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Abstract

Human decision-making is filled with a variety of paradoxes
demonstrating deviations from rationality principles. Do state-
of-the-art artificial intelligence (AI) models also manifest these
paradoxes when making decisions? As a case study, in this
work we investigate whether GPT-4, a recently released state-
of-the-art language model, would show two well-known para-
doxes in human decision-making: the Allais paradox and the
Ellsberg paradox. We demonstrate that GPT-4 succeeds in the
two variants of the Allais paradox (the common-consequence
effect and the common-ratio effect) but fails in the case of the
Ellsberg paradox. We also show that providing GPT-4 with
high-level normative principles allows it to succeed in the Ells-
berg paradox, thus elevating GPT-4’s decision-making ratio-
nality. We discuss the implications of our work for AI rational-
ity enhancement and AI-assisted decision-making.
Keywords: decision-making paradoxes; Allais paradox; Ells-
berg paradox; decision-making under risk and uncertainty;
large language models

1 Introduction
Human decision-making comes with numerous fallacies and
paradoxes (e.g., Birnbaum, 2008; Diederich & Busemeyer,
1999; Allais, 1953; Ellsberg, 1961; Tversky & Kahneman,
1974, 1983, 1981; Kahneman & Tversky, 1984; Birnbaum,
2004; Dean & Ortoleva, 2017; Pothos & Busemeyer, 2009;
Nobandegani et al., 2019). These paradoxes are predomi-
nantly taken as evidence of human irrationality (e.g., Ellis,
1976; Thaler, 1994; Ariely & Jones, 2008), as they show vio-
lations of the normative principles of rational choice. But do
state-of-the-art artificial intelligence (AI) models also mani-
fest these paradoxes when making decisions? And if so, how
could we enhance AI rationality so that they do not exhibit
violations of rationality principles when making decisions?

Decades of empirical and theoretical research on human
decision-making has broadly categorized it into two separate
realms: decision-making under risk and decision-making un-
der uncertainty (C. Camerer & Weber, 1992; Bonatti et al.,
2009; Johnson & Busemeyer, 2010; Buckert et al., 2014;
De Groot & Thurik, 2018). When choosing among several
alternatives, either the objective probabilities associated with
the possible outcomes of each alternative are fully known, or
these objective probabilities are partially or fully unknown.
The former is known as decision-making under risk, while
the latter is studied under the rubric of decision-making under
uncertainty (Knight, 1921; Weber & Camerer, 1987; Camerer
& Weber, 1992).

Introduced as major violations of expected utility theory,
the Allais paradox (Allais, 1953) and the Ellsberg paradox
(Ellsberg, 1961) are two empirically well-replicated para-
doxes of human decision-making, serving as a prominent ex-
ample of decision-making under risk and decision-making
under uncertainty, respectively.

In this work, we investigate whether GPT-4, a recently
released state-of-the-art language model (OpenAI, 2023),
would exhibit the Allais paradox and the Ellsberg paradox
when making decisions. As we demonstrate, GPT-4 succeeds
in the two variants of the Allais paradox (i.e., the common-
consequence effect and the common-ratio effect) but fails
in the case of the Ellsberg paradox. As we then show, pro-
viding GPT-4 with high-level normative principles allows it
to succeed in the Ellsberg paradox, thus enhancing GPT-4’s
decision-making rationality.

The paper is organized as follows. We first present a brief
overview of GPT-4 and some of its recent achievements
(Sec. 2). We then introduce the Allais paradox (Sec. 3) and
the Ellsberg paradox (Sec. 4), and present our GPT-4 results.
We conclude by discussing the implications of our work for
AI rationality enhancement and AI-assisted decision-making.

2 GPT-4: A Brief Overview
The Generative Pre-trained Transformer (GPT) is a family
of large language models (LLMs) that use the transformer
architecture (Vaswani et al., 2017) to generate text (Ope-
nAI, 2023). Generally, these LLMs are trained on massive
amounts of text data, trying to predict the next token given
the tokens already appearing in the text (Chang et al., 2023;
OpenAI, 2023; Zhao et al., 2023). A word could consist of
several tokens.

