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Automating Multi-Throw Multilateral Surgical Suturing with a
Mechanical Needle Guide and Sequential Convex Optimization

Siddarth Sen*1, Animesh Garg*2, David V. Gealy3, Stephen McKinley3, Yiming Jen1, Ken Goldberg2

Abstract— For supervised automation of multi-throw sutur-
ing in Robot-Assisted Minimally Invasive Surgery, we present
a novel mechanical needle guide and a framework for opti-
mizing needle size, trajectory, and control parameters using
sequential convex programming. The Suture Needle Angular
Positioner (SNAP) results in a 3x error reduction in the needle
pose estimate in comparison with the standard actuator. We
evaluate the algorithm and SNAP on a da Vinci Research Kit
using tissue phantoms and compare completion time with that
of humans from the JIGSAWS dataset [5]. Initial results suggest
that the dVRK can perform suturing at 30% of human speed
while completing 86% suture throws attempted. Videos and data
are available at: berkeleyautomation.github.io/amts

I. INTRODUCTION

Robotic Surgical Assistants (RSA), such as Intuitive Sur-
gical’s da Vinci System have facilitated over 570,000 pro-
cedures worldwide in 2014 [7]. RSAs are currently con-
trolled by surgeons using pure tele-operation. Automation
of surgical sub-tasks such as suturing has the potential
to reduce surgeon tedium and fatigue, operating time, and
enable supervised tele-surgery.

The Fundamental Skills of Robotic Surgery (FSRS) de-
fines a representative set of procedures for surgical training
and evaluation [35]. FSRS includes Multi-Throw Suturing
(MTS) where each MTS throw includes five steps as illus-
trated in Figure 1. A curved needle with suture thread is
repeatedly pushed through a pair of tissue boundaries with
one actuator, then pulled through with a second actuator
until the thread is taut, then is transferred back to the first
actuator to begin the next throw / suture [1, 6]. In Robot-
Assisted Minimally Invasive Surgery (RMIS), MTS is a
tedious subtask and it can be difficult for the surgeon to
maintain proper needle pose during insertion and transfer as
haptic feedback is not available.

In this paper, we present initial results toward automating
MTS with new hardware and a novel optimization algorithm.
Our approach includes (1) a mechanical device, the Suture
Needle Angular Positioner (SNAP), designed to align and
hold the needle in a known orientation, (2) computer vision
software to track needle pose, and (3) a sequential convex
optimization formulation of needle motion planning. Initial
results suggest that SNAP can reduce error in needle orien-
tation by 3⇥ and that the combined system can successfully
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Fig. 1: Each throw in Multi-throw Suturing (MTS) includes five
steps: (S1) Needle placement in desired position and orientation by
first actuator, (S2) Needle insertion through tissue by first actuator,
(S3) Needle grasp by second actuator, (S4) Needle and thread pull
until thread is taut, and (S5) Needle transfer back to first actuator.
(note: S5 is not illustrated in this time-lapse image).

complete 86% of attempted throws at 30% the speed of
human operators [5].

II. BACKGROUND AND RELATED WORK

RSAs are being used for many tumorectomy interventions
within the abdominal and thoracic cavities such as prostec-
tomy and hysterectomy [2, 25] as described in reviews of
recent developments in semi-autonomous and autonomous
execution of surgical procedures by Moustris et al. [20] and
Kranzfelder et al. [14].
Automated Suturing: Automation of suturing has been
studied in the context of hierarchical models for multi-step
task planning [11], multilateral manipulation of needle and
suture [34], and interaction with deformable tissue [8, 9].

While each of these studies made significant contributions
as outlined below, challenges in combining the steps to
achieve autonomy in longer tasks has not been sufficiently
addressed. Kang et al. devised a specialized stitching device
for RMIS which is capable of tying a knot [11]. Mayer
et al. used a recurrent neural net as part of a controller
to learn knot tying with three industrial arms using motion
primitives from human demonstrations [18]. Van den Berg et
al. used iterative learning for performing knot tying at super-
human speeds [36]. More recently, Schulman et al. used a
learning by demonstration approach to warp recorded expert
demonstrations and perform suturing in simulation [31].

http://berkeleyautomation.github.io/amts


Fig. 2: The figure outlines the Multi-Throw Suturing Finite State Machine. First the surgeon specifies a suture path with wound width &
depth and suture pitch. The system then computes the number of suture throws required; and generates entry & exit points, and optimized
trajectories along with required needle size for each throw of the MTS. Each of the steps S1-S5 (see Figure 1) are repeated with visual
feedback for each suture throw until all suture throws are completed.

