HIGGS MIXING AND CP VIOLATION

K. Shizuya and S.-H.H. Tye

May 1980

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Higgs mixing and CP violation

K. Shizuya

Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

S.-H. H. Tye

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

(Received

The enlarged Higgs sector (i.e. three or more doublets) in the Weinberg-Salam model is studied in a systematic approach. Its CP violating effects are analyzed in terms of the Higgs-fermion couplings and charged-Higgs particle masses. Their results are compared with that in the Kobayashi-Maskawa model. The analysis is also applicable to composite Higgs particles.

This manuscript was printed from originals provided by the author.
I. INTRODUCTION

There are two straightforward ways to introduce CP violation into the standard SU(2)_L x U(1) gauge model of weak and electromagnetic interactions. One way is to enlarge the quark sector to six (or more) flavors, as originally observed by Kobayashi and Maskawa (K-M). They suggested a systematic way (via the K-M quark-mixing matrix) to study the CP violating and other weak interaction effects. The discovery of the b quark certainly indicates that the K-M mechanism of CP violation is present in nature. Details of this mechanism have been studied extensively.

The other way of introducing CP violation into the SU(2)_L x U(1) model is to enlarge the Higgs sector. If we want natural suppression of flavor-changing neutral currents, three (or more) Higgs doublets are needed, as originally observed by Weinberg. Its phenomenological consequences have been discussed by Weinberg and others. However, as the number of Higgs doublets increases, the Higgs structure becomes extremely complicated. In this work we study these Higgs effects in a systematic fashion. The parametrization scheme introduced earlier is followed and extended. We evaluate the CP violating effects in various systems and discuss them in relation to earlier estimates.

Before we present the calculations, a few words on our motivation seem appropriate.

(1) The significance of pinpointing the origin of CP violation in the Weinberg-Salam model is obvious. An enlarged Higgs sector seems to be the only viable alternative to the K-M mechanism. Naive estimates of CP violating effects from the Higgs sector seem to have already ruled out the model. However, a careful analysis shows that this is not the case, as we shall see.

(2) Recent investigations of the issue of matter-antimatter asymmetry in the universe from the viewpoint of grand unification seem to indicate that three Higgs doublets may be needed in the Weinberg-Salam model.

(3) It is possible that the Higgs structure arises dynamically. If this is the case, we expect their couplings to fermions to behave like that of elementary Higgs particles at low energies (i.e. energies below 10 to 100 GeV), while the couplings among the composite Higgs particles themselves are determined dynamically and may be rather involved. By parametrizing the dominant CP violating effects into the Yukawa couplings, our systematic approach may be well-suited for the study of composite Higgs-induced CP violating effects at low energies.

The formalism is discussed in Sec. II while the application is discussed in Sec. III.

II. FORMALISM

The most general SU(2)_L x U(1)-symmetric Higgs potential invariant under reflections \(\varphi_i \rightarrow -\varphi_i \) of each Higgs doublet \(\phi_i(x) = (\psi_i^+(x), \psi_i^0(x)) \) \((i=1, \ldots, n)\) has the form

\[
V(\varphi) = \sum_i \mu_i^2 (\varphi_i^+\varphi_i) + \sum_{i,j} a_{ij} (\varphi_i^+\varphi_i)(\varphi_j^+\varphi_j) + \sum_{i,j} b_{ij} (\varphi_i^+\varphi_j)(\varphi_j^+\varphi_i) + \sum_{i,j} c_{ij} (\varphi_i^+\varphi_j)^2 ,
\]