GPT-4 is a state-of-the-art large-scale model, recently re-
leased by OpenAI (2023). GPT-4 and its earlier versions have
achieved remarkable successes across a wide range of tasks,
including mathematical reasoning (e.g., algebra, arithmetic,
geometry, logic, and statistics) (Zong & Krishnamachari,
2023; Lu et al., 2022; Cobbe et al., 2021; Bordt & von
Luxburg, 2023; Wu et al., 2023; Imani et al., 2023), com-
puter programming (Xu et al., 2022; Surameery & Shakor,
2023; Biswas, 2023; Savelka et al., 2023), physical reasoning
(Wang et al., 2023; West, 2023; Kortemeyer, 2023), reason-
ing by analogy (Webb et al., 2023; Bhavya et al., 2022; Ya-
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To make a rational decision, I would calculate the expected value of 
each gamble. The expected value is calculated by multiplying each 
possible outcome by the probability of that outcome, and then 
summing these values.

For Gamble A, the expected value is:
($2,500 * 0.33) + ($0 * 0.67) = $825

For Gamble B, the expected value is:
($2,400 * 0.34) + ($0 * 0.66) = $816

Comparing these expected values, Gamble A has a higher expected 
value ($825) than Gamble B ($816). Therefore, if I want to 
maximize my expected value, I should choose Gamble A. 

So, my final decision is to choose Gamble A.

To make a rational decision, I would need to consider the expected value of each gamble. The expected value is calculated by 
multiplying each outcome by its probability and then summing these values.

For Gamble A, the expected value is calculated as follows: (0.66 * $2,400) + (0.33 * $2,500) + (0.01 * $0) = $1,584 + $825 + $0 = 
$2,409.

For Gamble B, the expected value is simply $2,400, as there is a 100% chance of winning this amount.

Comparing the expected values, Gamble A has a higher expected value ($2,409) than Gamble B ($2,400). Therefore, from a 
purely mathematical and rational perspective, I should choose Gamble A.

However, it's important to note that Gamble A also carries a small risk (1%) of winning nothing, while Gamble B guarantees a 
win of $2,400. If I were extremely risk-averse, I might prefer the certainty of Gamble B despite its slightly lower expected value.

But given the information provided and assuming a rational decision-making process based on maximizing expected value, my 
final answer is that I would choose Gamble A.

Figure 1: The Allais paradox (the common-consequence effect). (left) Empirical data from (Kahneman & Tversky, 1979). The
majority of human participants chose gamble A in Condition 1 (z = 0) but gamble B in Condition 2 (z = $2,400). (middle)
GPT-4’s response in Condition 1 (z = 0). GPT-4 chooses gamble A in Condition 1. (right) GPT-4’s response in Condition 2
(z = $2,400). GPT-4 chooses gamble A in Condition 2.

sunaga et al., 2023), inductive reasoning (Han et al., 2024),
social reasoning (Gandhi et al., 2023), legal reasoning (Liga
& Robaldo, 2023; Blair-Stanek et al., 2023), creative prob-
lem solving and out-of-the-box thinking (Tian et al., 2023),
and composing music (Banar & Colton, 2022). Nevertheless,
recent work has raised several criticisms about the efficacy of
these models (e.g., Davis, 2023; Dziri et al., 2023; Ullman,
2023)

In this work, we use GPT-4 (model variant: gpt-4-0613).
The temperature parameter of GPT-4 controls the randomness
of the response, and can take on any value between 0 and 2.
According to OpenAI, as the temperature approaches 0, GPT-
4 becomes increasingly more deterministic. Conversely, as
the temperature approaches 2, GPT-4 becomes increasingly
more random and unpredictable. Following past work (e.g.,
Binz & Schulz, 2023; Webb et al., 2023), throughout the pa-
per, we set the temperature to 0.

3 The Allais Paradox
Introduced as a violation of expected utility theory, the Al-
lais paradox (1953) has been a driving force for develop-
ing models of decision-making under risk (e.g., Kahneman
& Tversky, 1979; Katsikopoulos & Gigerenzer, 2008; Dean
& Ortoleva, 2017). The Allais paradox has two variants:
the common-consequence effect and the common-ratio effect.
We present each of these variants along with their GPT-4 re-
sults. Note that, throughout the paper, “w.p.” stands for “with
probability” and u(·) denotes the subjective utility function of
the decision-maker.

