
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Essays in psychometrics and behavioral statistics

Permalink
https://escholarship.org/uc/item/36b8p5nw

Author
Gochyyev, Perman

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/36b8p5nw
https://escholarship.org
http://www.cdlib.org/


 
 
 
 

Essays in psychometrics and behavioral statistics 
 

by 
 

Perman Gochyyev 
 
 
 

A dissertation submitted in partial satisfaction of the 

requirements for the degree of 

Doctor of Philosophy 

in 

Education 

in the 

Graduate Division 

of the 

University of California, Berkeley 

 

 
Committee in charge: 

 
Professor Mark Wilson, Chair 

Professor Sophia Rabe-Hesketh 
Associate Professor Alan E Hubbard 

 
 

Fall 2015 
 

 



 
 
 

 
 

Essays in psychometrics and behavioral statistics 
 
 

 

 

 

Copyright 2015 

by 

Perman Gochyyev 
 



 1 

Abstract 

 

Essays in psychometrics and behavioral statistics 

by 

Perman Gochyyev 

Doctor of Philosophy in Education 

University of California, Berkeley 

Professor Mark Wilson, Chair 

 

This dissertation consists of three chapters. The main focus of the first chapter is 
on Lord’s paradox. Lord’s paradox arises from the conflicting inferences obtained from 
two alternative approaches that are typically used in evaluating the treatment effect using 
a pre-post test design. The chapter is designed as a guide to researchers who are using 
this research design. As an example, I investigate whether the treatment—a new 
mathematics curriculum—had an effect on student-level outcomes using both 
approaches. I demonstrate that Lord’s paradox can occur even when the two approaches 
are accounting for the measurement error in variables.  

 
Ordinal response data obtained from surveys and tests are often modeled using 

cumulative, adjacent-category, or continuation-ratio logit link functions. Instead of using 
one of these specifically designed procedures for each of these formulations of logits, we 
can modify the structure of the data in such a way that methods designed for dichotomous 
outcomes (i.e., binary logistic regression) allow us to achieve the targeted polytomous 
contrasting (cumulative, adjacent-category, or continuation-ratio). Thus, one can 
implement procedures designed for dichotomous outcomes on appropriately expanded 
data. The techniques presented in the second chapter, which I refer to as data expansion 
techniques, represent this approach. 
 

The third chapter aims to contribute to the estimation and interpretation of 
multidimensional item response theory (MIRT) models within the field of psychometrics 
and latent variable modeling. The main goal of the chapter is to advance the use of the 
second-order Rasch model. A second-order Rasch model assumes an overall dimension 
as a second order factor that explains the covariance between the first-order (component) 
dimensions. The main contribution of the chapter is to suggest ways of using the model 
by still preserving the advantages of the Rasch model. Historically, the main challenge in 
the use of such models were (1) computationally intensive estimation and (2) availability 
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of software. In addition, it is difficult to obtain reliable and meaningful estimates in cases 
when a variance of one of the dimensions is low relative to other dimensions. In such 
cases, one first needs to re-assess if the multidimensional structure is appropriate. One, 
then, can use alternative parameterization of the model to avoid difficulties in the 
estimation, and guidelines in this chapter provide recommendations on how to achieve 
such parameterizations with the Rasch model. 
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Chapter 1   

Lord’s paradox 

The main research question of this chapter is to compare methods to determine whether a 
treatment—say, a new mathematics curriculum—had an effect on student-level 
outcomes. We will assume the data were collected from cluster-randomized trials, 
wherein schools from districts were assigned to treatment or control at random within 
each district and that pretests and posttests were administered to students before and after 
the treatment. Two main approaches for analyzing such data are: (1) to regress the change 
from pretest to posttest on the treatment indicator; (2) to regress posttest on treatment 
indicator and pretest. Yet, these two approaches can yield conflicting results. Lord (1967) 
warned of this problem decades ago and started a debate that continues to the present day. 
In this chapter, I elaborate on both of these approaches and examine the appropriateness 
of each for analyzing the treatment effect and discuss these two approaches from the 
latent variable and multilevel modeling perspectives, after first discussing the apparent 
paradox at the heart of this issue. 

