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Abstract

Scalable Analytics Systems for Multi-Tier IoT
Deployments with Applications in Agriculture

by

Nevena Golubović

Recent technological advances in environmental and personal sensing, monitor-

ing and data analytics are fueling remarkable innovation in data-driven actuation,

decision support, and adaptive control that is based on the “Internet of Things”

(IoT). However, to become truly transformative, IoT must exploit vastly heteroge-

neous combinations of compute, storage, and networking capabilities provisioned

at multiple scales, from low-cost, resource-restricted devices to the public clouds.

Low-latency applications and continuous telemetry from devices in our environ-

ment require services to be distributed to “the edge” of the network while, at

the same time, both security and programmer-productivity requirements require

a uniform, efficient, and end-to-end systems.

With this dissertation, we investigate the design and implementation of a

scalable, end-to-end system for data-driven IoT applications, which spans IoT

tiers – sensors, edge, and cloud. Moreover, we do so in a problem-driven fashion

and target the domain of agriculture, specializing in the system for data analytics

xi



and machine learning techniques that are applicable to precision farming. Our

work is novel in that our system integrates popular cloud services and machine

learning technologies using open source and provides the scalable building blocks

for common analysis tasks, e.g. clustering and regression, in a way that can be

tailored to specific problems that growers and farm consultants face. In addition,

the system automates the placement of analytics deployments across edge and

cloud tiers. For the sensing tier, we develop a novel approach that extends the

capability of sensor platforms by “synthesizing” information from multiple, other

sensors. The result, we believe, is a holistic, easy-to-use system for data ingress,

analysis, and visualization, that integrates new insights in sensing and distributed

and scalable systems, and that is applicable to a range of agricultural settings,

applications, and low latency, sustainable solutions.
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Chapter 1

Introduction

Recent technological advances have driven down the cost of off-the-shelf com-

pute power, storage, and network bandwidth, and have simplified large scale re-

source use (i.e. cloud computing). As a result, applications have become data-

centric and the resulting data resources and products have grown explosively in

both number and size. Moreover, the environment in which we live has become

increasingly accessible via sensor, observation, and monitoring systems that pro-

duce and collect vast amounts of data from ordinary objects, which comprise the

“Internet of Things” (IoT). IoT applications attempt to extract actionable in-

sights from this data to drive innovation, forge new industries, and facilitate new

scientific discovery across society and our economy, e.g. in health care, manufac-

turing, education, transportation, the military, agriculture, the energy sector, and

manufacturing, among others.
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Chapter 1. Introduction

In order to provide actionable insights in time, IoT developers rely on increas-

ing connectivity and wast amount of data being uploaded by IoT devices in real

time, making it available for data analytics services from a cost-effective cloud. At

the same time, a dynamically changing and heterogeneous set of IoT devices with

their communication protocols, and power/battery requirements makes software

integration, deployment, and maintenance more challenging given the scale and

energy requirements.

Moreover, because IoT applications often exhibit significantly better locality

than their e-commerce or social networking counterparts, they leverage “multi-

tier” execution environments to achieve low latency response. Specifically, devices

increasingly communicate with “edge computing” infrastructure that is “nearby”

in terms of network transfer latency. The edge tier communicates with public

clouds for data and computation aggregation. Between these two tiers, Content

Distribution Networks (CDNs), regional clouds, private clouds, etc., provide com-

puting, networking, and storage services for IoT applications. This tiered hierar-

chy facilitates efficient and cost-effective network use, localized decision making,

controlled data sharing, and real-time and low-latency response for edge devices

and services Elias et al. (2017), Krintz et al. (2018b, 2016), Foukas et al. (2017),

Satyanarayanan (2013)
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Chapter 1. Introduction

Particularly exciting is the potential for multi-tier IoT systems to have large-

scale societal impact by providing the next generation of digital technologies for

optimizing agricultural and food security outcomes. Increasing yields sustainably

while using fewer resources (i.e. “precision” agriculture) is essential to ensure that

food production is not out-paced by population growth. However, smallholder

agriculturists (as opposed to industrial-scale farming concerns) and their rural

communities are strikingly under-served by technology, with few solutions becom-

ing commonplace USDA (2017). Thus, new advances in IoT systems research are

critical for IoT in general, and agriculture in particular, if we are to achieve the

transformational societal impact that IoT promises. The goal of our work is to

provide such advances using a problem-driven approach that is motivated by the

needs of growers and agricultural operations.

Current precision agriculture technologies fall short in three key ways that

have severely limited their impact and widespread use: (i) they fail to provide

growers with easy management and control over their data, (ii) they lock growers

into proprietary, closed, inflexible, and potentially costly technologies in order to

extract actionable insights from their farm and sensor data, and (iii) few systems

facilitate cross-vendor sensor and data integration. In addition, many farms have

slow, intermittent, or no connectivity to the cloud, precluding the use of cloud-

only solutions. As such, growers and farm consultants require new technological

3



Chapter 1. Introduction

advances that provide them with automated farm data management, data-driven

recommendations and decision support, and low-cost, integrated sensing in a uni-

fied, easy to use platform that works with or without Internet connectivity.

Toward this end and given the limitations in the state of the art in IoT analytics

systems for agricultural settings, we ask the following Thesis question:

Can we build an open, scalable, end-to-end-system that provides low

latency, reliable, and actionable analytics, and automated error analy-

sis from sensor data, that is useful for addressing analytics challenges

that agricultural experts face?

To answer this question, we investigate the design, implementation, and de-

ployment of an end-to-end, multi-tier system for IoT applications in agriculture.

Our system, called Hypatia bridges the gap between sensors and cloud to pro-

vide automatic, low-latency deployment of IoT applications across edge and cloud

tiers. In addition, it can operate at the edge (on-farm) when the connection to

the cloud is intermittent or non-existent. Hypatia automates ingress of sensors

and data sets, exports services for common machine learning and data analytics

capabilities, enables users to tailor the system to their analytics and visualiza-

tion preferences, and integrates scoring metrics which it uses to automate model

selection and to provide decision support and a recommendation system for users.
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Chapter 1. Introduction

To enable this, we investigate three novel advances that target key challenges

from the agriculture sector. First, we investigate the necessary cloud service sup-

port required for clustering multivariate and highly correlated data collected (com-

mon in a wide variety of IoT analytics). We use the system to study farm soil

electrical conductivity (EC). EC is fast and inexpensive to repeatedly measure

(a Veris device is pulled across a field behind a tractor Veris (2019), Lund et al.

(1999)), and can be used to identify management zone boundaries Moral et al.

(2010), Fortes et al. (2015), Corwin & Lesch (2003) and to estimate the number

of different soil metrics including salinity, water holding capacity, and texture Bell

et al. (1995), Kitchen et al. (2006), Adamchuk et al. (2004). The service simplifies

the selection of analytics parameters from which growers choose, and provides a

recommendation of the best variant (management zone boundary) that can be

easily understood by experts and novices alike. Moreover, the service enables

users to visualize the data and results in multiple ways.

Second, we investigate how to extend the capabilities of on-farm sensing. To

enable this we use integrated, on-farm sensors to estimate the measurements

of other sensors, a technique that we call sensor synthesis. Since the number

of sensors per device is generally bounded by design constraints (e.g. space or

power limitations), sensor synthesis makes it possible to free up resources in IoT

devices for other sensors, particularly those that are less amenable to synthe-
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sis, and to reduce the monetary cost of sensing. We apply sensor synthesis to

measure micro-climates across a farm (e.g. temperature and humidity variations

due to topography and physical objects). Microclimate data is useful for more

precise application of water (irrigation) and frost control. To enable this, we esti-

mate outdoor temperature using the processor (CPU) temperature of simple and

low-cost single board computers deployed in outdoor settings. We combine data

smoothing techniques and multiple linear regression methods, which we apply to

nearby SBC processor and weather station data. We empirically evaluate this

approach using a wide range of experiments and we investigate its accuracy with

and without the computational load on the SBCs. We find that we can accu-

rately estimate microclimate temperature from combinations of nearby devices

on-farm, thereby reducing the number of temperature sensors required to capture

temperature variation across a field.

Finally, we develop a new scheduling system that automates distributed de-

ployment of data analytics applications across IoT tiers (edge and cloud). The

scheduler accounts for both computation and communication of the applications

and automatically splits the execution between edge systems and cloud computing

systems, to minimize time to completion and to prioritize edge use. The scheduler

uses execution histories to estimate time to completion and uses these predictions

to automatically place application “jobs”. We find that by doing so, the scheduler
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is able to significantly reduce time to completion over always using just the edge

or just the cloud. In addition, the scheduler simplifies IoT deployment by auto-

matically executing and autoscaling jobs (using multiple virtual servers) on any

system on which it is deployed (local or remote).

We combine each of these advances into a single scalable end-to-end system

called Hypatia available through an intuitive user interface of a web browser.

The result is an open-source, end-to-end system that enables users to collect data

from multiple sensors sources, including user’s files, web API’s, and other pub-

licly available datasets. Hypatia provides abstractions for data management

algorithms and implements multiple variants of the two frequently used ones:

clustering and linear regression, allowing other algorithms to be easily “plugged

in” following the same abstractions. For the given algorithms, Hypatia provides

scoring, and model selection. To facilitate model selection and to better under-

stand data coming from various sources, Hypatia provides different visualization

solutions. Hypatia implements the scheduler described above, which minimizes

time to completion of algorithms while considering the type of the algorithm, data

transfer and computation time requirements, and whether most of the time will be

spent on model training or its use for inference/analysis. We design Hypatia as

a distributed system that executes on any virtualized system (e.g. edge, private,

and public clouds) over which IoT applications can be deployed without modifi-
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cation (and without knowledge about or expertise with the underlying systems).

We evaluate Hypatia using a number of different IoT analytics applications and

show that it enables low latency, reliability, machine learning model selection,

error analysis, data visualization, and scheduling, in a unified scalable system.

In the Chapters that follow, we provide background on existing technologies

and research that is relevant to our work (Chapter 2). In Chapter 3, we present

our advances for automating clustering and the efficacy of its use on correlated

data and soil EC analysis. In Chapter 4, we present “sensor synthesis" and show

how it can be used to predict outdoor temperature from the CPU temperature of

SBCs. We further extend the system to ingress multiple sensors and use multiple

linear regression providing scores for each model for model selection. Chapter 5

details the overall Hypatia system which we integrate with each of our advances

including sensor data ingress (synthesized and actual), statistical clustering and

scoring, multiple linear regression and model selection, and scalable schedule and

automated deployment IoT applications across edge and cloud resources. Finally,

in Chapter 6, we present our conclusions and plans for future work.
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Background and Related Work

Today IoT developers increasingly combine IoT devices with the scale, data

and analytics services, and the cost-effectiveness of the cloud. However, at present,

the heterogeneous (in terms of hardware, software, and APIs), asynchronous,

highly scalable, dynamically changing, and geographically distributed nature of

IoT-cloud applications, makes their infrastructure complex and difficult to provi-

sion, program, and optimize for high performance, energy efficiency, and scale.

In an attempt to overcome this challenge, cloud providers are investing heavily

in new cloud services. Unfortunately, while effective as platforms for autoscaling

web services, extant cloud offerings have not been able to ameliorate the com-

plexities facing reliable and pervasive IoT application deployment, which must

be overcome if we are to achieve the transformational societal impact that IoT

promises. First, the volumes and velocity of data produced by IoT systems Int

(2019b) has forced a movement from a centralized model of computing to an “edge”
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connected model for IoT, in which computation and analysis must be performed

near where data is generated. The centralized (cloud-direct) approach imposes

significant request latency and power consumption on remote devices at the net-

work “edge” – prohibiting real-time, data-driven response. Instead, co-location of

processing infrastructure and IoT devices significantly reduces the latency between

data acquisition and device actuation enables the extension of device capability

via local offloading, and alleviates the cost, power consumption, and congestion

of network use of the cloud-direct model Floyer (2015), Bonomi et al. (2012),

Satyanarayanan et al. (2009), Satyanarayanan (2013), Verbelen et al. (2012).

Some cloud vendors offer restricted versions of cloud services for edge de-

vices AWS IoT Core (2019), AWS IoT Greengrass (2019), Azure IoT Hub (2019),

Azure IoT Edge (2019), Cloud IoT Core (2019), Edge TPU (2019), Bosch IoT Suite

(2019), General Electric IoT (2019). However, these solutions are not portable

across cloud vendors (e.g. Amazon and Azure public clouds), they do not al-

low arbitrary computations and data analytics at the edge, they are hard to use

due to complex configuration, and not being open source precludes extension and

reproducibility.

Despite the many advances in cloud services and cloud-based data analytics,

few advances have made their way to the agriculture community. Such tech-

niques, however, are critical for lowering the cost of farm operations, reducing
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labor needs via automation, and increasing yields sustainably. However, small-

holder agriculturists (as opposed to industrial-scale farming concerns) and their

rural communities are strikingly under-served by technology, with few solutions

becoming commonplace USDA (2017).

In this dissertation, we focus on the scalable analytics building blocks that

are key for a wide range of applications. We then tailor the system and solu-

tions to agricultural problems and settings so that they may provide growers with

decision support as well as data-driven actuation and control for precision agricul-

ture. Precision agriculture (ag) Committee on Assessing Crop Yield: Site-Specific

Farming, Information Systems, and Research Opportunities, Board on Agricul-

ture, National Research Council (1997) is a set of farm management techniques

that use data from environmental sensors, historical records, and models, and

farming operations, to provide decision support to growers and farm consultants.

Precision farming integrates cyberinfrastructure and computational data analy-

sis to overcome the challenges associated with extracting useful information and

actionable insights from the vast amount of information that surrounds the crop

life cycle. Precision ag attempts to help growers answer key questions about ir-

rigation and drainage, plant disease, insect and pest control, fertilization, crop

rotation, and soil health, weather protection, and crop production. Existing pre-

cision ag solutions include sensor-software systems for irrigation, mapping, and

11



Chapter 2. Background and Related Work

image capture/processing (including via unmanned aerial vehicles (UAVs), in-

telligent implements (planters, harvesters, steering systems), and more recently,

public cloud software-as-a-service (SaaS) solutions that provide visualization and

analysis of farm data over time OnFarm (2019), Climate Corporation (A Mon-

santo Company) (2014), MyAgCentral (2014), gThrive (2014), WatrHub (2014),

PowWow (2019).

Current precision ag technologies fall short in three key ways that have severely

limited their impact and widespread use: First, they fail to provide growers with

control over the privacy of their data and second, they lock growers into propri-

etary, closed, inflexible, and potentially costly technologies and methodologies. In

terms of data privacy, extant solutions require that farmers relinquish control over

and ownership of their most valuable asset: their data. Farm data reveals private

and personal information about grower practices, crop input (chemicals, fertiliz-

ers, pesticides), and farm implement use, purchasing and sales details, water use,

disease problems, etc., that define a grower’s business and competitiveness. Re-

vealing such information to vendors in exchange for the ability to visualize it puts

farmers at significant risk Federation (2014), Russo (2013), Vogt (2014).

The second limitation of extant precision ag solutions is “lock-in”. Lock-in is a

well-known business strategy in which vendors seek to create barriers to exit for

their customers as a way of ensuring revenue from continued use, new or related
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products, or add-ons in the future. In the precision ag sector, this manifests as pro-

prietary, closed, and fragmented solutions that preclude advances in sustainable

agriculture science and engineering by anyone other than the companies them-

selves. Lock-in also manifests as a lack of support for cross-vendor technologies,

including observation and sensing devices, farm implements, and data manage-

ment and analysis applications. Since farmers face many challenges switching

vendors once they choose one, the one they choose can charge fees for training,

customizations, add-ons, and use of their online resources without limit because

of the lack of competition.

The third limitation is that most precision ag solutions today employ the cen-

tralized (cloud-direct) approach described above. As solutions become increasingly

on-line (with the move to SaaS), the lock-in also requires that farmers upload all of

their data to the cloud giving vendor full control and access, and leaving growers

without recourse when vendors go out of business Rodrigues (2013). In addition

to these risks, such network communication of potentially terabytes of image and

sensor data is expensive and time consuming for many because of poor network

connectivity and costly data rates that are typical of rural areas. Finally, many of

these technologies impose high premiums and yearly subscriptions ArcGIS (2019).

The goal of our work is to address these limitations and to provide such a

scalable, data analytics platform that facilitates open and scalable precision ag
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advances. To enable this, we leverage recent advances in Internet of Things (IoT),

cloud computing, and data analytics and extend them them to contribute new re-

search that defines a software architecture that tailors each to agricultural settings,

applications, and sustainability science. These constituent technologies cannot be

used off-the-shelf however because they require significant expertise and staffing to

setup, manage, and maintain – which are show stoppers for today’s growers. We

attempt to overcome these challenges with a comprehensive, end-to-end system

for scalable agriculture analytics that is open source and that can run anywhere

(e.g. edge, public, and private clouds), precluding lock-in. To enable this, we

contribute new advances in scalable analytics, low-cost sensing, easy to use data

visualization, data-driven decision support, and automatic edge-cloud scheduling,

all within a single, unified distributed platform. In the next chapter, we begin

by focusing on an important analytics building block (statistical clustering) and

tailoring its use for farm management zone identification using soil electrical con-

ductivity data.
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K-Means Clustering and Its Use for
Agriculture Analytics

Statistical clustering, also known as a separation of measurements into related

groups, is a key requirement for solving many analytics problems. Lloyd’s al-

gorithm Lloyd (1982), commonly called k-means, is one of the most widely used

approaches Duda et al. (1973). K-means is an unsupervised learning algorithm, re-

quiring no training or labeling, that partitions data into K clusters, based on their

“distance” from K centers in a multi-dimensional space. Its basic form is simple

to implement and has become an indispensable component of pattern recognition,

data mining, image processing, information retrieval, and recommendation appli-

cations across fields ranging from marketing and advertising to astronomy and

agriculture.

While conceptually simple, there is a myriad of k-means algorithm variants

based on how distances are calculated in the problem space. Some k-means
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implementations also require “hyperparameters” that control for the amount of

statistical variation in clustering solutions. Identifying which algorithm variant

and set of implementation parameters to use in a given analytics setting is often

challenging and error-prone for novices and experts alike.

In this chapter, we present Centaurus as an approach to simplifying the

application of k-means through the use of cloud computing. Centaurus is a web-

accessible, cloud-hosted service that automatically deploys and executes multiple

k-means variants concurrently, producing multiple models. It then scores the

models to select the one that best fits the data – a process known as model

selection. It also allows for experimentation with different hyperparameters and

provides a set of data and diagnostic visualizations so that users can best interpret

its results.

From a systems perspective, Centaurus defines a pluggable framework into

which clustering algorithms and k-means variants can be chosen. When users

upload their data, Centaurus executes and automatically scales the execution of

concurrently executing k-means variants using public or private cloud resources.

To perform model selection, Centaurus employs a scoring component based

on information criteria. Centaurus computes a score for each result (across

variants, cluster sizes, and repeat runs) and provides a recommendation of the best

clustering to the user. Users can also employ Centaurus to visualize their data,
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its clusterings, and scores, and to experiment with different parameterizations of

the system (e.g., the number of repeat runs, the combination of features to cluster,

and the dimensions to display).

We implement Centaurus using production-quality, open-source software

and validate it using synthetic datasets with known clusters. We also apply

Centaurus in the context of a real-world, agricultural analytics application and

compare its results to the industry-standard clustering approach. The application

analyzes fine-grained soil electrical conductivity (EC) measurements, GPS coor-

dinates, and elevation data from a field to produce a “map” of differing soil zones.

These zones can then be used by farmers and farm consultants to customize the

management of different zones on the farm (application of water, fertilizer, pesti-

cides, etc.) Fridgen et al. (2004), Moral et al. (2010), Fortes et al. (2015), Corwin

& Lesch (2003). We compare Centaurus to the state of the art clustering tool

(MZA Fridgen et al. (2004)) for farm management zone identification and show

that Centaurus is more robust, obtains more accurate clusters, and requires

significantly less input and effort from its users.

In the sections that follow, we provide some background on the use of EC

for agricultural zone management. We then describe the general form of the k-

means algorithm, variants for computing covariance matrices, and scoring method

that Centaurus employs (Section 3.2). Following this, we present our datasets,
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an empirical evaluation of Centaurus, related research specifically related to

Centaurus, and summarize our contributions.

3.1 Clustering for Agricultural Zone Management

The soil health of a field can vary significantly and change over time due to

human activity and forces of nature. To optimize yields, farmers increasingly

rely on site-specific farming in which a field is divided into contiguous regions,

called zones, with similar soil properties. Agronomic strategies are then tailored

to specific zones (versus using the same strategy across the entire field) to apply

inputs precisely, to lower costs and input use, and to ultimately increase yields.

