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Measuring the impact of newborn screening on survival

after hematopoietic cell transplantation for severe combined
immunodeficiency: a 36-year longitudinal study from the Primary
Immune Deficiency Treatment Consortium

A full list of authors and affiliations appears at the end of the article.

SUMMARY

Background: Severe combined immunodeficiency (SCID) is fatal unless durable adaptive
immunity is established, most commonly through allogeneic hematopoietic cell transplantation
(HCT). The Primary Immune Deficiency Treatment Consortium (PIDTC) explored factors
impacting survival of individuals with SCID over almost four decades, focusing on the effects
of population-based newborn screening (NBS) for SCID.

Methods: We analyzed transplant-related data from children with SCID treated at 34 PIDTC
sites in the United States and Canada, using time intervals 1982—-1989, 1990-1999, 2000-2009,
and 2010-2018. Categorical variables were compared by chi-square test and continuous outcomes
by the Kruskal-Wallis test. Overall survival (OS) was estimated by the Kaplan-Meier method and
modeled using Cox regression.

Findings: For 902 children with confirmed SCID, 5-year OS remained unchanged at 72—-73%
for 28 years until 2010-2018, when it increased to 87% (n=268; p<0-001). Children identified by
NBS since 2010 had 92-5% OS, better than that of children identified by other means in the same
interval, 79-9-85-4% (p=0-043). Multivariable analysis demonstrated active infection (HR 2-41,
95% CI 1.56-3-72; p<0-001), age at HCT =3-5 months (HR 2:12, 95% CI 1-38-3-24; p=0-001),
Black/African-American race (2-:33, 95% CI 1.56-3:46; p<0-001), and certain SCID genotypes to
have lower OS during all time intervals. Moreover, after adjusting for numerous factors in this
multivariable analysis, HCT after 2010 no longer conveyed a survival advantage over earlier time
intervals studied (HR 0-73, 95% CI 0:43-1-26; p=0-097). This indicated that younger age and
freedom from infections at HCT, both directly driven by NBS, were the main drivers for recent
improvement in OS.

Interpretation: Population-based NBS has facilitated identification of infants with SCID early
in life, in turn leading to prompt HCT while avoiding infections. Public health programmes
worldwide can benefit from this definitive demonstration of the benefit of NBS for SCID.

Funding: National Institute of Allergy and Infectious Diseases, Office of Rare Diseases
Research, and National Center for Advancing Translational Sciences.

Data Sharing

The study data will be available upon request from the PIDTC after the publication of the study. Individual participant data
(de-identified), the coding dictionary, and other specific sets of data will be provided upon approval of a research proposal and
executed data sharing agreement. The protocol, analysis plan, and informed consent documents are also available upon request.

Lancet. Author manuscript; available in PMC 2024 July 08.
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INTRODUCTION

Severe combined immunodeficiency (SCID), characterized by severely impaired T- and
B-cell immunity, is lethal without immune reconstitution, which can be achieved with
allogeneic hematopoietic cell transplantation (HCT).1 Since 1968, when HCT for SCID
was first performed successfully,? advances in this procedure have increased the likelihood
of long-term survival.3=> Despite the favorable impact of these developments during the
earliest decades of transplantation, overall survival (OS) for SCID improved only modestly
from the 1990s through 2010.3:6.7 Multiple studies have shown that children transplanted
at =3.5 months of age or in the presence of active infections have worse 0S.7-12
Introduction of newborn screening (NBS) for SCID,13:14 has facilitated early diagnosis
and implementation of measures to prevent infection, resulting in HCT at younger ages
without concurrent infections. However, the impact of the introduction of SCID NBS on
OS has not been definitively studied to date. The Primary Immune Deficiency Treatment
Consortium (PIDTC) is a United States and Canadian collaborative research group that
investigates factors determining outcomes for primary immunodeficiencies.!® PIDTC natural
history protocols have assembled data evaluating treatments and outcomes for SCID that
span almost four decades, providing the opportunity to analyze longitudinal changes in
HCT practices and to identify which patient, donor, and HCT factors have influenced OS.
Here, we present outcomes after HCT for SCID including the years before 2010 and from
2010-2018, when SCID NBS was being increasingly adopted across the United States and
Canada.