3.1 The Common-Consequence Effect
As its name implies, the common-consequence effect (CCE)
concerns choosing between two risky gambles that share
a common consequence, with known objective probability.
As a canonical example of the CCE, imagine choosing be-
tween the following two risky gambles (Kahneman & Tver-
sky, 1979):

A =

 z w.p. 66%
$2,500 w.p. 33%
0 w.p. 1%

(1)

B =

{
z w.p. 66%
$2,400 w.p. 34% (2)

If you choose A or B, you will get z dollars with probabil-
ity 66% either way (hence, the term common-consequence
effect).

When choosing between A,B, according to expected utility
theory, preference should not be affected by the value of z.
The rationale behind this is as follows. Note that the gap
between the expected utility of gamble A, EU(A), and the
expected utility of B, EU(B), does not depend on z:

EU(A)−EU(B) =
(
u(z)×0.66+u($2,500)×0.33

)
−(

u(z)×0.66+u($2,400)×0.34
)

= u($2,500)×0.33−u($2,400)×0.34.

Therefore, varying z will not change the sign of EU(A)−
EU(B). (If EU(A)−EU(B)< 0, gamble B should be chosen,
and if EU(A)− EU(B) > 0, gamble A should be chosen.)
Hence, a decision-maker who follows expected utility theory
should make the same choice, regardless of the value of z.

However, empirical evidence reveals that the value of z
does affect choice: when z = 0 (Condition 1), the majority
of human participants (83%) chose gamble A, with the trend
reversing when z = $2,400 (Condition 2), in which case only
a minority (18%) chose gamble A (Kahneman & Tversky,
1979); see Fig. 1 (left).

As shown in Fig. 1 (middle, right), GPT-4 chooses gam-
ble A in both Condition 1 and Condition 2. As such, unlike
the human participants (Kahneman & Tversky, 1979), GPT-4
makes the same choice across the two conditions, demonstrat-
ing no violations of expected utility theory here.

Looking more carefully into the line of reasoning presented
by GPT-4 for its responses (see Fig. 1) shows that it used
expected value maximization. Expected value maximization
is a special form of expected utility maximization, where a
linear utility function (i.e., u(x) = x) is assumed.

3.2 The Common-Ration Effect
The common-ratio effect (CRE) concerns choosing between
two risky gambles that each would yield a non-zero payoff
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To make a rational decision, I would calculate the expected value 
of each gamble. The expected value is calculated by multiplying 
each possible outcome by its probability and then summing these 
values.

For Gamble A, the expected value is (0.2 * $4,000) + (0.8 * $0) = 
$800.

For Gamble B, the expected value is (0.25 * $3,000) + (0.75 * $0) = 
$750.

Comparing these expected values, Gamble A has a higher 
expected value ($800) than Gamble B ($750). Therefore, if I want 
to maximize my expected earnings, I should choose Gamble A. 

So, my final decision is to choose Gamble A.

To make a rational decision, I would first calculate the expected value of each gamble. The expected value is calculated by multiplying 
each possible outcome by its probability, and then summing these values.

For Gamble A, the expected value is (0.8 * $4,000) + (0.2 * $0) = $3,200.

For Gamble B, the expected value is (1 * $3,000) = $3,000.

Based on the expected values, Gamble A has a higher expected value ($3,200) than Gamble B ($3,000). Therefore, if I were to make a 
decision purely based on expected values, I would choose Gamble A.

However, risk tolerance also plays a role in decision-making. Gamble A has a 20% chance of winning nothing, while Gamble B 
guarantees a win of $3,000. If I were risk-averse, I might prefer the certainty of winning $3,000 in Gamble B over the risk of potentially 
winning nothing in Gamble A.

In this case, I would consider myself to be more risk-tolerant and would prefer to maximize my expected value. Therefore, I would 
choose Gamble A. This decision is based on the higher expected value of Gamble A, despite the risk associated with it.

Figure 2: The Allais paradox (the common-ratio effect). (left) Empirical data from (Kahneman & Tversky, 1979). (middle)
GPT-4’s response in Condition 1 (r = 0.25). GPT-4 chooses gamble A in Condition 1. (right) GPT-4’s response in Condition 2
(r = 1). GPT-4 chooses gamble A in Condition 2.

with probability proportional to a positive common factor
0 < r ≤ 1. As a canonical example of the CRE, imagine
choosing between the following two risky gambles (Kahne-
man & Tversky, 1979):

A =

{
$4,000 w.p. 0.8r
0 otherwise (3)

B =

{
$3,000 w.p. r
0 otherwise (4)

As can be seen, the probability that any of these gambles
yields a non-zero payoff depends on a common factor r.