1.1.1  Introduction 

Frederick Lord wrote a two-page note (Lord, 1967)1, in which he described two 
hypothetical statisticians who used different but seemingly equally valid methods to 
analyze the same data on treatment effects but arrived at contradictory conclusions. The 
problem he postulated, dubbed as “Lord’s paradox”, has yet to be resolved (see for 
instance Pearl, 2014; van Breukelen, 2013; London & Wright, 2012). In Lord’s own 
words (Lord, 1967) the context is: 

A large university is interested in investigating the effects on the students of 
the diet provided in the university dining halls and any sex difference in 
these effects. Various types of data are gathered. In particular, the weight of 
each student at the time of his arrival in September and his weight the 
following June are recorded. (p.304) 

Two statisticians independently analyze the data at the end of the year by dividing 
the students according to gender.  Statistician One examines gains in student body weight 
between girls and boys and finds no significant changes between the beginning and end 
of the year. Statistician Two adjusts for students’ initial weights, finding that the 
regression coefficient of the initial weight is identical in both genders, and then finding a 
significant difference in the intercepts between boys’ and girls’ end-of-year weights. The 
question is, which of the two statisticians should the university administration listen to 
when making a decision? 

Allison (1990) provides a real data example of Lord’s paradox. The treatment 
group in the quasi-experimental study consisted of 18 children who received plastic 
                                            
1 Lord (1967) is cited in all papers discussing the paradox. However Lord (1963) was his first work in 
which comparison of the two approaches was presented formally. Feldt (1958) also presented a similar 
comparison but with a different focus. 	
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surgery for craniofacial abnormalities. The control group consisted of 30 children of 
approximately the same age range. None of the children in the control group had or 
needed any surgery. The frequency of negative social encounters, which was the 
dependent variable, was measured shortly before the treatment (pretest) and 18 months 
later (posttest). Means for treatment and control group on pretest and posttest are shown 
in Table 1.1. 

                      Table 1.1. Example from Allison, 1990. 
 Frequency of negative social encounters 
 Pretest Posttest 
Treatment group 48.3 (7.6) 48.6 (6.5) 

Control group 41.6 (9.2) 41.1 (8.1) 

The approach of Statistician One (regressing change from pretest to posttest on treatment 
indicator) yielded a coefficient of treatment indicator very close to zero—not a surprising 
conclusion when we look at Table 1.1. The approach of Statistician Two (regressing 
posttest on treatment indicator and pretest) yielded an estimated coefficient that was 
positive and significant at the 𝛼 = 0.03 level, indicating that the treatment had negative 
effect on children who had the surgery. 

A quick look at Table 1.1 reveals that the means of the treatment group in pretest 
and posttest hardly changed, and the same for the control group. Why then does the 
approach taken by Statistician Two—the method that currently dominates social science 
methodology (Luecken & Tanaka, 2012, p. 264)—give an unintuitive and misleading 
result?2 

Lord correctly noted in his 1967 note that “there are as many different 
explanations as there are explainers”, and concluded: “ ... there simply is no logical or 
statistical procedure that can be counted on to make proper allowances for uncontrolled 
preexisting differences between groups.”3(p. 305) 

Lord postulated similar question in Lord (1969) and mentioned that the substance 
of this paradox is being downplayed by some, who argue that simple gains analysis 
should be the appropriate approach for such a problem. In response, he provided an 
identical example but with different scales of pre and post measures (GPA as pre and IQ 
scores as post), to demonstrate that “gains” approach should not come as a default 
approach and thus to emphasize the validity of the ANCOVA approach in such problems. 
Lord (1973) also posed a similar problem with a different example4. 

