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Aims To develop an automated method for bloodpool segmentation and imaging plane re-slicing of cardiac computed
tomography (CT) via deep learning (DL) for clinical use in coronary artery disease (CAD) wall motion assessment
and reproducible longitudinal imaging.

...................................................................................................................................................................................................
Methods
and results

One hundred patients who underwent clinically indicated cardiac CT scans with manually segmented left ventricle
(LV) and left atrial (LA) chambers were used for training. For each patient, long-axis (LAX) and short-axis planes
were manually defined by an imaging expert. A DL model was trained to predict bloodpool segmentations and
imaging planes. Deep learning bloodpool segmentations showed close agreement with manual LV [median Dice:
0.91, Hausdorff distance (HD): 6.18 mm] and LA (Dice: 0.93, HD: 7.35 mm) segmentations and a strong correlation
with manual ejection fraction (Pearson r: 0.95 LV, 0.92 LA). Predicted planes had low median location (6.96 mm)
and angular orientation (7.96�) errors which were comparable to inter-reader differences (P > 0.71). 84–97% of
DL-prescribed LAX planes correctly intersected American Heart Association segments, which was comparable
(P > 0.05) to manual slicing. In a test cohort of 144 patients, we evaluated the ability of the DL approach to provide
diagnostic imaging planes. Visual scoring by two blinded experts determined >_94% of DL-predicted planes to be
diagnostically adequate. Further, DL-enabled visualization of LV wall motion abnormalities due to CAD and pro-
vided reproducible planes upon repeat imaging.

...................................................................................................................................................................................................
Conclusion A volumetric, DL approach provides multiple chamber segmentations and can re-slice the imaging volume along

standardized cardiac imaging planes for reproducible wall motion abnormality and functional assessment.
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Introduction

Accurate and reproducible morphofunctional assessment of the left
ventricle (LV) is crucial as LV morphology, volumes, ejection fraction
(EF), and regional function are critical parameters used in the diagno-
sis,1 clinical management, prognostication, and follow-up of numer-
ous cardiovascular and systemic diseases.2,3 The assessment of LV
parameters is included in clinical guidelines1–3 and is used for both in-
clusion criteria and endpoints in clinical trials.4 In addition, regional LV
wall motion abnormalities for 17 American Heart Association (AHA)
LV segments are assessed using standardized views and are important
for the evaluation of cardiac pathology, including coronary artery dis-
ease (CAD).5,6 Beyond the LV, the assessment of the left atrium (LA)
provides additional insight into cardiovascular disease and function
and is particularly important in evaluating patients with atrial fibrilla-
tion, valvular disease, and diastolic heart failure.7

Cardiac computed tomography (CT) is a safe and cost-effective
non-invasive imaging modality for the evaluation of suspected CAD8

and acute chest pain.9 Cardiac CT is an important prognostic tool in
CAD and can be used to follow-up patients with atherosclerosis who
are at increased risk of worsening stenosis severity and number of
coronary vessels involved.10,11 While qualitative morphofunctional
assessment is possible by reviewing phases of the cardiac cycle in a
cine loop, quantitative assessment requires accurate segmentation,
often requiring manual annotation of the images. Further, as images

are acquired volumetrically, visualization of wall motion abnormalities
requires generating standard imaging planes such as multiple long-
axis (LAX) planes and one short-axis (SAX) stack.12 Currently, this
requires specialized viewing software13 and manual processing which
may lead to inter-reader variability, limiting clinical use.

Several deep learning (DL) algorithms have been developed for
cardiac image segmentation14,15 but an approach that can perform
segmentation and determine standard imaging planes has not been
described. Previously, regions of interest16,17 and three orthogonal
projections (axial, coronal, and sagittal)18,19 have been used as inputs
for neural networks designed to segment cardiac chambers. More re-
cently, fully convolutional networks (FCN) such as the ‘U-Net’20

have been shown to provide high pixel-wise segmentation accuracy
and capture more global context. For example, a 2D U-Net with
cross-entropy loss has shown the highest LV segmentation accuracy
(Dice = 0.968) in the ‘ACDC’ dataset which is the largest publicly
available cardiac MRI dataset;21 Baskaran et al. 22 successfully applied
a 2D U-Net to segment four-chamber images in cardiac CT in a 2D
slice-by-slice fashion with high accuracy (Dice > 0.91); and Vigneault
et al.23 modified a conventional U-Net to also predict scaling and ro-
tation of 2D MRI images. However, predicting SAX and LAX imaging
planes requires significant global context. Unfortunately, 3D
approaches significantly increase the memory demands. As a result,
input image volumes are typically cropped or downsampled and net-
works have less features. For example, recent efforts first utilize a