METHODS

Study design and participants

Procedures

Participants were enrolled in PIDTC natural history protocols 6901 (prospective) or

6902 (retrospective) (ClinicalTrials.gov Identifiers NCT01346150 and NCT01186913,
respectively; appendix p5 Figure S1). De-identified, coded data were entered into an
electronic database. Eligible patients had either “typical” or “atypical” SCID (the latter
including leaky SCID, Omenn syndrome, or reticular dysgenesis).16 Study eligibility was
confirmed by an expert review panel. After exclusions (appendix p5 Figure S1), the

final dataset included 902 children from 34 PIDTC centers (appendix p6 Figure S2) who
underwent allogeneic HCT between January 1, 1982, and December 31, 2018, inclusive of
the 100 subjects published by Heimall et al.1°

Patient, transplant, and outcome variables and protocol enrollment procedures can be

found in appendix p2 Document S1. Race and ethnicity were collected from the medical
record. Trigger for diagnosis was defined as the single, initial reason each child received
immunologic testing leading to a SCID diagnosis: 1) family history (FH; asymptomatic
infant tested due to a recognized prior affected relative); 2) NBS (asymptomatic infant with
abnormal population-based NBS); or 3) clinical presentation (illness, including infection or
features of immune dysregulation, such as diffuse skin rash). HCT was performed according
to each treating center’s standard practice.

Lancet. Author manuscript; available in PMC 2024 July 08.
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Statistical analysis

The 36 years of this study were broken into four intervals, 1982-1989,1990-1999, 2000—
2009, and 2010-2018, allowing the era of NBS initiation and expansion, 2010-2018, to

be compared to other intervals. Research questions and hypotheses are listed in appendix
p3 Document S2. Demographic, disease-related, and HCT-related variables were described
using frequencies for categorical variables and median and inter-quartile range (IQR) for
quantitative variables. The chi-square test was used to evaluate associations with categorical
variables, while the Kruskal-Wallis test was used for continuous variables. The Kaplan-
Meier method was used to calculate probabilities of OS after HCT, with children censored
at last follow-up. Univariate comparisons of OS in select subgroups were performed using
the log-rank test. Probabilities of acute and chronic graft-versus-host disease (GVHD) were
summarized using the cumulative incidence method, with death considered a competing
event. Confidence intervals were calculated using log-log transformation. Multivariable
analysis (MVA) using Cox proportional hazards regression models? examining risk factors
for HCT outcomes were built using bi-directional stepwise selection, with p<0-05 indicative
of statistical significance. The MVA excluded HCT using human leukocyte antigen (HLA)-
matched sibling donors, since this donor source facilitated consistently high rates of OS
(=92%) in all time intervals. The following variables were considered in the risk adjustment
model: time interval of HCT, infection status and age at HCT, trigger for diagnosis, SCID
type and genotype, race and ethnicity of the patient, non-HLA-matched sibling donor

type, graft type, GVHD prophylaxis, and conditioning intensity. The proportional hazards
assumption of the Cox model was assessed for each variable using graphical approaches
(log(-log) plots and Schoenfeld residuals 17+18) and time-dependent covariates, and no
violations of the proportional hazards assumption were identified; therefore, the impacts

of covariates on time to event outcomes were summarized using hazard ratios. All two-way
interactions with time interval were also assessed, but none were significant. Transplant
center effects were assessed!® but were not significant; sensitivity analysis including random
center effects were performed but results were similar and are not reported. Additional MVA
Cox regression analyses were conducted to examine the impact of trigger for diagnosis on
OS. These models adjusted for the same variables previously identified in the full-cohort
MVA model evaluating OS except for age at HCT and infection history at HCT. These two
variables were omitted from the risk adjustment because they are on the causal pathway
from trigger for diagnosis to OS (i.e., NBS can lead to earlier age at HCT and reduced
infection exposure, which then can improve OS). If they had been included, adjusting for
them would then bias the estimation of the impact of NBS on OS by removing the effect