Padoy et al. showed execution of collaborative human-robot
suturing, but the key sections requiring interactions such as
needle insertion and hand-off were performed manually [26].
Similarly, Staub et al. automated needle insertion into tissue
for single-throw suturing [34].

Prior work in surgical automation has modeled the ba-
sis set of surgical motions as the “Language of Surgery”
composed of surgemes (Hager et al.) [29]. Recent works
have also explored the use of learning techniques to in-
fer surgeme transitions from demonstration data [16, 24].
Many of the FSRS procedures, including MTS, are de-
composable into long sequences of simpler sub-tasks. This
decomposition allows the parametrization and building of
Finite State Machines (FSM) for complex procedures using
a learning by observation approach, for tasks such as tissue
debridement [13], pattern cutting [21], and tumor localization
& resection [19]. Our work on segmentation of multi-step
task demonstrations [15] suggests that unsupervised learning
of semantic transitions is feasible and can be analyzed to
construct FSMs for these multi-step tasks.

Suture Needle Path Planning: Some preceding studies
use a needle path of fixed curvature. Jackson et al. used a
reference trajectory to create an analytical solution allowing
for needle insertion without considering uncertainty or robot
pose constraints [9]. However, needles do not always follow
their natural curvature. Interaction with tissue may deflect
the needle, and end point pose constraints necessitate non-
orthogonal exit. The use of optimization-based planning
has potential to address these limitations. Recent results
in motion planning have shown that Sequential Convex
Programming (SCP) based planning, such as [30] can be both
faster and more successful in finding solutions than sampling
based planners. This paper formulates suture needle path
planning as a curvature constrained SCP based optimization
problem.

This paper builds on prior work in optimization-based
planning [4, 27], sub-task level segmentation of demonstra-
tions [15, 16], gripper mounted interchangeable tools [19],
and building robust finite state machines [21]. We are not
aware of any system that can perform autonomous multi-
throw suturing.

III. PROBLEM: FORMULATION AND DEFINITIONS

The success of suturing is highly sensitive to needle pose
uncertainty at entry point. Uncertainty in needle pose during
insertion can result in tissue injury due to skin penetration
at undesirable angles or the lack of sufficiently deep needle
insertion to hold the suture securely. As illustrated by the
several error cases in Figure 3, it is essential to maintain
proper needle pose during insertion and handover to avoid
dropping the needle or damaging tissue. Since the needle is
thin and highly reflective, it is difficult to accurately detect
its position and orientation with computer vision as noted
in [9, 10, 23, 33]. Several medical device manufacturers offer
needle-alignment devices for manual laparoscopic applica-
tions [17, 28] but, to the best of our knowledge, these are
not available for RSAs.

Surgeons follow suturing task guidelines such as entering
the tissue orthogonally, minimizing tissue-needle wrench,
choosing the correct needle size for adequate suture depth,
and inserting the needle to a sufficient depth to ensure
needle protrusion for needle re-grasp. While a needle would
follow a constant curvature path through rigid objects, tissue
is deformable. Thus we model the needle path to allow
bounded rotations about the needle tip while the needle is
inserted. However, needle paths that do not follow the natural
curvature of the needle can result in tissue damage, hence
we define a bounded deviation (g) from needle curvature (k)
that can be visualized as a cone at each point as illustrated in
Figure 4. We monotonically reduce g as the needle progresses
to minimize tissue damage.
Assumptions: We assume that tissue is homogeneous and
deformable. Teal-time tracking and planning is used to
account for departures from needle pose estimates during
needle insertion. We assume that the needle is rigidly held
in the gripper and can only move forward in the tangential
direction of the tip. However, bounded reorientation of the
needle tip is permitted as it is inserted through tissue. We
assume that our system has access to a continuous range of
needle sizes. In practice, needles vary in length in increments
of 1 mm and vary in three different fractions of a circle.
Input: The wound shape is provided as input, with the points
M = [M1,M2, . . . ,MD] 2 R3 representing the wound surface
as a spline. The system is also provided with suture depth d,
suture width l, and a pair of entry/exit poses (Pi,Pf 2 SE(3))
for the first throw as illustrated in Figure 3. Further, we are