Graphical Abstract

312 Z. Chen et al.



..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
localization network for coarse detection of heart and then applied a
3D U-Net for segmentation of the heart region.24,25

We propose a variant of a 3D U-Net that performs pixel-wise
segmentation and simultaneously predicts vectors which define
the SAX and LAX imaging planes. We hypothesized that down-
sampled 3D volumes will maintain sufficient network complexity
and image information for accurate blood-pool segmentation and
plane slicing and the shared network architecture will leverage
similarities between the tasks. A fast, automatic, and reproducible
method to both assess left-sided heart chamber volumes and gen-
erate standard cardiac imaging planes from volumetric cardiac CT
images would increase clinical utility and reproducibility by avoid-
ing the need for manual interaction. In this article, we test the
ability of this DL framework to perform automated multi-chamber
segmentation and LAX and SAX plane re-slicing of cardiac CT
image volumes.

Materials and methods

Training population
Studies for training were identified from an existing cohort of patients
with available expert segmentations. Under institutional review board ap-
proval (Study #191797), 100 electrocardiogram (ECG)-gated contrast
enhanced, cardiac CT studies between June 2012 and June 2018 were
retrospectively identified as meeting the inclusion criteria defined below.

Strict inclusion criteria were utilized to maximize training quality: each
study had (i) reconstructed images across the entire cardiac cycle at 10%
intervals and (ii) sufficient quality for bloodpool segmentation as deter-
mined by image analysis expert (author D.M.V.) and slice planning as
determined by a cardiovascular imaging expert (author M.R.). Manual seg-
mentations of LV and LA bloodpool were generated using a standardized
processing pipeline (described below). For each patient, two frames [end
diastole (ED) and end systole (ES)] served as training samples for the DL
model.

Training images were collected at two institutions (67 UCSD, 33
NIH) with three CT systems. Two were long z-axis scanners with
256 detector rows (GE Revolution, n = 41 studies) and 320 detector
rows (Toshiba AquilionONE, n = 47) allowing for a single heartbeat
axial 16 cm acquisition throughout the cardiac cycle. Retrospective
gating using a conventional low-pitch (0.18 ± 0.02, range 0.16–0.22)
helical acquisition over several heart beats was used with the third
scanner (Siemens SOMATOM Force, n = 12). The training studies
were performed for clinical cardiac indications: pre-operative assess-
ment of patients undergoing transcatheter aortic valve replacement
(TAVR, n = 39), suspected coronary artery disease (CAD, n = 38),
and pre-operative assessment of pulmonary vein ablation (PVA,
n = 23).

Manual segmentation and volumetric

assessment
Pixel-wise manual segmentations of the LV and LA blood volumes,
LVm and LAm respectively, (see Figure 1) were confirmed by an image
analysis expert (author D.M.V.) with 7 years of experience in cardiac
image segmentation using ITK-SNAP (Philadelphia, PA, USA).26 From
each segmentation, blood chamber volumes were obtained, and the
function of each chamber was measured via EF (LVEFm and LAEFm,
respectively).

Manual imaging planes and plane vectors
Manual cardiac imaging planes were defined from the volumetric scans
according to standardized guidelines27 by a fellowship-trained cardiovas-
cular imaging expert (author M.R.). A SAX plane at the level of the mitral
valve (MVm), a two-chamber plane (2CHm), a three-chamber plane
(3CHm), and a four-chamber plane (4CHm) were identified for each pa-
tient. The short-axis stack (SAXm) of images was defined to span from
the MVm to the LV apex using 8 mm slice spacing. Each plane was
described by three vectors: xm and ym (defining the plane’s orientation)
and tm (defining the plane’s centre). These vectors are illustrated in
Figure 1A.