of NBS that results from earlier age at HCT and reduced infection exposure. The same
approach was conducted in a subgroup analysis of the NBS era (2010-2018) to further
reduce confounding between trigger for diagnosis and era, since NBS was only available
starting in 2010. Finally, a sensitivity analysis of the causal effect of trigger for diagnosis on
OS was also conducted using a Cox model stratified on the propensity score or probability
of being diagnosed by NBS vs. clinical symptoms. Propensity score was estimated using
stepwise logistic regression,20 considering the following patient and disease variables in the
model: SCID type and genotype, sex, race, and ethnicity of the patient. All available data
was utilized; no imputation was used for missing data, but patients with missing covariates
were included in survival models using a missing category for that covariate.

Lancet. Author manuscript; available in PMC 2024 July 08.
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Role of the funding source

RESULTS

The funders of the study had no role in study design, data collection, data analysis, data
interpretation, or writing of the report. PIDTC investigators independently controlled the
conduct of the study and had final approval of the manuscript.

Table 1 lists baseline characteristics and median length of follow-up of surviving patients
during each interval. Of all the intervals studied, 5-year OS for 2010-2018 was highest at
87% (95% CI 82:1-90:6%). In contrast, 1982-1989, 1990-1999, and 2000-2009 had OS
of 72:4% (CI 63-1-79-7%), 72-6% (Cl 66—-78%), and 73% (CI, 67-3-77-8%), respectively
(p=0-001; Figure 1A and appendix p10 Table S1). OS was high and unchanged between
intervals when HCT was performed using HLA-matched sibling donors (92-100%, Figure
1B; p=0-577); however, OS after HCT from other donor sources improved only after 2010
(Figure 1C, D). The improved OS after 2010 was observed irrespective of conditioning
intensity, defined as: no conditioning/immune suppression (none/IS), p=0-031; vs. reduced
intensity conditioning (RIC) or myeloablative conditioning (MAC); p=0-001 (appendix p7
Figure S3). As major changes in transplant approaches have occurred over the past 20
years, a sub-analysis of OS for interval 2000-2018 was performed (appendix p8 Figure
S4). In this contemporary era, no survival advantages were seen when comparing different
non-HLA-matched sibling donor options (p=0-567), conditioning intensities (p=0-389), or
stem cell sources (p=0:096). Causes of death, separated by the trigger for diagnosis, are
described in appendix pl11, Table S2.

To understand factors contributing to improvement in survival since 2010, a full summary
of demographic, clinical, and transplant-related factors with the potential to impact survival
were collected and analyzed. There were no differences in race distribution (p=0-511)
between time intervals, but a higher proportion of patients of Hispanic/Latino ethnicity
enrolled after 2000 (about 25%) compared to earlier intervals (10-17%; p<0-001) (Table 1).
Sex differences in each interval (p=0-018) reflected the contribution males with X-linked,
IL2RG-deficient SCID, the most prevalent genotype. Although most patients were classified
as typical SCID (83%, n=747), the percentage diagnosed with atypical SCID increased from
11-3% in the 1980s to 32-5% after 2010 (p<0:001; Table 1). Importantly, SCID genotype
distribution changed over time (p<0-001). As previously described,! the predominant
genotype group, /L2RG and JAK3, made up one-third of this cohort, but more patients
were recently identified with RAGZ and RAG2 mutations, which increased from 1-7% in
the 1980s to 23-4% after 2010. This was associated with an increased proportion of patients
identified as having atypical SCID in the most recent time interval (Table 1). Conversely,
unknown genotypes decreased from 53% in the 1980s to 12-7% after 2010.

Prior to 2010, 32:1-32:9% of SCID diagnoses were made after pre-emptive testing due to
FH and 64-7-66-8% due to presenting with clinical illness (Table 1). By contrast, between
2010-2018, 48:5% of patients were diagnosed after a positive SCID NBS vs. 33-2% due to
clinical illness (p<0-001). Indeed, by 2015-2018, detection by NBS accounted for 65-5% of
cases (p<0-001; appendix p12 Table S3).