Fig. 3: The needle trajectory labeled (3) shows the desired trajectory
along with poses at entry and exit points from the tissue. The
success of suturing depends on correct orientation of needle with
respect to the tissue. For example, uncertainty in needle pose at
entry point may result in the needle not connecting opposite tissue
sides (1), not making sufficiently deep insertion to hold the suture
securely (2), not having enough length of needle at the other end
to enable re-grasping (4), or passing completely under the wound
and not exiting the tissue at all (5).

also given suture pitch w – distance between consecutive
suture throws.
Output: The system needs to find a set of suture throws S,
where 8 S j 2 S, we need to calculate an optimized sequence
of needle tip poses X j 2 SE(3) satisfying the the suture
depth and suture width constraints or report that no such
path plan exists. The system also needs to choose a needle
curvature and length. The entry and exit positions at each
suture throw S j are obtained by linearly interpolating Pi, Pf
along the spline while keeping the orientation constant.
Curvature Constrained Kinematic Model:
The needle trajectory is discretized into time intervals T =
{0,1, . . . ,T}, where the needle moves a fixed length (D)
at each time step. At each time step the needle’s pose is
parametrized as Xt 2 SE(3).

We model the needle trajectory as a sequence of T � 1
circular arcs with curvature kt between every consecutive
pair of needle poses (Xt , Xt+1). We model our control of
the needle at each time step as a rotation and insertion
where at each time step the pose Xt is propagated a distance
D to Xt+1. Although a needle naturally follows a path of
constant curvature, the needle tip can be reoriented at each
time step to change the local curvature by ḡt . Thus at each
time step the path curvature kt can be expressed as kt = k+ ḡt
where k is the curvature of the needle and ḡt is the change
in curvature applied at each time step. The transformation
between consecutive needle poses can be represented a twist
in se(3) , ut =

⇥
D 0 0 0 Dkt 0

⇤T

The Lie group SE(3) and the corresponding algebra se(3)
are related by the exponential and log maps exp : se(3) !
SE(3) and log : SE(3) ! se(3). Closed form expressions
exist to compute these maps efficiently. Given an incremental
twist x = [px py pz rx ry rz]T 2 R6, the corresponding Lie
algebra element is given by the mapping ^ : R6 ! se(3) as

x^ =

2

664

0 �rx ry px
rz 0 �rx py
�ry rx 0 pz

0 0 0 1
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Fig. 4: The optimization steps and non-holonomic motion at each
time-step. The figure shows stay-out zones Oi , trajectory poses Xt ,
step-size D, needle radius r, and g-cone of allowed rotation at each
Xt .

The reverse mapping _ : se(3)! R6 can be used to recover
the twist, x from an element of se(3) Poses between consec-
utive time steps can then be related as:

Xt+1 = exp(u^t ) ·Xt (1)

.

IV. SUTURE NEEDLE PATH PLANNING

The Suture needle Path Planning (SPP) problem can be
formulated as a non-convex, curvature constrained motion
planning problem solved with a series of locally convex
approximations using sequential convex programming (SCP).
We begin by presenting the problem formulation.
Optimization Model:
For notational convenience we concatenate the states from
all time steps as X = {Xt : t 2 T } and control variables as
U = {k,D,gt : t 2 T }

SPP : minimize
X ,U

aDCD +aICI (2)

s.t. log(Xt+1 · (exp(ut) ·Xt)
�1)_ = 06 (3)

|ḡt | gt 8t (4)