where \(b_{ij} = c_{ij} = 0 \) by definition. Hermiticity requires that \(a_{ij} \) and \(b_{ij} \) be real and symmetric while \(c_{ij} \) need only be Hermitian; correspondingly they consist of \(2n^2 \) real parameters. After spontaneous symmetry breakdown, \(\phi_i \) are not necessarily mass eigenstates. The charged components \(\psi_i(x) \) of \(\phi_i(x) \) can be related to their mass eigenstates \(H_i^+(x) \) by a rotation:
where $H_0^0(x)$ are not necessarily the mass eigenstates of the neutral Higgs fields. Let $H_k^0(x)$ be a massless Goldstone boson to be absorbed into W^+. Then, at the tree level, all the neutral fields $H_{i}^{0}(x)$ have vanishing vacuum expectation values except for $<H_{i}^{0}(x)> = v \neq 0$. (In general, $H_{i}^{0}(x)$ $(i=2, \ldots, n)$ are massive fields.) It is convenient to fix the arbitrary overall phases of (ψ^{+},ψ^{0}), (η^{+},η^{0}), and $(\eta_{1}^{0},\eta_{1}^{0})$, so that the vacuum expectation values $<\phi_{i}^{0}>_{i} = v$ become real. We remove $(n-1)$ (unphysical) phases in the unitary matrix Y by adjusting the overall phases of $(\eta_{i}^{0},\eta_{1}^{0})$ $(i=2, \ldots, n)$. Then the Y matrix can be expressed in terms of $\frac{\pi}{2}(n-1)$ angles and $\frac{1}{2}(n-1)(n-2)$ (observable) phases\(^1\), in exact analogy with the K-Σ quark-mixing matrix\(^2\). For $n = 3$, they are written as

$$K = \begin{pmatrix} c_{2} & s_{2} c_{3} & s_{3} \\ -s_{2} c_{2} & c_{1} c_{2} c_{3} + s_{2} s_{3} & c_{1} s_{2} s_{3} - c_{2} s_{3} e^{i \phi} \\ s_{1} s_{2} & c_{1} s_{2} c_{3} - c_{2} s_{3} & c_{1} s_{2} s_{3} + c_{2} s_{3} e^{i \phi} \end{pmatrix} \quad (2a)$$

$$Y = \begin{pmatrix} c_{1} & s_{1} c_{3} & s_{3} \\ -s_{1} c_{2} & c_{1} c_{2} c_{3} + s_{2} s_{3} & c_{1} s_{2} s_{3} - c_{2} s_{3} e^{i \phi} \\ s_{1} s_{2} & c_{1} s_{2} c_{3} - c_{2} s_{3} & c_{1} s_{2} s_{3} + c_{2} s_{3} e^{i \phi} \end{pmatrix} \quad (2b)$$

where $c_{i} = \cos \theta_{i}$ and $s_{i} = \sin \theta_{i}$. Both K and Y have three angles and one phase $((\theta_{1})_{K}$, $\delta_{K})$ and $((\theta_{1})_{Y}$, $\delta_{Y})$. The subscripts K and Y are appended to emphasize the distinction.

Diagonalization of the charged-Higgs mass matrix at the tree level leads to the relation

$$\chi_{i}^{2} + 2v^{2} \sum_{j=1}^{n} |Y_{ij}|^{2} = \sum_{j=1}^{n} |Y_{ij}|^{2} M_{j}^{2} \quad (3)$$

where M_{j}^{2} $(j=1, \ldots, n)$ is the mass of the jth charged Higgs field $(H_{j}^{0} = 0)$ and $\delta_{j} = \angle Y_{ij}/Y_{i1}$. It is clear from the above that all c_{ij} are real when all the phases $(\delta_{j})_{Y}$ in the Y matrix vanish. In particular, for $n = 3$, we find that

$$\text{Im}(c_{12}) = -e_{21}^{2} \text{Im}(c_{13}) = (t_{12})_{Y} \text{Im}(c_{23}) = \frac{1}{2} \left((M_{2}^{2} - M_{3}^{2})/v^{2}\right) \left(s_{2} c_{2} c_{3} - c_{2} s_{3} e^{i \phi} \right) \sin \delta_{Y} \quad (5)$$

where $(t_{ij})_{Y} = \tan(\theta_{ij})$.

The phases of $H_{0}^{0}(x)$ (relative to $H_{i}^{0}(x)$) are still arbitrary. It is convenient to adjust the phases ϵ_{j} of $H_{0}^{0}(x)$ so that the $H_{2}^{0}-H_{3}^{0}$ coupling in $V(x)$, $\mathcal{H}_{2}^{0} F_{j}^{+} F_{j}^{0}$, has real F_{j} components. We express $H_{0}^{0}(x)$ in terms of real fields, $H_{0}^{0}(x) = \chi_{j}(x) + i \xi_{j}(x)$. Then, in the mass matrix of the neutral Higgs fields at the tree level, (ii) $\chi_{1}(x)$, which is a Goldstone boson to be absorbed by Z^{0}, is decoupled from the rest; (ii) $c_{1}(x)$ has no mixing with $\chi_{i}(x)$ $(i=1, \ldots, n)$. The $c_{i}(x)$ can be brought into its mass eigenstate by a translation, and $\xi_{i}(x)$ and $\chi_{i}(x)$ $(i=2, \ldots, n)$ are related to their mass eigenstates by means of a $2(n-1) \times 2(n-1)$ orthogonal matrix.

