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Abstract

Reaction time distributions in recognition con-
ditions were compared to those in cued recall to
explore the time course of retrieval, to test
current models, and to provide constraints for
the development of new models (including, to
take an example, the class of recurrent neural
nets, since they naturally produce reaction time
predictions). Two different experimental para-
digms were used. Results from a free response
procedure showed fundamentai differences
between the two test modes, both in mean
reaction time and the general shape of the
distributions. Analysis of data from a signal-to-
respond procedure revealed large differences
between recognition and recall in the rate of
growth of performance. These results suggest
the existence of different processes underlying
retrieval in recognition and cued recall. One
model posits parallel activation of separate
memory traces; for recognition, the summed
activation is used for a decision, but for recall a
search is based on sequential probabilistic
choices from the traces. Further constraining
models was the observation of nearly identical
reaction time distributions for positive and
negative responses in recognition, suggesting a
single process for recognition decisions for tar-
gets and distractors.

Introduction

Neural net and connectionist models have
focused more on storage and representations
than on retrieval, yet the number of retrieval
modes, and the nature of each, is of crucial im-
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portance to modelers of memory. In the present
research we explore the time course of retrieval
in order to ask whether recognition and cued
recall are carried out by similar mecha-nisms (in
studies that match the response time require-
ments of the two tasks), to ask whether positive
and negative recognition responses are the result
of a single process, and to explore the dynamics
of memory access. The issue is of con-temporary
interest given that many neural net models,
particularly of the recurrent variety, provide
natural response time predictions.

In a typical long-term memory experiment,
subjects are presented during a study phase with
a list of items that has to be remembered. In a
recall test phase, subjects have to generate the
items of the previous studied list in either a
random order, i.e. free recall, or a fixed order
denoted by the presentation of cues, ie. cued
recall. In a long-term recognition test phase,
subjects are presented with words that were
either on the list (targets), or that are new (dis-
tractors). The subject's task is to identify a word
as "old" or "new".

Recognition and recall are improved (for both
reaction times and accuracy) by increased study
time (see e.g. Ratcliff & Murdock, 1976), de-
creased list length (see e.g. Roberts, 1972), and
lessened delay and/or shortened distractor task
between study and test. However, the possibility
of different retrieval mechanisms for the two
tasks is heightened by several other findings: 1)
The use of words having higher natural lan-
guage frequency increases recall, but decreases
recognition (see Hall, 1979). 2) With instructions
for maintenance rehearsal, recognition improves
(Glenberg & Adams, 1978), but recall is not
much affected (see e.g. Dark & Loftus, 1976). 3)
Strengthening some list items (by extra study
time or extra repetitions) harms the free recall of
other items, slightly reduces cued recall of other
items, and has no effect on, or even slightly
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helps, the recognition of other items (Ratcliff,
Clark, & Shiffrin, 1990).

Memory models

Models that assume the same processes to
underlie recall and recognition predict (in their
simplest form) the same reaction time distribu-
tions, or at least the same shaped distributions,
for the two conditions. Models that assume
different processes, like the Search of Associative
Memory (SAM) model (Gillund & Shiffrin, 1984;
Raaijmakers & Shiffrin, 1981) can predict
markedly differing distributions.

In SAM, each item is stored in memory as a
separate image. The images contain different
kinds of information that is rehearsed and coded
together in short-term store (Raaijmakers &
Shiffrin, 1981). Items are retrieved from long-
term store through the weighted strength of
association between retrieval cues and stored
images. In particular, a given image's activation
is determined by the multiplication of the
weighted strengths between each cue and that
image.

Recognition involves a global familiarity pro-
cess, in which familiarity results from a single
parallel process of activation of all images.
Memory is probed with two cues: the context
cue and the tested item. The familiarity of the
probe is defined as the activation caused by the
two probe cues, which is the sum of the activa-
tions of all the memory images. This value is
compared to a criterion chosen by the subject,
and "yes"-responses are made when the fami-
liarity value is higher than this criterion. Such a
model predicts sharply peaked response time
distributions and similar distributions for ‘old’
and 'new' responses.