T D+2lg �
2pln

k
 0 (5)

sd(Xt ,Oi)� ds, 8i (6)
X0 2 B(pi,e), XT 2 B(p f ,e) (7)

Each term in the above formulation is described below:
Costs (Eqn. 2): We assume the volume of needle in tissue is
proportional to tissue trauma and hence we penalize longer
trajectories such that CD = T D, the length of the trajectory.
Furthermore, surgical guidelines suggest that the needle entry
pose should be orthogonal to the tissue surface. CI penalizes
deviations from an orthogonal start pose. The weights aD
and aI are parameters that are tuned in the optimization.
Kinematic Constraints (Eqns. 3, 4): The kinematic con-
straint in Eqn. 1 can be transformed using the exponential log
map into the standard equality constraint in Eqn. 3. Eqn. 4
bounds the magnitude of ḡt to minimize tissue damage.
We select gt to be monotonically decreasing with t because
needle rotations away from its natural curvature cause greater
damage the further the needle is inserted into tissue.
Needle Length Constraints (Eqn. 5): The length of the
insertion trajectory (T D) is constrained to be less than the



Fig. 5: The side view of three needle trajectories generated by
SPP. Trajectory 1 and 3 are constant curvature trajectories whereas
trajectory 2 is a variable curvature trajectory.

length of the needle (2pln/k) and should allow for grippers
to hold the needle on both ends (2lg).
Collision Constraints (Eqn. 6): We impose constraints to
ensure that our trajectory avoids collisions with pre-defined
stay out zones. We ensure that the signed distance between
each Xt+1 and each convex mesh in O is greater than a safety
margin parameter ds. The stay out zones can be non-convex
meshes that can be decomposed into convex sub meshes [3],
O = {O1, . . . ,Oi}.
Entry and Exit Point Constraints (Eqn. (7)): We constrain
the start and end poses of the trajectory to be within an e-
Ball of the calculated entry (pi) and exit (p f ) poses. This can
be expressed as log(pi ·X�1

0 )_  e · 16 for the start pose of
the trajectory. The end pose constraint follows a symmetric
formulation.

We note that a constant of D is chosen for all time steps
instead of having a different Dt for each time. as the latter
is experimentally found to disagree numerically with the
findings of Duan et al. [4].
Trajectory Optimization
Sequential convex programming is a general approach for
solving constrained, non-convex optimization problems. We
refer the reader to [32] for the details of SCP-based motion
planning are described.

Figure 5 shows the SPP output for three different sets of
pose constraints. For #1, we restrict rotation about needle
tip (gt = 0,8t). Coupled with the orthogonality constraint at
entry/exit, this results in a constant curvature path along the
needle radius. For #2, orthogonality is enforced only at entry
pose, and gt is set to a monotonically decreasing sequence in
t. This results in rotations about the needle tip that achieve
an asymmetric trajectory satisfying pose constraints at entry.
We also demonstrate a case with no pose constraints in #3,
resulting in the shortest path trajectory, but with oblique entry
angles.

V. REDUCING NEEDLE POSE UNCERTAINTY

As stated in Section III and Figure 3, tissue damage is
minimized with orthogonal needle entry and motions that are
tangential to the needle tip. These guidelines require accurate
needle pose estimates at the needle entry point and robust
needle grasps.

A. Suture Needle Angular Positioner (SNAP)
Commercially available RMIS needle drivers allow han-

dling of a variety of needle sizes, however an analysis of

suturing trials in JIGSAWS dataset [5] reveals that multiple
pairs of hand-offs are required for correct needle orientation.
This is because the motion of a needle held within the
needle driver jaws is not fully constrained. The flat gripper
surface allows rotation and translation along the length of
the needle, which can be hard to control without haptic or
visual feedback.

There have been some commercial efforts to mitigate
back-and-forth hand-offs and uncertainty in laparoscopic
surgery through passively orienting the needle on gripper
closure using a “self-righting” gripper jaw design [17, 28].
However, these are not designed for automation, and require
a complete tool redesign.