Lancet. Author manuscript; available in PMC 2024 July 08.
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Infection status also improved over time (p<0-001) (Table 1). From 1982-1989, 59-1%

of the patients were transplanted with active infections, which by 2010-2018 dropped to
30:6%. The proportion of patients with no prior history of infections at HCT also rose,
from 18-3% during 1982-1989 to 49-3% during 2010-2018. Active infections at HCT were
remarkably fewer in patients diagnosed by NBS or FH (Table 2) (p<0-:001). Over half of
the children who presented to medical attention due to clinical illness did not clear their
infections prior to HCT, in contrast to those diagnosed by FH (24-1%) or NBS (20-8%)
(Table 2). Furthermore, within the group identified due to clinical illness, infection status
at HCT was unchanged throughout the 36 years of this study (p=0-269; appendix p13
Table S4). In contrast, more children diagnosed by FH or NBS underwent HCT with no
prior history of infections (51-8% and 66-2%, respectively), compared to only 11-1% of
children brought to medical attention based on clinical illness (Table 2). For 2010-2018,
most children diagnosed by FH (87-8%) or NBS (79:2%) proceeded to HCT without active
infections (Table 2).

Age at transplant was stable from 1982 to 2009, with median ages of 193 (1982-1989), 190
(1990-1999), and 187 (2000—2009) days (appendix p14 Table S5). However, in the era of
NBS (2010-2018), the median HCT age dropped to 111 days (p<0:001) and even lower (94
days) for those with typical SCID (p<0-001). Patients diagnosed by FH had median age of
67 days (n=257), compared to 92-5 (n=130) and 222 (n=505) days for diagnoses triggered
by NBS or clinical illness, respectively (p<0-001) (Table 2). The same differences were
observed when the analysis was limited to the 2010-2018 time interval (p<0:001) (Table 2).

Transplant-related factors, including donor choice, stem cell source, conditioning intensity,
T-cell depletion strategies and prophylaxis to prevent graft-versus-host disease (GVHD),

as well as GVHD outcomes were analyzed (Table 1). While use of HLA-matched sibling
donors remained stable over 36 years, transplants using HLA-mismatched related donors
facilitated by extensive T-cell depletion dropped from 79:1% to 23.5%. Stem cell products
diversified over time, with bone marrow predominantly used from 1982-89 (94-6%)
decreasing to 54-5% after 2010, with concomitant increases after 2010 in cord blood
(26:3%) and peripheral blood stem cells (19%). Measures to minimize GVHD were
predominantly graft manipulation (e.g., T-cell depletion with soybean lectin, 67%) from
1982-89, with prophylactic immune suppressive medications and antibodies targeting T-
cells primarily used after 2010 (66-1%). Historically, HCT was more commonly performed
with no conditioning (67-8% from 1982-1989); however, by 2010-2018, this approach was
utilized in only 23:1% of patients. Reduced-intensity conditioning, which did not exist in the
earliest time interval studied, was the most common preparative regimen employed by 2010-
2018 (36-6%). Finally, while the incidence of chronic GVHD was generally unchanged,
severe grade 3—4 acute GVHD decreased by 2010-18 (p=0-025; p9 Figure S5).

On univariate analysis, 5 year OS for those presenting with clinical illness, FH, or NBS was
80% (95% Cl, 69-5%—-87-0%), 85-4% (95% CI, 71-8%-92-8%), and 92:5% (95% ClI, 85-8%
-96-1%), respectively (p=0-043) (Figure 2). In pairwise comparisons, the only significant
difference in OS was between NBS and presentation with clinical illness (p=0-012); there
were no differences in OS between NBS and FH (p=0:184) or FH and clinical illness
(p=0-491). To further establish factors underlying the improvement of OS after 2010, MVA

Lancet. Author manuscript; available in PMC 2024 July 08.
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was performed using patient and transplant-related variables found to be significant on
univariate analysis (Table 3). Upon adjusting for active infection at HCT (p<0-001), age