When choosing between A,B, according to expected util-
ity theory, preference should not be affected by the value of
r ∈ (0,1]. That is, a decision-maker should make the same
choice, regardless of the value of r. The rationale behind this
is as follows. Note that the gap between the expected utility
of gamble A, EU(A), and the expected utility of B, EU(B), is
given by:

EU(A)−EU(B) = u($4,000)×0.8r−u($3,000)× r

=
(
u($4,000)×0.8−u($3,000)

)
× r.

Therefore, varying r ∈ (0,1] does not change the sign of
EU(A)−EU(B). (If EU(A)−EU(B)< 0, gamble B should
be chosen, and if EU(A)−EU(B) > 0, gamble A should be
chosen.) Hence, a decision-maker who follows expected util-
ity theory should make the same choice, regardless of the
value of r ∈ (0,1].

However, empirical evidence reveals that the value of r
does have an effect on choice: when r = 0.25 (Condition 1),
the majority of human participants (65%) chose gamble A,
with the trend reversing when r = 1 (Condition 2), in which
case only a minority (20%) chose gamble A (Kahneman &
Tversky, 1979); see Fig. 2 (left).

As shown in Fig. 2 (middle, right), GPT-4 chooses gam-
ble A in both Condition 1 and Condition 2. As such, unlike
the human participants (Kahneman & Tversky, 1979), GPT-4
makes the same choice across the two conditions, demonstrat-
ing no violations of expected utility theory here.

Looking more carefully into the line of reasoning presented
by GPT-4 for its responses (see Fig. 2) shows that it again
used expected value maximization. Recall that expected
value maximization is a special form of expected utility max-
imization, where a linear utility function (i.e., u(x) = x) is
assumed.

4 The Ellsberg Paradox
Introduced as a violation of expected utility theory, the Ells-
berg paradox (1961) has been a driving force for developing
models of decision-making under uncertainty (e.g., Gilboa &
Schmeidler, 1989; Ghirardato et al., 2003; Dean & Ortoleva,
2017). A canonical example of the Ellsberg paradox concerns
an urn containing 90 balls: 30 of the balls are red; the remain-
ing 60 are either black or yellow in unknown proportions. The
balls are well-mixed so that each individual ball is as likely
to be drawn as any other. There are two experimental con-
ditions. In Condition 1, participants are asked to choose be-
tween the following two options:

A) You receive $100 if you draw a red ball
B) You receive $100 if you draw a yellow ball

And in Condition 2, participants are asked to choose between
the following two options (about a different draw from the
same urn):

A) You receive $100 if you draw a red or black ball
B) You receive $100 if you draw a yellow or black ball

As can be seen, the objective probability of winning $100 in
option A of Condition 1 is fully known (it is 1/3), while the
objective probability of winning $100 in option B of Condi-
tion 1 is only imperfectly known (it could be anything be-
tween 0 and 2/3). Likewise, in option B of Condition 2, the
objective probability of winning $100 is fully known (it is
2/3), while the objective probability of winning $100 in op-
tion A of Condition 2 is only imperfectly known (it could be
anything between 1/3 and 1).

According to (subjective) expected utility theory, a
decision-maker should make the same choice in both condi-
tions (i.e., either to choose A in both conditions or choose B in
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Given the information provided, I would choose Option A. My reasoning is based on the principle of probability. 

In the urn, there are 90 balls in total, 30 of which are red. This means that the probability of drawing a red ball (Option A) is 30/90, 
or 1/3. 

On the other hand, the remaining 60 balls are either yellow or black, but the exact proportions are unknown. This means that the
probability of drawing a yellow ball (Option B) could be anywhere from 0 (if all 60 balls are black) to 60/90 (if all 60 balls are yellow). 

However, without knowing the exact proportions of yellow and black balls, the maximum probability of drawing a yellow ball is
60/90, or 2/3. But this is only in the best-case scenario where all 60 balls are yellow, which is not guaranteed. 