We develop a design for a low-cost Suture Needle Angular
Positioner (SNAP) for dVRK Classic 8 mm Needle Driver
with 6 mm jaws, which works to guide and passively orient
a curved needle into a stable pose upon closure of gripper
jaws as illustrated in Figure 6(d). SNAP reduces needle
pose uncertainty along two rotational axes as shown in
Section VII. This allows for a higher tolerances in relative
positioning during needle hand-off, and which relaxes the
accuracy requirements of needle tracking.
Mode of Operation: SNAP is mounted axially on one of
the needle driver jaws. It is designed to guide the needle
towards a groove running perpendicular to the length of the
gripper jaws Figure 6 (b), (c). Upon closing the jaws, the
needle rolls to a stable pose, passing through contact points
C1 and C2 as shown in the section view in Figure 6(b).

The size of the needle gripper is parametrized by the
distance between contact points C1 and C2 which is depen-
dent on the curvature of the needle, that is a needle with
a larger radius needs a wider contact grasp to enable the
needle rolling upon jaw closure. As illustrated in Figure 6 (a),
SNAP has a rear-wall that allows the gripper to overshoot
during the pre-grasp approach. It also has a needle catching
area in the front (Figure 6 (c)) that guides the needle into
the groove, compensating for undershoot during pre-grasp.
Both of the above features increase the robustness of needle
manipulation.

The SNAP is fabricated from ABS plastic using a Stratasys
uPrint 3D printer. For an 8 mm classic needle driver, using
a 3

8 circumference, 39 mm length needle, we designed the
SNAP with C1 �C2 span of 10 mm. Through experimental
evaluation, we improved upon the SNAP design to include
a larger rear wall. This enabled a wider jaw opening dur-
ing approach allowing for larger tolerance in needle pose
uncertainty.

B. Real Time Needle Tracking
We have developed a real-time needle tracking system

to provide closed loop feedback during the suturing pro-
cess as summarized in Figure 7. Due to tissue and tool
specularity, perception using RGB-D sensing is not feasible.
Our system provides 3D needle pose estimates using a
custom built stereo camera pair, composed of two Prosilica
GigE GC1290C cameras with 6 mm focal length lenses. The
needle tracking algorithm is implemented as a ROS node



Fig. 6: This figure illustrates the design and function of the 3D-printed Suture Needle Angular Positioner (SNAP). Figures (a) and (b)
show a convex depression in which needle rests upon gripper closure. Figure (d) shows a time-lapse figure of the gripper closing action
on needle orientation.

Fig. 7: This figure shows an overview of the needle tracking pipeline, from stereo images to the final needle pose estimate overlaid onto
the original scene. We fuse a Kalman Filter estimate with current camera estimate to compute the final estimate. The tracking system is
robust to outliers and missing data in the segmentation masks.

that publishes real time estimates of the needle’s pose. The
tracking system works with partial occlusion for instance
when the needle is inside the tissue or behind the robot arms.

We use a model-based tracking system leveraging the
needle shape and color. The first step in the process is
Needle Segmentation. We use a yellow painted needle to
assist in foreground/background separation. We use HSV
(Hue, Saturation, Value) separation to identify the needle in a
cluttered environment with the open-source OpenCV library
and create a set of image plane points PI .

We leverage the circular shape of the surgical needles and
their elliptical projection. We create a small set of para-
metrically sampled points along the length of needle model
PM, |PM|= 12, and then use affine point set registration to fit
the PI to PM . We model the non-linear registration problem
as point set matching. This creates robustness to outliers,
missing data due to occlusions, and noisy data from incorrect
segmentation masks. We use the Matlab library CPD2 for
solving the registration problem [22].

Using the ellipse fits on the image pair, we generate a
dense set of corresponding points along the needle. This
creates a robust disparity map of 3D points on the needle. A
plane is then fit to the 3D points, providing a normal vector,
while an average tangential direction is calculated using the
three points on the end of the needle. Using the end point of
the needle and these two vectors, a pose pn 2R6 is generated.
We use a Kalman filter to smooth needle tip pose estimates.