Recall involves an extended serial search,
with two phases: sampling and recovery. Again,
memory is probed with context and item cues.
The probability of sampling a particular image is
its activation strength divided by the sum of the
activations of all images. After sampling, the
information in the image, which is used for the
decision and response, must be recovered. The
key is that this process continues over and over
until a response is found or the subject gives up.
Such a model predicts response times spread out
over long time periods, and different distribu-
tions for correct recalls, intrusions, and the time
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to ‘give up'.

The Composite Holographic Associative
Recall Model (CHARM) (Metcalfe Eich, 1982,
1985) is an example of a model that assumes the
same retrieval processes underlying recall and
recognition. In CHARM, items are represented
as feature vectors and are stored in a convolu-
tion memory. If pair A - B is presented, the
convolution of vectors A and B (A*B) is a vector;
it is added to the convolution of A with itself
(A*A), and the convolution of B with itself (B*B),
and all three are added to the accumulated
memory vector for all studied pairs (if not all
pairs ever studied).

There is one retrieval process. It operates by
correlating the probe vector with the memory
vector. In a recall task, the output of this pro-
cess, a vector itself, is compared to a separate list
of words in memory and the response will be
the best match above a certain cut-off of activa-
tion. In a recognition task, the dot product of
the output of the correlation process with the
probe is taken, and a positive response is made
if the match is above a criterion. Because
CHARM treats recognition the same as recall it
does not predict differences in the latency
distribution for the time to retrieve the trace; any
differences would have to be differences in the
post-retrieval processes of matching in recogni-
tion, or matching in recall.

Numerous memory models share this proper-
ty that differences in retrieval time distributions
for recognition and recall would have to be due
to post retrieval operations; e.g. TODAM
(Murdock, 1982), Matrix Model (Pike, 1984),
MINERVA (Hintzman, 1988), and various
connectionist and neural net models (e.g.
McClelland & Rumelhart, 1985).

Reaction Times

The literature concerning reaction time (RT) in
long-term memory research is mainly restricted
to the recognition paradigm. For example,
Ratcliff and Murdock (1976) found increasing RT
for both hits and correct rejections as a function
of output (test) position, decreasing RT as a
function of input (study) position, increasing RT
when presentation time increases, decreasing RT
when the number of presentations increase, and
increasing RT as a function of list length.



Some evidence supporting the notion of a
sequential search in free recall was collected by
Murdock and Okada (1970): Interresponse times
increase in a positively accelerated function as
recall progresses, interresponse times were
shorter the more words were left to recall (for a
fixed output position), and at any given output
position the interresponse time is a good
predictor of the number of words left to recall.

Thus there are data concerning reaction times
in recognition and recall tasks separately; there
do not seem to be reaction time data when both
tasks are given to the same subjects in similar
paradigms. In addition, Ratcliff (1978) has ar-
gued that testing of models requires closer looks
at the reaction time distributions than their
central tendencies. He suggests that at a mini-
mum models should account for the shape of
reaction time distributions (in particular their
skewness), and specify the relationship between
speed and accuracy. Ratcliff and Murdock
(1976) in fact fit their observed RT distributions
with a convolution of exponential and normal
distributions. Ratcliff (1978) then fit his model to
the parameters of these fitted distributions.

For these reasons a series of studies was
designed, using several methodologies to
measure reaction times, looking at the effect of
several variables in recognition and cued recall
conditions, and measuring the entire reaction
time distribution.