Model architecture
The DL model is an adaptation of the standard U-Net architecture20 with
two modifications: (i) 3D convolution, maxpooling, and upsampling layers
were utilized to accommodate 3D CT image volumes as the input and (ii)
a fully connected layer was added after the last max-pooling layer in the
down-sampling path to regress the plane vectors (Figure 1B). 3D CT
images at ED and ES were resampled to 1.5 mm isotropic voxels for all
patients. The DL model labels each voxel as one of three classes (LV, LA,
or background). The three vectors (~tDL,~xDL, and~yDL) were predicted
using three individual fully connected layers. The total loss of the model
was defined to be:

Total loss ¼ wsegLseg þ wtLt þ wxLx þ wyLy

with wi (i = seg, t, x, y) the weight assigned to each loss: Lseg the categorical
cross-entropy loss of the segmentation, Lt the mean square error of the
predicted translation vector~tDL, Lx the cosine proximity error for~xDL,
and Ly the cosine proximity error for~yDL.

Model training
Training was performed in stages. The first stage (‘Model-S’) was
trained to perform LV and LA segmentations (LVDL and LADL, re-
spectively) by assigning wseg = 1, wt = wx= wy = 0. ‘Model-S’ served as
the initialization for the training of subsequent cardiac plane models.
For each plane, two models were trained: one predicted the transla-
tion vector~tDL (‘Model-T’: wseg = wt = 1, wx= wy = 0) while another
predicted directional vectors ~xDL and ~yDL (‘Model-D’: wseg = wx = wy

=1, wt = 0). Each plane (2CH, 3CH, 4CH, and MV) was trained indi-
vidually which led to four translation-vector models and four direc-
tion-vector models, and independent prediction of planes. Models
were trained on ED and ES image volumes.

Training and validation were performed using five-fold cross-validation
with random shuffling for robust unbiased evaluation. As a result, each
model was trained on 80 studies (160 volumes) and evaluated on 20 val-
idation studies (40 volumes). We report model performance across all
folds.

Model evaluation and statistics
Chamber segmentation and assessment of function

Deep learning segmentation accuracy was evaluated using the Dice
coefficient (a volumetric metric) and Hausdorff distance (HD, a sur-
face-based metric). Dice coefficient is defined as 2(jVmanual \ VDLj)/
(jVmanual þ VDL) and measures the overlap between manual and DL
segmentation. The HD measures the local maximum distance be-
tween two surfaces Smanual and SDL. Differences in segmentation ac-
curacy between CT vendors and between different clinical indications
were evaluated using one-way analysis of variance (ANOVA) for Dice
scores.

Deep learning cardiac segmentation and plane prediction from CT 313



Figure 1 Deep learning model training approach and model architecture. (A) 3D computed tomography volumes were first resampled to uniform
spatial resolution (1.5 mm isotopically) and uniform dimension (160 � 160 � 96) and then served as an input to all models. Step 1: Model-S was
trained to predicted LVDL (red) and LADL (green). Step 2: Model-T and Model-D were initialized by Model-S and then trained to predict imaging plane
vectors~tDL,~xDL, and~yDL. A graphic illustration of these three vectors in relationship to the image volume is shown. The blue cube represents the
computed tomography volume with a re-sliced plane in black. The blue dot is the centre of volume and black dot is the centre of plane.~t is the dis-
placement between the blue and black dot and~x and~y are directional vectors of the 2D plane in the volume’s coordinate system. (B) U-Net architec-
ture with added branch consisting of four fully connected layers after the last max-pooling layer in the down-sampling path was used. Conv3D, 3D
convolution layer.
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The accuracy of the segmentation-derived functional assessment was

evaluated by comparing EFDL to manually derived EFm.

Quantitative evaluation of deep learning-predicted

imaging plane vectors

2CHDL, 3CHDL, 4CHDL, and MVDL planes were derived from three pre-
dicted vectors output by ‘Model-T’ and ‘Model-D’. SAXDL was defined to
be parallel to MVDL and span the LV as defined by the DL segmentation.
For each plane, the differences between DL prediction PlaneDL and the
manual plane Planem was assessed via the displacement error Dd be-
tween centre of PlaneDL and that of Planem and angulation error Dh of
PlaneDL:

Dd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1

ð~tm;i � ~tDL;iÞ2
vuut

Dh ¼ cos�1 ~nm �~nDL

~nmj jj j � ~nDLj jj j

� �
;

where normal vectors~n were calculated as the cross-product of~x and~y
and ~nj jj j is the vector length.