Debates over the paradox postulated by Lord attracted a great deal of attention 
(and controversy5) in behavioral statistics, biostatistics and other related fields dealing 

                                            
2 Also, the method used by Statistician Two may lead to the conclusion that there is no treatment effect 
when means of group at two different timepoints indicate otherwise. 
3 Lord’s earlier work focuses on measurement of growth and gains, and propensity of false conclusions in 
such analyses—see for instance Lord (1956, 1958). He was mostly concerned with issues related scale in 
measuring growth, a topic I address later in the chapter. 
4 All three of Lord’s examples are thoroughly discussed in Holland & Rubin (1983). 
5 Citing Lord (1967), Senn (2008, p.106) wrote: “In a disturbing paper in the Psychological Bulletin in 
1967, Lord considered a case where two statisticians analysing a data set come to radically different 
conclusions. 



 3 

with methodological issues. Debates spread mainly into three related, yet different, 
directions. One such direction, driven by psychometricians, argued over the reliability of 
change from pretest to posttest and issues related to the regression to the mean (Cronbach 
& Furby, 1970; Linn & Slinde, 1977, Rogosa & Willett, 1983; Zimmerman & Williams, 
1982; Willlett, 1988; Collins, 1996; Willett, 1997; Mellenbergh & van den Brink, 19986). 

Another direction is related to the issue of ill-defined research questions and 
contrasts among competing causal frameworks equipped differently to resolve the 
paradox7 (Holland & Rubin, 1982; Rubin, 1974; 1977, Pearl, 2014; Wainer & Brown, 
2007). 

A third direction and corresponding work, which represents the majority in the 
social science methodology and which attempts to provide suggestions to researchers in 
the field, resulted in the answer: “it depends” (Kenny,1975; Bryk & Weisberg, 1977; 
Maris, 1998; Porter & Raudenbush, 1987; Rausch, Maxwell, & Kelley, 2003; Reichardt, 
1979; Senn, 2006; van Breukelen, 2013; Wainer, 1991; Weisberg, 1979; Arah, 2008; 
Wright, 2006). 

Among these, the work that belongs to the third direction and that stands out as 
the most successful resolution of the paradox is, in my opinion, Allison (1990). However, 
the arguments and derivations in Allison (1990) would benefit from further articulation 
and elucidation, which is one of the aims of this chapter. 

The literature and central arguments related to all of these approaches to resolving 
the paradox will be presented in this chapter. It is worthwhile to mention that, in many of 
the papers comparing approaches of the two statisticians (including Lord’s (1967)), the 
approach of Statistician One (regressing change on treatment indicator), explicitly or 
implicitly, is the underdog. It is important to clarify the approaches of two statisticians, 
which will be the aim of the next section. 

1.1.2  Lord’s paradox (or not) 

The approach taken by Statistician Two is generally known as “ANCOVA” in the 
experimental design literature. In structural equation and graphical modeling frameworks, 
the estimate based on this approach is also known as a “direct effect mediated by the 
pretest” (pretest is the mediator). In econometrics, the approach of Statistician Two is 
referred to as the “lagged dependent variable” approach, an approach mainly used in 
dynamic models. 

In contrast, the estimate obtained by Statistician One is known as “Total Effect” 
in the graphical modeling literature. This approach is referred to as the “ANOVA” (or 
“RANOVA” [repeated measures ANOVA]) approach in experimental design literature 
and the “first-differencing” (FD) estimator in the econometrics literature8. In statistical 

                                            
6 Mellenbergh & van den Brink (1998) investigated the gain approach using CTT and binomial error model 
for single-subject change. 
7 There have been, and still are, disagreements on the research question the two hypothetical statisticians in 
Lord (1967) were trying to answer. 
8 The question of whether using differencing or lagged dependent variables in econometrics literature 
comes up as an issue similar to the one I will discuss in Section 1.1.5. In particular, it is considered 
necessary to use a lagged-dependent variable when the omitted variable bias might arise from time-varying 
variables. For instance, a subsidized training program might be correlated with the past income of 
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modeling language, the approach of Statistician One represents an “unconditional” model 
whereas the approach of Statistician Two represents a “conditional” model9. In order to 
provide further clarity then, throughout my paper, I will refer to the approach taken by 
the Statistician One as the Change Score (CS) 10 approach and the approach taken by 
Statistician Two as the Regressor Variable (RV) approach. 