>3-5 months at HCT (p=0-001), genotypes with inferior OS (ADA, DNA repair defects, plus
rarely identified and unknown genes) compared to the most frequent genotype, /L2RGIJAK3
(p<0:001), and Black/African-American race (p<0-001), the decade in which HCT occurred
was no longer a significant determinant of OS (p=0.-097) (Table 3). Since active infection

at HCT and age at HCT are strongly associated with trigger for diagnosis as previously
discussed, we further examined the independent impact of trigger for diagnosis on OS
without adjusting for active infection and age at HCT. In MVA adding trigger for diagnosis
but removing age and infection status at HCT, we found that NBS, along with a positive
family history, impacted OS [HR 0.32 (95% Cl, 0.15-0.67); p=0.003 and HR 0.52 (95%

Cl, 0.37-0.74); p <0.001, respectively] (appendix p8 Table S6). To verify that the impact of
NBS was not attributable to the confounding variable of time interval, since NBS is available
only since 2010, a subgroup MVA was performed on the 2010-2018 cohort. This analysis
confirmed that compared to clinical illness [n=70; HR 2-96 (95% ClI, 1.32-6:65); p=0-008],
NBS as a trigger for diagnosis improved OS after HCT but was similar to those presenting
by FH [n=40; HR 1-70 (95% ClI, 0-59-4-86); p=0-322]. Additionally, a sensitivity analysis
was performed on this subgroup using propensity scoring to further reduce the effects of
confounding bias that can occur in observational datasets. This analysis again confirmed that
from 2010-2018, presentation with clinical illness had a detrimental effect on OS [n=70; HR
2:55 (95% Cl, 1:12-5-80); p=0-026]. Finally, having typical SCID and Hispanic ethnicity
were significant predictors for being identified by NBS (odds ratio (OR) for atypical vs.
typical = 0:41, 95% CI 0-21-0-80; p=0-009; OR for Hispanic vs. Non-Hispanic=2-45, 95%
Cl 1.15-5-24, p=0:020), the latter highlighting that population-based NBS has improved
detection of SCID in infants from this disadvantaged ethnic background.

DISCUSSION

The PIDTC’s 36-year experience of transplanting 902 children with SCID, the largest
natural history study of SCID transplants published to date, provides an exceptional
opportunity to study the impact of NBS on survival after HCT. Contrary to a steady
improvement in OS that might have been expected with incremental advances in care, only
during the most recent interval, 2010-2018, did our data demonstrate stark improvement in
OS (Figure 1A). To confirm our hypothesis that NBS would be associated with improved
0OS, MVA was performed. Infection status, age at HCT, genotype, and race remained
independently significant. A second MVA was also performed which definitively confirmed
that NBS was independently associated with improvement in OS. To do this, both age and
infection status at HCT were removed from the analysis. Being that both are strongly linked
to NBS, it was not appropriate to include them within the model as independent predictors.
Notably in both MVVA models, being transplanted after 2010 no longer had an impact (Table
3 and Supplementary Table S6). Since NBS is strongly linked to time interval as it has

been available only from 2010 onward, a MVA subanalysis focused only on trigger for
diagnosis between 2010-2018 was performed (Table 3). This confirmed that the effect of
NBS on improved OS was independent of time interval. Thus, advances in HCT approaches
did not explain the survival advantage seen after 2010, but instead this advantage was due

Lancet. Author manuscript; available in PMC 2024 July 08.
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to infants receiving HCT earlier in life and without active infections. While HCT early
in life and without active infection was not unique to the post-2010 time interval, both
circumstances became more prevalent as population-based NBS for SCID became more
widespread (appendix p6 Figure S2).

NBS for SCID first became possible after 200522 with the development of a DNA-based
dried blood spot quantification of TRECs,23 a biomarker for T-cell development, absence

of which identifies nearly all cases of SCID. All 50 states?* and four Canadian provinces
have been performing NBS for SCID since the end of 2020%° (personal communication, Paul
Van Caeseele, M.D. FRCPC; Zaiping Liu, M.D, FRCPC; Huiming Yang, M.D., FRCPC;
appendix p6 Figure S2). The PIDTC dataset is well-poised to evaluate the impact of SCID
NBS on survival after HCT. Its longitudinal database not only encompasses years before and
during implementation of SCID NBS, but also reflects extensive efforts in the attribution of
a single, initial trigger for how children with SCID were first brought to clinical attention.
This information cannot be simply assumed based on an imputed system of birth date, birth
state, and onset of a state’s NBS programme,# and publications from even large individual
states?6 or small countries?’ lack non-screened control data.