Inter- and intra-reader differences in imaging plane

vectors

Ten studies were randomly selected to assess inter- and intra-reader dif-
ferences in the manual delineation of cardiac planes. Reader 1 was the
cardiac imaging expert mentioned above (author M.R.) who generated
the plane annotations for DL training and Reader 2 was a fellowship-
trained cardiothoracic radiologist with 12 years of experience (author
S.K.). Inter-reader differences were assessed by comparison of this 10-
study subset of Planem1 defined by Reader 1 to Planem2 defined by
Reader 2. Intra-reader differences were assessed via repeat delineation
by Reader 1 six months after the initial plane definition.

The DL algorithm was trained on annotations made by Reader 1.
Therefore, two tests were used to evaluate DL predicted planes. First,
the difference between the DL and Reader 1 on the study subset
described above was compared to intra-reader differences. Second, the
difference between DL planes and those defined by Reader 2 was com-
pared to inter-reader differences.

Visual assessment of plane quality

For unbiased assessment of the DL performance (Supplementary mater-
ial online, Figure S1A and B), Reader 2 assessed, in a randomized, blinded
fashion, both the manual planes used for training (Planem, defined by
Reader 1) and resulting DL-predicted planes (PlaneDL). Each plane was
scored as one of four classes: perfect, excellent, good, and inadequate
with the first three classes considered as diagnostically adequate. The cri-
teria for each class can be found in the Supplementary material online.

Quantitative assessment of slice position: AHA wall

assessment

The AHA 17-segment model was used to assess whether manual and
DL-predicted LAX planes intersected the corresponding AHA segment
at the mid-ventricular slice (Supplementary material online, Figure S1C).

Run-time for deep learning-based approach

We performed all DL trainings by using Keras (https://keras.io/) with
TensorFlow (https://www.tensorflow.org/) on an 8-core Ubuntu (ver-
sion: 18.04.3) workstation with 32 GB RAM equipped with a GeForce
GTX 1080 Ti (NVIDIA Corporation, Santa Clara, CA, USA).

The times needed to train the models and to predict the DL chamber
segmentations at ED and ES as well as vectors for four planes (three LAX
and one MV plane) were recorded for each study.

Testing population
We tested our approach on 144 consecutive ECG-gated cardiac cine CT
studies acquired at our institution between January and December 2019
under the same IRB approval. Studies were independent from training
data. All studies had complete cardiac cycle reconstructions, radiology
reports which assessed cardiac function, and a field-of-view which cap-
tured the entire LA and LV chambers. Studies were not included if the
patients had congenital heart disease, images were taken for lead extrac-
tion planning, or studies showed metal implants in the LA or LV (e.g. mi-
tral valve or leads in the LV chamber). Studies with coronary stents were
included. The testing studies were performed for the following clinical
cardiac indications: suspected CAD (n = 74), pre-operative assessment of
PVA (n = 48), TAVR (n = 10), and others (n = 12). For each case, the diag-
nostic utility of DL-predicted frames was scored independently by
Reader 2 and Reader 3 (author L.H., a fellowship-trained cardiovascular
radiologist) using the criteria defined above, see Supplementary material
online. In addition, each reader made a visual prediction of LVEF (to the
nearest 5%) which was compared to the automated segmentation value.

To highlight the utility in the evaluation of segmental LV wall motion
abnormality (WMA), we show four studies with a radiologically con-
firmed diagnosis of coronary artery disease: (i) right coronary artery sten-
osis with inferior wall WMA, (ii) left anterior descending stenosis with
anterior, anteroseptal wall, and apical cap WMA, (iii) left circumflex sten-
osis with mild WMA in the inferolateral wall, and (iv) three-vessel sten-
osis with globally reduced cardiac function. All stenoses and
corresponding WMA were identified on clinical radiologic assessment.
To assess the utility of PlaneDL in longitudinal CT imaging, we show
PlanesDL generated for two CT studies obtained 71 days apart in the
same patient (before and after chemotherapy) as part of the cardio-on-
cology evaluation.