In the worst-case scenario, where all 60 balls are black, the probability of drawing a yellow ball is 0. 

Therefore, without additional information about the proportions of yellow and black balls, Option A is the safer choice because it 
guarantees a 1/3 probability of winning, whereas Option B could have a probability as low as 0. 

So, I choose Option A.

I would choose Option B. Here's my reasoning:

In Option A, I would win if I draw a red or black ball. There are 30 red balls, and an 
unknown number of black balls. The maximum number of black balls there could be is 
60 (if there are no yellow balls), so the maximum number of winning balls in this case 
is 90 (30 red + 60 black). However, if there are any yellow balls, the number of winning 
balls would be less than 90.

In Option B, I would win if I draw a yellow or black ball. There are an unknown number 
of yellow balls, and an unknown number of black balls. But no matter how many 
yellow and black balls there are, their total must be 60 (since we know there are 30 red 
balls and 90 balls in total). So, in this case, the number of winning balls is always 60.

Therefore, Option B gives me a higher chance of winning, because the number of 
winning balls is always 60, regardless of the distribution of yellow and black balls. In 
contrast, Option A could give me a lower chance of winning if there are any yellow 
balls. So, I would choose Option B.

Figure 3: The Ellsberg paradox. (left) Empirical data from (Weber & Tan, 2012). The majority of human participants chose
option A in Condition 1 but option B in Condition 2. (middle) GPT-4’s response in Condition 1. GPT-4 chooses option A in
Condition 1. (right) GPT-4’s response in Condition 2. GPT-4 chooses option B in Condition 2.

both conditions). Hence, choosing A in one condition and B
in the other constitutes a violation of expected utility theory.
The rationale behind this is as follows. Let pred, pblack, pyellow
denote a decision-maker’s subjective probability of drawing
a red, black, and yellow ball from the urn, respectively. In
Condition 1, the gap between the expected utility of option A,
EU(A), and the expected utility of B, EU(B), is given by:

EU(A)−EU(B) = u($100)× pred−u($100)× pyellow

=
(

pred− pyellow
)
u($100).

And, in Condition 2, the gap between the expected utility of
option A, EU(A), and the expected utility of B, EU(B), is
given by:

EU(A)−EU(B) = u($100)(pred + pblack)−
u($100)(pyellow + pblack)

=
(

pred− pyellow
)
u($100).

Therefore, the gap between the expected utility of option A,
EU(A), and the expected utility of B, EU(B), is the same
in both conditions, implying that the same choice should be
made in both conditions (i.e., either A should be chosen in
both conditions or B should be chosen in both conditions).

A second, and perhaps simpler, way of explaining why the
same choice should be made in both conditions is that, in
Condition 2, the common event of “drawing a black ball” is
simply added to both options A,B of Condition 1, thus in-
creasing the expected utility of those options by the same
amount (i.e., u($100)× pblack). Therefore, according to ex-
pected utility theory, whichever option is more preferred in
Condition 1 should also remain more preferred in Condi-
tion 2, because increasing two quantities (i.e., EU(A) and
EU(B) in Condition 1) by the same amount should not lead
to any change in their ordering — whichever was larger be-
fore the same-amount increase should remain the larger after
the same-amount increase. Hence, the same choice should be
made in both conditions.

However, empirical evidence reveals that people do change
their choice across the two experimental conditions (e.g., We-
ber & Tan, 2012). In Condition 1, the majority of human par-
ticipants (59.78%) chose option A, whereas, in Condition 2,

the majority of participants (71.51%) chose option B (Weber
& Tan, 2012); see Fig. 3 (left).

As shown in Fig. 3 (middle, right), GPT-4 chooses option A
in Condition 1 but option B in Condition 2, similar to the hu-
man participants (Weber & Tan, 2012). As such, by switching
choice across the two conditions, GPT-4 demonstrates a clear
violation of (subjective) expected utility theory here.1

Looking into the rationale provided by GPT-4 for its re-
sponse in Condition 2 also reveals a few mistakes. In its re-
sponse (see Fig. 3 (right)), GPT-4 states that:

Therefore, Option B gives me a higher chance
of winning, because the number of winning balls
is always 60, regardless of the distribution
of yellow and black balls. In contrast, Option
A could give me a lower chance of winning if
there are any yellow balls.