Experiments

Ten subjects were presented in the study
phase with a list of pairs of high frequency
words that had to be remembered. The test
phase consisted of either single item recognition
or cued recall. In the recognition condition, the
subject's task was to say whether the test item
was on the list , and in the recall condition the
subject's task was to recall the other word of the
pair. Varied were list length (10 vs. 20 pairs)
and presentation time (2 vs. 6 seconds). In order
to equate the demand characteristics of the tasks
as much as possible, subjects had to press one of
two keys when they recognized or recalled, and
press the other key if they did not; in the case of
recall, a positive response had to be followed by
the typing of the word recalled, allowing us to
assess accuracy. Two different response
procedures were employed. In the free response
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procedure, subjects were asked to respond as
quickly and as accurately as possible after pre-
sentation of the test item. This procedure is
commonly employed, but suffers from the possi-
bility that subjects might adopt different strate-
gies (e.g. differing biases to respond quickly) in
recognition and recall. In the signal-to-respond
procedure , which controls for these strategy
differences, the subjects were told not to respond
until a signal was given (a tone) and then to
respond at once (within 300 ms). The delays
until the signal ranged in ten steps from 100 ms
to 4500 ms.

Results Bearing on Recognition/
Recall Differences

We give representative results because a
complete accounting would literally require hun-
dreds of figures. The demonstrated findings
hold for the conditions not shown (unless other-
wise stipulated). Figure 1 shows the reaction
time distributions for correct recognitions of old
words (hits) and for correct recalls: The recall
distribution has a larger mean, larger variance,
larger skewing, and extends over the entire time
course of retrieval.
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Figure 1. Reaction time distributions for correct recognitions
(mean RT=710; st. dev.=299); median=630), and correct recalls
(mean RT=1386; st. dev.=769; median=1163).

Figure 2 shows the reaction time distributions
for incorrect recognitions of new items (false
alarms), and for recalls of list items from other
pairs, or, less commonly, non-list items (all
termed intrusions): false alarms in recognition
have a relatively low mean reaction time and
variance, whereas intrusions in recall seem to
have an almost uniform distribution.
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Figure 2. Reaction time distributions for false alarms (mean
RT=818; st. dev.=439; median=689), and intrusions (mean
RT=2381; st. dev.=1142; median=2320).

The signal-to-respond results can be used to
assess the possibility that these large differences
might be due to differing strategies or biases in
recognition and recall. Presumably the subject
will respond with whatever information is avai-
lable at the time of the signal, whether recog-
nition or recall is being tested. This procedure
produces data of a somewhat different sort: The
growth of accuracy is measured as a function of
the signal delay.

Examination of typical retrieval functions for
recognition memory shows an initial period of
chance performance, followed by a period of
rapid increases in accuracy, and finally, as retrie-
val time is further increased, accuracy reaches
asymptote (see e.g. Dosher, 1984). These
functions can be described by an exponential
approach to an asymptote with 3 parameters: an
asymptotic accuracy parameter that reflects
memory information limitations, an intercept (at
which point accuracy first rises above chance),
and a rate of rise from chance to asymptote. The
dynamics of retrieval is summarized by the
intercept and the rate parameter. This results in
a description of the level of performance, d for
recognition and P(c) for recall, as a function of
total processing time; ie. delay-of-signal plus
response time.

Figures 3 and 4 show performance (observed
and predicted) as a function of total processing
time for recognition and recall respectively,
along with the best fitting exponential functions
(d“(t), or P(c,t)=A(1-exp[-B(t-8)], for t-8>0, and 0
elsewhere; in which A is the asymptote, B the
rate, and & the intercept). It is clear that pro-
cesses underlying the dynamics of retrieval are
quite different: Performance in recognition is
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Figure 3. Recognition performance , d*, as a function of total

processing time in ms (A=2.06; f=.00503; 1/p=199; 6=373).

0.6
0.5
0.4

0.3

P(c)

0.2
0.1

0.0

i

0

T

1000

n
L

2000

3000

4000

5000

Total Processing Time

Figure 4. Recall performance, P(c), as a function of total
processing time in ms (A=.48; B=.00161; 1/p=621; 5=46).

characterized by a very fast rate of growth and
asymptotic performance is reached fairly quickly,
whereas recall performance shows a much more
gradual approach to asymptote. These differen-
ces are reflected in the parameters of the best
fitting functions.