Management zone boundaries can be determined with many different proce-

dures: soil surveys with or without other measurements Bell et al. (1995), Kitchen

et al. (2006); spatial distribution estimates of soil properties by interpolating soil

sample data Mausbach et al. (1993), Wollenhaupt et al. (1997) fine-grain soil elec-

trical conductivity (EC) measurements Mulla et al. (1992), Jaynes et al. (1995),

Sudduth (1997), Rhoades et al. (1989), Sudduth et al. (2005), Corwin & Lesch

(2003), Veris (2019), and a combination of sensing technologies Adamchuk et al.

(2004). EC-based zone identification is widely used because it addresses many of

the limitations of the other approaches: it is inexpensive, it can be repeated over
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time to capture changes, and it produces useful and accurate estimates of many

yield-limiting soil properties including compaction, water holding capacity, and

chemical composition. As a result, EC-based management tools are used exten-

sively for a wide variety of field plants (trees, crops, apples, vines, etc.) Peeters

et al. (2015), Aggelopooulou et al. (2013), Gili et al. (2017).

To collect EC data, EC sensors are typically attached to a GPS-equipped

tractor or all-terrain vehicle and pulled across a field to collect measurements at

multiple depths and at a very fine grain spatially (a few feet). EC maps generated

from this data can either be used to directly define management zones (visually)

or to inform the future, more extensive, soil sampling locations Veris (2019),

Lund et al. (1999). Alternatively, EC values can be clustered into related regions

(management zones) using fast, automated, unsupervised statistical clustering

techniques (e.g. k-means Lloyd (1982) and its variants Bezdek (2013), Murphy

(2012)) Fridgen et al. (2004), Molin & Castro (2008), Fraisse et al. (2001), et al

(2003).

Given the potential and wide-spread use of EC-based zone identification tools

that rely on automated unsupervised algorithms, in this chapter we investigate

the impact of using different k-means implementations and deployment strategies

for EC-based management zone identification. We consider different algorithm

variants, different numbers of randomized runs, and the frequency of degenerate
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runs – algorithm solutions which are statistically questionable because they in-

clude empty clusters, clusters with too few data points, or clusters that share the

same cluster center Brimberg & Mladenovic (1999). To compare k-means solutions

(models), we define a model selection framework that uses the Bayesian Informa-

tion Criterion (BIC) Schwarz (1978) to score and select the best model. Past

work has used BIC to score models for the univariate normal distribution Pelleg

et al. (2000). Our work extends this use to multivariate distributions and multiple

k-means variants.

3.2 Methodology

The k-means algorithm attempts to find a set of cluster centers that describe

the distribution of the points in the dataset by minimizing the sum of the squared

distances between each point and its cluster center. For a given number of clusters

K, it first assigns the cluster centers by randomly selecting K points from the

dataset. It then alternates between assigning points to the cluster represented

by the nearest center, and recomputing the centers Lloyd (1982), Bishop (2006),

while decreasing the overall sum of squared distances Linde et al. (1980).

The sum-of-squared distances between data points and their assigned clus-

ter centers provides a way to compare local optima – the lower the sum of the
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distances, the closer to a global optimum a specific clustering is. Note, that

it is possible to use distance metrics other than Euclidean distance to compute

per-cluster differences in variance, or covariance between data features (e.g. Ma-

halanobis distance Mahalanobis (1936)). Thus, for a given data set, the algorithm

can generate a number of different k-means clusterings – one for each combination

of starting centers, distance metrics, and a method used to compute the covari-

ance matrix. Centaurus integrates both Euclidian and Mahalanobis distance.

The computation of Mahalanobis distance requires computation of a covariance

matrix for the dataset.

In Centaurus we integrate six different methods for computing covariance

matrices for k-means algorithm: Full-Tied, Full-Untied, Diagonal-Tied, Diagonal-

Untied, Spherical-Tied, and Spherical-Untied Murphy (1998, 2012), Bishop (2006),

Cerioli (2005). Each of these methods is defined as:

• Full : Compute the entire covariance matrix Σ and use all of its elements to

compute distance between points x and y:

D(x,y) =
(
(x− y)TΣ−1(x− y)

)1/2
This variant is commonly associated with the use of Mahalanobis distance.
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• Diagonal : Compute the variance matrix, i.e., the covariance matrix with

its off-diagonal elements set to zero. This approach ignores the covariance

observed between the dimensions of the dataset.

• Spherical : Set covariance matrix diagonal elements to the variance computed

across all dimensions and set off-diagonal elements to zero. This method is

commonly referred to as using Euclidean distance.

In addition, each of these approaches for computing the covariance matrix

can be Tied or Untied. Tied means that we compute a covariance matrix per

cluster, take the average across all clusters, and then use the averaged covariance

matrix to compute distance. Untied means that we compute a separate covariance

matrix for each cluster, which we use to compute distance. Using a tied set of

covariance matrices assumes that the covariance among dimensions is the same

across all clusters, and that the variation in the observed covariance matrices is

due to sampling variation. Using an untied set of covariance matrices assumes

that each cluster is different in terms of its covariance between dimensions.

We implement k-means in its general form using Mahalanobis distance in Cen-

taurus using the following steps:
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1. We use k-means++Arthur & Vassilvitskii (2007) to randomly select K

points from the data and assign these as the initial cluster centers µ(k),

where K is the number of clusters, k is the cluster index, and k = 1, . . . , K.

2. For data points having d dimensions, compute initial covariance matrix Σ

using all data points:

Σij =
1

n

n∑
p=1

(x
(p)
i − µi)(x

(p)
j − µj)

where, Σij is (i, j)-th component of the matrix Σ, x(p)i is the i-th component

of the p-th data point, and µi is the i-th component of the global mean.

3. Assign all the points to the closest cluster center using Mahalanobis distance

metric:

D(x(p),µ(k)) =
(
(x(p) − µ(k))TΣ−1(x(p) − µ(k))

)1/2
where, x(p) is the d-dimensional vector of components of the p-th data point,

µ(k) is the center of the k-th cluster.

4. Compute covariance matrix Σ(k) for each cluster using their cluster center

µ(k).

5. Compute the cluster centers µ(k): for each point in a cluster, calculate the

sum of its distances to all the other points in the same cluster. Assign the

point with the minimum sum as the new center.
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6. Repeat (4) and (5) until convergence or completion of a maximum number

of iterations. The convergence criteria is calculated by summing up the

distances of new cluster centers from the old cluster centers.

The output of the algorithm is a list of cluster labels, one per data point,

indicating the cluster index to which the data point belongs and a list of cluster

centers that correspond to the maximum likelihood estimates of the cluster means.

We use the interpretation of k-means as the “hard” cluster assignment of Gaussian

Mixture Model (GMM) to compute the maximum log-likelihood (for use by the

Bayesian Information Criterion Schwarz (1978) or the Akaike Information Crite-

rion Akaike (1974)) in order to compare the local optima generated from different

variants of k-means and, ultimately, to choose the “best” one Pelleg et al. (2000).

We discuss the use of information criteria as a “scoring” method across multiple

runs of multiple variants in Section 3.3.2.

Once the labels are computed for each data point, we can compute the likeli-

hood (a function of the data given the model) using the equation for GMM with

hard assignment Bishop (2006), Murphy (2012), as:

f (X|µ,Σ) =
n∏

p=1

K∏
k=1

π
1pk

k · N
(
x|µ(k),Σ(k)

)
1pk

where, p is a data point having d dimensions, k is a cluster index, πk is the ratio

of the number of points in cluster k and the total number of points, and 1pk is an
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identity coefficient that is 1 if the point p belongs to the cluster k and 0 otherwise,

µ(k) is the k-th cluster center, N
(
x|µ(k),Σ(k)

)
is the Gaussian probability density

function with µ(k) mean and Σ(k) covariance.

The log-likelihood function is needed to compute information criteria that

Centaurus uses to score a particular clustering. We compute the log-likelihood

function as:

l (X|µ,Σ) = ln f (X|µ,Σ)

=
K∑
k=1

nk ·
(

ln
(nk

n

)
− d

2
ln (2π)− 1

2
ln |Σ(k)|

)

− 1

2

n∑
p=1

K∑
k=1

1pk · (x(p) − µ(k))T (Σ(k))−1(x(p) − µ(k))

3.3 Centaurus

We design and implement Centaurus as a software service for k-means

clustering that takes advantage of cloud-based, large-scale distributed compu-

tation, automatic scaling (where computational resources are added or removed

on-demand), data management to support visualization, and browser-based user

interaction. Centaurus implements six different variants of k-means (described

in Section 3.2). Centaurus provides a scalable execution environment and au-

tomatic deployment of multiple, concurrent k-means algorithm parameterizations

and variants.
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3.3.1 Implementation

The Centaurus implementation consists of a user-facing web service and dis-

tributed cloud-enabled backend. Users upload their datasets to the web service

frontend as files in a simple format: as comma-separated values (CSV files). Ad-

vanced users can modify (or accept default values for) the following Centaurus

parameters: maximum number of clusters to fit to the data (K); number of experi-

ments (N) per K to run; number of times to initialize the k-means clustering (M);

type(s) of covariance matrix to use for the analysis (all options – Full-Tied, Full-

Untied, Diagonal-Tied, Diagonal-Untied, Spherical-Tied, and Spherical-Untied –

are selected by default.); whether to scale the data so that each dimension has

zero mean and unit standard deviation (scale).

Centaurus considers each parameterization that the user chooses (including

the default) as a “job”. Each job consists of multiple tasks (experiment runs) that

Centaurus deploys. Users can check the status of a job or view the report for

a job (when completed). The status page provides an overview of all the tasks

with a progress bar for the percentage of tasks completed and a table showing

task parameters and outcomes available for download and visualization.

Centaurus has a report page to provide its recommendation. The recom-

mendation consists of the number of clusters and k-means variant that produced

the best score. This page also shows the cluster assignments and spatial plots
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using longitude and latitude (if included in the original data set). For additional

analysis, users can select “advanced report” to see the correlation among features

in the dataset, scores for each k-means variant, best clusterings for each one of

the variants, etc.

We implement Centaurus using Python and integrate a number of open-

source software, packages, and cloud services. These services include the Python

Flask Flask (2019) (v0.12.1) web framework, RabbitMQ RabbitMQ (2019) (v3.2.4)

and Python Celery Celery (2019) (v4.0.2) for messaging and queuing support, and

an PostgreSQL (v9.5.11) SQL database PostgreSQL (2019) and MongoDB Com-

munity Edition (v3.4.4) NoSQL database MongoDB (2019), which we use to store

parameters and results for jobs and tasks. Other packages include Numpy Walt

et al. (2011) (v1.12.1), Pandas McKinney et al. (2010) (v0.19.2), SciKit-Learn Pe-

dregosa et al. (2011) (v0.18.1), and SciPy Jones et al. (2001–) (v0.19.0) for data

processing and Matplotlib Hunter (2007) (v2.0.1) and Seaborn Seaborn (2019)

(v0.7.1) for data visualization. Centaurus can execute on any virtualized clus-

ter or cloud system and autoscales deployments by starting and stopping virtual

servers as required by the computation. In our evaluation in this chapter, we

deploy Centaurus on a private cloud that runs Eucalyptus v4.4 Nurmi et al.

(2009), Aristotle (2019), which has multiple virtual servers with different CPU,

memory, and storage capabilities. We build upon, generalize, and extend this sys-

27



Chapter 3. K-Means Clustering and Its Use for Agriculture Analytics

tem (and describe its design and implementation in greater detail) in Chapter 5

of this dissertation.

3.3.2 Centaurus Scoring

Centaurus performs N experiments for a particular K value (where K =

1, ...,max_k), each of which consists of M initial cluster assignments to the k-

means algorithm. Each algorithm iterates until convergence or a maximum num-

ber of iterations is reached (in Centaurus this value is 300). Thus, Centaurus

executes N ∗M runs of an algorithm for each value of K. Across M initial cluster

assignments, Centaurus chooses the best performing one using the maximum

log-likelihood.

Centaurus scoring takes label assignments from a clustering result for a par-

ticular K value and returns a score based on the Bayesian Information Criterion

(BIC). BIC uses the log maximum likelihood to rate a particular clustering and

then subtracts a “penalty” function that captures the number of parameters that

must have been estimated to generate the clustering, scaled by the sample size.

We compute the BIC score for a Full Tied clustering with K clusters as:

BICK = l(X|µ̂, Σ̂)− rK
2

log n

where, µ̂ is the maximum likelihood estimator for the cluster centers, Σ̂ is the

d-dimensional maximum likelihood estimator for the cluster covariance matrices,
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l(X|µ̂, Σ̂) is the maximum log likelihood, and rK is the number of free parameters

in the model. rK is computed as the sum of K−1 cluster probabilities (πk), (K ·d)

coordinate parameters for all the cluster centers, and (K · d·(d+1)
2

) parameters for

each of the K symmetric cluster covariance mattrices:

rK = (K − 1) + (K · d) + (K · d · (d+ 1)

2
)

When a single covariance matrix is used for all clusters (the Untied variants),

the factor of K in the third term is set to 1. Similarly, when the off-diagonal

elements are zero, the fraction in the third term is either d (for the Diagonal

variants) or 1 (for the Spherical variants). For BIC, the penalty function is rK

multiplied by logn
2

where n is the total number of points.

Note that because these techniques require estimates of the covariance matrix

for each cluster, there must be a minimum number of data points per cluster

for this estimate to be meaningful. As a result, Centaurus discards (does not

score or consider in the scoring average) any clustering result which has one or

more clusters with fewer elements than this minimum. This minimum threshold

is user-configurable with a default setting of 30 data points in the current system.
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3.4 Datasets

We use both synthetic and real-world datasets to evaluate Centaurus em-

pirically. We generate the synthetic data sets with known clusters (as “ground

truth”), which we use to validate and measure the accuracy of the Centaurus

implementation. Using the real-world application data from precision agriculture,

we also compare the results generated by Centaurus for management zone de-

termination to the industry standard and use them to illustrate the Centaurus

visualization capabilities.

3.4.1 Synthetic Datasets

We first create multiple 2-dimensional synthetic datasets using multivariate

Gaussian distributions. The datasets have three clusters with 1,000 points per

cluster and varying degrees of inter-dimensional correlation in each cluster. Fig-

ure 3.1 shows these datasets with their ground truth cluster assignments.

• Dataset-1 clusters have no correlation and equal standard deviations of 0.2

for each dimension. Cluster centers are set at positions (1, 0), (−1, 0), and

(0, 2) as can be seen in Figure 3.1a.

• In Dataset-2 cluster centered at (0.25, 0) has two dimensions that are in-

dependent (not correlated) with the same standard deviations of 0.2. The
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(a) Dataset-1 (b) Dataset-2

(c) Dataset-3

Figure 3.1: Synthetic datasets shown with ground truth assignment.

cluster centered at (1, 1) has correlation 0.70 between dimensions, while the

cluster centered at (0.5, 1) has correlation 0.97 between dimensions. When

all three clusters are combined the correlation between the two dimensions

is 0.75.
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Field Soil Type

CAP clay, sandy-clay-loam/cl, sandy-loam, sandy-clay-loam

SED sandy-clay-loam

UNL silt-loam, silty-clay-loam

ALM sand, loamy-sand,sandy-loam

TC1 loamy-sand, sand, sandy-loam>60%

TC2 loamy-sand, sandy-loam: <60% sand, sandy-loam: >65% sand

GR1 loam, clay-loam, sandy-loam, sandy-loam/scl, sandy-clay-loam

GR2 loam, clay-loam, sandy-loam, sandy-loam/scl, sandy-clay-loam

CTR sandy-loam, sandy-clay-loam, loamy-sand, clay%<50,50-55,>55

RANclay-loam, sandy-clay-loam, loam, sandy-clay/scl(/l), sandy-loam

Table 3.1: List of application datasets with soil type.

• In Dataset-3, the cluster centered at (1, 0) has two independent dimensions,

while the clusters centered at (0.75, 1.5) and (0.35,−0.35) have correlations

of 0.98 and −0.89 respectively. The correlation of the entire set is 0.2.

3.4.2 Application Datasets

Our farm datasets contain measurements of electrical conductivity (EC) of the

soil collected using an instrument manufactured by Veris Technologies Inc Veris
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Field Plantation Field Plantation

CAP lemon trees TC2 tango citrus

SED grapes, fruit trees GR1 grape

UNL soybean, corn GR2 grape

ALM almond trees CTR citrus trees

TC1 tango citrus RAN fruit trees

Table 3.2: List of application datasets with plantation.

(2019). Electrical conductivity is coupled with the GPS coordinates and elevation

information for each measurement. Each data file contains longitude, latitude,

elevation, EC at 30cm depth (EC1), and EC at 90cm depth (EC2).

We analyze ten farm field datasets from eight different locations in the United

States that represent a variety of soil types and management practices. The data

sampling is not uniform, the distance between data points is influenced by the

type of plant: if it is a perennial plant (e.g. trees) data is gathered between

rows; empty fields (e.g. soybean or corn) permit narrow row spacing. Sampling

is further influenced by the speed at which the sensor was driven. At the speed

of 10km/h, the sensor produces around 275 readings per hectare.

Most of the datasets are multivariate (containing EC1, EC2, Elevation, Lon-

gitude, Latitude) and, when available, we use EC1, EC2, and Elevation for clus-
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Field Size EC1µ EC1σ EC2µ EC2σ Elµ Elσ

CAP 3232 82.7 30.5 79.7 40.1 82.1 1.4

SED 2675 19.8 9.0 27.2 10.3 328.4 0.7

UNL 5797 20.9 8.9 31.0 14.8 356.5 0.6

ALM 13093 6.3 3.1 6.3 3.1 n.a. n.a.

TC1 3304 12.2 6.0 7.7 3.9 102.7 1.1

TC2 1208 8.5 3.6 4.9 2.6 102.5 0.9

GR1 2720 21.6 5.8 n.a. n.a. n.a. n.a.

GR2 2715 18.5 5.1 n.a. n.a. n.a. n.a.

CTR 16834 53.1 24.9 120.3 49.2 125.7 1.1

RAN 17039 89.8 36.8 92.5 32.5 237.3 6.4

Table 3.3: Application Dataset Statistics: mean (µ) and st. deviation (σ) for each

one of the features used (EC1, EC2, Elevation)

tering. Some datasets (GR1, and GR2) have only EC1 measurements and for

those datasets, we compute the clusters based on only one dimension (EC1) and

multivariate computation falls back to simple Euclidean distance. Longitude and

Latitude fields are only used to visualize the datasets.

Tables 3.1, 3.3, and 3.2 summarize the information in the datasets that we

consider in this study. For each of the datasets, Tables 3.1 and 3.2 list soil varieties
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and plant types grown on the farm at the time of sampling. Table 3.3 contains

dataset statistics: dataset size, mean, and variance for each feature used in the

clustering (EC1, EC2, Elevation).

The first example is the CAP dataset, which is a 4.85ha lemon farm at Cali-

fornia Polytechnic State University, San Louis Obispo, California, USA. We have

collected 3,232 data points from this field and its soil consists of sandy clay loam,

sandy loam, and clay. The SED dataset comes from a 12.1ha field located in the

Santa Ynez Valley, California from which we have collected 2,675 data points.

This field mostly consists of sandy clay loam, clay loam, and loam. The UNL is

a 36.8ha field at the University of Nebraska, Lincoln, from which we have 5,823

data points. It is mostly used for corn and soybean and it has silty loam and silty

clay loam soil types. The other datasets described in the table are those from

private, production farms; the names and locations of which we have been asked

to keep anonymous.

3.5 Results

In this section, we evaluate Centaurus k-means cluster quality for multiple k-

means variants. We first compare the cluster resolution power of the variants using

synthetic datasets. We first detail the clustering that Centaurus determines for
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Veris Veris (2019) electroconductivity (EC) measurements taken from three farms.

From this data, we illustrate both the advantage of including multiple k-means

variants in the pool of algorithms that Centaurus implements and the effect of

executing multiple randomized trials on the quality of the clustering. We then

extend this study to seven more farms from different locations and with various

crop types. Finally, we compare Centaurus clusterings to those produced by

MZA for both synthetic and Veris EC data.

3.5.1 Synthetic Dataset and K-means Variants

To evaluate the efficacy of Centaurus, we deploy the service and run it on

the datasets described in Section 3.4 for each of the k-means variants described

in Section 3.2. In this section, we refer to the variants as Full-Untied, Full-Tied,

Diagonal-Untied, Diagonal-Tied, Spherical-Untied, and Spherical-Tied.

For the datasets with known clusters (those that we have generated syntheti-

cally) we report classification percentage error, i.e. the percentage of incorrectly

classified points out of all the points in the dataset (3,000 data points per dataset

in this case). Table 3.4 shows these results for each of the synthetic datasets

(Dataset-1, Dataset-2, and Dataset-3) for each of the six k-means variants.