This first sentence is incorrect, because the probability of
winning in option B, which is unequivocally 2/3, is not nec-
essarily higher than the probability of winning in option A,
which could be anywhere between 1/3 and 1. The second
sentence is also incorrect, because, as long as the number of
yellow balls is less than 30, option A would yield a higher
chance of winning, compared to option B.

Could we provide GPT-4 with some high-level normative
principle to base its reasoning on, allowing it to not only avoid
the mistakes we just mentioned but also, and perhaps more
importantly, succeed in the Ellsberg paradox?

According to our second explanation of why the same
choice should be made in both conditions of the Ellsberg
paradox, what lies at the heart of the Ellsberg paradox is fail-
ing to obey this “invariance principle”: when choosing be-
tween two options, the common events between the two op-
tions can be safely removed from those two options. That
is, if a decision-maker respects this invariance principle, they

1Although this pattern of choice by GPT-4 could be interpreted
as a form of ambiguity aversion, a bias in human decision-making
that is often brought up as an explanation of the Ellsberg paradox
(Machina & Siniscalchi, 2014; Al-Najjar & Weinstein, 2009), cau-
tion should be taken here, because the rationale provided by GPT-4
for choosing option B in Condition 2 is erroneous — we discuss this
later in the main text.
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Given the invariance principle, I can remove the common event, which 
is drawing a black ball, from both options. This is because the black ball 
does not affect the decision-making process as it is a common factor in 
both options. 

After removing the common event, the options become:

Option A: (I receive $100 if I draw a red ball).
Option B: (I receive $100 if I draw a yellow ball).

Now, I need to consider the probability of drawing a red ball versus 
drawing a yellow ball. I know that there are 30 red balls and 60 balls 
that are either yellow or black. However, I don't know the exact 
number of yellow balls. 

Given this uncertainty, I can only make a decision based on the 
information I have. I know for sure that there are 30 red balls, but I 
don't know how many yellow balls there are. The number of yellow 
balls could be anywhere from 0 to 60. 

Therefore, I would choose Option A because I have a guaranteed 30 
out of 90 chance of drawing a red ball and winning $100. In contrast, 
the probability of drawing a yellow ball could be lower, depending on 
the actual number of yellow balls. 

So, my final decision is Option A.

Figure 4: GPT-4’s response in Condition 2 of the Ellsberg
paradox, when provided with the invariance principle as a
prompt. Basing its reasoning on the invariance principle,
GPT-4 is now choosing option A in Condition 2. Likewise,
when provided with the invariance principle, GPT-4 chooses
option A in Condition 1; we omit this due to a lack of space.

will make the same choice in both conditions of the Ellsberg
paradox. This is because following this principle implies that
the common event of drawing a black ball can be safely re-
moved from options A,B in Condition 2. And clearly this
removal would reduce options A,B of Condition 2 to options
A,B of Condition 1, respectively.

Providing GPT-4 with this invariance principle as a prompt
results in GPT-4 choosing option A in both Condition 1 and
Condition 2. As such, GPT-4 shows no violations of expected
utility theory, when provided with the invariance principle.
GPT-4’s response in Condition 2 is shown in Fig. 4. GPT-4’s
response in Condition 1 is omitted due to a lack of space.

It is worth noting that, from the perspective of ex-
pected utility theory, this invariance principle is normatively-
justified. This is because, as we mentioned in our second
explanation of why the same choice should be made in both
conditions of the Ellsberg paradox (see Sec. 4), this principle
fully preserves the gap between the expected utility of the two
options you are choosing from, hence perfectly retaining the
choice preference prescribed by expected utility theory.

Looking more carefully into the line of reasoning presented
by GPT-4 in Fig. 4 reveals that, indeed, using the aforemen-
tioned invariance principle, GPT-4 reduced options A,B of
Condition 2 to options A,B of Condition 1:

Given the invariance principle, I can remove
the common event, which is drawing a black
ball, from both options. This is because the
black ball does not affect the decision-making
process as it is a common factor in both
options.

After removing the common event, the options
become:

A: (I receive $100 if I draw a red ball).
B: (I receive $100 if I draw a yellow ball).