Statistical evaluation
Unless otherwise indicated above, data are reported as median (with
interquartile range) given non-normality on Shapiro–Wilk testing.
Pearson correlation and two-tailed paired Student’s t-test were per-
formed to test agreement between the DL- and manually derived EF.
Two-tailed categorical z-test was used to evaluate differences in the pro-
portion of successful intersecting between PlaneDL and Planem. Spearman
correlation was used to assess visual and DL-derived EF in the validation
cohort. Statistical significance was set at a P <_ 0.05. All analyses were per-
formed in Python version 3.6 with scipy (version 1.1.0).

Results

Of the 100 patients used for training, 60 (60%) were male (age:
67 ± 16) and 40 (40%) were female (age 69± 18). The bloodpool in
the training data had a median intensity of 495 HU (IQR: 401–607,
range: 277–885 HU) for the LV and 541 HU (IQR: 429–664, range:
257–1014 HU) for the LA.

Of the 144 patients used for testing, 89 (61.8%) were male (age:
59 ± 16) and 55 (38.2%) were female (age: 63 ± 15). The bloodpool
in the testing data had a median intensity of 525 HU (IQR: 433–616,
range: 320–1022 HU) for the LV and 544 HU (IQR: 451–632, range:
295–1207 HU) for the LA.

Deep learning cardiac segmentation and plane prediction from CT 315
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Chamber segmentation and assessment
of function
DL-predicted segmentations had median Dice coefficients of 0.907
(IQR: 0.884–0.932) and 0.931 (IQR: 0.913–0.954) (Figure 2A), and
median HDs of 6.2 mm (IQR: 3.7–8.2) and 7.3 mm (IQR: 5.6–9.6) for
the LV and LA, respectively (Figure 2D). There were no statistically
significant differences (P > 0.05) in Dice across vendors but Dice in
the LA did vary with respect to clinical indications (P = 0.001) on
ANOVA testing (Figure 2B and C).

There was close agreement in LVEF (Pearson correlation
r = 0.95, P = 0.49) as well as between LA EF (r = 0.92, P = 0.29)
(Figure 2E and F).

Quantitative evaluation of deep learning-
predicted imaging plane vectors
The median displacement error Dd between Planem and PlaneDL

was 7.0 mm (IQR: 5.0–9.5) across all planes, 6.3 mm (IQR: 4.3–
8.5) for 2CH, 6.2 mm (IQR: 4.3–8.8) for 3CH, 7.2 mm (IQR: 5.5–

9.6) for 4CH and 7.6 mm (IQR: 5.3–11.0) for MV. The median
orientation error Dh between planes was 8.0� (IQR: 5.0–11.7)
across all planes, 9.5� (IQR: 6.0–13.9) for 2CH, 8.3� (IQR: 4.8–
13.0) for 3CH, 7.2� (IQR: 4.6–11.2) for 4CH and 7.5� (IQR: 4.8–
9.4) for MV.

Intra and inter-reader differences in
imaging plane vectors
Deep learning-reader orientation differences Dh were not significant-
ly different (P > 0.05) compared with the corresponding inter- and
intra-reader difference (Figure 3, Table 1). In terms of displacement
differences Dd; the 3CH and 4CH DL-reader1 difference was signifi-
cantly smaller (P < 0.05) than the intra-reader difference (Figure 4A).

Visual assessment of plane quality
The deep-learning approach yielded diagnostically adequate imaging
planes for a large percentage (>_94%) of cases across all slice plane

Figure 2 Close agreement between deep learning and manual chamber segmentation and function assessment. (A) Dice coefficient for two cham-
bers of interest, the left ventricle and left atrial was high. (B) Dice coefficient for three computed tomography scanners. (C) Dice coefficient for three
types of clinical indications. (D) Hausdorff distance for left ventricle and left atrial. (E) Correlation of left ventricular ejection fraction derived using
manual and deep-learning segmentation was close to identity (dashed) line with a fit (solid) of left ventricle EFDL = 0.92EFmþ 6.64 and Pearson correl-
ation r = 0.95 with P < 0.001. (F) Left atrial ejection fraction correlation was close to identity (dashed) line with fit (solid) of left atrial EFDL = 1.09EFmþ
0.96, and Pearson correlation r = 0.92 with P < 0.001.
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Figure 3 Comparison of long-axis plane location and angulation differences between readers and deep learning. Plane displacement (A) and orien-
tation (B) differences between deep learning and Reader 1 (first red boxplot) were compared to intra-Reader 1 differences (first blue boxplot) and
differences between deep learning and Reader 2 (second red boxplot) were compared to inter-Reader differences (second blue boxplot) for each
long-axis plane. The asterisk (*) indicates significant differences. CH, chamber.
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Table 1 Comparison of LAX plane location and angulation differences between readers and deep learning