For the results that follow, we parameterize Centaurus with K = 1, . . . , 10

and 100 experiments each with 100 random initial cluster center assignments (for
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Variant Dataset-1 Dataset-2 Dataset-3

Full-Untied 0.0% 3.6% 0.1%

Full-Tied 0.0% 37.6% 57.5%

Diagonal-Untied 0.0% 26.2% 26.0%

Diagonal-Tied 0.0% 34.4% 55.2%

Spherical-Untied 0.0% 27.3% 11.2%

Spherical-Tied 0.0% 34.4% 56.6%

Table 3.4: Percentage error (out of 3,000 points per dataset) for the six k-means

variants of Centaurus for the synthetic datasets. Values are the percentage of

points incorrectly labeled by the variant (i.e. assigned to the wrong cluster).
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a total of 10,000 k-means algorithm invocations per variant). Centaurus stores

the cluster assignments (labels) for each experiment, which is the result with the

largest log-likelihood value across initial assignments. This Centaurus instance

only considers clustering results when all clusters have at least 30 points, in its

computation of BIC and AIC. Finally, as described above, Centaurus reports

the result with the highest average BIC score the “best” clustering across every K

considered for all variants.

Note that Dataset-1 was generated using a GMM where all dimensions are

independent of each other and are identically distributed. Thus the “perfect” clas-

sification results (0% error) generated by the Full and Diagonal methods indicate

that they correctly disregard any observed sample variance or covariance.

The results for Full-Untied with Dataset-2 and Dataset-3 illustrate Centau-

rus ’s ability to correct for cross-dimensional correlation. The generating GMM

in both cases is untied (i.e. each cluster has a distinct covariance matrix). Also,

unlike in Dataset-1 where there are three distinct clusters with separated cen-

ters, we purposefully placed the cluster centers of Dataset-2 and Dataset-3 near

each other and generated distributions that overlap. Doing so poses challenges

for k-means clustering and all variants misclassified some points.

To visualize the effect of different k-means variants on BIC score, we perform

2048 single k-means runs for each variant for synthetic datasets described in 3.4.
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(a) Dataset-1

(b) Dataset-2

(c) Dataset-3

Figure 3.2: BIC score histograms for synthetic datasets with six k-means variants.
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Figure 3.2 shows histograms of the BIC scores for each the of three synthetic

datasets. We divide the scores among 100 bins. For each dataset, we present six

histograms, one for each of the k-means variants, represented in different colors,

where each variant has a total of 2048 single k-means runs. The X-axis depicts

BIC scores from experiments – farther right corresponds to larger BIC and thus

higher quality clusterings.

Dataset-1 consists of well-separated clusters. All six variants perform well

making the simpler (i.e. those with fewer parameters to be estimated) variants

generate slightly higher BIC scores (as depicted in Figure 3.2a).

However, for datasets where the dimensions are more highly correlated and/or

where that correlation differs across clusters, the complex variants (Full Tied

and Full Untied) outperform their simpler counterparts in terms of BIC score.

Dataset-2 and Dataset-3 differ in that for the latter, the cross-dimensional cor-

relation varies by the synthetic cluster. Nonetheless, as shown in Figures 3.2b

and 3.2c, the Full-Untied variant (which computes a separate co-variance matrix

for each cluster) performs best. These experiments, although synthetic, show the

importance of considering different variants when employing k-means clustering.
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3.5.2 Soil Electrical Conductivity Datasets

In this section, we refer to an experiment as 10 repeated clusterings (using

k-means++Arthur & Vassilvitskii (2007) to make initial assignments in each repe-

tition) for each number of clusters k between 1 and 10, for each of the six k-means

variants we examine in this study. Thus, each individual experiment consists of

10 ∗ 10 ∗ 6 = 600 individual cluster assignments using k-means.

Centaurus repeats each experiment N times, where N = 2i, for i = 0, ..., 11.

In this study, we refer to a set of N experiments as job-N. Thus job-N consists

of N ∗ 600 individual clusterings. Centaurus filters out any clustering with a

cluster having fewer than 30 points (so that any per-cluster statistical estimates

are statistically valid). To determine the best clustering from a job, Centaurus

computes a BIC score for each clustering in the job and selects the one with the

largest score.

Cluster Quality Analysis

To show the effect of using a large sample when determining the “best” clus-

tering, in Figure 3.3 we plot the largest observed BIC score (on the y-axis) versus

the experiment number N (on the x-axis, which uses a log scale). Figures 3.3a,

3.3b, and 3.3c show EC data from Cal Poly, Sedgwick, and UNL respectively.
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(a) Cal Poly

(b) Sedgwick

(c) UNL

Figure 3.3: Largest observed BIC score vs number of experiments (log scale).
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As the sample size goes up, the probability of determining a clustering with

the “best” BIC score (or, at least a consistently good BIC score) should increase

as well. For the Sedgwick data (Figure 3.3b) this effect is clearly visible. Once

the number of experiments exceeds N = 28, there is no further improvement in

BIC. However for Cal Poly and UNL, the presence of a higher BIC occurring

only at N = 211 indicates that even more repetitions are necessary to identify a

consistently “best” clustering. Thus, for these datasets, the best clustering in the

“space” of all possible clusterings is rare since it does not occur repeatedly when

the sample size is less than 1.23 million (211 ∗ 600).

Cluster Specificity

One possibility is that the “best” clustering (the one with the highest BIC

score) and the next best are similar. In this case, then, a large exploration of

the clustering search space may be unwarranted because the best is not substan-

tially different from the next best (which may be more common and require less

computational effort to find).

To investigate this possibility, we consider the two largest jobs from the Cal

Poly dataset: the largest job withN = 211 experiments (job-2048) and the second

largest job with N = 210 experiments (job-1024). The largest job, Job-2048,

with twice the number of experiments of job-1024, has the best BIC score of
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(a) Best with BIC -8847.9

(b) Second-Best with BIC -8925.4

(c) Differences

Figure 3.4: Clusterings of Cal Poly Dataset.
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(a) Best with BIC: -7468.0

(b) Second-Best with BIC: -7529.8

(c) Differences

Figure 3.5: Clusterings of Sedgwick Dataset.
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(a) Best with BIC: 37039.6

(b) Second Best with BIC: 32108.6

(c) Differences

Figure 3.6: Clusterings of UNL dataset.
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-8847.9 (Figure 3.4a). This corresponds to a clustering with four clusters having

cardinality of 2188, 531, 308, and 205, respectively. The second-best clustering

has BIC score of -8925.4 and three clusters with cardinality 1733, 973, and 526,

respectively, as shown in (Figure 3.4b).

Figure 3.4c shows the difference between these two clusterings. A specific data

point is shown (i.e. is considered “different”) if it has a different cluster number

assignment (is in a different cluster) when we rank clusters by cardinality. For this

data, clearly these clusterings differ. Thus, doubling the number of experiments

from 1024 to 2048 allows Centaurus to find a clustering with a better BIC score.

The Sedgwick dataset has a more stable outcome in terms of the best BIC

score when increasing the number of experiments. Figure-3.3b shows that even

with 256 experiments (150K k-means runs), we achieve the same maximum BIC

score as with 2048 experiments. The best result has a BIC score of -7468.0 and

three clusters with 1111, 996, and 568 elements (as shown in Figure 3.5a). This

result is consistent over many repeated jobs with a sufficiently large number of

experiments i.e. any job with more than 256 experiments produced this same

clustering as the one corresponding to the largest score.

The second-best clustering agrees with the best result on the number of clusters

(k = 3) with cluster cardinalities of 963, 879, and 833, and a BIC score of -7529.8

(as shown in Figure 3.5b). While these clusters do differ, Figure 3.5c shows that
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the differences are scattered spatially. Thus the best and second-best clusterings

may not differ in terms of actionable insight.

For the UNL field, the best and second-best clusterings (and their respective

BIC scores) are shown in Figure 3.6. These are both from job-2048. The best

clustering has six clusters with cardinalities 2424, 1493, 1138, 561, 111, and 70,

respectively. The second-best clustering has four clusters with cardinalities 2730,

1615, 838, and 614, respectively. From these features and the differences shown

in Figure 3.6c it is clear the best and second-best clustering are dissimilar.

Further, the second-best clustering from job-2048 (shown in Figure 3.6b) is

the best clustering in job-64, job-512, and job-1024 respectively. As with the

Cal Poly data (but not the Sedgwick data), doubling the number of experiments

from 1024 to 2048 “exposed” a better and significantly different clustering.

k-means Variants

Unlike the results for the synthetic datasets, the best clustering for the Veris

EC datasets is produced by the Full Untied variant for sufficiently large job sizes.

This result is somewhat surprising since the Full Untied variant incurs the largest

score penalty in the BIC score computation among all of the variants. The score

is penalized for the mean, variance, and covariance estimates from each cluster.

The other variants require fewer parameter estimates (and thus have a lower
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penalty). Related work has also argued for using fewer estimated parameters to

produce the best clustering Fridgen et al. (2004) leading to an expectation that a

simpler variant (e.g. Full Tied as in Fridgen et al. (2004)) would produce the best

clustering, but is not the case for these datasets. Because Centaurus considers

all variants, it will find the best clustering even if this effect is not general to all

Veris data.

3.5.3 Statistical Clustering of Soil EC Data: Variants,

Degeneracy, and Repeated Trials

We next use Centaurus to empirically evaluate and experiment with the

EC values from seven additional farm fields with various crops, located across

United States. In our empirical evaluation of the use of statistical clustering of

the EC data for these farms, we use the following experimental setup for each of

the datasets described in the next section:

• Feature selection: if available, use three dimensions for clustering (EC1,

EC2, and Elevation) and two default dimensions for visualizing (Longitude,

and Latitdue).
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• Variant selection: with multivariate datasets use all six variants (from Full-

Tied to Spher-Untied); for univariate datasets use only the Spher- (Tied and

Untied) variants.

• Number of experiments (N): we vary the number of experiments and name

the job based on this variable. E.g. Job-1024 will have 1024 experiments,

and Job-2048 will have 2048 experiments.

• Number of initial assignments (M): We run 10 randomized cluster center

initializations for each set of experiment parameters( k, N, and a variant

type).

For a particular, Job-N, there are N ∗ 600 clusterings (k-means runs). 600 is the

product of 10 randomized initial assignments for each of 10 cluster sizes (k =

1, · · · , 10) and 6 k-means variants. Thus Job-2048 consists of 2048 × 600 =

1, 228, 800 executions of the k-means algorithm to convergence for 1 ≤ k ≤ 10

across all 6 variants with 10 different initial assignments per run.

We first evaluate the models produced by different k-means variants and com-

pare their scores. We then investigate the impact of degenerate clusters. Degener-

ate clusters are algorithm solutions that are statistically questionable because they

include empty clusters, clusters with too few data points to make a meaningful

inference, or clusters that share the same cluster center Brimberg & Mladenovic
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Farm
Job-512 Job-1024 Job-2048

Type BIC Type BIC Type BIC

CAP F-U -8928.6 F-U -8935 F-U -8918.4

SED F-U -7468 F-U -7468 F-U -7468

UNL F-U 32108.6 F-U 32108.6 F-U 45021.5

ALM F-T 209303 F-T 209303 F-T 214040

TC1 F-U -8071.7 F-U -7907.9 F-U -7853.6

TC2 F-U -3274.6 D-U -3197.9 F-U -3191.2

GR1 S-U -3655 S-U -3647.7 S-U -3647.7

GR2 S-U -2348.8 S-U -2329 S-U -2329.2

CTR F-U -45550.7 F-U -45046.5 F-U -45282.8

RAN F-U -54523.8 F-U -54438.8 F-U -54200.1

Table 3.5: Clustering Variants With Best BIC Scores: the best BIC score and the

variant that produced it, grouped by the experiment size (512, 1024, and 2048)

for each farm
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(1999). We empirically analyze how often such degeneracy occurs and present

statistics for such solutions for different datasets. We then evaluate the impact of

large numbers of runs and analyze the differences between the best-scored cluster-

ing with the most commonly occurring clustering. Finally, we use core samples as

a ground truth analysis to evaluate when soil zones belong to the same or different

soil types and visualize differences between the clusterings.

Variants

To evaluate the differences among clustering variants as applied to farm datasets,

we present three largest jobs with their best BIC scores and the variant that pro-

duced the best score (Table 3.5). For each farm dataset we present results from

the three largest experiments: Job-512, Job-1024, and Job-2048.

The results show that for most of the multivariate datasets, the best clusterings

came from the Full-Untied variant with a very small number of exceptions: The

ALM dataset (Full-Tied) and Job-1024 for TC1 dataset (Diag-Untied). For the

univariate datasets (GR1 and GR2), the only variant possible is spherical since

there are no additional dimensions with which to compute the covariance. For

these datasets, the Spher-Untied variant performs best.
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Farm\K 2 3 4 5 6 7 8 9 10

CAP 8171 6410 7169 6788 6422 6218 6162 6144 6144

SED 6258 6779 6428 6212 6140 6123 6116 6114 6111

UNL 9571 8150 7480 6784 6440 6276 6214 6181 6154

ALM 12288 12288 11784 9125 8923 6100 5041 4592 4067

TC1 11516 9341 7558 5589 3912 1488 456 74 21

TC2 9481 5262 2644 2191 1732 1151 207 41 2

GR1 2050 4096 4096 4088 4064 3933 3186 2354 2115

GR2 2049 4091 4087 3493 2532 2295 2125 2063 2049

CTR 11968 11100 8471 7860 7067 6502 6288 6194 6159

RAN 10464 9294 8717 7858 6860 6447 6220 6167 6151

Table 3.6: Numbers of non-degenerate experiments for clusters of size k =

2, · · · , 10 from the total of 12288 for multivariate and 4096 for univariate ex-

periments.
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Figure 3.7: Joint distribution of BIC and cluster count minimum for CAP dataset

computed from 12288 experiments.

Degeneracy

Degenerate clusters are a surprisingly frequent, yet under-studied, the phe-

nomenon when clustering farm datasets. We next investigate the frequency with

which degeneracy occurs for different datasets and different numbers of clusters.

Figure3.7 illustrates the search space for the best BIC score with the estimated

joint distribution of BIC scores (y-axis) and the number of elements in the smallest

cluster (x-axis). The figure represents a Job-2048 for CAP dataset, with all six

variants and all values of K (1-10). Darker colors on the graph represent higher

density regions. Our system uses all of the k values and all of the variants when
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choosing the model with the highest BIC score. Per-component distributions are

available on the sides of the graph.

The graph indicates that the highest BIC scores often come from the cluster-

ings that have one or more almost empty clusters. Particularly for variants that

rely on an estimate of co-variance between dimensions, inferences made about the

means of these clusters are suspect when their sizes are small. Note that for larger

values of k, such clusterings can be common. For example, this particular job had

50961 or 41.5% degenerate and 71916 non-degenerate experiments.

To illustrate this effect more fully, we divide the experiments based on the

number of clusters, k, and illustrate how degeneracy behaves with increasing k in

Table 3.6. The total number of experiments for multivariate datasets was 12288

for each k and all six variant types. The univariate datasets (GR1 and GR2) had

4096 experiments and include only two (spherical) variants for each k. For each

farm, the results show the number of non-degenerate clusterings for each k. In

some cases, the number of non-degenerate clusterings decreases as k increases.

Farm CAP SED UNL ALM TC1 TC2 GR1 GR2 CTR RAN

% 42 44 39 30 58 72 06 10 32 35

Table 3.7: Percentages of degenerate experiments per field
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(a) CAP (b) SED

(c) UNL (d) ALM

(e) GR1 (f) GR2

Figure 3.8: The largest observed BIC score vs the number of experiments on the

log scale (from 20 = 1 to 211 = 2048)
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(g) TC1 (h) TC2

(i) CTR (j) RAN

Figure 3.8: Continued from Previous Page: The largest observed BIC score vs the

number of experiments on the log scale (from 20 = 1 to 211 = 2048) (cont.)
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To emphasize the overall degeneracy across all Job-2048 experiments for each

dataset, we summarize the percentages of experiments with fewer than 30 elements

in their smallest cluster in Table 3.7. The smallest percentage of degenerate

clusters is 6% for the GR1 dataset and the largest percentage was 72% for TC2

dataset. We have chosen 30 as a reasonable rule of thumb for a cluster size from

which to make an inference about the mean (centroid) of each cluster in the

experiments having three dimensional data.

The Effect of Repeated Trials

Because k-means converges to a locally optimum solution for non-convex so-

lution spaces, the choice of initial assignment can effect the clustering it finds.

Often, users of k-means will run it once, or a small number of times assuming

that the local minimum it finds is “close” to the global minimum. In this subsec-

tion, we investigate the validity of this conjecture for soil EC data across farms.

Figure 3.8 presents the best BIC scores for different experiment sizes for all of the

farm datasets.

In some of the jobs, the best BIC score occurs only once amongst all of the

experiments while in others the best BIC score is more common among multiple

experiments (consistent with the typical use of k-means). Thus a small number of

trials is likely to result in the most common clustering rather than the best one.
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Farm Type BIC K Cardinality F

CAP B -8918 4 2103, 500, 473, 156 1

MC -10169 2 2169, 1063 1445

SED B -7468 3 1111, 996, 568 12

MC -9123 2 2220, 455 1720

UNL B 45021 8 2457,1636,617,313,278,259,151,86 2

MC -17655 2 3919, 1878 1172

ALM B 214039 5 4512, 3611, 3393, 1265, 312 1

MC -29460 2 10298, 2795 2048

TC1 B -7853 8 1205,965,558,299,133,60,48,36 1

MC -9474 2 3247, 57 1716

TC2 B -3191 4 880, 233, 51, 44 1

MC -4360 2 989, 219 2029

GR1 B -3647 3 1304, 1091, 325 4

MC -3814 3 1181, 857, 682 1956

GR2 B -2329 5 1390, 951, 190, 141, 43 1

MC -3838 3 1273, 835, 607 2045

CTR B -45282 6 13031, 2077, 828, 667, 198, 33 1

MC -46188 2 13996, 2838 1536

RAN B -54200 5 9337, 3342, 1843, 1489, 1028 1

MC -58784 3 15810, 704, 525 1044

Table 3.8: The best (B) and the most common (MC) clusterings comparison for

each farm, with their BIC scores, number of clusters (K), cardinality, and result

frequency (F).
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(a) CAP (b) SED

(c) UNL (d) ALM

(e) GR1 (f) GR2

Figure 3.9: Visualized clusterings with the best BIC score from Table 3.8.
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(g) TC1 (h) TC2

(i) CTR (j) RAN

Figure 3.9: Visualized clusterings with the best BIC score from Table 3.8 (cont.).
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More importantly, an increase in the number of experiments increases the

chance of finding the best BIC score. The x-axis for each graph in Figure 3.8 is

the power of 2 in the number of experiments. For most of the graphs, k-means

finds the best BIC consistently beyond some large number. However, for a few of

them, it appears that an even greater number of experiments may be necessary

before a single consistently large BIC is determined. The graph in Figure 3.3c, for

example, seems to indicate that an even larger number of experiments may yield

a larger BIC. Thus, for the EC available to our study, it is clear that the best

clustering is often rare and thus requires a large number of independent trials to

determine.

Even though the best clustering may be rare, it may also be that it differs

from the most common clustering by so little as to make the effort (through many

repeated trials) required to find it unnecessary or wasteful. Table 3.8 compares

the clustering determined by the best BIC scored cluster to the most common

clustering for each of the data sets across their largest jobs. We limit the clus-

terings to those with at least 30 elements in each cluster to prevent degenerate

clusterings from clouding the results. For each data set (labeled with a three-letter

acronym in the first column) we show two rows. The row marked “B” shows the

BIC score, the value of k, the cardinality of each of the k clusters, and the number

of occurrences of this clustering for the clustering having the best BIC score. The
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row marked “MC” shows the same information for the most common clustering.

Clearly, there is a significant difference between the most common clustering and

the best clustering in almost every case (the possible exception being GR1).

Another possibility is that the rare clusterings having the best BIC scores

may not correspond to geographically meaningful EC maps. That is, the best

BIC may correspond to a statistically meaningful solution that does not provide

insight for soil zone management. Figure 3.9 shows the geographic mappings of

the best BIC clusterings from Table 3.8. We assign different colors to each EC

data point based on the cluster to which it has been assigned and then graph the

data points based on latitude and longitude. From the figures, it is clear that

the clusterings correspond to feasible zone management maps. That is, points

belonging to the same cluster are often adjacent in geographic space indicating a

strong EC mapping relationship.

To illustrate in greater detail, consider the CAP dataset results. CAP is a

lemon field with soil consisting of clay, sandy-loam, and sandy-clay-loam. Fig-

ure 3.8a shows that jobs from Job-5 on have very stable results with similar BIC

scores. Figure3.9a shows the best clustering from Job-2048 with 4 clusters with

cardinality [2103, 500, 473, 156] and a BIC score of -8918.35.

We compare this result with the most common clustering for Job-2048 that

occurred 1445 times with a BIC score of -10169.7 and two clusters having 2169, and
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(a) Most Common Clustering

(b) Differences

(c) Core Samples

Figure 3.10: Clusterings of CAP dataset: (a) most common clustering; (b) differ-

ences between the most common and the best clustering (Figure 3.9a); (c) core

samples that include two sandy-clay-loam samples, clay, sandy-loam, and sandy-

clay-loam-cl.
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1063 elements respectively (Figure 3.10a). The visual difference between those two

clusterings (Figure 3.10b) shows that most of the “disagreement” appears along

cluster boundaries.