The RV approach has strong support in the classical statistical literature provided 
by Fisher (1951, chapter 9) and Cox (1958, section 4.4). Temporal order is the basis for 
using this model for inference. Most agree that the CS approach, however, is simpler in 
its interpretation. This approach was first formally introduced in John Snow’s cholera 
study (Snow, 1855). 

Snow showed that cholera was a water-borne disease by investigating the 
difference in changes of death rate between two districts serviced by two different water 
companies: Southwark & Vauxhall Company and the Lambeth Company. The Lambeth 
company changed its water supply—moved to a cleaner location (i.e., the 
“intervention”)—and as a result death rates were reduced in districts serviced by Lambeth 
(the treatment group). Had the Southwark & Vauxhall company moved their water 
supply together with the Lambeth company, Snow concluded, approximately 1000 lives 
would have been saved.11 

Figure 1.1 illustrates Lord’s paradox as it arises from comparison of the two 
groups. Groups A (treatment) and B (control) are different at the pretest (x-axis). The 
same difference is retained in the posttest (y-axis). The bold 45° line represents the CS 
approach, leading to the interpretation that there is no difference between the groups, 
hence the single bold line. The dashed line (with a slope of 0.5, the coefficient of the 
pretest) represents the RV approach. The difference between the two dashed lines is the 
estimate of the size of the regression coefficient for the group indicator obtained from the 
RV approach leading to the interpretation that there is a difference between the two 
groups. When the two groups differ on the pretest, the CS and the RV approaches will 
generally give different results. 

                                                                                                                                  
participants—for example, those whose income decreased perhaps want to increase their labor market 
options and enroll in the treatment program. 
9 Bock (1975, p. 490), categorizes these two approaches as “unconditional” vs. “conditional” inferences. 
10 Unlike many authors, I prefer using change score—using “gain” implies positive change while change 
can also be negative. 
11	See (Snow 1965 [1855]) and Freedman (2010) for more details.	
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Figure 1.1. Lord’s paradox: Difference between the group means in the pretest is 

same as the difference in posttest. The RV approach (dashed lines) and the CS approach 
(bold line). 

In contrast, Figure 1.2 below shows the scenario we would see when the treatment 
is assigned at random (i.e., no difference at pretest). In this case, there is no difference 
between the two groups on pretest and both approaches (CS and RV) give the similar 
answers (no paradox). 
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Figure 1.2. Bivariate distributions for two groups when treatment is assigned at random: 
CS and RV approaches yield the same results in the absence of difference on pretest 

1.1.3  RV approach 

Assume a two-wave design with only two snapshots of the construct: pretest and 
posttest. Throughout the paper, I will refer to pretest as 𝑌!! and to the posttest as 𝑌!! for 
the person j. Also assume that 𝑊! is a binary variable taking value 1 if person 𝑗 is in the 
treatment group and 0 if in the control group. The RV approach is written as: 

𝑌!! = 𝛽! + 𝛽!𝑊! +  𝛽!𝑌!! + 𝜖!                                          (1) 

in which 𝛽! is the intercept, 𝛽! is the difference between treatment and control groups 
controlling for the pretest, 𝛽! is the effect of pretest conditional on the group indicator, 
and 𝜖! residual term. To obtain unbiased estimates of coefficients using Ordinary Least 
Squares (OLS) we assume that residuals 𝜖! are uncorrelated with 𝑌!! and 𝑊!. In other 
words, the RV approach assumes that factors that are not in the model and thus absorbed 
by the residual term, influence the posttest but not the pretest. Assuming regularity 
conditions, OLS is consistent and unbiased. Also note that—even though it is not 
explicitly laid out as a model assumption—the implicit assumption is that 𝑌!! and 𝑌!! are 
measured without error. I consider this assumption closely in Section 1.1.8. 