The use of industrial Prosilica cameras with a wide
baseline necessitated the use of a large workspace and
consequently larger than average needles in order to enable
robust needle tracking. Laparoscopic cameras have a smaller
baseline and smaller field of view compared to our setup.
The proposed tracking system should be transferable to a
laparoscopic setup allowing the use of much smaller needles.

VI. MULTI-THROW SUTURING: SYSTEM DESIGN

We present a closed loop Finite State Machine (FSM)
for multi-throw suturing with needle orientation tracking and
multilateral needle hand-off as illustrated in Figure 2. Given
the registration of the tissue phantom in the camera frame, a
multi-throw suture plan is generated. The SPP algorithm is
used to generate needle trajectories and a suggested needle
curvature. Each throw in the task consists of the following
sequence of sub-tasks which were segmented on the basis of
manual surgeme labels for suturing in the JIGSAWS dataset:

S1. Needle Orientation: The system generates pose esti-
mates for both the front tip of the needle, NT , and the tail
connected to the suture thread, NS. Starting with the needle
held in the right gripper at NS, the system creates an initial
pose estimate. Using this estimate, the robot aligns the needle
with the camera’s image plane, allowing for an occlusion-free
view of the needle and an improved pose estimate.

S2. Needle Insertion: The system executes a trajectory for
NT using the planner described in the previous section. We
note that at this point, suture path can be re-planned after
every user-specified rolling time horizon.

S3. Needle Grasp: After the right arm guides the needle
through tissue, the left arm grasps the needle at NT and pulls
the needle tangentially to the needle tip, rotating around the
center of curvature of the needle in order to minimize tissue
trauma.

S4. Needle Pull: Once the needle is completely outside the
tissue, it is pulled away sufficiently to tighten the suture. The
system estimates how much slack is available in the suture
thread by modeling the length of thread between consecutive
entry points as a helical loop with radius equal to the radius
of the needle and pitch equal to the suture pitch.This provides
a conservative estimate of how much slack is lost in each
throw and the system uses it to decrease the distance the
needle is pulled away after each throw.



S5. Needle Hand-Off: Our needle tracking algorithm esti-
mates the pose of the needle end NS while it is grasped at
NT . Similar to step (S1), the left arm aligns the needle with
the image plane to improve the needle pose estimate. This
estimate is used to align the needle with the right arm in
order to grasp the needle at NS and perform the next suture
throw.

Due to inherent pose errors in camera-robot registration
and robot kinematics, the hand-off process is performed by
simultaneously engaging the right arm at NS while disen-
gaging the left arm at NT . A slight error in coordination
will result in failed transfer due to stresses generated on the
needle. The use of SNAP on both gripper ends facilitates this
process because the grooves provide a space resulting in a
partial cage instead of force closure during the hand-off as
described in Section V.

VII. INITIAL EXPERIMENTS

A. dVRK: Hardware and Software
We use the Intuitive Surgical da Vinci Research Kit

(dVRK) surgical robot assistant as in [21], along with open-
source electronics and software developed by WPI and Johns
Hopkins University [12]. We use a pair of 8mm Needle
Drivers with each gripper having one Suture Needle Angular
Positioner (SNAP). The software system is integrated with
ROS and allows direct robot pose space control, working in
Cartesian space instead of commanding motor torques.

B. Experimental Evaluation of Needle Tracking
The size and shape of needles makes it difficult to obtain

ground truth pose estimates using techniques like fiducial-
based motion capture. Instead we designed an experiment to
indirectly verify the efficacy of our needle tracking system.
The robot holds the needle rigidly in its gripper and moves
the needle to random positions in the workspace. Note that
the relative pose of the needle with respect to the gripper
position never changes. At each random position the robot
pauses and uses the needle tracking system to compute
the needle’s relative pose with respect to the gripper pose
(estimated from kinematics). Poses at 20 different random
locations were recorded. Table I shows the standard deviation
in x,y,z (in mm) and in roll, pitch, and yaw (in degrees)
respectively in the needle’s relative pose. The low error in
every dimension suggests that our estimates of the needle’s
relative pose are nearly identical at each random location.
This matches with the ground truth that the needle’s relative
pose never changes. The errors reported are not due to
the needle tracker alone, but the composite error produced
from needle tracking, camera-robot registration, and robot
kinematics. However, the errors provide an upper bound on
the needle tracking error and is representative of error that
our system must be robust to.