While resolution of infections prior to HCT has been a universally favorable predictor for
05,910 3 study by the Stem Cell Transplant for Primary Immune Deficiencies in Europe
(SCETIDE) Registry found no survival advantage based on younger age at HCT.12 In their
cohort of 338 patients with SCID transplanted between 20062014, age less than or >3.5
months at HCT had similar 2-year OS (87-8% vs 82:0%, p=0-15). It is unclear why this age
cut-off observed in other studies did not significantly impact OS in the SCETIDE analysis;
however, infants who died due to being too sick to undergo HCT were not included. It is also
possible that transplant age and infection status were linked, a circumstance that could have
masked an effect of age alone in this cohort of smaller sample size than the PIDTC cohort.

Two other factors that influenced OS on MVA in the PIDTC dataset were race and genotype.
African American/Black children, about 10% of the cohort, had the highest risk of death
(HR 2-33; 95% Cl, 1-56-3-46; p<0:001). While NBS should diminish racial disparities by
universally identifying SCID in the newborn period, other racial inequities in HCT outcomes
have been reported.28 Our data highlight the need to identify contributors to this finding

in the SCID population. Finally, we confirmed our prior findings that certain genotypes

had worse OS, including those causing DNA repair defects (DCLREIC/LIG4/NHEJI) and
ADA SCID.” This also contrasts with data from the smaller SCETIDE cohort in which OS
was similar between genotypes.12 NBS also improved detection of children with RAG1/2
mutations, whose diagnosis would otherwise have been delayed due to their hypomorphic
phenotype; identification of infants with these and other rarer genotypes correlated with a
decrease in the proportion of patients with unknown gene defects in the last decade.

During the last four decades, approaches to HCT for SCID have evolved. Prior to the
introduction of NBS, many infants presented with severe infections and were transplanted as
quickly as possible, often in the face of active infections and using HLA-mismatched related
donors.1:69.10 |n our dataset, OS using HLA-matched sibling donors had the best survival
throughout all decades, while OS when using non-sibling donors improved significantly
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only after 2010 (Figure 1). Furthermore, HCTs were often performed without conditioning,
as graft rejection was low in the absence of T cells,! but this practice has also changed with
most now receiving conditioning. Acute GVHD, an important complication of HCT, showed
declines in incidence of grades 3—4 since 2010, while chronic GVHD remained unchanged,
another important area for future studies.

Several limitations exist for this study. Due to the nature of this diverse patient population
and intervention being studied, there are innate biases introduced such as lead-time bias.
This is common in studies evaluating screening programmes and makes it statistically
challenging to show their direct benefit; however, earlier diagnosis and increased likelihood
of being infection-free at HCT demonstrate the advantages of NBS. Furthermore, it is not
possible to directly evaluate survival in infants “exposed” to NBS versus not. We were best
able to overcome this limitation by studying the role of the trigger for diagnosis as it related
to transplant survival, thereby isolating those brought to medical attention by NBS compared
to other means. For the MVA, since factors on the causal pathway could impact results, a
sensitivity analysis was performed which confirmed the original MVA results. Additionally,
since this study included only those children who were transplanted, those who may have
been identified by NBS but died prior to HCT were not assessed. Race and ethnicity data
were obtained from medical records and may not have been self-reported. Moreover, factors
specifically addressing why race impacted HCT survival, including whether there were
differences in diagnostic trigger or timely access to treatment, could not be ascertained and
will need future study. Selection biases in this patient population may also exist, partially
addressed by requiring participating centers to offer enrollment to all patients with SCID
treated at their sites; but not all SCID transplants are performed at PIDTC sites.