Equation 1 can also be rewritten to resemble the CS approach (presented below in 
Equation 6). In particular, one can rewrite the RV approach as regressing the change from 
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pretest to posttest on the treatment indicator and pretest to obtain: 

𝑌!! − 𝑌!! = 𝛽! + 𝛽!𝑊! + (𝛽! − 1)𝑌!! + 𝜖!.                                (2) 

Estimates from the Equation 1 and Equation 2 are identical since these two are 
algebraically identical. 

1.1.4  CS approach 

For ease of interpretation and derivation that follow later, I will present the CS 
approach from two alternative perspectives. Both perspectives result in the identical 
model but emphasize different assumptions. First, I present derivations following Allison 
(1990), which are also related to arguments presented in Kenny (1975), Chamberlain 
(1984), and Heckman & Robb (1985). The second formulation is from a traditional 
approach to panel data usually found in econometrics textbooks (see for instance 
Wooldridge, 2002) or books on longitudinal modeling (see for instance Rabe-Hesketh & 
Skrondal, 2012). 

Assume  𝐺! is a binary variable indicating the treatment status: 1 if person 𝑗 ends 
up in the treatment group and 0 otherwise. The pretest score (𝑌!!) can be expressed as: 

𝑌!!  = 𝛽! + 𝛿𝐺! + 𝜖!!.                                             (3) 

Coefficient 𝛿 represents group differences between treatment and control group that are 
stable (“preexisting” differences). When treatment is assigned at random, we would 
expect no preexisting differences between two groups (see Figure 1.2). The posttest score 
(𝑌!!) is expressed as  

𝑌!!  = 𝛽!  + 𝜏 + 𝛿𝐺! + 𝛽! 𝑊!  + 𝜖!!,                                  (4) 

in which 𝑊! is the treatment indicator. Note that for Equation 4, 𝐺!  = 𝑊! and thus these 
are perfectly collinear and a solution cannot be estimated in the current form since the 
rank conditions of OLS are not satisfied. 𝜏 represents the change that is occurring in both 
groups (e.g., gained knowledge during school-year).  By subtracting Equation 3 from 
Equation 4 we obtain: 

𝑌!!  −  𝑌!!  =  (𝛽!  − 𝛽!)  + 𝜏 +  (𝛿𝐺!  − 𝛿𝐺!  )  + 𝛽!𝑊!  +  (𝜖!!  − 𝜖!!).         (5) 

Equation 5 can be expressed as: 

𝛥𝑌! = 𝑌!!  −  𝑌!! = 𝜏 + 𝛽!𝑊!  + 𝜖!!,                                       (6) 

in which 𝜖!! is 𝜖!! − 𝜖!!. Assuming 𝜖!! is not correlated with 𝑊!, OLS is consistent and 
hence the estimates are unbiased. 

Thus, the only difference between the CS approach and the RV approach is that 
the latter is conditional on the pretest. In most applications, the correlation between the 
pretest and the posttest is between 0 and 1, and the correlation between the pretest and the 
gain is between -1 and 012. 

                                            
12 The coefficient of pretest in the RV approach should be below unity for dynamic stability, otherwise the 
process becomes a so called explosive time series (e.g., 𝑌!" is nonstationary). 
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It is important to emphasize that by differencing (Equation 5), we eliminated all 
unobservable and observable time-invariant factors (including cluster effects such as the 
effects of school membership on the units of analysis [students]). Thus, there is no need 
for assumptions concerning the mean and variance of these effects (as in random-effects 
models) and these unobserved variables are allowed to have arbitrary correlation with 
covariates in the model since they will be eliminated from the model after differencing. 
Thus, as long as there is no endogeneity arising from time-varying factors, we are 
controlling for all stable unobserved variables. 