Intra-reader 1

difference

DL-reader 1

difference

P-value Inter-reader

difference

DL-reader 2

difference

P-value

2CH Dd (mm) 8.3 (7.3,13.3) 5.9 (5.0,7.0) 0.20 14.4 (7.1,21.8) 13.4 (7.9,20.0) 0.91

Dh (degree) 7.8 (5.4,14.1) 7.3 (4.7,11.2) 0.57 10.6 (7.2,11.8) 10.9 (5.1,14.2) 0.75

3CH Dd (mm) 11.2 (8.0,14.2) 6.9 (6.0,7.5)a 0.04 15.3 (9.2,18.4) 15.5 (10.8,18.7) 0.76

Dh (degree) 8.6 (5.7,10.3) 9.3 (7.7,12.5) 0.35 12.2 (11.9,18.4) 15.5 (11.4,21.2) 0.71

4CH Dd (mm) 15.9 (10.6,19.5) 6.5 (3.7,7.5)a 0.003 12.1 (8.5,13.7) 9.6 (9.1,12.7) 0.84

Dh (degree) 7.3 (6.0,10.1) 7.0 (4.0,8.8) 0.35 10.6 (5.3,13.4) 11.1 (8.7,12.9) 0.82

Intra-reader 1 differences represent variation in planes planned by the same reader 6 months apart. Given that the DL approach was trained on slice planning by reader 1, DL-
reader 1 differences were compared to intra-reader 1 differences. Inter-reader variation captures variation in slice planning by two different readers. DL-reader 2 differences
were compared to inter-reader values. Differences were reported as median (IQR).
aIndicates a significant difference (P < 0.05).

Figure 4 Deep learning agrees with manual slice planning and correctly visualizes corresponding AHA segments. (A) Rows 1–3: For each long-axis
imaging plane, Column 1 shows the slice location on the short-axis slice (mid-ventricular slice for 2CH and 4CH and basal slice for 3CH). Columns 2–
4 depict the corresponding images. Rows 4–5: For the short-axis mitral valve and mid-ventricular plane, Column 1 shows the slice position of the
plane on the 2CH long-axis. Columns 2–4 depict the short-axis images: Planem1, (plane resliced by Reader 1), Planem2, (plane resliced by Reader 2)
and PlaneDL (deep learning-derived slice). (B) Six mid-ventricular AHA segments are shown as arcs on a mid-ventricular short-axis slice. The percent-
age of cases in which a wall was correctly intersected by the associated long-axis plane are shown for the 2CH (red solid line, lower left), 3CH (green
solid line, top left), and 4CH (blue solid line, right) planes. There is close agreement between the manual planes (reported in cyan) and deep learning
(yellow). A, anterior; AL, anterolateral; AS, anteroseptal; I, inferior; IL, inferolateral; IS, inferoseptal.
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locations (Table 2, representative patient shown in Figure 4A, distribu-
tion of scores in Table S1).

Quantitative assessment of slice position
via AHA wall assessment
The proportion of cases with correct AHA segment inclusion was
not significantly different between Planem and PlaneDL for all AHA
walls (two-sided z test, P > 0.05) except the anterior wall which had a
lower likelihood of being visualized by the 2CH plane (P = 0.02)
(Figure 4B, Table 3).

Run-time for deep learning-based
approach
Each model was trained for 50 epochs with each epoch using ap-
proximately 170 s in our workstation. The time needed to predict

two segmentations (ED and ES) as well as four imaging planes
(2CHDL, 3CHDL, 4CHDL, and MVDL) was 29.7± 4.0 s.

Assessment of the utility of deep
learning-predicted planes on test cases
DL yielded diagnostically adequate imaging planes for a large percent-
age (>_99% by Reader 2 and >_94% by Reader 3) of cases across all
slice plane locations (Table 4, Table S2).