Other factors need to be considered in support of SCID NBS programmes both regionally
and globally. Without a population-based NBS programme, babies with SCID are generally
asymptomatic at birth, typically presenting with life-threatening infections within the first
year of life. The economic burden of managing these sick infants, as well as additional risks
and higher cost of treatment when they eventually proceed to HCT, is tremendous 2° and can
shift resources away from other public health initiatives. Finally, while advocacy is strong
for NBS, implementing policies in countries where there is ubiquitous use of live vaccines at
birth may be challenging.3°

In conclusion, the PIDTC has provided the largest longitudinal transplant dataset to date for
SCID and includes the era of NBS implementation. Our findings summarize the evolution
of almost four decades of transplant practices and provide direct evidence that NBS for
SCID has been the primary driver of improved survival in the United States and Canada
since 2010. This study can assist in supporting global health efforts to expand SCID NBS
worldwide.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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PANEL: RESEARCH IN CONTEXT
Evidence before the study

We searched PubMed from inception to November 1, 2022, examining publications
focused on outcomes after allogeneic hematopoietic cell transplantation (HCT) for
severe combined immunodeficiency (SCID) when considering newborn screening (NBS).
Keywords used included “severe combined immunodeficiency”, “hematopoietic stem

cell transplantation,” and “newborn screening.” This yielded 123 articles from centers
throughout Asia, Europe, North America, and South America. Review articles, book
chapters, and non-clinical papers were excluded. No randomized controlled trials were
identified. Risk factors for poor overall survival after HCT, including active infections at
transplant, were extensively described in the literature. While several case reports, single-
and multi-institutional retrospective studies, and clinical trials postulated that SCID NBS
is needed to improve survival outcomes, no publications definitively measured the impact
of NBS for SCID upon survival.

Added value of the study

This is the first time that comparative data have shown the benefit of SCID NBS,
accounting for improved survival after allogeneic HCT for infants lacking an HLA
matched related donor. Beginning in 2008, SCID NBS, accomplished by quantifying
T-cell receptor excision circles DNA from newborn dried blood spots, has been adopted
across the United States and increasingly in Canadian provinces, as well as in multiple
countries throughout the world. By evaluating time intervals both before and after the
launch of NBS and ascertaining which infants were identified by NBS in the large,
longitudinal dataset of the Primary Immune Deficiency Treatment Consortium (PIDTC),
we were able to demonstrate a substantial favorable impact of NBS on survival, even
after adjusting for era of transplantation, when advancements in supportive care and
transplant practices might also have driven improvement in survival. Since randomized
controlled studies will never be possible to test the advantages of population-based SCID
NBS, our analysis, which spans the years of introduction of SCID NBS, provides the
strongest level of support for this public health programme.

Implications of all the available evidence

After initiation of SCID NBS, the United States and Canada have witnessed enhanced
survival of patients with SCID independent of advances in preventing infections and in
transplantation procedures. Despite differences in local medical practice, the ability to
identify infants with SCID early through NBS and to provide allogeneic HCT prior to the
onset of life-threatening infections has the potential to save lives worldwide.
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Figure 1. Overall Survival by Donor Source
A, Entire cohort; B, matched sibling donors; C, matched other related and unrelated donors;

and D, mismatched related donors. All donor sources other than HLA-matched siblings
showed improvement in survival during 2010-2018. HLA-matched sibling transplantation
showed superior survival throughout all time intervals.
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No. at Risk
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Clinical Presentation 89 69 57 44 37 25
Trigger Timepoint Cumulative 5-95% Confidence
(years) incidence interval
Clinical illness 0.5 0.899 0.814-0.946
1 0.853 0.760-0.911
2 0.814 0.714-0.882
5 0.799 0.695-0.870
FH 0.5 0.898 0.772-0.956
1 0.877 0.747-0.943
2 0.854 0.718-0.928
5 0.854 0.718-0.928
NBS 0.5 0.946 0.890-0.974
1 0.946 0.890-0.974
2 0.938 0.879-0.968
5 0.925 0.858-0.961

1duosnuely Joyiny

Figure 2. Overall Survival 2010-2018, Based on Trigger for Diagnosis
Survival was evaluated more closely during the time interval when NBS became available.