In addition, we consider how clustering results compare to the soil samples

taken at the CAP field. Figure3.10c shows the core samples taken at five different

locations and their soil type. Out of five core samples available, the top two in

the figure (sandy-clay-loam) belong to the same cluster in both the best and the

most common clustering (purple color on the graph). The other three core samples

report clay in the lower left corner followed by sandy-loam and sandy-clay-loam-cl.

In the best clustering, they all belong to different clusters (red, blue, yellow) while

the most common clustering puts all three core samples in the same cluster (red).

Thus, the best clustering corresponds more closely to a core-sample analysis than

the most common (i.e. most likely determined) clustering.

Note that for each fixed set of parameters (e.g. k), we ran 1, 228, 800 different

experiments. This is the maximum frequency (“count” column) that can occur for

a particular value of k resulting in the best or most common BIC. Table 3.8 shows

that the most common clustering usually has fewer clusters (often 2 or 3) while

the best clustering provides higher resolution and therefore additional information

that a farmer may find useful for management.
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The analysis of the other datasets is similar. In each case, the best BIC score is

rare, requiring a large number of repeated trials, each with a different initialization

to determine. In all but one case (GR1) the best clustering differs substantially

from the most frequently occurring clustering. The best clusterings correspond to

meaningful EC soil maps and those maps correctly register with soil core samples.

3.5.4 Comparison with MZA

We next compare the Centaurus performance against “Management Zone

Analysis" (MZA Fridgen et al. (2004)) for the Veris EC farm datasets. MZA is

a popular methodology with concomitant software for clustering Veris EC data.

Results for such clusterings are available from Fridgen et al. (2004), Odeh et al.

(1992), Corwin & Lesch (2003).

Management Zone Analyst

MZA requires users to set a real-valued parameter known as the “fuzziness

index”, which controls the degree of specificity of the algorithm. The authors

of Fridgen et al. (2004) use a value of 1.5 in their experiments, and suggest that

values between 1.2 and 1.5 are appropriate for clustering soil EC measurements.
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For the chosen fuzziness parameter m (for m > 1.0) and the maximum number

of clusters K, MZA runs a single fuzzy clustering for each k (2, . . . , K) . MZA

scores the resulting clusterings using two metrics: Fuzziness Performance Index

(FPI) Odeh et al. (1992), and Normalized Classification Entropy (NCE) Odeh

et al. (1992), Bezdek (2013). FPI is a measure of the degree of separation be-

tween partitions (lower fuzziness means a higher degree of separation) while NCE

measures the disorganization of each one of the fuzzy partitions. The authors

of Fridgen et al. (2004), Odeh et al. (1992) suggest that the best clustering is the

one with the smallest value of k that also has the smallest scores for both metrics

among all clusterings. MZA computes the global covariance matrix and employs

either Euclidean, diagonal, or Mahalanobis distance. MZA computes the covari-

ance matrix based on all the data points and uses this same covariance matrix in

each iteration.

Dataset-1 Dataset-2 Dataset-3

Centaurus 0.0% 3.6% 0.1%

MZA 0.0% 13.8% 11.6%

Table 3.9: Percentage error (out of 3,000 data points per dataset) for Centaurus

and MZA on the synthetic datasets for the clustering results in Figure 3.11.

MZA disallows clustering for k = 1

67



Chapter 3. K-Means Clustering and Its Use for Agriculture Analytics

Synthetic Datasets

We start by comparing Centaurus against MZA for the synthetic datasets.

We use the number that both FPI and NCE scores report for MZA as the optimal

number of clusters. We then use the respective cluster assignment (labels) to

compute the error rates. Figure 3.11 shows the best assignments produced by

Centaurus and MZA and Table 3.9 shows the percentage of incorrectly classified

points (out of 3,000 points) in each dataset, for the same assignments.

For MZA, the best assignment is achieved by Mahalanobis distance and for

Centaurus the best assignment is achieved by Full-Untied. MZA clusters the

Dataset-1 correctly and reports K = 3 as the ideal number of clusters (as does

Centaurus).

For Dataset-2, MZA correctly identifies K = 3 but has a higher error rate

of 13.8 A possible reason for this is that MZA only considers a single initial

assignment of cluster centers, which in this case converges to a local minimum

that is different from the global minimum. Centaurus avoids this kind of error

by performing several runs (10,000 in this case, specified by n_exp × n_init) of

k-means algorithm before suggesting the optimal cluster assignment.

Dataset-3 consists of clusters with correlation across features. Centaurus

provides better results than MZA for this dataset, achieving a percentage error

of only 0.1 A possible reason for this is that MZA employs a global covariance
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matrix and does not consider Tied and Untied options as Centaurus does, which

results in better label assignments.

Another limitation of MZA is that it uses a free variable, called the fuzzi-

ness parameter, and multiple scoring techniques. It is challenging (especially for

novices) to determine how to set the fuzziness value even though the results are

highly sensitive to this value. For the results in this section, we chose the default

fuzziness parameter of m = 1.3 as suggested by the author Odeh et al. (1992).

Furthermore, for the farm datasets, the MZA scoring metrics (NCE and FPI) do

not always agree, providing conflicting recommendation and forcing the user to

choose the best clustering.

In combination, these limitations make MZA hard to use as a recommendation

service for growers who lack the data science background necessary to interpret

its results. Centaurus addresses these limitations by providing a high enough

number of k-means runs, no free parameters, and more sophisticated ways of

computing the covariance matrix in each iteration of its clustering algorithm. It

uses a unique scoring method to decide what is a single best clustering that will

be presented to a novice user while it provides the diagnostic capabilities that are

needed for more advanced users.
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(a) Cen.: Dataset-1 (b) Cen.: Dataset-2 (c) Cen.: Dataset-3

(d) MZA: Dataset-1 (e) MZA: Dataset-2 (f) MZA: Dataset-3

Figure 3.11: Centaurus vs. MZA clustering recommendations for the synthetic

datasets.

Figure 3.12: Clustering assignment for Cal Poly dataset produced by MZA based

on EC2 and elevation.
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Cal Poly Veris EC

K
m=1.1 m=1.3 m=1.5 m=2.0

FPI NCE FPI NCE FPI NCE FPI NCE

2 0.044 0.016 0.120 0.044 0.265 0.093 0.475 0.162

3 0.028 0.013 0.095 0.048 0.170 0.088 0.361 0.189
4 0.027 0.014 0.083 0.046 0.143 0.084 0.328 0.207
5 0.025 0.014 0.087 0.053 0.166 0.105 0.370 0.255
6 0.027 0.016 0.098 0.062 0.180 0.122 0.393 0.291
7 0.031 0.019 0.099 0.065 0.173 0.121 0.386 0.304

Sedgwick Veris EC

K
m=1.1 m=1.3 m=1.5 m=2.0

FPI NCE FPI NCE FPI NCE FPI NCE

2 0.018 0.006 0.063 0.023 0.126 0.047 0.413 0.143

3 0.020 0.010 0.081 0.040 0.145 0.074 0.315 0.164
4 0.025 0.013 0.080 0.044 0.140 0.081 0.324 0.201
5 0.025 0.015 0.088 0.053 0.158 0.100 0.356 0.244
6 0.026 0.016 0.091 0.057 0.172 0.116 0.383 0.281
7 0.028 0.017 0.094 0.062 0.167 0.116 0.388 0.299

UNL Veris EC

K
m=1.1 m=1.3 m=1.5 m=2.0

FPI NCE FPI NCE FPI NCE FPI NCE

2 0.038 0.014 0.126 0.044 0.201 0.069 0.341 0.117

3 0.020 0.010 0.068 0.033 0.115 0.057 0.233 0.119
4 0.019 0.010 0.059 0.033 0.102 0.059 0.229 0.142
5 0.017 0.010 0.056 0.034 0.100 0.063 0.239 0.163
6 0.025 0.015 0.082 0.051 0.094 0.062 0.239 0.177
7 0.021 0.013 0.073 0.046 0.136 0.092 0.285 0.212

Table 3.10: MZA results for the farm datasets for different values of k and fuzziness

coefficients (m).
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Soil electrical Conductivity Datasets

We run MZA for the three farm datasets (Cal Poly, Sedgwick, and UNL) and

present results in Table 3.10. For this study, we set k = 2, . . . , 7 and consider

fuzziness values of 1.1, 1.3, 1.5, and 2.0. The value of k is given in the first

column. The table shows the FPI and NCE scores for each fuzziness value and

for each k in the data columns. The lowest (considered the best) score is shown

in bold.

The results show that MZA often recommends different clusterings depending

upon the scoring metric and fuzziness value used. We first consider scores across

values of m and k. In all cases, across datasets, NCE and FPI select m = 1.1

as producing the best clustering. This is in contrast to (i) the MZA default

(m = 1.3), (ii) the values recommended by the authors (1.2-1.5), and (iii) the

value for m used in the original MZA study (1.5) Fridgen et al. (2004), which

all perform worse. Unfortunately, the best performing cluster size differs between

NCE and FPI for both Cal Poly (top table) and UNL (bottom table). For the

Cal Poly dataset (top table), NCE reports that the best clustering is (k = 3, row

3, column 3). FPI reports that the best clustering is (k = 5, row 5, column 2).

For Sedgwick (middle table), NCE and FPI agree on (k = 2, row 2, columns 2

and 3). For the UNL (bottom table), NCE selects (k = 3, row 3, column 3) and

FPI selects (k = 5, row 5, column 2).
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Moreover, FPI and NCE disagree more often than they agree for these datasets.

For the Cal Poly dataset (top table) both scores agree only when m = 1.5 sug-

gesting that k = 4 (row 4, columns 6 and 7) is the best clustering. For other

values of m, MZA recommends cluster sizes that range from k = 2 to k = 5. For

Sedgwick (middle table) and m = 2.0 (columns 8 and 9), FPI selects k = 3 and

NCE selects k = 2. For UNL, no FPI-NCE pairs agree on the best clustering,

with MZA recommending all values of k (except 7) for different m.

Because fine-grained EC measurements (e.g. using soil core samples and lab

analysis) are not available for the Cal Poly, Sedgwick, and UNL farm plots, it is

not possible to compare the MZA and Centaurus in terms of which produces a

more accurate spatial maps from the Veris data. Even with expert interpretation

of the conflicting MZA results for Cal Poly and UNL, we do not have access to

“ground truth” for the fields. However, it is possible to compare the two methods

with the synthetic datasets shown in Figure 3.1.

Note that this evidence suggests Centaurus is more effective for some clus-

tering problems but (again, due to a lack of ground truth) is not conclusive for

the empirical data. Instead, from the empirical data we claim that Centau-

rus is more utilitarian than MZA because disagreement between FPI and NCE

differing possible best clusterings based on user-selected values of m, can make

MZA results difficult and/or error-prone to interpret for non-expert users. MZA
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recommendations may be useful in providing an overall high level “picture” of

the Veris data clustering, but its varying recommendations are challenging to use

for making “hard” decisions (e.g. to control irrigation duration) by experts and

non-experts alike. In contrast, Centaurus provides both a single “hard” spatial

clustering assignment and a way to explain (in terms of maximum likelihood and

BIC penalty score) why one clustering should be preferred over another and which

one is “best” when ground truth is not available.

In contrast, Centaurus is able to use its variants of k-means, a BIC-based

scoring metric, and large state space exploration to determine a single “best”

clustering. The only free parameter the user must set is the size of the state space

exploration (the default is N=2048 experiments which is 1.23M k-means runs).

As the work in this study illustrates, Centaurus can find rare and relatively

unique high-quality clusterings when the state space it explores is large.

A large state space (each requiring a separate “run” of the k-means algorithm)

of course requires more computational power than MZA. MZA is a stand-alone

software package that runs on a laptop or desktop computer. In contrast, Cen-

taurus is designed to run as a highly concurrent and scalable cloud service (via

a browser) and uses a single processor per k-means run. As such, it automatically

harnesses multiple computational resources on behalf of its users. Centaurus

can be configured to constrain the number of resources (CPUs) it uses; doing so

74



Chapter 3. K-Means Clustering and Its Use for Agriculture Analytics

proportionately increases the time required to complete a job (each independent

k-means run takes between 0.3s and 1s in our experiments). For this work, we

host Centaurus on two large private cloud systems: Aristotle Aristotle (2019)

and Jetstream Stewart et al. (2015), Towns et al. (2014).

3.6 Related Work

Extensive studies of k-means demonstrate its popularity for data processing

and many surveys are available to interested readers Jain et al. (1999), Berkhin

(2006). In this section, we focus on k-means clustering for multivariate correlated

data. We also discuss the application and need for such systems in the context of

farm analytics when analyzing soil electrical conductivity.

To integrate k-means into Centaurus, we leverage Murphy’s Murphy (1998)

work in the domain of Gaussian Mixture Models. This work identifies multiple

ways of computing the covariance matrices and using them to determine distances

and log-likelihood. To the best of our knowledge, there is no prior work on using

all six variants of cluster covariance computation within a k-means system. We

also utilize the k-means++Arthur & Vassilvitskii (2007) work for cluster center

initialization.
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The research and system that is most closely related to Centaurus, is MZA Frid-

gen et al. (2004) —a computer program widely used by farmers to identify clusters

in soil electro-conductivity (EC) data to aid farm zone identification and to opti-

mize management. MZA uses fuzzy k-means Dunn (1974), Bezdek (2013), com-

putes a global covariance (i.e. one covariance matrix spanning all clusters) and

employs either Euclidean Heath et al. (1956), diagonal, or Mahalanobis distance

to compute the distance between points. MZA computes the covariance matrix

once from all data points and uses this same matrix in each iteration. MZA com-

pares clusters using two different scoring metrics: fuzziness performance index

(FPI) Odeh et al. (1992) and normalized classification entropy (NCE) Bezdek

(2013).

Centaurus attempts to address some of the limitations of MZA (which is only

available as desktop software, does not account for poor initial cluster assignments,

and places a burden on the user to determine which cluster size, k-means variant,

and scoring metric to employ). We also show that although MZA provides multiple

scoring metrics (Centaurus provides a single scoring metric) to compare cluster

quality, the MZA metrics commonly produce different “recommended” clusterings.

The authors of x-means Pelleg et al. (2000) use Bayesian Information Criterion

(BIC) Schwarz (1978) (which Centaurus also employs) as a score for the uni-

variate normal distribution. Our work differs in that we extend the algorithm and
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scoring to multivariate distributions and account for different ways of covariance

matrix computation in the clustering algorithm. We provide six different ways

of computing covariance matrix for k-means for multivariate data and examples

that illustrate the differences.

Different parallel computational models have been used in other works to speed

up the k-means cluster initialization Bahmani et al. (2012), or its overall run-

time(Zhao et al. 2009). Our work differs in that we provide not only a scalable

system but include k-means variants, flexibility for a user to select any one or

all of the variants, as well as a scoring and recommendation system. Finally,

Centaurus is pluggable enabling other algorithms to be added and compared.

3.7 Summary

In this chapter, we present Centaurus, a scalable, easy to use, cloud service

for clustering multivariate and correlated data. Centaurus simplifies selection of

k-means clustering variants, provides a recommendation of the best variant, and

enables users to visualize their results in multiple ways. Centaurus leverages

cloud resources and services to automatically deploy, scale, and score k-means

clustering jobs.
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We empirically evaluate Centaurus using synthetically generated and real

datasets and compare it to the popular MZA clustering tool. Our results show

that Centaurus provides better results than MZA and precludes many of its

limitations. In addition, we analyze the sensitivity of k-means clustering to cluster

degeneracy, choice of a distance metric, variance in results based on the correlation

computation techniques, and an analysis of the performance of k-means algorithm

on farm datasets when the number of experiments increases to up to one million.

Our results indicate that for EC soil measurement data, k-means is effective when

used in a computationally intensive way (i.e. many repeated trials), using multiple

variants while filtering for non-degenerate solutions.

Finally, Centaurus model selection facilitates decision support for growers

by defining management zones boundaries. By visualizing the differences between

solutions, growers can decide where to take additional samples in order to obtain

more accurate soil maps. We use this system and tools to analyze 10 different

field EC datasets and provide statistics and analysis of each.
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Sensor Synthesis

The Internet of Things (IoT) is quickly expanding to include every “thing” from

simple Internet-connected objects, to collections of intelligent devices capable of

everything from the acquisition, processing, and analysis of data, to data-driven

actuation, automation, and control. Since these devices are located “in the wild”,

they are typically small, resource-constrained and battery-powered. At the same

time, low latency requirements of many applications mean that processing and the

analysis must be performed near where data is collected. This tension requires

new techniques that equip IoT devices with more capabilities.

One way to enable IoT devices to do more is to use integrated sensors to

estimate the measurements of other sensors, a technique that we call sensor syn-

thesis. Since the number of sensors per device is generally bounded by design

constraints, sensor synthesis makes it possible to free up resources in IoT devices

for other sensors. We focus on estimating values of measurements where estima-
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tion error is low, freeing up space for sensors with measurements that are harder

to estimate.

Many, if not most, IoT systems for precision agriculture depend on and inte-

grate measurements of real-time, atmospheric temperature. Temperature is used

to inform and actuate irrigation scheduling, frost damage mitigation, greenhouse

management, plant growth modulation, yield estimation, post-harvest monitor-

ing, crop selection, and disease and pest management, among other farm opera-

tions Ghaemi et al. (2009), Stombaugh et al. (1992), Ioslovich et al. (2016), Roberts

et al. (2013), Gonzalez-Dugoa et al. (2011). Measuring and predicting tempera-

ture accurately is challenging due to variation across farm micro-climates where

local temperature can deviate from the surrounding area which is typically mea-

sured at mesoscale. Measuring temperature for a large number of micro-climates

on a farm can be prohibitively expensive with extant weather stations and sensors

(which can be hundreds to thousands of dollars).

In this chapter, we explore the use of sensor synthesis to estimate outdoor

temperature on farms using the processor (CPU) temperature of simple, inexpen-

sive single-board computers (SBCs; e.g. those in the Raspberry Pi family RPi

(2018) or micro-controllers such as those in the Arduino family Arduino (2019)).

Our approach estimates outdoor temperature from the on-board processor tem-

perature sensor that these devices support (and use for system health checks) and
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which is available via their respective hardware/software interfaces. Such devices

cost around $5, are battery or solar-powered, and can be packaged in small, inex-

pensive, weatherproof enclosures, making them practical for use in moderate and

large scale geographic deployments.

To investigate how well the processor temperature of these devices can be

used to predict outdoor temperature, we have developed an on-farm IoT sys-

tem in which we place single-board computers in-situ throughout the farm. The

devices transmit measurements of CPU temperature wirelessly to wall-powered,

indoor, edge cloud systems Elias et al. (2017). We first calibrate the device CPU

temperature against a co-located, high-quality temperature sensor using linear

regression. We then remove the temperature sensor at each remote location.

The edge cloud computes a prediction of outdoor temperature for each de-

vice/location for each CPU measurement that it receives from the device. It does

so by applying the regression coefficients from the calibration period to the CPU

temperature measurement. To account for autocorrelation in the time series, we

investigate the use of Single Spectrum Analysis (SSA) Golyandina & Zhigljavsky

(2013) to extract a smooth “signal” from the data prior to performing linear re-

gression and compare this approach to non-smoothing. We also evaluate the im-

pact of using different amounts of training data (period over which regression is

performed) and calibration durations. Finally, we integrate different outdoor tem-
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perature sources that include device-attached sensors (e.g. thermistors), high-end,

on-farm weather stations, and remote WeatherUndergroundWeatherUnderground

(2019) stations.

We first consider two different configurations. The first is a “limit study”

in which we continuously update the regression coefficients using a co-located

temperature sensor, to compute a one step ahead (5 minute) prediction. This

configuration represents an upper bound on the efficacy of predicting outdoor

temperature from processor temperature. Using a second configuration, we con-

sider a practical application of our approach in which the edge cloud estimates the

outdoor temperature (at the device) using information from the initial calibration

period and the CPU temperature measurements reported by the device every 5

minutes.

Next, because sensor synthesis is based on computed estimates rather than

actual measurement, it introduces the possibility of additional error beyond mea-

surement error. To address this, we examine how a larger ensemble of measure-

ments improves the accuracy of “synthetic” temperature measurement while, at

the same time, not requiring the use of powerful computational resources.

Reducing the prediction error is not only academically interesting, rather,

precision has a direct impact on the cost and efficiency of what has become known

as precision agriculture or precision farming. In precision agriculture, farmers use
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technology to increase the efficiency of farming techniques increasing crop yields

and reducing costs. Having more precise temperate data reduces the cost of frost

prevention (by avoiding the unnecessary use of frost mitigation systems (e.g. fans))

and prevents excessive resource use without negatively impacting crop production.

Consequently, we believe that our approach can contribute to improved farming

outcomes, enable water and energy savings, and help reduce carbon emissions, by

providing high-quality data to data-driven, IoT-based agricultural applications.