This reduction not only fully converted the choice problem of
Condition 2 to that of Condition 1 (which resulted in the same
choice being made across the two conditions) but also con-
siderably simplified options A,B of Condition 2, which ap-
parently helped GPT-4 avoid the reasoning mistakes it made
in Condition 2 in the past; see Fig. 3 (right).

5 Discussion
Human decision-making comes with a variety of fallacies and
paradoxes demonstrating violations of rationality principles
(e.g., Diederich & Busemeyer, 1999; Kahneman & Tversky,
1979; Birnbaum, 2008; Pothos & Busemeyer, 2009; Noban-
degani et al., 2019). And these paradoxes are often taken
as evidence of human irrationality (Thaler, 1994; Ariely &
Jones, 2008). But do state-of-the-art artificial intelligence
(AI) models also manifest these paradoxes when deciding?
And if so, how could we enhance AI rationality so that they
do not exhibit these violations of rationality principles?

In this work, we investigate whether GPT-4, a recently
released state-of-the-art language model by OpenAI, would
show two well-known paradoxes in human decision-making,
the Allais paradox (Allais, 1953) and the Ellsberg paradox
(Ellsberg, 1961), which belong to the realms of decision-
making under risk and decision-making under uncertainty,
respectively. These two paradoxes were introduced as major
violations of expected utility theory (Bernoulli, 1738).

As we demonstrate here, GPT-4 succeeds in the two vari-
ants of the Allais paradox (the common-consequence effect
and the common-ratio effect) but fails in the case of the Ells-
berg paradox. As we then show, providing GPT-4 with high-
level normative principles (in our case, the invariance princi-
ple) allows it to succeed in the Ellsberg paradox, thus elevat-
ing GPT-4’s decision-making rationality.

According to OpenAI, the temperature parameter of GPT-
4 controls the randomness of the response, with the response
becoming increasingly more deterministic as the temperature
approaches 0. Following past work (e.g., Binz & Schulz,
2023; Webb et al., 2023), throughout this paper, we set the
temperature to 0 to ensure that GPT-4’s responses are maxi-
mally deterministic. Nonetheless, we did observe variations
across different runs.2

An alternative to setting the temperature to zero would
have been, à la (Kosinski, 2023; Ullman, 2023), to set the
temperature to a much higher value (say one) to introduce
substantial randomness into the response and then report
the number of times GPT-4 would have chosen a particu-
lar gamble/option out of the total number of runs. To do
this, we could ask GPT-4 to deliver its response according

2All the choices reported in Figures 1- 4 for GPT-4 are reliably
greater than chance (binomial test, p values < .01).
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to this template: I choose gamble ... because ...,
where blanks are to be filled by GPT-4. But this would not
fully resolve the issue in our case. This is because here we
are interested in both the choice and the line of reasoning
provided by GPT-4 to justify that choice.3 It is quite imagin-
able for the line of reasoning presented by GPT-4 to be either
flawed (as we saw in Fig. 3 (right)) or correct but not logi-
cally implying the choice reported by the model. One might
argue that these two cases could be simply discarded, but note
that detecting those two cases among potentially hundreds
of runs would be quite hard. Also note that for more com-
plex decision-making tasks this discarding approach would
be largely impractical as detecting the two aforementioned
cases would become extremely more difficult for such com-
plex decision-making tasks. Perhaps the best solution would
be to somehow get GPT-4 to behave fully deterministically,
generating at every step of the way the token with the high-
est likelihood among all possible tokens available. In prin-
ciple, setting the temperature to zero should perfectly attain
this. However, due to some undisclosed reasons from Ope-
nAI, GPT-4 fails to behave utterly deterministically when the
temperature is set to zero. Future work should find effective
ways to resolve this issue.

The data used by OpenAI to train GPT-4 are unknown to
the public. This means there is a chance that the Allais and
Ellsberg paradox examples that we used in this work might
have been part of GPT-4’s training set. To address this is-
sue, future work should empirically demonstrate novel, un-
published cases of the Allais and Ellsberg paradoxes in hu-
mans and then test GPT-4 on those cases.