The mixing between ζ and χ leads to CP violation as well as P violation. However, this mixing vanishes as $(\delta_{i})_{Y}$ go to zero, as is easily seen. In this sense, the neutral Higgs sector gives rise to no additional CP-violating phase factor (other than δ_{i}).

The coupling of the Higgs sector to the quark sector has to be constructed in such a way that the flavor-changing neutral current interaction due to the neutral Higgs exchange is naturally suppressed. This is done by
imposing some discrete symmetry on the Yukawa couplings so that different Higgs fields \(\phi_i \) couple to the charge 2/3 and -1/3 right-handed quarks. Then the general form of the charged-Higgs-quark coupling is given by

\[
\mathcal{L} = \frac{2}{3} \frac{\phi_i}{\sqrt{2} F} \sum_{i,j} Y_{ij} \left(\bar{p} \Gamma \frac{1}{2} \frac{v}{\sqrt{2}} \gamma_k \frac{1}{2} \frac{v}{\sqrt{2}} \gamma_n \right)_{ij} + \text{h.c.}
\]

where \(\bar{p} = (u,c,t) \) and \(\bar{n} = (d,s,b) \) are the charge +2/3 and -1/3 quark mass eigenstates, and \(Y_{ij} = \frac{v}{\sqrt{2}} \) as before. The mass matrix \(M(p) \) is nonzero for only one \(\phi_i \) for which \(M(p) = \text{diag}(m_u, m_c, m_t) \); similarly, \(M(n) = \text{diag}(m_d, m_s, m_b) \) for only one \(\phi_i \) coupling to \(n_R \).

III. PHENOMENOLOGY

Let us discuss the CP-violating effects in the Higgs sector. For simplicity, we take \(\delta_T = 0 \) and \(\langle s_3 \rangle \geq 0.1 \).

1) The \(K^0 \), \(\phi^0 \) and \(T^0 \) systems. The box diagrams (la) in Figure 1 are responsible for the \(K^0\)-\(\phi^0 \) mixing. The contribution of the charged-Higgs-boson exchange turns out to be CP-conserving. To obtain CP-violating effects in the \(K^0\)-\(\phi^0 \) system, we consider diagram (lb). In this case, the \(K^0 \) decay is not chirally suppressed. Let us define <\(\phi \rangle \langle \phi \rangle > = F_H^2 m_K^2 \), where \(F_H \) is expected to be larger than the kaon decay constant \(f_K \). It is straightforward to evaluate the diagrams.

From this, we obtain a prediction for the CP-violating effects in the \(B(b\bar{d}) \) system. In the production of \(B \) mesons in \(e^+e^- \) annihilation \(e^+e^- \rightarrow \phi^0\phi^0 \), the final state may go to \(\phi^0\phi^0 \) or \(\phi^0\phi^0 \) via \(\phi^0\phi^0 \) mixing (which is estimated to be close to maximum). In a reasonable approximation, the asymmetry in the Higgs model is given by

\[
\frac{a_B}{m_B} = \frac{N(\phi^0\phi^0) - N(\phi^0\phi^0)}{N(\phi^0\phi^0) + N(\phi^0\phi^0)} \cdot \frac{f_H^2 m_B^2}{f_H^2 m_B^2} \cdot \frac{\delta_T}{\mu_B}.
\]

where \(\delta_T \sim 2 \times 10^{-3} \) in the \(K \) system.\(^{16} \) If we take \(f_B = f_K \) and \(f_B = 0.5 \) GeV, \(m_B = 5 \) GeV and \(t_\phi = 0.3 \) GeV, \(a \sim 2 \% \), which is certainly measurable.\(^{17} \) If we let \(F_B = f_B m_B (m_d + m_s) \) and \(F_K = f_K m_K (m_s + m_d) \), the asymmetry \(a_B \sim 0.2 \), which is huge. The analogous asymmetry \(a_T \) in the \(T^0\)-\(T^0 \) system is comparable to \(a_B \) while the asymmetry \(a_0 \) in the \(D^0\)-\(D^0 \) system is too small to be observed (\(a_0 \ll 10^{-3} \)).