We then extend our approach to use a combination of processor temperatures

from multiple devices and outdoor temperature from high-quality, remote weather

stations to train a multiple linear regression model. We use this model to estimate

the future outdoor temperature at a particular device location that is not part of

the model. We also investigate the efficacy of computationally simple smoothing

techniques (based on sliding window reductions) to reduce noise.

We also investigate how well our approach performs when the processors on

the devices experience load. The load may affect processor temperature and thus

negatively impact the accuracy of our outdoor temperature estimates. To do so,

we develop techniques that successfully deal with the perturbations caused by

load variability, which is an important requirement to make our sensor synthesis

practical in the field (and which went uninvestigated in prior work).
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Finally, to evaluate the practical effectiveness of this extension, we deploy

multiple Raspberry Pi Zero devices in an agricultural setting where citrus trees

are grown. To compare the values of our synthesized sensors with measured

temperature values, we equip the devices with temperature sensors, which we

use to establish ground truth. We evaluate different combinations of explanatory

variables with and without smoothing, and with and without a computational

load on the processor, as part of our multiple linear regression models. Our results

show that using this approach, we can reduce the mean absolute prediction error

(MAE) and that it is robust to processor load.

We first overview the basic framework in 4.1 and then detail the extension

for using multiple linear regression in 4.3. We empirically evaluate these advances

in 4.2 and 4.4, present related work in 4.5, and summarize our contributions in 4.6.

4.1 Approach

In this chapter, we investigate the relationship between processor temperature

(henceforth simply referred to as CPU temperature) embedded in single-board

computers, and the atmospheric temperature that surrounds them. Our goal is

In linear regression, an explanatory variable is an independent variable that is used to predict
a value. In our context, the independent variables are the CPU temperatures and weather station
temperature (gathered from a weather station that is in the area of the SBCs but not necessarily
co-located), which we use in the model to predict the synthesized sensor. Explanatory variables
are also called predictors in the literature. Since we use multiple regression, we use more than
one predictor in our synthesis.
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to place these computers in-situ in agricultural settings for use as thermometers.

By doing so, we can leverage their measurements to actuate and control a wide

range of IoT-based farm operations, while driving down the cost of implementing

such solutions at scale.

Examples of such farm operations include irrigation scheduling and frost dam-

age mitigation strategies. For automatic irrigation scheduling, real-time tempera-

ture measurements are used to compute localized estimates of evapotranspiration

(ET), which indicates the amount of water that has been lost (since the last irriga-

tion) and that must be replaced via irrigation. Both under and over-watering can

decrease productivity, destroy crops, and degrade soil health. Irrigation schedul-

ing is the most common form of IoT and data-driven decision support system on

farms and is especially important for managing farms in drought-stricken regions.

The terms “frost” or “freeze” are used by the public to describe a meteorological

event that causes freezing injury to crops and other plants, when the air temper-

ature falls below the tolerance level of the specific plant Levitt et al. (1980). The

ability to predict the onset of frost, its duration, and the specific locations where

frost will occur is of tremendous value to the agricultural industry. In the USA,

there are more economic losses to frost damage than to any other weather-related

phenomenon White & Haas (1975). Active frost protection strategies include ap-

plication of water, use of wind engine-driven machines and heaters, and/or some
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combination of these methods, all of which are extremely labor-intensive and

costly for growers. If the onset or duration of frost is mis-predicted, the cost of

any mitigation strategies applied is lost. Alternatively, incorrectly predicting that

a freeze will not occur to save these costs can devastate a crop. For this reason,

current practice is conservative, passing any unnecessary mitigation costs on to

the consumer in exchange for a low risk of crop loss.

In both operations, accurately measuring and predicting the temperature in

real-time is required. However, the temperature is not uniform and can vary

widely across a farm, requiring that operations account for very localized differ-

ences to obtain measurable outcomes. Micro-climates can occur in large numbers

due to topographic differences, surrounding structures, ground cover, plant matu-

rity, and nearby bodies of water. Measuring temperature across vast numbers of

micro-climates is costly and labor-intensive given the price of high-quality sensors

and complexity of sensor management (data extraction, advanced analytics, con-

nection inferences, and prediction). Many IoT vendors provide managed services

to reduce this complexity for growers, but these services are expensive, require

that data be transmitted off-farm to cloud-based applications via cellular, and

impose a recurring subscription fee on farmers in order to view their data. As a

result, IoT advances have not achieved widespread uptake in agriculture, despite

their potential.
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As part of the UCSB SmartFarm effort Krintz et al. (2016), we have investi-

gated ways of reducing cost and complexity of temperature-based IoT solutions,

while maintaining accuracy and robustness. SmartFarm implements a low cost,

on-farm edge cloud comprised of multiple Intel Next Unit of Computation (NUC)

machines Int (2019a). Using open-source cloud software (AppScale Krintz (2013)

and Eucalyptus Nurmi et al. (2009)), we design the edge clouds to be self-managing

and to perform a wide range of data analytics on-farm data, thereby precluding

the need to transmit data off-farm and keeping cost, complexity, and latency

low Krintz et al. (2016), Elias et al. (2017).

We use SmartFarm and single-board computers to provide accurate, real-time

estimates of micro-climate temperature across a farm. To do so, we place battery

or solar-powered devices in-situ in various settings and configurations within in-

expensive enclosures. The devices transmit their CPU temperature wirelessly (via

802.11 or Zigbee) to an on-farm edge cloud every 5 minutes. As ground-truth,

we consider co-located (device-attached) DHT digital sensors (thermistors Ada

(2018)), high-end, on-farm weather stations, and WeatherUnderground remote

weather service WeatherUnderground (2019), which farmers commonly use to es-

timate temperature.

Figure 4.1 shows a two-week time series trace (starting May 10th, 2018) of CPU

temperature (Pi Zero CPU) from a Raspberry Pi Zero, the outdoor temperature
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Figure 4.1: Two week time series trace of outdoor (device-attached DHT sensor

and a nearby (WU) station) and 5-minute CPU temperature data in Fahrenheit

from a Pi Zero single board computer (Pi1 in the Results section)

from an attached digital DHT22 temperature sensor (DHT Temp), and the out-

door temperature from a nearby WeatherUnderground (WU) station (WU Temp).

WU measures outdoor temperature at 10 meters and the Pi Zero is at a 1 meter

altitude. The Pi Zero is in a plastic enclosure with a small, covered hole from

which the DHT wires exit; the DHT sensor is outdoors and hanging freely. The

device is located outdoors under constant shade in Goleta, CA. We refer to this

device as Pi1 in later sections of the paper. The average CPU temperature on the

Pi Zero during this period is 99.71 ◦F with a standard deviation of 4.69. The mean

and standard deviation for the DHT sensor and WU station are 61.93 (5.79) and

60.20 (8.35), respectively. DHT and WU temperature is similar but WU exhibits

data dropout (0 values), more variance, and more extreme temperatures.
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Figure 4.2: Two day time series sub-trace from Fig. 4.1 of 5-minute Pi Zero CPU

temperature (◦F )

From this graph, there appears to be a correlation between CPU temperature

and both outdoor temperature measures for this location. The CPU values exhibit

small oscillations or noise (making the curve appear darker). A sub-portion (2

days starting May 17th at midnight) of the CPU data alone is shown in Figure 4.2

using a different scale. We note that there are some discrepancies in the shape

of different curves. We observe similar relationships using other types of devices,

locations, and sources for ground-truth (e.g. DHT or WU) temperature measure-

ments. We next investigate how accurately we can predict outdoor temperature

(of these different sources) using CPU temperature of these devices.
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4.1.1 Predicting Air Temperature from CPU Temperature

The data in Figure 4.1 is typical of the outdoor SmartFarm installations we

have deployed suggesting that linear regression would be an effective way to pre-

dict outdoor temperature from CPU temperature. Because each single-board

computer is running a multi-user operating system (Linux in this study), how-

ever, the CPU temperature exhibits fluctuations that we do not observe in the

outdoor temperature. Further, because these fluctuations are caused by programs

that are running on the computer, they are autocorrelated in time.

To account for this autocorrelated “noise” in the CPU temperature series, we

apply Single Spectrum Analysis (SSA) Golyandina & Zhigljavsky (2013) to the

CPU series before performing regression. SSA decomposes an autocorrelated time

series into “basis time series” which are analogous to principle components Abdi &

Williams (2010), Wold et al. (1987). By summing the most significant basis series

(based on a clustering of the series by eigenvalues), SSA can extract a smooth

“signal” from a noisy time series. To do so, SSA requires the number of lags over

which autocorrelation is significant to be supplied as a parameter.

To investigate the accuracy with which it is possible to predict outdoor temper-

ature, our system runs multiple smoothing passes, each with a successively larger

number of lags up to 12 (1 hour). During daylight and nighttime hours, outdoor

temperature can be autocorrelated for several hours, but during the early morning
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(diurnal heating) or early evening (diurnal cooling) the significant autocorrelation

duration is significantly less. For each lag we compute the coefficient of determi-

nation (R2) for a regression covering a previous window of time and choose the

number of lags that generates the highest R2 value. We refer to this window as

the training window (TW). Typically (but not always) the best R2 value is for 6

lags indicating that the significant autocorrelation in the CPU temperature series

covers about 30 minutes.

The method recomputes both the smoothed series and the regression coeffi-

cients every time a new outdoor measurement is generated (every 5 minutes in

this study). Thus the approach is a “piecewise” linear regression approach where

the data is re-smoothed using the “best” number of lags (based on R2 value) before

each regression.

When a new CPU value arrives, we use the regression coefficients to compute

a prediction of outdoor temperature. Prior to applying smoothed regression co-

efficients, we append the new CPU value to the training window (and remove

its head, effectively sliding the window right). We compute the prediction using

the smoothed CPU value (last value of the smoothed training window). We then

compare this value to the actual outdoor measurement to compute the absolute

difference and square difference as the error.

To summarize, the steps of our algorithm are as follows.
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1. Match the temperature and CPU series using the nearest timestamps

2. Divide the matched series into a training window (TW ) and test window

(TE)

3. If SSA is used, smooth the CPU series using different smoothing parameters.

4. Compute the regression coefficients, i.e. y-intercept and slope, for each to

model the linear relationship between temperature (the dependent variable)

and CPU (the explanatory variable) in TW

5. Extract the best parameterization for each smoothing technique using the

largest coefficient of determination (R2)

6. For each matched pair of measurements in the TE, append the pair of

measurements to TW and remove the first pair in TW , effectively sliding

the training window right

7. Predict outdoor temperature by applying the regression coefficients to the

latest CPU value (smoothed or non-smoothed), and compute and record

the error (difference from actual, matched outdoor temperature); for the

smoothed case, we smooth across the updated TW .

8. Repeat starting at Step 3 above and end when there are no more new mea-

surement pairs in the test window (TE)
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We refer to this configuration as a “limit study” because we believe that it

provides us with an upper bound on the efficacy of our approach. However, it

requires that the device and temperature sensor be co-located so that we can

continuously update the regression coefficients.

We, therefore, consider a second configuration that does not continuously up-

date the coefficients using the most recent temperature data. We refer to this

configuration as a “practical application” of our approach. For this configuration,

we co-locate a temperature sensor with each device for a short, fixed period of

time, which we refer to as the calibration period. We then remove the tempera-

ture sensor (and use it to calibrate other in-situ devices as needed). We apply the

regression coefficients from the calibration period (which do not change) to CPU

measurements reported by the device to predict the outdoor temperature at the

device.

For the calibrated results, we use the algorithm above with minor modifica-

tions. The remote device transmits only its CPU measurement values via low-

power radio to the edge cloud every 5 minutes. The edge cloud keeps a CPU his-

tory from the device for the same duration as the calibration period. It smooths

these values if necessary and chooses the best-performing smoothing parameteri-

zation (e.g. lags) using R2. The edge cloud then computes a prediction using the

last CPU value it received (smoothed or non-smoothed). For the results in this
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paper, we compare this prediction against that from a co-located temperature

sensor. However, we only use data from this co-located sensor to compute the

prediction error after the devices have been “separated”.

4.2 Empirical Evaluation

4.2.1 Devices and Data Sets

The devices we consider as temperature sensors in this study include the Rasp-

berry Pi Zero Version 1.3 with a 1GHz ARMv7 processor and 512MB of RAM and

the Raspberry Pi 3 Model B with a 1.2GHz ARMv8 processor and 1GB of RAM.

Each Pi is equipped with 32GB of storage. We also evaluate an Arduino Uno

with a ATmega328P processor with 2KB of data memory and 32KB of program

memory, and an Intel Next Unit of Computation (NUC) with 8 Intel Core i7 pro-

cessors (each 2.6GHz), 32GB of memory, and 1TB of SSD storage. The devices

cost $5, $35, $22, and $1619 for the Pi Zero, Pi3, Uno, and NUC, respectively.

The Pi devices read their CPU temperature via a “thermal zone” which reports

temperature in Celsius. The Uno reads the internal analog to digital converter

using the 8th channel of the micro-controller (currently without the noise reduction

feature). The NUC reads its CPU via the sensors utility. We convert all values

to degrees Fahrenheit for this study.
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The locations include a residential backyard in Goleta, CA, an experimental

citrus farm at the Lindcove Research and Extension Center (LREC) in Exeter,

CA, and an experimental almond farm on the campus of the California State Uni-

versity, in Fresno, CA. There are multiple Pi Zero devices at the Goleta location

(referred to as Pi1, Pi2, Pi4, and Arduino, prefixed with “Goleta-” in the results

section), a Pi Zero (LREC-PiZ) and Pi 3 (LREC-Pi3) at LREC, and a NUC at

Fresno State (Fresno-NUC). All devices are in shaded, weather proof enclosures

outdoors; the NUC is in a tin shed housing a powered irrigation pump next to

the almond orchard. Each location is very different in terms of its vegetation and

topography. LREC is located in the foot hills of the Sierra mountains; the Fresno

State farm is flat and in the central valley of California; and the Goleta residence

is near the ocean.

We measure atmospheric temperature (ground truth measurements used for

calibration and empirical evaluation of accuracy) using device-attached tempera-

ture (AM2302 DHT22 Ada (2018)) sensors which we refer to as DHT for Goleta

devices, a high end weather station at LREC called the Flux tower, and the near-

est WeatherUnderground (WU) station (station 30) in Fresno. We also consider

a WeatherUnderground station (station 8) for Goleta devices.
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(a) MAE for Goleta-Pi1-DHT (b) MAE for Goleta-Arduino-DHT

(c) MAE for Goleta-Pi1-WU (d) MAE for Fresno-NUC-WU

Figure 4.3: Mean Absolute Error in degrees Fahrenheit for predictions

of outdoor from CPU temperature of different devices, locations, and

sources of ground-truth temperature (DHT= high quality temperature sensor;

WU=WeatherUnderground; LREC=high-end on-farm weather station) for two

methods: Non-Smoothing (NS) and Single Spectrum Analysis (SSA).
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(e) MAE for LREC-Pi3 (f) MAE for LREC-PiZ

Figure 4.3: Continued from Previous Page: Mean Absolute Error in degrees

Fahrenheit for predictions of outdoor from CPU temperature of different devices,

locations, and sources of ground-truth temperature (DHT= high quality tem-

perature sensor; WU=WeatherUnderground; LREC=high-end on-farm weather

station) for two methods: Non-Smoothing (NS) and Single Spectrum Analysis

(SSA).
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4.2.2 Regression, Prediction Error, and Training Window

We begin by examining the effect of smoothing on each regression as part of

a “limit study”. To do so, we compare SSA and no smoothing over a number of

different training window sizes. As described previously, we use the regression

coefficients for the number of lags for SSA that results in the highest R2 value.

We detail the effect of using smoothing and training window size to enhance

regression on temperature prediction. At time step t we predict the outdoor

temperature at time step t + 1 (5 minutes later). Since an application may need

the temperature at an arbitrary moment in time (and not on a precise 5-minute

periodicity), this prediction error serves as an upper bound on the error that an

application which is not time-synchronized with the measurement system might

experience. We then compare different sources for predictions (locally attached

DHT vs Internet-accessible WeatherUnderground) and we conclude with results

showing the application of our approach in a practical IoT setting.

4.2.3 Prediction Error

In Figure 4.3 we show the Mean Absolute Error (MAE) for the one-step-ahead

prediction as a function of history size . Each graph compares the effect on

Most typically, the prediction error is presented as the Mean Square Error (MSE) or the
Root Mean Square Error (RMSE) in error analysis. While these statistics offer insights into the
distributional properties of the errors, our experience with professional agricultural personnel
has led us to concentrate on the MAE as a practical error metric since it can be interpreted as
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prediction accuracy of different smoothing methods for the different locations and

devices for a prediction period of 3 days. The x-axis is the training window size;

the y-axis shows errors in ◦F .

From the graphs in Figure 4.3, we see that SSA improves prediction accuracy

compared to the absence of smoothing (NS). In this study, 15 minutes corresponds

to 3 measurements. When the temperature is slowly changing (e.g. the CPU tem-

perature does not change over a 15 minute period) regression becomes numerically

unstable (i.e. the covariance matrix has values that are nearly zero on the diago-

nal). Compared to Fresno or Goleta, for example, the CPU temperatures at LREC

is more stable since the devices are sited near a large irrigation reservoir. SSA

smooths the previous 3 measurements more than the other methods, occasionally

generating regression coefficients that are very large or numerically infinite (i.e.

NaN) as a result of trying to invert the covariance matrix. Our system detects

this condition and disables smoothing when it leads to a failed regression.

Also, note that the errors are relatively small. All of the locations we have

tested are located in California and during the prediction periods, the temperature

varied from the mid 40s to the mid 80s ◦F . In each case, the MAE error is under

1◦F for a TW of 1 hour or less. The Arduino Uno (Goleta-Arduino-DHT) produces

the lowest error and the error does not grow with window size. We believe this is

how far “off” the measurements are “on the average.” We omitted the RMSE results in favor of
brevity.
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Pi1 Pi2 Pi4

h NS SSA NS SSA NS SSA

1 5.5 4.5 6.4 6.5 10.4 14.6

4 5.5 4.5 2.6 2.4 1.9 1.6

8 2.7 2.6 1.5 1.5 1.4 1.4

12 2.2 2.2 1.5 1.6 1.5 1.6

24 1.4 1.4 1.4 1.4 1.5 1.5

48 1.5 1.6 1.4 1.4 1.3 1.3

72 1.3 1.3 1.4 1.4 1.3 1.4

96 1.3 1.4 1.4 1.4 1.3 1.4

168 4.8 4.8 1.4 1.4 1.3 1.3

336 4.8 4.8 1.4 1.4 1.3 1.3

Table 4.1: Mean Absolute Error (◦F ) with No Smoothing (NS) and SSA for

different calibration periods in hours (h).

due to the very consistent and slowly changing temperature of the location during

the prediction period (i.e. it is nearer to the ocean than the other Goleta devices

and the 3 day prediction period is in May vs March for the other locations). The

accuracy of our approach is similar regardless of location (e.g. Goleta, Lindcove

(LREC), or Fresno) and source of ground truth temperature measurement (DHT,

Flux tower (LREC), or WU) for a TW of 1 hour or less.
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4.2.4 Practical Application

The data and analysis presented in the previous subsection show the minimum

error that is possible. That is, they verify that it is possible to predict the outdoor

temperature from the internal CPU temperature sensor with a high degree of

accuracy in a variety of meteorological settings. To be practically useful, however,

the technique must be able to predict outdoor temperature without the presence

of an outdoor thermometer (i.e. from CPU temperature alone). That is, our goal

is to investigate whether we can use the CPU temperature sensor (which will be

present by virtue of the need for a controller) as a replacement for a localized

outdoor thermometer.

Specifically, in a practical application of this technique, with no outdoor ther-

mometer, it is not possible to perform a regression at each time step using the

current outdoor temperature reading. Instead, our approach is to generate a

regression coefficients from a calibration period that we then use over a later pre-

diction period. We site single-board computers in each location with an attached

DHT outdoor temperature sensor for a fixed, continuous calibration period. Then

we remove the DHT sensor (so it can be used for another calibration) and estimate

outdoor temperature from the computer’s CPU temperature using the regression

coefficients we computed at the end of the calibration period. Table 4.1 shows the

Mean Absolute Errors for different calibration periods and three Pi Zero devices.
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Pi1, Pi2, and Pi4 are all Raspberry Pi Zero single-board computers with ex-

ternally attached DHT temperature sensors. All three were located in the same

outdoor setting in Goleta, California. We chose a random date between January

1st, 2018 and May 15th, 2018 in each case to use as the start of the test/prediction

period. We installed the Arduino too late to include in this study, but we plan to

include it once we collect sufficient data. In each experiment, we use a trace of

the DHT external measurements and the corresponding CPU measurements over

a fixed calibration period (shown in column 1, measured in hours) to compute

a set of regression coefficients. We then use the coefficients to predict the DHT

measurements from the CPU measurements (without re-regressing) for the next

two weeks following the calibration period. Columns 2 through 7 show the Mean

Absolute Error (MAE) during the measurement period immediately following cal-

ibration without smoothing and with SSA for the calibration regression. Thus,

this table shows the errors when one set of regression coefficients is used to predict

the next two weeks of outdoor temperature (as a function of calibration period).