Could we get large language models like GPT-4 to avoid
violating rationality principles when making decisions? The
effectiveness of providing GPT-4 with the invariance princi-
ple, as evidenced by Fig. 4, suggests an interesting possibil-
ity: we could presumably include a list of normative princi-
ples as part of the prompt to these models and specifically
ask the model to respect those principles when responding
to a given decision-making task. There are many normative
principles in decision-making, including dominance (e.g.,
Tversky & Kahneman, 1992; Birnbaum, 2005; Diederich &

3This double objective of both the choice and the rationale pre-
sented to justify that choice became even more important where we
provided GPT-4 with the high-level invariance principle and needed
to verify that the rationale presented by GPT-4 indeed used that prin-
ciple, and used that principle plausibly, to arrive at a final choice,
through a sequence of logically sound steps. This is indeed what we
observe in Fig. 4. We did observe erroneous rationales, too. Future
work should address this limitation, and investigate whether provid-
ing GPT-4 with a larger set of normative principles, in addition to
the invariance principle, would resolve this issue. Alternatively, this
issue might have arisen purely from GPT-4’s failing to behave ut-
terly deterministically when the temperature is set to zero. Also, we
should note that there is arguably a far more important justification
for this double objective of both the choice and the rationale pre-
sented to justify that choice, which is related to AI-assisted decision-
making: people using AI systems, as an assistant, to help them with
complex decision-making tasks. In such settings, people would like
to see the AI’s line of reasoning supporting its final choice, in ad-
dition to that final choice. We discuss AI-assisted decision-making
later in the main text.

Busemeyer, 1999), independence (Von Neumann & Morgen-
stern, 1947), betweenness (Camerer & Ho, 1994), regularity
(Speekenbrink & Shanks, 2013), and the sure-thing principle
(Savage, 1954; Pearl, 2016). Future work should investigate
and evaluate the effectiveness of the proposed method in get-
ting large-scale language models to adhere to these and other
normative principles of rational choice when deciding.

It would be also interesting to see if the proposed method,
or a variation thereof, could help us debias these models’
judgments such that they would not exhibit certain biases
that we observe in human decision-making, e.g., confirma-
tion bias (Nickerson, 1998; Klayman, 1995; Peters, 2022),
optimism bias (Sharot, 2011; O’Sullivan, 2015; Bracha &
Brown, 2012), pessimism bias (Mansour et al., 2006; Pinker,
2015; Bates, 2015), and present bias (O’Donoghue & Rabin,
2015; Benhabib et al., 2010; Mischel & Ebbesen, 1970; Meier
& Sprenger, 2010). Future work should also investigate and
evaluate the effectiveness of the proposed method in debias-
ing large-scale language models.

But why should we care about debiasing AI models or
make sure that these models do not violate certain rational-
ity principles when making decisions? As the capabilities
of these AI models improve, allowing them to handle in-
creasingly more complex decision-making tasks, people will
tend to rely more on these models, as an AI assistant, to
help them with making complex decisions (e.g., Wang et al.,
2022; Tejeda et al., 2022; Vereschak et al., 2021; Wang &
Yin, 2021). Relatedly, these models are currently being de-
ployed, at an increasing pace, across a wide range of high-
stake decision-making tasks and domains, including crimi-
nal justice system (Taylor, 2023; Sushina & Sobenin, 2020;
Custers, 2022), healthcare (Kumar et al., 2023), education
(Zhai et al., 2021), and social services and government (Mehr
et al., 2017; Neumann et al., 2023; van Noordt & Misuraca,
2022). As such, it becomes imperative to make sure that these
AI models meet high standards of decision-making and effi-
cacy, when deployed at the individual or the societal level.
We see our work as a step in this important direction.

Over the past few decades, the realization that human de-
cision making is filled with numerous biases, fallacies and
paradoxes has led to various attempts towards improving
and enhancing human decision-making, including nudging
(e.g., Thaler & Sunstein, 2008; Wilkinson, 2013; Hummel &
Maedche, 2019), gamification (e.g., Seaborn & Fels, 2015;
Hamari et al., 2014; Lieder & Griffiths, 2016), and metacog-
nitive reflection (e.g., Becker et al., 2023).

AI-assisted decision-making — the idea of people using AI
systems, as an assistant, to help them with complex decision-
making tasks — is yet another attempt towards improving and
enhancing human decision-making. The work presented here
contributes to this rapidly growing line of research by propos-
ing a novel method (i.e., providing large-scale language mod-
els with high-level normative principles) for enhancing the
rationality of large-scale language models like GPT-4, when
deployed as an AI assistant in decision-making.
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