Such results are generally consistent with a
two process view of retrieval, such as the SAM
model, in which the recall process is spread out
in time. The unitary retrieval models would
have to posit a difference in post-retrieval
mechanisms to explain the recognition-recall
differences. For example, in many models noisy
information is retrieved from memory (in both
recall and recognition). In recall, the process of
generating a given word from the noisy informa-
tion might take a highly variable amount of time,
whereas in recognition the time might be rela-
tively fixed (because only a match of the retrie-
ved trace to the test item is needed). In such
models it would be necessary to develop a
model of post-retrieval response generation that



can produce very large response time differen-
ces. We are currently carrying out empirical
tests contrasting the retrieval time and the post-
retrieval time hypotheses, but do not yet have
the results.

Results Bearing on Target/
Distractor Differences
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Figure 5. Reaction time distributions for hits (mean RT=710;
st. dev.=299; median=630), and correct rejections (mean
RT=792; st. dev=334; median=695).
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Figure 6. Reaction time distributions for false alarms (mean
RT=818; st. dev.=439; median=689) and misses (mean
RT=870; st. dev.=458; median=739).

Returning to the free response data, we con-
sider the distributions for positive and negative
responses in recognition (Figures 5 and 6).
When the responses are correct (hits and correct
rejections), the distributions show small dif-
ferences in both the means and the shape. When
these are incorrect (false alarms and misses), the
distributions differ slightly in their means, but
are identical in shape. Models that use quite
different processes for targets and distractors
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might find such data difficult to predict. On the
other hand, careful theoretical work is needed to
verify constraints such data place on models.
For instance, in the Resonance Model (Ratcliff,
1978) it is assumed that a probe is encoded and
then compared in parallel with each item in
memory. Each individual comparison is done by
a random walk process, and a positive decision
is made when any of the parallel comparisons
terminates with a match (self-terminating
search), and a negative decision is made when
all the comparisons terminate with a nonmatch
(exhaustive search). With appropriate auxilliary
assumptions he was able to show that the model
could predict hit and correct rejection distribu-
tions that are at least reasonably similar in form.
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Figure 7. Accuracy growth curves for hits and correct rejec-
tions as a function of total processing time (in ms).
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Figure 8. Accuracy growth curves for hits and correct rejec-
tions as a function of delay of signal (in ms).

A sharp eye actually reveals that the distribu-
tions are not quite identical. The point is
revealed more clearly in the signal-to-respond
data. Figures 7 and 8 give the accuracy growth
curves for hits and correct rejections measured in



two ways (in Figure 7, the abscissa includes both
the time until the signal and the subsequent time
needed to respond). Both methods show that
hits start rising sooner than correct rejections,
and come together soon thereafter. More
research is needed to assess whether this
difference is due to a bias to respond 'old’ under
speed stress, or is due to a real processing dif-
ference. Whichever is the case, the remarkable
similarities of the target and distractor distribu-
tions, and target and distractor signal-to-respond
curves, provide strict and informative constraints
for models of retrieval

General Conclusions

We have presented experimental data bearing
on the time course of retrieval in both recogni-
tion and cued recall, using RT distributions for
free response tasks, and accuracy growth curves
in signal-to-respond tasks. The large differences
between recognition and recall suggest the exis-
tence of distinct processes underlying retrieval in
the two paradigms. However, we are carrying
out further experiments to see whether the
differences can be explained in terms of a post-
retrieval “clean-up" process in recall (e.g.
Metcalfe Eich, 1982). In addition, targets and
distractors have nearly identical RT distributions,
and fairly similar accuracy growth curves. This
suggests a single process for recognition judg-
ments for targets and distractors (such as sum-
mation of activation in SAM), and provides
general constraints for future model develop-
ment.
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