TABLE I: Error in Relative Needle Pose (Over 20 Trials)

Position (mm) Orientation (degrees)
x y z Yaw Pitch Roll

Std. Dev 2.182 1.23 1.54 2.495 4.699 4.329

TABLE II: SNAP Evaluation

Stationary Grasp
Orientation Error (Standard Deviation)

Succ.
Grasps

x
(mm)

y
(mm)

z
(mm)

yaw
(deg)

pitch
(deg)

roll
(deg)

Without SNAP 100% 2.511 1.434 4.838 20.547 7.584 6.472
With SNAP 100% 0.199 0.158 0.177 0.926 1.094 0.664
Perturbed Grasp
Orientation Error (Standard Deviation)

Successful
Grasps

x
(mm)

y
(mm)

z
(mm)

yaw
(deg)

pitch
(deg)

roll
(deg)

Without SNAP 100% 2.01 2.59 5.95 15.54 12.74 7.62
With SNAP 91.66% 1.58 1.15 1.19 5.55 3.97 6.34

C. Evaluation of Suture Needle Angular Positioner (SNAP)
1. Stationary Needle Pick up: In this experiment we evaluate
the SNAP’s ability to reduce variation in needle grasp pose.
This variation is the result of small natural perturbations in
the needle starting pose and noise in the robot’s kinematic
chain. In each trial, a needle is placed in the same location
and the robot is provided a constant known grasp pose to
initiate pick up. Once the needle is grasped, the robot brings
the needle to a known location and the needle’s pose is
recorded using our needle tracker. We repeat this process
over ten trials both with and without SNAP. The standard
deviations in each degree of freedom of the needle’s pose
is presented in Table II. The SNAP reduced needle pose
variation in both position and orientation, in some cases by
over one order of magnitude.
2. Perturbed Needle Pick up: In the second experiment
we intentionally perturb the orientation of the robot’s grasp
pose to evaluate robustness to uncertainty and variation in
grasp orientation. Experiment 2 is a variation of experiment
1 where the commanded grasp pose is perturbed from �30
degrees to 30 degrees in yaw, pitch, and roll. The perturba-
tions are applied in increments of 10 degrees independently
in each axis resulting in 19 trials total. Our results show that
the use of SNAP results in a 3x reduction in needle pose
uncertainty over the standard Needle Driver.

D. Robot Experiments: Four-Throw Suturing Task
We used a suturing phantom made with foam to mimic

subcutaneous fat tissue with a layer of 1mm thick skin using
(shore hardness 2A) DragonSkin 10 Medium Silicone Rubber
(Smooth-On). The soft tissue phantom deforms during needle
insertion to introduce uncertainty. The mechanical design of
the dVRK robotic arms ensure that the arms do not move at
the point where they would enter a human body ensuring that
the kinematic motions of our system remain feasible in-vivo
in a minimally invasive surgical (MIS) setting. Due to the
wide baseline of our stereo cameras, the size of our phantom,
needles, and workspace were constrained to be larger than
those found in a nominal MIS setting.

In this experiment, the system tries to complete a closed
loop four throw suturing task similar to the suturing task
found in the JIGSAWS data-set [5]. We initialized the system
with entry and exit poses on opposite surfaces of the tissue
phantom and with a desired suture depth. Our system gener-
ates insertion trajectories and based on the output optimal
needle curvature we selected a 39 mm long, 3/8 reverse
cutting needle to perform the suturing throws. For each trial



TABLE III: Results for Four-Throw Suturing. 14 trials were per-
formed, with a 50% success rate. For failed states, “N.I” represents
incorrect needle orientation or insertion, “G.P.” represents incorrect
needle re-grasp and pull after insertion, and “H.O” represents failure
in needle hand-off respectively. The test setup was varied with
translation of simulated wound along the wound axis.