While SSA improves the errors in the piecewise regression case (cf Figure 4.3),

it is less effective when one set of coefficients must be used over a long period

of time when a sufficiently long calibration period is available. Note that for

some short calibration periods, SSA can improve accuracy, but only when there

is sufficient variation to maintain numerical stability in the regression. Further,
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Pi1 Pi2 Pi4

h NS SSA NS SSA NS SSA

24 1.1 1.4 2.5 2.1 1.3 1.2

48 1.2 1.6 0.7 0.9 0.9 1.3

72 1.1 1.2 0.7 1.0 1.3 0.9

96 1.1 1.2 0.8 1.0 0.9 1.0

168 4.1 4.1 0.7 0.7 0.8 0.8

336 4.1 4.1 0.7 0.7 0.8 0.8

Table 4.2: Mean Absolute Error in degrees Fahrenheit with No Smoothing (NS)

and SSA for different calibration periods (measured in hours (h)) using data from

noon to 3 PM.
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Pi1 Pi2 Pi4

h NS SSA NS SSA NS SSA

24 1.1 1.4 1.4 1.4 1.3 1.4

48 1.2 1.4 1.4 1.4 1.3 1.3

72 1.1 1.2 1.5 1.4 1.3 1.3

96 1.3 1.4 1.5 1.4 1.3 1.3

168 4.1 4.1 1.5 1.5 1.4 1.4

336 4.1 4.1 1.6 1.6 1.4 1.3

Table 4.3: Mean Absolute Error in degrees Fahrenheit with No Smoothing (NS)

and SSA for different calibration periods (measured in hours (h)) using data from

10 PM to 7 AM.
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the calibration period should include at least one full diurnal cycle to be effective.

Finally, the minimum error is consistently 1.3◦F or 1.4◦F .

Finally, not all time periods during a diurnal cycle may be needed for certain

applications. As part of SmartFarm, for example, we are developing a new algo-

rithm for computing localized evapotranspiration (ET) Penman (1948). ET is an

often-used metric for computing crop water stress or water requirements and it

is typically based on meteorological measurements that cover large areas (e.g. a

county or zip code). ET computations rely, in part, on the outdoor temperature

measured during “solar max” – typically between noon and 3 PM in North Amer-

ica. Similarly, frost prevention using wind machines mixes warm air aloft (e.g. at

10 meters) with colder air that has settled near the ground during the nighttime

hours (e.g. between 10:00 PM and 7:00 AM). Thus, it may be that it is possible

to obtain more accurate measurements by including only those hours that are of

interest during a diurnal cycle.

Tables 4.2 and 4.3 show the MAE for non-smoothed and SSA calibration using

only data gathered from noon to 3 PM and from 10 PM to 7 AM respectively.

We show only results for calibration periods of at least 24 hours since the cali-

bration period must span at least one diurnal cycle. In most cases (particularly

for the solar max predictions) the best prediction (lowest MAE) improves when

we use only the periods of interest for the regression. However, the improvements
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are small in absolute terms (often 0.1◦F ). We have yet to determine whether the

additional accuracy is necessary for either localized ET calculation or frost preven-

tion. Doing so is the subject of the on-going SmartFarm work that is leveraging

this technique.

4.3 Employing Multiple Linear Regression Models

In the prior sections, we use univariate linear regression to estimate the out-

door temperature based on the CPU temperature of a single co-located SBC. In

two of the experiments, (non-smoothed and smoothed with the single spectrum

analysis Golyandina & Zhigljavsky (2013)), the model does not perform as well

when the training window is smaller than 6h (4.5 − 14.6◦F ) or larger than one

week (1.3 − 4.8◦F ). The reason for this is that because the technique uses com-

puted estimates rather than actual measurement, it also introduces additional

error beyond measurement error.

We next investigate novel ways of reducing this error, explore the efficacy of

alternative smoothing techniques, and evaluate the impact of processor load on

prediction. To reduce this error, we consider processor temperature measurements

from multiple SBCs (deployed in other on-farm micro-climates), and outdoor tem-
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perature from a remote weather station, as possible predictors. We use the term

processor and CPU interchangeably throughout.

4.3.1 Deployment and Datasets

We deploy four Raspberry Pi (RPi) Zero RPi (2018) devices (named Pi1, Pi2,

Pi3, and Pi4) equipped with temperature sensors, at different locations (micro-

climates) in an agricultural setting (citrus trees). We place a pair of RPis within

3 feet of each other, in two different trees, spaced 10 feet apart. Pi1 and Pi2

monitor tree #1 and Pi3 and Pi4 monitor tree #2. Each device is housed in an

inexpensive plastic enclosure and has an on-board processor temperature sensor

that is part of its hardware/software interface.

The devices read their processor temperature sensor value every 5 minutes

and can process, store, or wirelessly transmit their measurements. We label the

measurements CPU-1, CPU-2, CPU-3, and CPU-4, for the CPUs of Pi1 through

Pi4, respectively. The RPi devices then transmit the measurements to an on-farm

computer for aggregation and analysis.

Each RPi is additionally equipped with an AM2302 DHT22 digital tempera-

ture and humidity sensor Ada (2018), which we use to measure ground truth. The

devices read and transmit these values every 5 minutes (labeled DHT-1, DHT-2,

DHT-3, and DHT-4, with temperature value DHT-{i} representing the temper-
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ature measured by the DHT22 sensor attached to the Pi{i}) along with their

CPU temperature readings to a remote analysis system. We only use this DHT22

data as ground truth (to compute prediction error), i.e., it is not used as part of

modeling or prediction.

Finally, we also consider the use of freely available, high-end weather sta-

tion data from the Internet weather service WeatherUnderground WeatherUnder-

ground (2019). The closest weather station is 2640 feet (800m) away from our field

deployment. We collect the temperature reported by the WeatherUnderground

station closest to the deployment site every five minutes (labeled WU-T). We align

the measurements (CPU, DHT22, and WU) using the nearest timestamp. If there

is data dropout, i.e, if one of the three temperature values is missing, we skip all

measurements for that five-minute interval.

4.3.2 Linear Regression Models

We model the outdoor temperature that surrounds a single RPi, using one or

more predictors. Predictors can include the CPU temperature of RPi itself, the

CPU temperature of neighboring RPis, and the outdoor temperature reported by

a high-quality, remote weather station. We estimate model parameters θ ∈ Rn by

minimizing the residual sum of squares:
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RSS(θ) = (y −Xθ)T (y −Xθ)

where yi ∈ R, i ∈ {1, . . . , N} represents the ground truth outdoor temperature

and X ∈ RN×n represents the entire training set, where each row xi ∈ Rn repre-

sents the values that predictors take, and n is the number of predictors.

To evaluate this approach, we analyze models with testing windows of size one

hour to two weeks, which correspond to 12 and 4032 data points respectively. To

measure error, we compute the mean absolute error (MAE) (versus R-squared)

because of its direct utility in our IoT agriculture applications. In particular, we

are interested in using the models to make predictions and not in their explanatory

power. We compute MAE as the average absolute distance between estimated

temperatures and their corresponding ground truth values.

Finally, we evaluate the efficacy of smoothing the training data prior to per-

forming regression. We investigate rolling mean, minimum, and median smooth-

ing methods. In our experiments, rolling mean produces the smallest error for

the datasets we investigate. We thus report results using only this smoothing

technique, for brevity. To implement rolling mean, we use a window of size w and

replace each element with the mean value of the previous w elements including

the current element. More formally, we replace X in the RSS equation with S
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where

sij =


∑j

l=j−w
xil

w
j >= w

∑j
l=o

xil

j
j < w

For all the experiments presented in Section 4.4 we use a window size w = 6,

which corresponds to 30 minutes.

4.4 Evaluation of the Efficacy of Using Multiple

Linear Regression Models for Sensor Synthesis

In our experiments, we use four RPi-based, single board computers (SBCs)

deployed outdoors as described in Section 4.3.1. We denote the processor tem-

perature measurements from each as CPU-1, CPU-2, CPU-3, CPU-4. We refer

to the outdoor temperature measurements from a nearby WeatherUnderground

station as WU-T.

The goal of this evaluation is to illustrate the degree to which it is possi-

ble to make an accurate prediction of outdoor temperature based on a combina-

tion of CPU temperature measurements and temperature measurements from the

WeatherUnderground station. In this study, “ground truth” – the true outdoor

temperature – comes from DHT22 sensors connected externally to each RPi. We

do not use the measurements from the DHT22 sensors in any prediction. However,
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Device CPU-1 CPU-2 CPU-3 CPU-4 DHT-1 DHT-2 DHT-3 DHT-4 WU-T

CPU-1 0.00 4.78 7.15 3.20 29.23 30.12 30.78 29.84 32.26

CPU-2 - 0.00 4.07 3.40 24.51 25.37 26.06 25.12 27.55

CPU-3 - - 0.00 4.86 23.09 23.99 24.68 23.71 26.16

CPU-4 - - - 0.00 27.87 28.76 29.45 28.50 30.95

DHT-1 - - - - 0.00 2.07 2.60 2.15 3.61

DHT-2 - - - - - 0.00 1.32 1.23 4.31

DHT-3 - - - - - - 0.00 1.00 3.75

DHT-4 - - - - - - - 0.00 4.01

WU-T - - - - - - - - 0.00

Table 4.4: Average absolute difference in temperature measurements among CPU

and DHT22 sensors from four RPi’s (Pi1, Pi2, Pi3, and Pi4) measured during the

72 hours period on August 25th, 26th, and 27th, 2018.

we use them to determine the mean absolute error (MAE) between a prediction

based on CPU and WU-T values and ground truth as established by the DHT

value and thereby determine our prediction accuracy. Our RPis are equipped

with a 1GHz ARMv7 processor, 512MB memory, 32GB of SSD storage, and Wifi

communication. All the temperature readings in the experiments are reported in

degrees Fahrenheit.
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4.4.1 Experimental Results

As a baseline, the upper triangle of the matrix in Table 4.4 shows the average

difference in temperature, pairwise, between all pairs of temperature measurement

traces we include in our study. Thus, for example, the average difference in

temperature between CPU-1 and DHT-1 (the DHT connected directly to the RPi

hosting CPU-1) is given in row 2, column 6 of the table as 29.23◦F marked in

bold in the table (assuming the header and row labels are row 1 and column 1

respectively). This data spans 72 hours beginning August 27th, 2018 and includes

864 temperature measurements gathered at 5-minute intervals.

Overall, this baseline illustration shows that

• CPU and external DHT measurements differ by approximately 30◦F ;

• average differences among DHT22 sensors (ground truth) vary from 1◦F to

2.6◦F (despite their proximity); and

• the differences in local temperature from the one reported by the nearby

weather station vary from 3.61◦F to 4.31◦F .

Since the matrix of comparisons is symmetric, we only show values in the upper

triangle.

For frost prevention, the application is attempting to determine when a small

difference in temperature between warm air aloft and colder air near the ground
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will result in frost avoidance if the air is mixed. Specifically, large wind machines

move the warm air downwards to raise the temperature enough near the ground to

prevent frost from forming. The temperature differences are on the order of a few

degrees Fahrenheit putting a premium on accurate measurement. The baseline

in Table 4.4 shows the errors that result when each temperature sensor is used

directly to predict another. That is, it is the “worst-case” prediction in the sense

that it includes no prediction mechanism – only the raw data.

In order to provide a more accurate prediction of local temperature based solely

on the devices’ CPU temperatures and the nearby weather station, we combine

multiple linear regression with smoothing. We hypothesize that the relationship

between outdoor temperature and nearby CPU temperatures measured at the

same time is linear. Further, particularly if one or more of the CPUs are loaded,

we use one-dimensional smoothing of the CPU temperature series to improve the

“signal” from the CPU temperature sensor.

For the regressions, the explanatory variables are a subset of CPU and a

weather station temperature (CPU-1, CPU-2, CPU-3, CPU-4, WU-T), as in-

dicated at the top of each results tables. Also, when smoothing is performed, we

indicate this in the table header.

In each case, we separate the experimental period under study into a “training”

period followed immediately by a “testing” period. The regression coefficients are
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DHT-1 DHT-3

Original Smoothed Original Smoothed

TE CPU-1 All CPU-1 All CPU-3 All CPU-3 All

1 0.55 0.39 0.38 0.40 0.32 0.32 0.37 0.21

3 0.45 0.34 0.38 0.33 0.50 0.32 0.47 0.20

6 0.46 0.32 0.41 0.28 0.78 0.41 0.83 0.28

12 0.48 0.46 0.44 0.43 0.70 0.48 0.74 0.37

24 0.55 0.43 0.55 0.44 0.95 0.57 0.99 0.46

48 0.62 0.47 0.62 0.46 1.04 0.63 1.04 0.51

72 0.70 0.49 0.70 0.49 1.28 0.69 1.21 0.55

96 0.75 0.52 0.78 0.53 1.36 0.72 1.31 0.62

168 0.85 0.72 0.92 0.69 1.68 0.83 1.64 0.80

336 0.79 0.81 0.77 0.66 1.54 1.26 1.56 1.24

Table 4.5: MAE for different sets of smoothed and non-smoothed explanatory

variables and lengths of Test Window (TE) when predicting DHT-1 and DHT-3

temperature based on a 72h train window and a test start day on Aug. 25th.
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computed only from data in the training period. We then use the coefficients for

the entire duration of the testing period.

Table 4.5 shows the MAE between the temperature that our method predicts

and the outdoor temperature for two “ground truth” sensors – DHT-1 and DHT-3

– using two separate subsets of explanatory variables for each. On the lefthand

side of the table, we show the MAE (both with and without smoothing) when

predicting DHT-1 using CPU-1 alone (a univariate regression) and also when us-

ing all CPUs and WU-T (a multiple linear regression, denoted as All). On the

righthand side of the table, we show the same results for DHT-3 using CPU-3 in

the univariate case. The experiment (testing period) start date is Aug. 25th. For

all experiments, we use a training window of 72 hours (864 readings). As men-

tioned in section 4.3.2, we use MAE as our measure of accuracy since it captures

the “distance” between the predicted temperature and the DHT-measured tem-

perature. It is this distance that concerns farmers who are deciding on whether

to trust their crops to the methodology.

Note that columns CPU-1 and CPU-3 under the Original column show values

corresponding to results based on univariate linear regression. Note also that we

highlight the minimum and maximum MAE in each column using boldface type.

When predicting DHT-1, we observe that errors from univariate regression

using only the CPU temperature from Pi1 (CPU-1) are in the range from 0.45◦F
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to 0.85◦F . MAE for multiple linear regression with CPU temperatures from all

four devices and a nearby weather station data range from 0.32◦F to 0.81◦F .

When predicting DHT-3 from its Pi3’s CPU sensor deployed in a similar manner

we observe MAE values between 0.32◦F to 1.68◦F (listed in the left DHT-3 sub-

table as CPU-3 column). MAE decreases to a range from 0.32◦F to 1.26◦F when

we introduce multiple linear regression (All column). Note that even though the

setup is similar (the same set of devices and outdoor conditions), the readings are

influenced by other environmental factors (tree coverage, sun exposure, etc.).

We find that multiple linear regression which includes CPU and nearby weather

station temperatures as its predictors reduce prediction error. For DHT-1, the

minimum error decreases from 0.45◦F (minimum error in CPU-1 column) to

0.32◦F (minimum error in All column) while the maximum error decreases from

0.85◦F (maximum error in CPU-1 column) to 0.81◦F (maximum error in All col-

umn). For DHT-3 the minimum error is 0.32◦F for both columns (CPU-3 and

All) while the maximum error decreases from 1.68◦F for CPU-3 to 1.26◦F for

All. If we compare errors per test window length, we note that for DHT-1 all

errors but for the 2 weeks test window were reduced (where 0.79 < 0.81) and for

DHT-3 all errors but for 1h test window were reduced (1h row had the same error

of 0.32◦F in both columns).
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These results indicate that it is possible to make predictions with an average

absolute error of under 1◦F that requires infrequent model refitting (e.g. once

per several days) using a combination of CPU and weather station data. Indeed,

the accuracy of DHT22 sensors is approximately 0.5◦F . Thus this methodology is

approaching the limit of accuracy that is possible using DHT22 sensors as ground

truth. Under 1◦F is acceptable for frost prevention where current manual methods

use measurements in the 3◦F range.

For the smoothing results in Table 4.5, each value (except the first 6) in the

training period is replaced by the average of the 6 preceding it in the period (i.e.

we use a sliding window average to smooth the data in the training period). When

comparing the All column from Original and Smoothed columns, we observe that

the smoothing decreases the mean absolute error (MAE) from the range of 0.32◦F

to 0.81◦F (original) to the range of 0.28◦F to 0.69◦F (smoothed). Similarly, for

DHT-3 prediction, the MAE goes from the range 0.32◦F to 1.26◦F (original) to

the range 0.20◦F to 1.24◦F (smoothed).

4.4.2 Computational Load: the Effect of Smoothing and

Multiple Linear Regression

CPU temperatures are correlated with the CPU load Moore et al. (2005),

Haywood et al. (2015) and while the CPUs are idle for much of the time in our
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setting temporary computational load at the time of temperature recording may

influence the prediction error (e.g. if the CPU were performing encryption as part

of transmitting the data over the network). We next analyze the effect of the CPU

load on the temperature prediction error.

Out of the four devices that we consider, we keep Pi2 and Pi4 unloaded and

add hourly jobs to Pi1 and Pi3, which increase the CPU load by encrypting and

copying a 1GB file on Pi1 and a 512MB file on Pi3. Figure 4.4 illustrates CPU

temperature measurements from Pi1 with hourly spikes due to the load. The load

testing for Pi1 and Pi3 started mid September and we use September 20th as a

test start date. Note that Pi2 and Pi4 have no artificial load and are kept idle

for comparison. We observe that, compared to the August test, all four Pi’s show

smaller errors on average, however, we omit these averages for brevity.

Table 4.6 shows the MAE for predicting DHT-1 and DHT-3 based on different

sets of explanatory variables (listed on the top of the table) for different duration

of the test window (TE), while both Pi1 and Pi3 are loaded. For predicting DHT-

1 based on CPU-1, we observe MAE in the range of 0.71◦F to 0.85◦F and for the

DHT-3 of 0.65◦F to 0.78◦F . The effect of the CPU load is more pronounced in

univariate prediction. Moreover, this effect is mitigated when we include nearby

devices’ CPU temperature measurements. Including nearby devices in the DHT-1
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Figure 4.4: CPU-1 temperature under load and DHT-1 temperature in ◦F .
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DHT-1 DHT-3

Original Smoothed Original Smoothed

TE CPU-1 All CPU-1 All CPU-3 All CPU-3 All

1 0.85 0.54 0.19 0.46 0.75 0.39 0.23 0.32

3 0.71 0.49 0.42 0.36 0.78 0.53 0.30 0.34

6 0.73 0.55 0.47 0.37 0.70 0.44 0.27 0.34

12 0.73 0.53 0.60 0.42 0.74 0.53 0.42 0.50

24 0.85 0.57 0.76 0.54 0.70 0.52 0.57 0.49

48 0.84 0.58 0.69 0.51 0.67 0.50 0.62 0.48

72 0.82 0.55 0.66 0.50 0.66 0.50 0.61 0.48

96 0.80 0.54 0.66 0.53 0.66 0.52 0.61 0.49

168 0.80 0.53 0.62 0.51 0.66 0.53 0.62 0.50

336 0.85 0.53 0.60 0.51 0.65 0.51 0.61 0.50

Table 4.6: Prediction error when CPU-1 and CPU-3 experience periodic load. The

data shows MAE for different sets of smoothed and non-smoothed explanatory

variables and lengths of Test Window (TE) when predicting outdoor temperature

for DHT-1 and DHT-3 based on a train window of 72h and with a test start day

on Sep 20th.
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prediction (All) results in MAE in the range of 0.49◦F to 0.58◦F for DHT-1 and

in the range of 0.39◦F to 0.53◦F for DHT-3.

Similar to the results for the unloaded experiments, when the CPUs are loaded

we also observe improvement in prediction error when we apply smoothing, as

shown in Table 4.6. The two columns show MAE for DHT-1 and DHT-3 tem-

perature prediction with the same smoothing technique explained earlier (rolling

mean with a window size of 30 minutes or 6 readings). Note that this type

of smoothing is computationally simple enough to be performed on each device

(rather than as a remote computation requiring a more powerful computational

resource (used in past work)).