Since our inference is based on intra-individual variation, the CS approach uses 
each individual as its own control. Even though this might not be an efficient approach 
(compared to random-effects approaches that use between-individual variability), this 
approach reduces bias (Allison, 2009). If we have time-varying covariates that are 
observed and need to be included in the specified model, we can easily control for these 
by including them directly in the equation. 

We can rewrite Equation 6 by moving 𝑌!! to the left-hand side and restricting its 
coefficient to unity to obtain: 

𝑌!! = 𝜏 + 𝛽!𝑊! + (1)𝑌!! + 𝜖!!.                                     (7) 

Equations 6 and 7 are identical. We might be tempted to conclude that the RV 
approach shown in Equation 1 then shares the nice properties of the CS approach since 
Equation 7 seems merely a special case of Equation 1. In particular, if we free the 
coefficient of the pretest in Equation 7 and rewrite it as: 

𝑌!! = 𝜏 + 𝛽!𝑊! + 𝛽!𝑌!! + 𝜖!!,                                      (8) 

we obtain an equation similar to that of Equation 1. Thus, Equation 8 seems like a special 
case of Equation 7 with the only difference being that the regression coefficient of the 
pretest in Equation 7 is constrained to unity. In fact, this is what has been argued by many 
(see for instance Gelman & Hill, 2007, p. 177; Hedeker & Gibbons, 2006, p. 8; van 
Breukelen, 2013, p. 903) and it has been argued that the CS approach unnecessarily 
constrains this coefficient to unity (Gelman & Hill, 2007). 

However, this is not an appropriate way to compare the two models: note that in 
Equation 8, the pretest 𝑌!! is negatively correlated with 𝜖!! (by construction), which can 
be seen from Equation 6. Due to this negative correlation, Equation 8 cannot be estimated 
consistently by OLS, and an OLS estimate would be biased. 

A further derivation13 of the bias is presented in Section 1.1.9, but it is important 
to stress upfront that the CS approach is not a special case of the RV approach—rather, 
the two approaches represent two completely different models! Overlooking this crucial 
distinction has been the most common error in past comparisons of the two approaches, 
and any discussion of Lord’s paradox that does not acknowledge this distinction is likely 
to be misleading. 

In Section 1.1.8, I show that the assumption that 𝛥𝑌! is a measurement error-free 
measure of change is not necessary to obtain unbiased estimates from OLS. However, 

                                            
13 I will show that, if the CS model is the correct model, then OLS using the RV approach will always give 
biased estimates of the coefficients. This derivation, first presented in Allison (1990) is the most important 
piece of the resolution of the paradox and deserves elaborate discussion.	
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this will not alter the fundamental point made above—it will only influence the variance 
of the 𝜖!! term and hence reduce power. 

Another assumption, which is intuitive but perhaps needs to be stated explicitly, is 
that 𝑌!!  and 𝑌!! are assumed to be on a common metric (e.g., such as an interval scale). 
Cross-time linkage of pretest and posttest measured by different sets of items is 
established by anchoring item intercepts to the estimated parameters obtained from a data 
set that contains both set of items. Strong factorial measurement invariance (Millsap, 
2011) is achieved by having all item loadings set to unity with the Rasch model. The 
cross-time linkage method using the partial credit model (Masters, 1982) and the 
cumulative Rasch model (Agresti & Lang, 1993) is discussed in Section 1.2.3. 

Next, I present the CS approach using the derivation commonly used in panel data 
modeling. 