In our choice of parametrization, CP violation can also arise via the Higgs self-interaction. The diagram in Figure 2 gives such a contribution. However, if we assume all Higgs self-couplings are weak (so that perturbative calculations make sense), then the CP-violating effects from diagrams of this type may contribute at most a few percent of that observed in the \(K \) system. Hence, in our parametrization, essentially all CP-violating effects in the Higgs sector come from \(\delta_T \). This verifies the practical usefulness of our approach.

2) \(\epsilon'/\epsilon \). It is reasonable to assume that the \(\Delta I = 1/2 \) enhancement over the \(\Delta I = 3/2 \) channel in \(K \) decays is due to QCD effects\(^{19} \), where the charged \(W \) boson is exchanged in "Penguin diagrams", then \(\epsilon'/\epsilon \) induced in the Higgs sector is very small. The largest value one can reasonably expect\(^{11} \) is \(\epsilon'/\epsilon \sim 3 \% \). However, \(\epsilon'/\epsilon \) in the \(K \)-\(M \) model is also estimated\(^8 \) to be \(0.3 \) to \(3 \% \). Hence, this does not provide a good test of the Higgs mixing.

3) The contribution of charged-Higgs-boson exchange (Figures 3a and 3b, etc.) to the neutron electric dipole moment \(D_n = \frac{1}{3} (4D_0 - D_\gamma) \) is given by
\[D_d = e m_d Z \left(c_1^2 m_u^2 \ln(m_d^2/m_u^2) + s_1^2 c_1^2 \ln(m_d^2/m_c^2) + s_1^2 s_1^2 \ln(m_d^2/m_t^2) \right) \]

\[- \left(c_1^2 m_u^2 + s_1^2 c_1^2 + s_1^2 s_1^2 \right) (c_3^2 + t_3^2(x - t_3^{-1})) \ln x \]

\[D_u = -\frac{1}{2} e m_u Z \left(c_1^2 m_d^2 \ln(m_u^2/m_d^2) + s_1^2 c_1^2 \ln(m_u^2/m_c^2) + s_1^2 s_1^2 \ln(m_u^2/m_t^2) \right) \]

\[- \left(c_1^2 m_d^2 + s_1^2 c_1^2 + s_1^2 s_1^2 \right) (3 + t_3^2(x - t_3^{-1})) \ln x \]

where \(m_1 \equiv m_{H_2} \gg m_q, x = m_{H_2} / m_{H_2} \geq 1, c_1 = (c_i)_K, s_1 = (s_i)_K, t_3 = (t_3)_Y \) and \(Z = (e_7/(6\pi^2 m_w^2)) (1 - t_3^2(x) \ln(\gamma_{1222}^2) \right) \ln \left(A/(2\pi^2) \right) \ln x \right) \).

The neutral Higgs fields also contribute to \(D_n \). However, there are too many unknown parameters in the neutral Higgs sector to obtain any reliable estimate. Assuming that the neutral Higgs contribution to \(D_n \) is comparable to that of the charged Higgs sector, we obtain an order-of-magnitude estimate of the electric dipole moment of the neutron, \(D_n \sim 10^{-25} e \text{cm} \).

Our results are summarized in Table I, where the values given are the probable ranges expected. Our estimates are in essential agreements with the previous calculations. This is due to the lack of information on the structure of the Higgs sector. If the Higgs model is correct, we expect future experiments will be able to determine the various parameters in the Higgs sector. This will render our systematic approach much more useful than the parametrization used in earlier calculations.

In summary, we find that the asymmetry in the \((B^+ - B^0)\) or \((\Upsilon^0 - \Upsilon^0)\) system provides the best place to distinguish the "Higgs" model from the K-M model. The discovery of the electric dipole moment of the neutron at the level of \(10^{-27} e \text{cm} \) or larger would certainly be considered as a decisive test. It is likely that CP-violating effects in the K system arise from both the K-M model and the Higgs model. In this case, CP violating effects in other systems are expected to be somewhere between those predicted by the two models.