There was close agreement between the visual estimation of ejec-
tion fraction by readers and quantification via automated segmenta-
tion. Specifically, linear regression demonstrated a strong correlation
(Spearman q=0.93 and 0.95 for Reader 2 and 3, respectively). In add-
ition, classification of EF < 40%, 40–50%, and >50% with the DL ap-
proach agreed with visual prediction in 88.9% and 80.5% of cases for
Reader 2 and 3, respectively (Table 5).

Deep learning-predicted planes of four test CT studies with CAD
provided visualization of both regional and global LV wall motion
abnormalities recorded in the radiology report (Figure 5A,
Supplementary material online, Video S1). The DL model generates
similar planes in two CT studies of the same patient acquired as part
of a longitudinal study (Figure 5B, Supplementary material online,
Video S2).

Discussion

In this study, we developed and evaluated a DL network that auto-
matically predicts cardiac chamber volumes as well as standardized
cardiac imaging planes from volumetric CT data using a shared model
architecture. The DL approach generated high-quality segmentations
(median Dice = 0.907 and 0.931 for LV and LA, respectively) and had
a strong correlation (Pearson r > 0.9) with manually derived EF.
Furthermore, DL-predicted planes had low errors in spatial displace-
ment and angulation and intersected the relevant mid-ventricular
myocardial segment in a high proportion of cases. Testing the DL net-
work in a series of 144 consecutive cine CT cases demonstrated our
approach generates diagnostically useful imaging planes and auto-
mated segmentation leads to EF estimation that is in agreement with
visual interpretation. We highlight the utility of our DL-predicted
planes in the evaluation of LV wall motion abnormality and for repro-
ducible longitudinal assessment in a sample of test cases with known
pathological findings.

In our approach, a 3D image volume (at 1.5 mm isotropic voxel
size) was utilized as the input for blood pool segmentation and image
plane re-slicing. While a 3D approach significantly increases the mem-
ory utilization, the choice was intended to preserve volumetric con-
text to enable accurate slicing of the LAX and SAX imaging planes.
Other DL approaches for CT chamber segmentation have utilized
portions of the volume as the image input; Dormer et al.16 and Zreik
et al. 17 input patches and performed patch-wise image classification
while Mortazi et al. 18 and Wang et al. 19 used three orthogonal pro-
jections (axial, coronal, and sagittal) as inputs. Despite the feature
vector depth being limited due to memory constraints, our 3D ap-
proach led to segmentation accuracy comparable to recent work by
Baskaran et al.22 which applied a 2D U-Net to segment CT in a 2D
slice-by-slice fashion and achieved Dice >0.91 for all four chambers.

The feasibility of predicting imaging planes was previously shown in
2D by Vigneault et al.23 in which a conventional U-Net was modified

.................................................................................................

Table 2 Diagnostic adequacy of manual and deep-
learning imaging planes as scored by cardiothoracic
imaging expert

Planem (%) PlaneDL (%)

2CH 100 100

3CH 100 94

4CH 100 98

SAX 100 100

Planem, plane manually resliced; PlaneDL, plane predicted by DL model.

.................................................................................................

Table 3 Assessment of AHA wall visualization for
manual and DL-based cardiac planes

Planem (%) PlaneDL (%) P-value

2CH Inferior 100 97 0.08

Anterior 99 92 0.02*

3CH Inferolateral 84 84 1

Anteroseptal 100 97 0.08

4CH Inferoseptal 100 97 0.08

Anterolateral 98 97 0.65

Percentage of cases in which the LAX plane correctly intersects corresponding
AHA wall was shown.
Significant P-values are shown by asterisk.

.................................................................................................

Table 4 Diagnostic adequacy of deep-learning imaging
planes in the testing group as scored by imaging experts

Reader 2 (%) Reader 3 (%)

2CH 99 99

3CH 100 94

4CH 100 95

SAX 100 100
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.to predict a scaling and rotation of MRI images. Other efforts to use
DL for plane prediction have focused on cardiac MRI. Le et al.28 and
Blansit et al.29 recently presented DL-based cardiac MRI plane pre-
scription by using DL to localize the anatomical landmarks that mimic
how an expert performs slice planning on 2D MR. However, this is
not required during CT acquisitions as they are volumetric.