Assume 𝑊!" is a binary variable taking value 1 if person 𝑗 is in the treatment 
group at time 𝑡 and 0 otherwise. Assume 𝑇 is the linear time trend taking the value of 𝑡 
(e.g., a dummy indicator for the posttest). The response of person 𝑗 at time 𝑡 can be 
expressed as: 

𝑦!"  = 𝛽! + 𝛼𝑇 + 𝛽!𝑊!"  + 𝜁! + 𝜖!",                                       (9) 

in which 𝜁! represents the time-invariant effect of person 𝑗. At time point one (pretest), 
𝑊!! = 0 for all 𝑗 (nobody receives the treatment). At the posttest, 𝑊!! = 1 only for 
subjects in the treatment group. First-differencing will result in: 

𝑦!! − 𝑦!! = 𝛼 + 𝛽!(𝑊!!  −𝑊!!)+ (𝜁! − 𝜁!)  +  (𝜖!!  − 𝜖!!),                   (10) 

thus 

𝛥𝑌!  = 𝛼 + 𝛽!𝑊!!  + 𝜖!! , 𝑊!!  =  𝑊! =𝑊!! −𝑊!!.                           (11) 

Note that 𝛽! in Equation 11 is the difference-in-difference estimator14 since 

𝛽!  = 𝛥 𝑦!!! −  𝛥 𝑦!!!                                              (12) 

in which 𝛥 𝑦!!! represents a mean change from pretest to posttest in the treatment group 
and 𝛥 𝑦!!! represents a mean change from pretest to posttest in the control group.  
We assume: 

𝐸 𝜖!! 𝑊!! = 𝐸 𝜖!! 𝑊!! = 𝐸 𝜖!! 𝑊!! − 𝐸 𝜖!! 𝑊!! = 0,                   (13) 

which implies strict exogeneity. In other words, we assume that treatment indicator at 
time point two (𝑊!! =𝑊!!) is uncorrelated with residuals at any time point. Assuming 
serial correlations in Equation 11 is too strong and not necessary for the consistency of 
OLS. 
 
 

                                            
14 Often, the difference-in-difference estimator is also used when groups in pretest and posttest are 
representative random samples (Wooldridge, 2002). Then, coefficient of interest is the interaction between 
treatment and time indicator. However, in the estimator presented in Equation 11, the two scores are 
obtained for the same persons. This difference-in-difference estimator is identical to the fixed-effects 
estimator in the two-wave panel design. 
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1.1.5  Choosing an appropriate approach 

Kenny (2011; 1975), argues that one needs to consider what exactly might 
influence the change or the post score. In particular, he proposes that the pretest needs to 
be thought to be composed of three components: (1) the component that is stable—the 
population characteristic or the permanent, time-invariant characteristic; (2) the 
component that is the one that changes over time—time-varying, transitory component; 
and (3) the component that is the result of random variation, random error that also varies 
over time15. 

It is important to articulate on which of these three components the selection into 
the treatment groups is determined. Kenny (1975) argues that if it is the stable 
component, CS approach is justifiable approach: if the selection to treatment is related to 
the permanent component then the CS approach accounts for it since this stable 
component will present in both pretest and posttest. If, however, the selection into the 
treatment depends on the transitory component, then the RV approach is the only remedy. 
When the treatment is randomized, it does not depend on any of these components and 
thus both approaches are expected to yield the same result. 

Arguments in Allison (1990) are related to the approach taken in Kenny (1975), in 
which he argues that CS approach is superior to the RV approach when the treatment 
indicator is uncorrelated with the transient component of the pretest (Allison, 1990). 
Allison (1990) also argues that when effects of other variables on the outcome variable 
are invariant from pretest to posttest (e.g., gender or cluster-level random effect in 
random intercept model), we don’t need to control for such variables in the CS 
approach16. 

In the RV approach, the intention to use the pretest (particularly in the non-
equivalent control group design) is to adjust for the prior differences, but it underadjusts 
for these preexisting differences (Allison, 1990)17. In Table 1.1, the fact that pretest 
difference between two groups is similar to the posttest differences between two groups 
is not fully accounted by the inclusion of the pretest using the RV approach. As a result, 
estimates from the RV approach can be biased in cases in which we do not expect the 
pre-test measures to be similar (e.g., no randomization, self-selection). This is the 
scenario in which the residual term in Equation 8 is correlated with the independent 
variable in the model—pretest—to yield biased estimates. Thus, even though the gain 
approach will have higher variance, it should be preferred since it is unbiased. 