We thank E. Eichten, E. Ma and M. Suzuki for discussions. The work of K.S. is supported by the High Energy Physics Division of the U.S. Department of Energy under Contract No. W-7405-ENG-48. The work of S.H.T. is supported by the National Science Foundation.
References

5. V. Barger, W. F. Long and S. Pakvasa, Phys. Rev. Lett. 42, 1585 (1979); R. E. Shrock, S. B. Treiman and L.-I. Wang, ibid., 42, 1589 (1979); V. Barger and S. Pakvasa, ibid., 43, 812 (1979); the last reference gives \(|\lambda_3| > 0.35\); we take the more relaxed constraint \(|\lambda_3| > 0.1\).

11. N. G. Deshpande and E. Ma, Phys. Rev. D16, 1563 (1977); A. A. Anselm and D. I. D'Yakonov, Nucl. Phys. B145, 271 (1978). These papers have calculated the different CP violating effects discussed in terms of the one quantity \(|\lambda_3| \) first introduced by Weinberg (ref. 9).

14. For one such scheme, see L. Susskind, Phys. Rev. D20, 2619 (1979); S. Weinberg, ibid., D19, 1277 (1978); the CP violation issue is discussed in E. Eichten, K. Lane and J. Preskill, Harvard University preprint, HUTP-80/A016 (1980).

15. The box diagram where charged Higgs fields are involved has also been studied by C. Hill, Caltech thesis (1977); L. Abbot, P. Sikivie and M. Wise, SLAC-PUB-2351 (1979).

17. A particular mode of the asymmetry is the semi-leptonic decay of \(B^0 \to \bar{\tau}^- \bar{\nu}_\tau + x \) versus \(B^0 \to \bar{\tau}^- \bar{\nu}_\tau + x \), where \(N(\bar{\tau}^- \bar{\nu}_\tau) \neq N(\bar{\tau}^- \bar{\nu}_\tau) \). See ref. 4; A. Pais and S. B. Treiman, Phys. Rev. D12, 2744 (1975). However, other modes can also be used to measure the asymmetry, e.g., \(B^0 \to K^- \pi^+ \) versus \(B^0 \to K^- \pi^- \).

Caption for Table I

CP-violating effects in the Kobayashi-Maskawa model and the "Higgs" model. $a(B^0 - \bar{B}^0)$ is the charge asymmetry in the neutral B system; $a(T^0 - \bar{T}^0)$ that in the neutral top meson system. e'/e is in the K system. δ_n is the electric dipole moment of the neutron. See text for details on estimates and uncertainties. The predictions of the K-M model are taken from the references indicated. The readers should consult them for details of their estimates and uncertainties. The top quark mass is taken to be $m_t \leq 30$ GeV.

<table>
<thead>
<tr>
<th></th>
<th>K-M model</th>
<th>"Higgs" model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a(B^0 - \bar{B}^0)$</td>
<td>4×10^{-4} (ref. 6)</td>
<td>0.5 to 20%</td>
</tr>
<tr>
<td>$a(T^0 - \bar{T}^0)$</td>
<td>$< 10^{-5}$ (ref. 6)</td>
<td>0.5 to 20%</td>
</tr>
<tr>
<td>e'/e</td>
<td>0.3 to 3% (ref. 8)</td>
<td><3%</td>
</tr>
<tr>
<td>$\frac{\delta_n}{e}$ (in cm)</td>
<td>10^{-30} (ref. 7)</td>
<td>$10^{-25}\pm2$</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. (a) The standard box diagram where a pair of boson fields (HW, WW or HH) are exchanged between a pair of left-handed quark-antiquark. The HH pair exchange conserves CP invariance. Crossed diagrams must be included. (b) Exchange of a pair of charged Higgs fields by a left-handed and a right-handed quark-antiquark system. This box diagram can give CP violating effects.

Figure 2. A two loop diagram where the self-interacting Higgs vertex can give CP violating effects.

Figure 3. The lowest order diagrams which involve the charged Higgs particles and contribute to the electric dipole moment of the neutron.