; in other cases, the theories have
merely guided feature development by confirming the value of intermediate development steps.

The opportunistic search utility and selection-action buttons are two examples of features directly inspired by
cognitive theories. One interpretation of the theory of opportunistic design is that opportunistie task switching is
normal and should be encouraged where appropriate. So, I reconsidered standard CASE tool features with the intent
of providing additional information that might prompt opportunistic task switching while still aiding designers in
returning from these design excursions. The result was Argo/UML's opportunistic search utility. Selection-action
buttons were directly inspired by Fitts' Law and by the theory that limited short-term memory is used both for
domain knowledge and tool interaction planning. The position of the seleetion-action buttons resulted directly from
my understanding of Fitts' Law. The three modes of interaction with selection-action buttons resulted from my
efforts to match user interface affordances to common design tasks.

The development of the broom alignment tool is an example of using a theory to guide feature development.
Once I learned about secondary notation, I knew that I wanted a feature to support it, but I did not have any specific
ideas for that feature. One day, on a TV cooking show, the chef used a knife to chop vegetables and move the small
pieces into distinct areas of the cutting board. That gave me the idea for the push-into-alignment action of the broom
and emphasized the importance of tight integration into the normal diagram editing user interface. From there, the
theory helped me choose which visual properties were most important to secondary notation, and usability
guidelines suggested the broom's direct and reversible action.
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9.2 Review of Contributions

The four contributions of this dissertation are the following:

• I described theories of design cognition in terms understandable and relevant to CASE tool builders. One of the
reasons that current CASE tools do not satisfy their users is that CASE tool builders do not have a clear
understanding of the user interface requirements of such tools. By describing the relevant cognitive theories in
practical terms, I have helped clarify these requirements for myself and for other tool builders. These
requirements inspired several novel features.

I proposed a basket of useful CASE tool features. Each feature in Chapter 4 was inspired and explained by
cognitive theories and HCI guidelines. Several of these features have intrinsic appeal and many evaluated well in
Chapters 6 and 7. My basket of features is, in itself, a contribution to the CASE tool research area. In fact, some
features have already been recognized by CASE tool vendors and are starting to appear in commercial products.
In addition to the immediate contribution of these features, they also serve as examples that bring out key aspects
of my feature generation research approach.

• I demonstrated the successful application of a theory-based user interface design approach to a large-scale
software engineering tool. In a sense, every user interface is based on some tacit understanding of the user's
cognitive needs. Some researchers have proposed tools with features based on a single cognitive theory (e.g.,
Guindon, 1992). However, relying on tacit understanding or individual theories of designers' cognitive needs has
not yielded very useful and usable CASE tools. I have taken into account several complementary cognitive
theories and user interface guidelines. The contribution of Argo/UML as a whole is the demonstration that
theory-based user interface approaches can be scaled up to practical tools serving real designers, rather than
research prototypes.

I described the design of a scalable, reusable infrastructure for building the proposed features in design tools.
Two of the reasons that design critiquing and other design support systems have never been widely adopted are
(1) the lack of an infrastructure that can scale up to offer significant knowledge support, and (2) the lack of a
reusable infrastructure that can compound progress made by different researchers. My critiquing infrastructure
achieves scalability and reusability with a critic scheduling algorithm that provides good interactive performance
while allowing critic authors to use the full power of the Java programming language.

9.3 Potential Extensions

The work leading to this dissertation has generatedmany interesting and promising ideas.Many of these ideas
are visible in the Argo/UML tool. Others are described in the appropriate "Potential Extensions" sections of this
dissertation. Still more ideas extend beyond what I have done. Four classes of possible extensions are discussed
below:

The first class of potential extensions continues along the same lines as my work to realize more of its potential
benefits. One of the contributions of this dissertation is the demonstration of the productivity of my feature
generation approach. Significant, immediate benefits have already been realized from this approach. Yet, the
feature generation approach could be productively continued by adding new theories and features. Additional
cognitive theories could be added to the body of theories considered. New features could be devised, current
features could be refined, and features that are currently mock-ups could be fully implemented. Many of the
proposed features could be evaluated in more depth and their heuristic evaluations can be further confirmed.
Development of Argo/UML and user support could continue and the user population should continue to expand.
These activities complement each other: additional theories inspire new features, new features require further
evaluations, evaluation motivates the search for additional theories, further support for the design task would
make Argo/UML more attractive to users, and more users would provide more feedback that can provide
additional confirmation of heuristic evaluations. Integration with the Expectation Driven Event Monitoring
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(EDEM) system (Hilbert and Redmiles, 1999) can also greatly increase the amount and usefulness of feedback
from users.

The second class of potential extensions would refine my reusable infrastructure to make it even more efficient,
flexible, scalable, and understandable. Many of the trade-offs I havemadein developing GEE, the Argo
critiquingframework, and Argo/UML have emphasized simplicity and understandability. Only the critic
scheduling algorithm and navigational perspectives have beenoptimized for efficiency. One of the simplifying
assumptions of ArgoAJML is that the entiresystemruns on a singleJava virtual machine. This assumption could
instead be relaxed to allow somecritics to run on a remote Javavirtual machine or be implemented in another
language. Supporting critics in another language, such as C+-(-, would require a translation of the Javacritiquing
framework into that language. Distributing the analysis load couldscale up the amountof analysis carriedout
withinthe interactive time limit.However, a moresignificantbenefitof distributed critiquing mightbe theability
to host critics on servers where they can be updated more easily by their authors.

The third class of potential extensions focuses on applying my feature generation method and infrastructure to
other design domains. Some of my proposed features have already been applied in four software tools that
address very different aspects of software development. One such tool is Prefer, a state-basedrequirements
modeling tool that includes design critics and the dynamic "to do" list. I also see a clear match between some of
the cognitive support features and the cognitivechallenges of a new task-based user interface design method
(Constantino and Lockwood, 1999). Furthermore, designers in non-software domains face some of the same
cognitivechallenges.In fact, the cognitive theories are derived from observationsof design and problemsolving
activity in many domains. For example, a specialized word processorcould include critics and views that aid the
writer insuccessfully completing a structured document suchas thescriptofa play, a conference paperin a given
field, certain types of grant proposals, or even a dissertation.

The fourth class of potentialresearchextensions wouldbridgethe gap betweenthe cognitive needsof individual
designers and the needs of the development organization. These extensions would be based on theories of
organizational memory, knowledge management, and on longitudinal studies of Argo/UML users. One of the
advantages of designcritics as they are described in this dissertation is that they can providefeedback that
references the organizational context. For example, critics contain the email addresses of the expertswho
authored them. However, there is a body of research on organizational issues that has not been consideredin my
work. Refiningand realizing the organizational aspects of design critics and investigatingthe interaction
between cognitive theories and organizational theories should inspire many newfeatures and lead to significant
benefits.
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