Trial 4-Throw
Success

# of Throws
Completed
(Attempted)

Failure
Mode

Trans. in
X

Suture
Pitch

Total
Time(s)

1 Failure 1 (2) G.P. -3mm 3mm -
2 Failure 2 (3) G.P. -3mm 3mm -
3 Failure 3 (4) G.P. -2mm 3mm -
4 Success 4 (4) -1mm 3mm 387
5 Success 4 (4) 0mm 3mm 380
6 Success 4 (4) 0mm 3mm 380
7 Success 4 (4) 0mm 3mm 383
8 Failure 2 (3) H.O. 1mm 3mm -
9 Failure 2 (3) N.I. 1mm 3mm -
10 Failure 3 (4) G.P. 2mm 3mm -
11 Success 4 (4) 3mm 3mm 393
12 Success 4 (4) 4mm 3mm 383
13 Success 4 (4) 5mm 3mm 382
14 Failure 3 (4) G.P. 6mm 3mm -

Mean 50% 3.14 384
Std Dev 1.027 Single Throw Success Rate: 86.3%

TABLE IV: This table compares the performance of our au-
tonomous suturing system with different skill levels of surgeons
in the JIGSAWS dataset[5]

Operator Mode Average Time for
1-Throw (s)

Average time for
4-throw Task (s)

Expert 19.03 87.02
Intermediate 18.57 87.89
Novice 32.14 136.85
Autonomous
(Our Approach) 112.33 383.00

we record time to completion as well as the failure mode
if necessary. The robot moves at a top speed of 3cm/s. The
results of each trial are found in Tables III and IV.

VIII. DISCUSSION AND FUTURE WORK

Initial experiments in this paper confirm that the system
presented can computationally plan and execute multi-throw
suturing task with four-throws in closed-loop operation.
The combination of our needle tracking system and the
SNAP enables our system to minimize and be robust to
needle pose uncertainty. This allows our system to perform
multilateral needle hand-off, enabling the execution of multi-
throw suturing.

The system completes 86.3% of individual suture throws
attempted at approx. 30% of the average speed of manually
tele-operated demonstrations as listed in Tables III and IV.
Our results also show that the proposed needle tracking sys-
tem can provide robust estimates of needle pose in near real-
time with an empirical error of up to 5 degrees. Furthermore
the use of SNAP improves repeatability in needle grasping
by 10⇥ and grasping is robust to up to 30 degrees error in
needle estimate.

However, we note that the system completes on average
3.14 of the intended 4 throws, with a 50% completion rate
for the four-throw task. It is worth noting that 5 out of the
7 failures were due to incorrect needle re-grasp and pulling
after the insertion step. Some of these failures were due to
incorrect needle estimate after the needle exits the tissue in
unexpected locations. The visual needle tracker could not
recognize the needle due to large occlusions. Additional

failures were due to entanglement of the suture thread during
the needle pulling.

The slow speed of the task execution is partly because of
the larger workspace as compared to the setup in JIGSAWS
data [5]. Furthermore, moving to align the needle in camera
for improving needle pose also contributes to the delay.
We will work to improve the real-time visual estimate of
the needle pose without the need for explicit alignment in
front of the camera. Future work will focus on improving
needle pose estimation with very large occlusions along with
receding horizon re-planning during the needle insertion to
reduce error in needle re-grasp. We will also evaluate the
use of swept needle volume as objective cost and explore
augmenting the needle state with needle pose belief for
uncertainty compensation through optimization re-planning.

This paper presents initial results toward automating MTS
with a combination of new hardware and a novel optimiza-
tion algorithm. The paper describes the mechanical device,
the Suture Needle Angular Positioner (SNAP), designed to
align and hold the needle in a known orientation, and an SCP
formulation of needle motion planning. Initial results suggest
that SNAP can reduce error in needle orientation by 3⇥ and
that the combined system can successfully complete 86% of
attempted throws at 30% the speed of human operators [5].

One challenge is the unpredictability of suture thread. The
thread we used is very difficult to track with computer vision
and has high friction with tissue phantoms. We are currently
exploring ex-vivo experiments with chicken tissue which has
natural lubrication that lowers friction.
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