We observe that for any length of test window the error when all the predictors

are used (All column) is smaller than when any single predictor counterpart is

used: CPU-1 for DHT-1, and CPU-3 for DHT-3. With smoothing, the prediction

MAE decreases from the range of 0.71◦F to 0.85◦F to the range of 0.36◦F to

0.54◦F for DHT-1, and from the range 0.65◦F to 0.78◦F to a range of 0.32◦F to

0.50◦F for DHT-3. While not strictly lower or higher, these results are similar (in

terms of accuracy) to the results for the unloaded case. We conclude that, using

a combination of multivariate regression and smoothing, it is possible to obtain

high degrees of prediction accuracy (relative to measurement error) regardless of

whether the CPU is loaded or not.
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(a) Single CPU per DHT

(b) All CPUs + WU

Figure 4.5: MAE when predicting DHT-1, DHT-2, DHT-3, and DHT-4 tempera-

ture based on a 72h Train Window for different Test Window sizes (TE) and sets

of smoothed explanatory variables (single CPU in the left and all variables of the

right). Test start date is Sep. 20th. Pi1 and Pi3 experience additional periodic

load, Pi2 and Pi4 do not.
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To account for the possibility that the specified timeframe may have influenced

the results (i.e. outdoor conditions may have been more dynamic in late August

than late September), we show comparative results for the September timeframe

for loaded and unloaded experiments in Figure 4.5. The data shown in this figure

is taken during the same period as the results shown in Table 4.6. That is, we use

the 72-hour period ending on September 20th, 2018 as a training period and the

remaining time as a test period (ranging from 1h to 2 weeks). The bars in the

figure corresponding to CPU-1 and CPU-3 show the same data as in Table 4.6

from the Smoothed All columns. For comparison, we show data for two other

CPUs – CPU-2 and CPU-4 – taken at the same time, again using smoothing and

all explanatory variables in each regression (i.e. Smoothed All).

Figure 4.5a shows the comparison when only the CPU directly attached to

the DHT is used as a single explanatory variable (i.e. the “nearest” CPU). In

Figure 4.5b, we show the results when all explanatory variables are used to predict

each DHT.

In Figure 4.5b, the maximumMAE observed in any experiment does not exceed

0.54◦F across all CPUs, DHTs, and load patterns. These results indicate that the

methodology is robust with respect to typical loads that the CPUs may experience

in our IoT setting. Comparing Figure 4.5a to Figure 4.5b shows that multivariate

regression improves accuracy across all DHTs and load patterns.

123



Chapter 4. Sensor Synthesis

Figure 4.6: Comparison of MAE when predicting DHT-1 values for five different

dates from April 20th to Dec. 7th.

4.4.3 Effects of Seasons and Precipitation

In addition to the two dates in August and September, we observed very similar

error rates when testing during different seasons (Summer, Fall, and Winter). This

is illustrated in Figure 4.6 where we predict DHT-1 temperature for different days

from April to December. April 20th (04-20) has a higher error because Pi3 and Pi4

were not yet deployed and thus their CPU values were not available as features.

December 7th had variable weather conditions with alternating rainy and sunny

days, which may have contributed to a somewhat higher MAE. However, even so,

the MAE for most of the days it was less than 1.25◦F .
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We also tested the accuracy of the model when there were changes in precipita-

tion. From a time series perspective, precipitation could constitute a change-point

in each temperature series (due to the sudden onset of evaporative cooling effects).

Table 4.7 shows the comparison of errors when training and testing periods had

different levels of precipitation. For each column, the training period was 3 days

and the test periods listed go from 1h to 3 days. In the first column, both training

and testing days were without any precipitation (this data is the same data that is

represented graphically in Figure 4.5b as DHT-1-ALL). In the second column, we

show the effects of training using rainy days to predict the temperatures during

sunny days. December 4th, 5th, and 6th were rainy days with 2.54, 1.27, and

1.27 inches of rain respectively followed by three days without precipitation that

were used for testing the model. In the third column, we show results for training

during sunny days followed by prediction during rainy periods. January 2nd, 3rd,

and 4th were days without precipitation followed by three days with 1.29, 1.06,

and 1.0 inches of precipitation respectively.

The results show that the model trained only on three rainy days had errors

slightly higher than when tested on sunny days, while the model trained on sunny

days behaved similarly to the models we discussed before, even when tested on

rainy days. Part of our future work is to expand test cases to more variable

weather conditions (e.g., including changes in wind, solar radiance, etc.). However,
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TE Sep. 20th Dec. 7th Jan. 5th

1 0.46 0.24 0.22

3 0.36 0.27 0.40

6 0.37 0.29 0.57

12 0.42 0.42 0.76

24 0.54 1.26 0.56

48 0.51 1.41 0.54

72 0.50 1.09 0.46

Table 4.7: MAE for models trained and tested during dry periods (Sep. 20),

training during a rainy period and testing during a dry period (Dec. 7th) and

training during a dry period and tested during a rainy period (Jan. 5th). Models

are trained on 3 days to predict DHT-1 temperature based on all five explanatory

variables using smoothing.

these results indicate that the prediction errors are robust to what are essentially

“shocks” to the temperature time series in the explanatory weather data (WU-

T) and the predicted variables (DHT values). Because the CPUs were in sealed

containers (and the DHT sensors were exposed to the atmosphere) the effects of

precipitation on the CPU series are less pronounced. Still, the errors are largely

unaffected by precipitation.
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Figure 4.7: Comparison of MAE when predicting DHT-1 values for different sets

of features for Sep. 20th.

Figure 4.7 illustrates the errors when predicting DHT-1 temperature with dif-

ferent subsets of explanatory variables. We observe that if we only rely on the

nearby weather station (which is approximately 800m from the nearest DHT)

the error (WU-T) is much higher (2 − 3◦F ) than for a subset that includes at

least one of the CPU temperatures (< 1.15◦F ). Farmers, today, often use only a

weather station temperature reading when implementing manual frost prevention

practices. Often, though, the weather station they choose to use for the outdoor

temperature is even farther away from the target growing block than the station

we use in this study.

Notice, also, that when the CPU that is directly connected to the DHT is not

included (denoted CPU-234W in the figure), the errors are higher than when it is
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included (all other bars in the figure except for W). Thus, as one might expect,

proximity plays a role in determining the error. However, using only the attached

CPU (CPU-1 in the figure which is necessarily physically closest to DHT-1) gener-

ates a higher MAE than all CPUs and the weather station (denoted CPU-1234W

in the figure). Indeed, the best performing model is this one that uses all four

CPU temperatures and WU-T measurements as explanatory variables, yielding

an MAE < 0.5◦F across all time frames. Thus using the nearest CPU improves

accuracy, but using only the nearest CPU does not yield the most accurate pre-

diction. Finally, while the weather station data does not generate an accurate

prediction by itself, including it does improve the accuracy (slightly) over leaving

it out.

In summary, our methodology is capable of automatically synthesizing a “vir-

tual” temperature sensor from a set of CPU measurements and externally available

weather data. By including all of the available temperature time series, it auto-

matically “tunes” itself to generate the most accurate predictions even when one

of the explanatory variables (WU-T in Figure 4.7) is, by itself, a poor predic-

tor. These predictions are durable (lasting up to 2 weeks without refitting the

regression coefficients), with errors often at the threshold of measurement error

(for DHT sensors), on average, and relatively insensitive to seasonal and meteoro-
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logical effects, as well as typical CPU loads in the frost-prevention setting where

we have deployed it as part of an IoT system.

4.5 Related Work

Accurate micro-climate modeling is essential for agriculture operations such

as irrigation scheduling and frost protection Ghaemi et al. (2009), Stombaugh

et al. (1992), Ioslovich et al. (2016), Roberts et al. (2013), Gonzalez-Dugoa et al.

(2011). We investigate the use of simple, low cost, single-board computers to

estimate air temperature for use in these applications. Although such devices are

increasingly integrated into IoT solutions for agriculture Nikolidakis et al. (2015),

Krintz et al. (2016), Vasisht et al. (2017)(e.g. providing alerts, irrigation control,

communication of sensor data Zheleva et al. (2017), Ojha et al. (2017), Karimi

et al. (2018), Foughali et al. (2018), Jawad et al. (2017), Golubovic et al. (2016),

Beckwith et al. (2004)), there are no studies of which we are aware that use the

devices themselves as thermometers.

To enable this, we estimate the outdoor temperature from CPU temperature

linear regression Hastie et al. (2009) of temperature time series. Others have shown

that doing so is useful for other applications and analysesGuestrin et al. (2004),

Xie et al. (2017), Lane et al. (2016), Yao et al. (2017). Our work is complementary
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to these and is unique in that it combines SSA (noise reduction) with regression

to improve prediction accuracy. As in other work, we leverage edge computing to

facilitate low latency response and actuation for IoT systems Alturki et al. (2017),

Feng et al. (2017).

4.6 Summary

In this chapter, we investigate an alternative, low cost way of measuring and

predicting outdoor temperature using inexpensive, single board computers as tem-

perature sensors. Our approach uses linear regression to model the relationship

between outdoor temperature and device CPU temperature at each device and

employs SSA to account for autocorrelation in the time series. We calibrate each

in-situ device using a high-quality temperature sensor for a fixed duration of time;

we use the regression coefficients from the calibration period (which do not change)

to predict the outdoor temperature from CPU temperature thereafter, using differ-

ent devices and ground truth temperature sensor/stations (e.g. on-farm weather

station, thermistor, WeatherUnderground station). We empirically evaluate the

approach using different amounts of training data, calibration durations, and lo-

cations. Our results show that this approach can generate average errors of 1.5◦F

or lower in real-world precision agricultural deployments.
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We also present an extension that uses multiple linear regression using nearby

SBC processors and weather stations. We use these models to predict microcli-

mate temperatures, which can be used (if sufficiently accurate) in agricultural

settings to guide irrigation, frost control, and other IoT applications. We de-

ploy our system in a citrus grove and perform an extensive empirical study using

the devices and methodology. In addition, we consider the impact of loaded and

unloaded processors as well as alternative smoothing techniques. We train our

models for up to three days and evaluate their accuracy for a duration of up to

two weeks. Our approach enables a prediction error that is less than 1.5◦F .
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Hypatia

With the prior chapters, we have contributed new methods for clustering cor-

related, multidimensional data and for synthesizing virtual sensors using the data

produced from combinations of other sensors. We next unify these advances into

a scalable, open-source, end-to-end system called Hypatia. We design Hypa-

tia to permit multiple analytics algorithms to be “plugged in” and to simplify

the implementation and deployment of a wide range of data science applications.

Specifically, Hypatia is a distributed system that automatically deploys data

analytics jobs across different cloud-like systems. Our goal with Hypatia is to

provide low latency, reliable, and actionable analytics, machine learning model

selection, error analysis, data visualization, and scheduling, in a unified scalable

system.

To enable this, Hypatia places this functionality “near” (in terms of net-

work transfer latency) the sensing devices that generate data, at the edge of the
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network. It then automates the process of distributing the application execu-

tion across different computational tiers: “edge clouds” and public/private cloud

systems. Hypatia does so to reduce the response latency of applications so that

data-driven decisions can be made by people and devices at the edge more quickly.

Such edge decision making is important for a wide range of application domains

including agriculture, smart cities, and home automation where decisions, actua-

tion, and control are all local and make use of information from the surrounding

environment. Hypatia automatically deploys and scales tasks on-demand both

locally (at the edge) and remotely – if/when there are insufficient resources at the

edge.

Hypatia presents users with an easy-to-use interface that it makes available

via any web browser. Users can choose the algorithms they need for data analysis

and prediction and select the dataset they are interested in. Hypatia iterates

through the list of available parameters, and multiple training and scoring models

for each parameter set. It then selects those with the best score. Such model

selection can be used to provide data-driven decision support for users as well as

to actuate and control digital and physical systems (e.g. other software services,

trigger alerts, adapt sensing, irrigate crops, etc.). In this chapter, we focus on

Hypatia support for clustering and regression.
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The Hypatia scheduler automates distributed deployment across edge and

cloud systems to minimize time to completion (i.e. end-to-end application execu-

tion time). It uses the computational and communication requirements of model

training, testing, and inference, to make placement decisions for independent jobs

that comprise a workload. For data-intensive workloads, Hypatia prioritizes the

use of the (local) edge cloud. For compute-intensive jobs (e.g. those with small

input/output data sets), Hypatia prioritizes public/private (remote) cloud use.

In summary, with Hypatia, we design and develop a new, scalable, end-to-end

distributed system that executes data analytics services across the edge, private,

and public cloud resources such that analysis latency is minimized. To enable

this, Hypatia combines

• data ingress services for sensing devices, web APIs (e.g. weather stations

and other public datasets), files uploaded by users, and database tables,

• data analysis services for common machine learning tasks (classification,

regression, k-means clustering, etc.),

• automatic model selection and scoring,

• dataset and result visualization, and

• a workload scheduler that minimizes the time to completion.
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In the sections that follow, we present the design and implementation of Hypatia

and the analytics services it supports. We then evaluate Hypatia in a multi-tier

setting using real applications and workloads and show that it reduces time to

completion for a wide range of workloads and deployment configurations. Finally,

we overview recent work related to Hypatia and summarize our contributions.

5.1 Hypatia

Hypatia is an online platform for distributed cloud services that implement

common data analytics utilities. It takes advantage of cloud-based, large-scale dis-

tributed computation, provides automatic scaling (where computational resources

are added or removed on-demand), and implements data management and user

interfaces in support of visualization and browser-based user interaction. Hypa-

tia currently supports two key building blocks for popular statistical analysis and

machine learning applications: clustering and linear regression.

For clustering, Hypatia implements the different variants of k-means cluster-

ing (described in Chapter 3, Golubovic et al. (2017, 2018)). The variants include

different distance computations (Euclidean and Mahalanobis), input data scaling

(e.g. whether or not to scale each dimension to have zero mean and unit standard

deviation), and the six combinations of covariance matrices. Hypatia runs the
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configuration for successive values of K ranging from 1 to a user-assigned large

number, max_k. For each clustering, Hypatia computes a pair of scores based on

both the Bayesian Information Criterion (BIC) Schwarz (1978) and the Akaike In-

formation Criterion (AIC) Akaike (1974). Hypatia allows the user to change the

number of independent, randomly seeded runs to account for statistical variation.

Finally, it provides ways for the user to graph and visualize both two-dimensional

“slices” of all clusterings as well as the relative BIC and AIC scores. It uses these

scores to provide decision support for the user – e.g. presenting the user with the

“best” clustering across all variants.

For linear regression, Hypatia implements different approaches for analyzing

correlated, multidimensional data (described in Chapter 4, Krintz et al. (2018a),

Golubovic et al. (2019)). Since we focus on synthesizing new sensors, we are

looking for the most important inputs from other sensors that can be used to

accurately estimate a synthesized measurement. Hypatia allows users to decide

on the number of input variables and which ones to use. They also can specify

the start time of the test, duration of the training and testing periods, the scoring

metric to use (mean absolute error, mean square error, R2 score, etc.). Users

also choose whether or not to smooth the input data (prior to training) using

different techniques (e.g. sliding window, mean, max, median, etc.). Finally,
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Figure 5.1: Hypatia visualization tool.

to predict outdoor temperature, users can select nearby single-board computers

and/or weather stations (e.g. on-site, WeatherUnderground, CIMIS, etc.).

Once the user makes these choices or accepts/modifies the defaults, Hypatia

create an experiment with as many tasks as there are parameter choices. Each task

produces a linear regression model with coefficients for each input variable and a

score that can be used for model selection. As is done for clustering, Hypatia

scores the various parameterizations using the scoring metric to provide decision

support (i.e. to identify the best parameterization) to users. The user can then

use the visualization tools to verify the similarity between input variables and

estimated sensor measurements.
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5.1.1 Design and Implementation

Hypatia is unique in that it is extensible – different data analytics algorithms

can be “plugged in” easily, and automatically deployed with and compared to

others. User can also extend the platform with both scoring (model selection)

and visualization tools. Visualization is particularly important when some of the

sensors are faulty and unreliable, or some of the smoothing or filtering techniques

do not produce the desired outcome. Figure 5.1 shows such an example where

visualization is used to show growers how soil moisture responds to precipitation

and temperature on east, and west sides of a tree in an almond grove at different

depths of 1 foot and 2 feet (where most of the tree’s root system is). Being able

to understand how significant each parameter is to soil moisture provides decision

support that can be used to guide irrigation and harvest.

To implement Hypatia, we have developed a user-facing web service and dis-

tributed, cloud-enabled backend. Users upload their datasets to the web service

frontend as files in a common, simple format: as comma-separated values (CSV

files, easily exported from Excel spreadsheets). The user interface (UI) also en-

ables users to modify the various algorithms and their parameters, or accept the

defaults.

Hypatia considers each parameterization that the user chooses (including the

default) as a “job”. Each job consists of multiple tasks (experiment runs) that
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Hypatia deploys. Users can also use the service to check the status of a job or to

view the report and results for a job (when completed). The status page provides

an overview of all the tasks for a job showing a progress bar for the percentage of

tasks completed and a table showing task parameters and outcomes.

Hypatia uses a report page to provide its recommendation for both analysis

building blocks, clustering and regression. For clustering, the recommendation

consists of the number of clusters and the k-means variant that produces the best

BIC score. This page also shows the cluster assignments, spatial plots using longi-

tude and latitude (if included in the original data set), BIC and AIC score plots.

Hypatia also provides cluster labels in CSV files that the user can download.

For regression, the report page consists of a map of error analysis for each model

grouped by their parameters. Users can quickly navigate to the model with the

smallest error.

The software architecture of Hypatia is shown in Figure 5.2. We implement

Hypatia using Python v3.6 and integrate a number of open-source software pack-

ages and cloud services. At the edge, Hypatia uses a small private cloud that

runs Eucalyptus software v4.4Nurmi et al. (2009), Aristotle (2019). The public

cloud is Amazon Web Services (AWS) Elastic Compute Cloud (EC2). Hypatia

integrates virtual servers from these two cloud systems with different capabili-

ties (memory size and compute resources), which we describe in our empirical
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methodology. The architecture consists of five primary components (depicted in

the figure):

1. Frontend : We couple the Python Flask Flask (2019) (v0.12.1) web frame-

work with Gunicorn Gunicorn (2019) (v19.7.1) web server and NGINX NG-

INX (2019) (v1.4.6) reverse proxy server to provide a robust application

hosting service.

2. Backend Worker : We use Python Celery Celery (2019) (v4.0.2), a dis-

tributed computation framework, to perform analysis computation tasks

asynchronously and at scale Lunacek et al. (2013). Hypatia is able to

leverage autoscaling groups in Eucalyptus and AWS to automatically grow

and shrink the number of workers performing the computation according to

the demand for each job.

3. Backend Queue: We use RabbitMQ RabbitMQ (2019) (v3.2.4) message

broker to send information about each job from the Frontend to the Workers.

This enables to Frontend to quickly off-load its work to the Queue where it

is sent systematically to the Workers as they become available.

4. Backend Database: We use a Postgres PostgreSQL (2019) database to store

parameters and results for jobs and tasks. Different statistics about the

tasks are later used to inform the scheduling.
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5. Backend File Store: We use a cloud-based bucket/object storage (Walrus in

Eucalyptus or S3 in AWS) using the AWS S3 interface.

6. Network Profiler : Implemented as a two-dimensional lookup table of iPerf

bandwidth data for different data sizes and numbers of connections. This

table is used to bootstrap Hypatia until it has enough historical data to

perform its predictions using it.

7. Scheduler : Implemented in Python, the scheduler uses the status of remote

and local queues and task statistics from the database (DB), to compute

the best split for remote and local tasks. If task types are seen for the first

time, the scheduler uses the information provided by the network profiler.

Other packages that Hypatia leverages include NumpyWalt et al. (2011) (v1.12.1),

Pandas McKinney et al. (2010) (v0.19.2), SciKit-Learn Pedregosa et al. (2011)

(v0.18.1), and SciPy Jones et al. (2001–) (v0.19.0) for data processing. Hypatia

uses Matplotlib Hunter (2007) (v2.0.1) and Seaborn Seaborn (2019) (v0.7.1) to

provide data visualization and plots.

5.2 Hypatia Scheduling

Hypatia is deployed on an edge cloud and a private/public cloud if available.

We assume that the edge cloud has limited resources and is located near where

141



Chapter 5. Hypatia

Figure 5.2: Hypatia system architecture with sensing, edge cloud, and public

cloud tiers.

data is produced by sensors. The public cloud provides vast resources and is

located across a long-haul network with varying performance (bandwidth and

latency) and perhaps intermittent connectivity. We useNEC to denote the number

of machines available in the edge cloud (EC) and (NPC) to denote the number of

machines available in the public cloud where NEC << NPC .

Users submit multiple jobs to the edge system (via a web browser interface).

Each job (J) describes the datasets (D) to be used for training, testing, and

inference or analysis. In some jobs we can assume that the entire dataset is

needed while in others we can assume that data can be split and tasks within

the job can operate on different parts of the dataset in parallel. Each job has n
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tasks (T). In the numerous jobs that we have evaluated over the course of this

dissertation, we have observed that for the applications we have studied, n can

range tens of tasks to millions of tasks.

We consider tasks from the same job as having the same “type”. To estimate

the time each task will take to complete the data transfer (to the public cloud)

and computation, we compute an average per job i as ti, across past tasks of the

same type. Each task fetches its dataset upon invocation. Local tasks fetch from

the file system or co-located database, remote tasks fetch (i.e. receive) their data

over the network between EC and PC.