The global significance of improved survival with NBS (P=0.043) was driven by differences
between NBS and the clinical illness group (~£=0.012) rather than differences in survival
between NBS and FH (P=0.184).

Abbreviations: FH, family history; NBS, newborn screening.
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Multivariable Analysis? of Independent Factors Having Significant Detrimental Impact on Overall Survival
(1982-2018), Including Subgroup Analysis (2010-2018)

Categories and variables Frequency of event Hazard ratio estimateC (95% Pvalue | overall p valued
(n)b confidence interval)
TOTAL GROUP ANALYSIS (1982-2018)
Infection at time of transplant
No infection 241 1.00 -
Actively infected 324 2:41 (1.56-3-72) <0-001
<0-001
Resolved infection 189 1.24 (0-76-2-03) 0-382
Unknown infection status 20 1.81 (0:78-4-23) 0-169
Age at transplant
<3-5 months 238 1.00
0-001
235 months 536 2:12 (1-38-3-24) 0-001
Genotype
ILZRG/IAK3 274 1.00 -
ADA 46 2:22 (1-23-4-01) 0-008
DCLREIC/LIG4/NHEJ1 31 3:67 (1-83-7-35) <0:001
IL7R, CD3(any), CD45 66 126 (0-68-2-34) 0464 | <0001
RAGI, RAG2 83 1.72 (0:96-3-09) 0-069
Other identified genotypes 25 3:32 (1-48-7-45) 0-004
Unknown/not reported 249 2:50 (1.77-3:54) <0:001
Race
White 545 1.00 -
Native American/Native Alaskan 31 0-92 (0-45-1-85) 0-810
Asian/Pacific Islander 31 1.84 (0-98-3-44) 0-058 <0:001
Black or African American 72 2:33 (1-56-3-46) <0-001
Unknown/Not declared 95 1.56 (1-05-2-30) 0-026
Time interval of transplant
1982-1989 102 1.00 -
1990-1999 192 1.20 (0:79-1-81) 0-388
2000-2009 255 1.26 (0-83-1.91) 0-276 0097
2010-2018 225 0-73 (0-43-1-26) 0-261
SUBGROUP ANALYSIS (2010-2018)¢
Trigger for Diagnosis
NBS 115 1.00
FH 40 1.70 (0-59-4-86) 0-322 0-031
Clinical lllness 70 2:96 (1:32-6-65) 0-008
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From 2010-2018, active infection, older age, genotypes other than /L2RG/JAK3, and Black/African American race had detrimental impact for
survival, while decade of transplant had no impact. A subgroup analysis (2010-2018) confirmed that the impact of NBS on survival may be
attributed to earlier age and fewer infections at HCT rather than time interval of HCT.

aNon—significant variables that were also included in the MVA were type of SCID (typical vs atypical24), trigger for diagnosis (FH, NBS, or
clinical illness), ethnicity, donor type, stem cell source, conditioning regimen, GVHD prophylaxis, and use of T cell depletion. This MVA did not
include HCT from HLA-matched siblings, who had consistently high rates of OS in all time intervals. Including the HLA-matched sibling group
would have hampered the ability to detect differences between the trigger for diagnosis groups in the non-sibling donor categories.

b“n" is the number of subjects in the category of the variable; the “n event” is defined by death.

C“Hazard ratio estimate” is the hazard ratio, with 95% confidence interval, for the event of death.

d“OveraII p value” provides the overall significance of the variable in the model.

eSubgroup analysis (2010-2018) was performed looking at the effect of trigger for diagnosis in the era of NBS, adjusted for genotype and race as

in overall model (1982-2018). Note that infection status and age at transplant were omitted from the variables adjusted for in the subgroup analysis,
since these are on the causal pathway from trigger for diagnosis to survival.

Abbreviations: FH, family history; GVHD, graft-versus-host disease; HCT, hematopoietic cell transplantation; HLA, human leukocyte antigen;
MVA, multivariable analysis; NBS, newborn screening; OS, overall survival; SCID, severe combined immunodeficiency.
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