Compared with manual annotation, our approach automatically
and quickly analyzed the series of 3D CT image volumes (�30 s for
volumes at ED and ES). This represents a significant improvement as

it usually takes a trained expert around 20 min to obtain volumes
from two 3D image volumes at ED and ES30 and it leads to interob-
server variability. Furthermore, the processing time of our approach
can be readily improved through parallelization, as we currently pre-
dict imaging planes sequentially. While optimization of prediction
time was not the focus of this study, the fast computation time
increases the likelihood of clinical translation.

Our model was trained using annotations provided by one imaging
expert and scored by a second independent blinded reader. The use

Figure 5 Utility of deep-learning slice planning in evaluation of regional wall motion abnormalities and longitudinal assessment of patients. (A) Four
exemplar cases were selected based on radiologically observed with either global (bottom right) or regional (the rest three) left ventricle wall motion
abnormality due to coronary artery disease. Yellow arrows point out the walls with regional dysfunction where the readers can refer to in
Supplementary material online, Video S1. (B) Deep learning-predicted planes for the same patient imaged before chemotherapy and 2 months after
the therapy which shows high reproducibility. The videos for these planes showing the cardiac function in one cardiac cycle are submitted as
Supplementary material online, Videos. Window level = 500 HU, width = 900 HU.

.................................................................. ..................................................................

....................................................................................................................................................................................................................

Table 5 The close agreement of classification of ejection fraction between visual estimation by expert readers and
automated quantification via deep learning left ventricle segmentation

Reader 2 Reader 3

<40% 40–50% >50% <40% 40–50% >50%

DL predict <40% 30 3 0 31 1 1

40–50% 0 7 4 8 2 1

>50% 0 9 91 2 15 83

The classification of EF into <40%, 40–50%, and >50% with the DL approach agreed with visual prediction in 88.9% and 80.5% of cases for Reader 2 and 3, respectively.
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.
of a second, independent reader confirms the utility of our imaging
planes as it demonstrates that the DL approach leads to imaging
planes that were not significantly different that the observer inter-
and intra-reader variations in slice planning. Further, the inter- and
intra-reader variations illustrate the extent of uncertainty in planning
imaging planes as a range of plane angles and position can provide
correct visualization. While this leads to variability between observ-
ers, our approach provides robust results that are comparable to a
trained expert.

Robust and automated prediction of cardiac volumes and imag-
ing planes could be used to measure multiple important clinical
parameters. Apart from EF, the availability of LAX planes can en-
able the assessment of additional measures such as contour-based
global longitudinal and circumferential strain. Furthermore, labelling
of other cardiac chambers or the myocardium in the training data
would enable measurements such as RV volumes or myocardial
masses.

Our fully automated approach may enable rapid and reproducible
assessment of global function as well as regional wall motion abnor-
malities in patients, such as those with CAD and other cardiomyopa-
thies who are frequently evaluated with cardiac CT. In addition,
automatic slicing of standardized cardiac planes can be used for re-
producible longitudinal assessment of patients undergoing serial car-
diac exams and in clinical trials.

Our approach has limitations. First, we observed lower perform-
ance for 3CH plane predictions relative to 2CH and 4CH planes.
However, the success rate for the inferolateral wall was decreased in
both 3CHm and 3CHDL. This could be explained by the difficulty in
planning 3CH views as there is a balance between correct visualiza-
tion of the left ventricular outflow tract and the intersection of the
inferolateral wall. This suggests that anatomical variability may be lim-
iting the performance of the DL approach. Second, the time and ef-
fort needed to derive both cardiac planes and blood chamber
segmentations limited our training size. However, the achieved accur-
acy suggests clinical utility is possible even with the limited training
data that was available. Lastly, the accuracy of the algorithm in
patients with a wider range of phenotypes including implanted medic-
al devices, significant changes in iodine contrast timing/intensity, and
decreases in overall image quality were not studied but are planned
for future work.

In conclusion, DL can automatically perform multi-chamber volu-
metric assessments and generate standardized cardiac imaging planes
from CT images. This approach has the promise for regional cardiac
visualization and reproducible assessment of cardiac function.
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