Hypatia estimates the input/output dataset transfer time to the remote (PC)

in two ways. We use the first when Hypatia has no history on the job type in

the database, i.e., when the job is run for the first time. knowledge of job’s

tasks is available, Hypatia uses the job’s input and output dataset sizes and the

number of concurrent connections, to estimate transfer time using the iPerf lookup

table with values representing time in seconds needed to transfer data from the

edge to remote cloud for a dataset of a size given in kilobytes and a number of

concurrent connections. The lookup table provides fast access but may introduce

error because the data in the table is a “snapshot” in time.

Table 5.1 shows a snapshot of a Hypatia lookup table. Files of different sizes,

listed on the left, are sent over the network with a variable number of concurrent
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connections, listed across the top. The data is produced using iPerf to measure the

network performance between the EC and PC (using file transfer), when Hypatia

is first started. Each of the numbers in the table is an average of over 10 profiling

runs.

For job types that Hypatia has seen (i.e. has statistics on in its database

for at least one mixed job with both local and remote tasks), Hypatia uses the

average time measured across past tasks of the same type to estimate the transfer

time. This computation takes longer than a simple table lookup but uses recent

history to makes predictions (which are hopefully more accurate than for static

iPerf measurements).

Hypatia launches a set of virtual machine (VM) instance types to the EC and

PC, the number of each is specified by the user in the job description. Instance

type names map to the amount of memory and compute resources that each

provides. We deploy one Hypatia worker to each processor. Thus, we view each

compute resource (VM instance) in terms of the number of workers it can support.

The Hypatia queue is placed on the local instance and has two queues: local

and remote. Based on the load split ratio, Hypatia places tasks in the local or

remote queues. Workers then pull tasks from their assigned queue for execution

on a first-come-first-served basis.
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size scale 1 2 4 8 16 32 64 128

1 10−5 12 15 14 13 18 14 20 15

10 10−5 37 22 19 20 19 18 22 21

100 10−3 117 118 117 118 119 124 150 184

500 10−2 87 79 82 75 81 100 155 238

1 ∗ 103 100 1.36 1.40 1.39 1.35 1.37 1.87 3.07 5.50

1 ∗ 104 100 5.23 5.47 6.03 6.97 10.39 19.99 30.93 51.3

1 ∗ 106 101 2.25 2.67 4.11 7.74 9.77 18.27 30.59 18.75

Table 5.1: Network speed (time in seconds) lookup table for the given data size

in kilobytes and number of concurrent connections.
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5.3 Problem Formulation

Given a Job J with n tasks and D dataset, di is the amount of data that must

be transferred if the job is to use the PC. The scheduling plan uses this value,

the network bandwidth between the EC and PC (V), the number of concurrent

connections required to saturate the link, the number of available workers in each

cloud, and the current state of the queues. The scheduler computes the ratio

of the number of tasks that will execute locally and remotely such that time to

completion for the job (all tasks) is minimized.

Hypatia estimates the time to completion (Ti) for EC (local) tasks as the

average time to complete past tasks of a similar type (ti), and the state of the EC

queue, which is expressed as the lag caused by unfinished tasks in the EC queue

(LEC). The estimate for PC tasks includes a time estimate for data transfer. In

addition, Hypatia uses the lag in the PC queue instead of the EC queue for this

estimate.

Table 5.2 summarizes our terminology. Hypatia attempts to balance the

workload between the EC and PC so that they finish at the same time. It thus

attempts to satisfy the following two conditions:

TEC + TPC = n,
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Name Description

Ji i-th job

Ti a task from the i-th job

n number of tasks in Ji

ti average time it takes to execute a task Ti

di average time it takes to transfer data needed for a task Ti

TEC number of tasks from Ji to be sent to EC queue

TPC number of tasks from Ji to be sent to PC queue

WEC number of workers available in EC

WPC number of workers available in PC

LEC lag in EC queue

LPC lag in PC queue

Table 5.2: List of terms used for the scheduling algorithm.

where TEC and TPC are the numbers of tasks sent to EC and PC workers, respec-

tively.

TEC ∗ ti + LEC

NEC

∼ TPC ∗ (ti + di) + LPC

NPC

,
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5.4 Empirical Evaluation

To evaluate the efficacy of the Hypatia scheduler, we execute multiple work-

loads across multi-tier deployments and measure the time to completion per job.

For the experiments, we consider one edge instance and two sets of public cloud

instances. On the edge, we use an m3.xlarge instance with 4CPUs and 2GiB

memory. In the public cloud, our first instance set consists of a single “free tier”

t2.medium instance type with 2 CPUs and 4GiB of memory. Our second public

cloud set consists of an m5ad.xlarge instance type with 4 CPUs and 16GiB of

memory. Our experiments consider deployments with 2, 4, 8, and 12 CPUs in the

public cloud.

Our workloads consist of two machine learning applications that we developed

in the previous chapters of this dissertation: linear regression and k-means clus-

tering. For each experiment, we evaluate the performance of the mixed load (one

that uses both EC and PC workers) against executing all of the jobs on the edge

cloud (local workers only) or all of the jobs in the public cloud (PC workers only).

We refer to Hypatia deployments as mixed because Hypatia will schedule job

tasks on both the edge cloud (EC) and the public cloud (PC) when doing so

reduces time to completion.
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LinReg K-means

Uni Var Uni Var

L R L R L R L R

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

T 0.85 0.23 2.42 0.23 0.47 0.24 1.62 0.31 0.06 0.01 0.37 0.03 0.06 0.02 0.39 0.03

P 0.03 0.01 0.13 0.03 0.02 0.01 0.123 0.01 0.19 0.04 0.31 0.05 2.86 5.09 4.36 8.13

Table 5.3: Task statistics (mean and standard deviation of time needed in seconds)

for different task types and worker locations for data transfer (T) and processing

(P) time.

Since our jobs consist of tasks with different parameters, their time to transfer

data and to perform the computation differs across tasks. To empirically evaluate

this effect, for each set of machine learning models, we use two sets of jobs:

uniform containing tasks having the same parameters, and variable containing

tasks having different parameters (the latter therefore is likely to have significantly

different execution and data transfer times). The statistics for each machine

learning algorithm, for the variable or uniform sets, for EC and PC workers are

listed in Table 5.3. We present mean and standard deviation for the time it takes

to transfer the data needed for the task (row T) and to process the task (row P).
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5.4.1 Load Balancing

We first evaluate how well the Hypatia scheduler balances the load between

EC and PC workers. As mentioned above, we compare time to completion of a

mixed job (one that utilizes both EC and PC workers) with time to completion

of jobs that are executed using EC workers only (EC-Only) or PC workers only

(PC-Only).

Linear Regression Workload

The first experiment uses jobs that have 900 tasks, where each task is given a

set of parameters that it then uses to compute the coefficients of a linear regression

model based on two time series. The length of the time series defines the dataset

size, and thus the computation time per task.

Jobs are either uniform or variable task sets as defined above. The uniform

linear regression tasks take as input a one month time series of 5-minute interval

measurements (float values). The variable job tasks take as input time series that

vary between one day and one month worth of 5-minute measurements. For this

experiment, the EC has 4 workers, and the PC has 2, 4, or 6 workers.

Figure 5.3 (a) shows the average time in seconds it took to complete a job

with 900 uniform tasks using 4 EC workers and either 2 (PC2 bar in the figure), 4

(PC4), or 6 PC workers (PC6), on average across 5 jobs. For each set of results, the
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(a) Uniform Load (b) Variable Load

Figure 5.3: Average time for a linear regression job with 4 EC and 2, 4, and 6 PC

workers with AWS free tier PC instances.

first three bars show the average time in seconds that it takes to complete a task

using mixed (EC and PC), local (EC only), and remote (PC only) deployments,

respectively. The second three bars per set show the average time in seconds that

Hypatia estimates that each deployment should have taken, which we discuss

later in this chapter.

In every case, the mixed Hypatia workload performs best for time to comple-

tion for the workload. For uniform jobs, the mixed load using 2 remote workers

(PC2) finishes in 176 seconds on average, while EC-only takes 207s and PC-only

takes 1160s on average, respectively. With 6 PC workers, the mixed workload

takes 144s, EC-only takes 199s, and PC-only takes 387s on average. The results
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also show that as the number of PC workers increases, Hypatia is able to accu-

rately split jobs between the two resource sets and time to completion decreases:

176s for PC2, 160s for PC4, and 144s for PC6 on average.

Data for linear regression experiments is stored in the database running on a

separate instance within the local edge cloud (EC). This makes data transfer from

an EC worker (on a separate instance within the same cloud) much faster than

the transfer from the PC worker. The average data transfer time for EC workers

is 0.85s and for PC workers is 2.42s. Processing time is 0.03s for EC and 0.13s for

PC workers on average.

For the variable jobs in Figure 5.3 (b), the mixed workload takes an average

of 102s with 2 remote workers, 91s with 4 remote workers, and 80s with 6 remote

workers. Even though we expect EC workload to be the same across all 3 exper-

iments in this figure (PC2, PC4, and PC6) since local workers don’t change, we

still see some variation with workloads taking on average 110s in PC2, 105s in

PC4 and 105s in PC6. The total time of the workload is significantly less than

for uniform workloads because many jobs employ much smaller input data sets

sizes (e.g. 1 day vs 1 month worth of 5-minute data). The average data transfer

time is 0.47s for EC and 1.6s for PC workers, while computation takes 0.02s for

EC and 0.12s for PC workers, respectively.
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Figure 5.4: Average time for a linear regression job with 4 EC and 4, 8, and 12

PC workers with AWS m5 instances.

We see that for this particular job type, the PC workers take more time to

fetch and process tasks. To investigate this further, we next change the instance

type from the free tier t2.medium to use m5ad.xlarge instead – which we note is

4.4 times more expensive monetarily.

Figure 5.4 shows results for the linear regression application with uniform

jobs (one month input time series per task) and with remote (PC) instances

having 4, 8, and 12 workers, respectively. Only using 12 PC workers, can we

observe remote experiments outperforming EC-only workloads. Similarly, with

the increased number of workers the scheduler picked a correct split to minimize
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(a) Uniform Load (b) Variable Load

Figure 5.5: Average time for a K-means job with 4 EC and 4, 8, and 12 PC workers

with AWS m5 instances.

the time to completion, which was 158s, 122s, 100s, for 4, 8 and 12 PC workers,

respectively. Local only experiments took on average 195s, while remote took

566s, 296s, and 187s respectively.

K-means Workload

Figure 5.5 shows the results for the second application we consider – K-means

clustering. Again, we evaluate uniform and variable workloads. The variable

workloads employ six different options for computing the correlation in the dataset

and performs the clustering for ten (K=10) different cluster set sizes. Uniform

uses a single cluster size (K=3) and one way of computing the correlation. In
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both cases, we start each K-means algorithm with a random initialization for the

cluster centers. Doing so introduces variability among tasks in terms of their

computation time.

The mean computation time of the uniform workload is 0.19s for EC and 0.31s

for PC workers, with a standard deviations of 0.04s and 0.05s respectively. For the

variable workload, the mean computation time for EC workers was 2.86s with a

standard deviation of 5.09s, while PC workers have a mean of 4.36s and a standard

deviation of 8.13s.

Like for the linear regression application, Hypatia is able to deploy the K-

means workload (mixed workload) to achieve the shortest time to completion on

average. As the number of PC workers increases, Hypatia adapts to employ

the extra computational power by using the high-overhead communication link

sparingly. The average time to completion is 306s, 238s, and 198s for mixed

variable workload for 4, 8, and 12 PC workers, respectively. For EC-only variable

workload, we see 423s, 430s, and 424s for three different repeats of the same

experiment. PC-only workloads took 778s with PC4, 423s with PC8, and 316s

with PC12.

For uniform mixed workloads, the average time to completion is 69s, 56s, and

43s for 4, 8, and 12 PC workers, respectively. EC-only workload took 84s on

average while PC-only workloads took 250s, 121s, and 82s on average.
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Figure 5.6: Average time for a linear regression job compared to its estimates with

4 EC and 6 PC workers (zoomed in section of Figure 5.3)

With more remote workers (e.g. 12) we observe that PC-only outperforms

EC-only. These results reflect the importance of considering both data transfer

and computation time when deciding when to use remote, public/private cloud

resources in multi-tier settings. Moreover, they show that Hypatia is able to

adapt to different resource configurations to achieve the best time to completion

for different machine learning applications automatically.
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5.4.2 Prediction Error

We next evaluate Hypatia prediction error. Prediction error in this setting is

the difference between the Hypatia estimate of time to completion and the actual

time to completion. In the previous figures, the second set of three bars show the

Hypatia estimates. To understand this error, we zoom in on Figure 5.6 using

Figure 5.3. In this latter figure, we show the estimated time to completion to the

right of the observed average time per job. In this example, there is a prediction

error of 14s for the mixed, 8s for the EC-only, and 18s for the PC-only jobs, on

average. This corresponds to an average percentage error of 10%, 4%, and 5%,

respectively.

Across all experiments, we observe errors that range from -4.32% to +20.12%.

The errors are higher for the K-means applications. This is expected due to the

random initial cluster center placement for each job (and thus variance is com-

putation time). For the highest error, we have K-means uniform and variable

experiments with 20.12% and 17.47% errors in time to completion, which corre-

spond to 11s and 42s in absolute terms. The mean error over all experiments is

7.92 seconds with a standard deviation of 6.2s.
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5.5 Related work

Distributed systems scheduling is a heavily studied area. It has played a key

role in grid and high performance computing, cloud, multi-cloud, and more re-

cently in edge computing Litzkow et al. (1988), Yoo et al. (2003)Kingsbury (1986).

With the growth of scale and size of data, new resource managers have been de-

veloped to better utilize cloud resources Vavilapalli et al. (2013), Hindman et al.

(2011), Boutin et al. (2014), Schwarzkopf et al. (2013). Many other schedulers

have been developed that are tailored to machine learning workloads Moritz et al.

(2018), Crankshaw et al. (2017), Li et al. (2018). Hypatia is similar to these

recent works in that its goal is to provide automatic scheduling of data analytics

workloads. However, it differs from these systems in that it considers hetero-

geneous systems in sensor-edge-cloud (i.e. IoT settings), which have different

amounts of resources and that may be intermittently connected.

With advancements in mobile device technology and their increased connectiv-

ity and computation resources, more resource-demanding applications are being

pushed to the edge of the network. Those applications have motivated the devel-

opment of new techniques to offload computation to nearby computing resources.

A significant body of recent research has developed such technologies for mobile

devices, phones and tablets, video streaming, and online games Satyanarayanan
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(2013), Satyanarayanan et al. (2009), Chen & Hao (2018), Liu et al. (2016). Those

applications require compute power beyond what the devices can provide. The

offloading systems assume continuous connectivity between devices and cloud.

Offloading can be performed at multiple levels, e.g. utilizing virtualization and

offloading the tasks that can be shared across mobile devices Chun et al. (2011),

Scoca et al. (2018), Kosta et al. (2012).

The difference between our work and past work is that we do not assume reli-

able, fast connectivity to the public cloud. We think of “edge computing" as done

locally (e.g. on farms, on ships, in cars, etc.) where resources are limited and

communication is intermittent and costly. Hypatia automatically adapts to re-

source availability (local and remote) and provides robustness and fault resiliency

via its co-location with sensors (data producers). While other schedulers focus

on mobile devices and application responsiveness, we focus on the link between

the edge and remote public/private clouds and the application domain of machine

learning training, testing and inference. Our scheduler design is motivated by our

previous work Elias et al. (2017) on using edge resources for image classification in

remote settings – in our case at the Sedgwick Natural Reserve. We utilize public

cloud resources only if/when it is available and only if doing so will minimize the

execution delay.
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5.6 Summary

In this chapter, we present an end-to-end system for scalable deployment of

data analytics and machine learning applications across multi-tier IoT deploy-

ments. Specifically, we present Hypatia which provides automatic deployment,

scaling, scoring, and visualization of data science applications. We develop a new

scheduler for this edge-cloud setting that attempts to deploy such applications at

the edge near the sensor systems that produce the data being operated on in the

analyses (or visualized). Doing so reduces the latency (i.e. response time) of these

applications so that they can actuate and control digital and physical systems in

the local environment in near real time. The Hypatia scheduler does so by per-

forming as much of the analysis at the edge and then offloading any load which

the local edge cloud cannot handle to a remote public or private cloud. We show

that by doing so, Hypatia is able to adapt to resource availability and reduce the

time to completion of applications versus executing every locally or everything in

the cloud. We show this with an extensive evaluation of the analytics applications

from the previous chapters (for classification and clustering) using different types

of workloads and deployment configurations.
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Conclusions, Impact, and Future
Work

With this dissertation, we present Hypatia – a scalable system for distributed,

data-driven IoT applications. Hypatia ingresses data from disparate sensors and

systems (including humans), and provides a wide range of analytics, visualiza-

tion, and recommendation services with which to process this data and extract

actionable insights. With a few examples of commonly used machine learning

algorithms, like clustering and regression, we provide abstractions that make it

easy to plug in different algorithms that are of interest to agronomists and other

specialists who work with datasets that can benefit from their locality. Hypatia

integrates an intelligent scheduler that automatically splits analytics applications

and workloads across the edge, private, and public cloud systems to minimize the

time to completion, while accounting for the cost of data transfer and remote

computation.
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We use Hypatia to investigate K-means clustering consider (i) different meth-

ods for computing correlation, (ii) using large numbers of trials (repeated random-

ized runs), and (iii) cluster degeneracy. Hypatia automatically deploys clustering

experiments to account for all of these challenges. It then scores the clustering

results using Bayesian Information Criterion (BIC) to provide users with recom-

mendations as to the “best” clustering. We validate the system using synthesized

data sets with known clusters for validation, and then use it to analyze and scale

measurements of electrical conductivity (EC) of soil from a large number of farms.

We compare our approach to the state of the art in clustering for EC data and

show that our work significantly outperforms it. We also show that the system

is easy to use by experts and novices and provides a wide range of visualization

options for analysts.

We next extend the system with support for data ingress from sensors and de-

velop a new approach for “virtualizing” sensors (called sensor synthesis) to extend

their capability. Specifically, we show that it is possible to estimate outdoor tem-

perature accurately from the processor (CPU) temperature of simple, low-cost,

single-board computers (SBCs). We present a novel approach that uses multiple

linear regression to combine the CPU temperature from nearby SBCs and remote

weather stations, to estimate the temperature at outdoor locations that do not

have temperature sensors. We use sensor data to train and test multiple regres-
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sion models. We investigate the efficacy of using different smoothing techniques

and we account for the computational load of SBCs at the time of measurement

and data collection. We find that our approach enables a prediction error that is

less than 1.5 degrees Fahrenheit, while past work results in errors of 1–14 degrees

Fahrenheit for similar datasets. We integrate sensor synthesis into Hypatia and

use it to facilitate automatic and scalable model selection, as well as visualization

for different data sets and recommendations.

Finally, we developed a new approach to distributed scheduling for analytics

applications in IoT settings: sensor-edge-cloud deployments. Our scheduler takes

advantage of remote (cloud) resources when available, while fully utilizing local

edge systems, as it optimizes for time to completion for applications and work-

loads. The scheduler uses remote resources only if doing so reduces the latency

of providing actionable insights locally. The scheduler uses histories of both com-

putation and communication time the applications, which it uses to construct a

job placement schedule that minimizes application response latency (i.e. time to

completion). Hypatia then uses this schedule to automatically deploy workloads

across edge systems and cloud computing systems. We empirically evaluate Hy-

patia using both clustering and regression services and show that it is able to

achieve better end-to-end performance than using the edge or cloud alone.

163



Chapter 6. Conclusions, Impact, and Future Work

The result is the first end-to-end system that fully utilizes edge computing

resources as it serves the needs of precision agriculture. It does so by accounting

for resource constraints at the edge, the lack of or intermittent connectivity to

the public cloud, and the expense of transmitting the data to/from remote cloud

systems. Moreover, the system is open-source and integrates a wide range of

analytics, scoring methods, and visualization tools, which can be easily extended

with new and emerging techniques. By doing so, we enable others to easily build

upon, extend, reproduce, and compare it to our work in the future.

Moving forward, we hope to encourage adoption of Hypatia by growers, farm

consultants, and data analysts interested in taking advantage of the locality of

edge systems to provide low latency analytics. Given the existing infrastructure,

we plan to add new sensors, develop more synthesized, sensors, and to integrate

additional analytics and scoring methods. Specifically, we plan to extend Hypatia

with support for image classification and to use analytics accelerators (GPU/TPU

systems) at both the edge and in the cloud when available. Other future work

includes investigating new data sources and machine learning algorithms that in-

form a more refined scheduling algorithm that can take advantage of even more

granular resources. In addition, Hypatia error analysis can benefit from addi-

tional abstractions that account error propagation, which has the potential for

making the results and recommendation more informative and trustworthy.
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