Are there cases in which RV approach is unbiased and CS approach is biased?—
we will discuss these further below. But it suffices to mention that if the selection to the 
groups is based, on or correlated with, the pretest measure, then the pretest becomes a 
confounder and definitely needs to be controlled. Regression discontinuity 

                                            
15 Crowder and Hand (1990, p. 25) referred to these three components as “immutable constant of the 
universe”, “lasting characteristic of the individual”, and “fleeting aberration of the moment”. 
16 Unless there is an interaction of these invariant variables with the time, which implies a relationship of 
the measure at pretest with the transient component. 
17 We don’t expect prior differences between groups in the randomized studies and use of posttest only is 
sufficient (no need to control for the pretest) for the causal statement. However, the pretest measure is still 
used in such design to increase power, by explaining more variance at posttest and reducing the residual 
variance (Moerbeek, Van Breukelen, & Berger, 2008). 
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(Thistlethwaite & Campbell, 1960), for instance, is an obvious example for a such case. 
One important point in comparing the two approaches, often overlooked, is what 

Statisticians One and Two are assuming? Since they are employing different procedures, 
they are relying on different (generally untested) assumptions. Statistician One (CS 
approach) assumes that, if the treatment has no effect, two groups would show the similar 
gain. Statistician Two (RV approach) assumes that the total gain of the groups is the same 
as the gain within groups (Holland & Rubin, 1983; Allison 1990). 

Holland & Rubin (1983) articulated on which assumptions are both statisticians 
are relying when drawing their conclusions and took an attempt to address the paradox 
using the potential outcomes framework. They noted that both statisticians’ statements 
are descriptive in nature, and not causal: Statistician One makes an “unconditional 
descriptive statement” that average gains are equal for males and females. Statistician 
Two makes the conditional statement (conditional on pretest) that for males and females 
of equal pre-test score, the males gain more than females. 

One critique by Holland & Rubin (1983) and by Rubin, Stuart, & Zanutto (2004) 
of the example presented in Lord (1967) was that Lord’s example was a “poorly 
formulated causal assessment” (Rubin, et al., 2003) since the potential outcome under the 
“control” diet is missing. The difficulty in Lord’s postulation of the problem, they wrote, 
is that there is no control group, and researcher investigating “gain” wouldn’t know if 
changes in scores would have occurred with no treatment anyway. 

However, in my opinion, attempts by Holland & Rubin (1983) to clarify the 
paradox move away from the research question at the center of Lord (1967). In other 
words, the paradox has been somewhat misrepresented with respect to the research 
question that Lord (1967) had in mind (see for instance Pearl, 2014). The hypothetical 
researcher in Lord (1967) is interested in gender differences and not in the effect of the 
diet. This is precisely why Lord didn’t mention about the control diet condition in his 
presentation of the paradox, and instead focused on the “differential effect” of the diet. In 
other words, the gender variable can be thought of as a treatment indicator in Lord 
(1967). 

Under the Neyman-Rubin (a.k.a. potential outcomes) causal framework —the 
framework of Holland & Rubin (1983)—however, the effect of gender cannot be a causal 
research question. Gender, an immutable characteristic of the research unit, and hence 
cannot be a “cause”18. Wainer & Brown (2007) tried to resolve the paradox under the 
potential outcomes framework by replacing the gender variable by “dining tables serving 
the two genders”. “Dining table”, then, can be a causal effect under Neyman-Rubin 
causal framework since the condition is manipulatable (but still definitely confounded by 
gender). 

To further clarify the approaches, below I present the two approaches (RV and 
CS) using the Directed Acyclic Graph (DAG) framework (Pearl, 2000)—a framework 
alternative to the Neyman-Rubin framework. 

Figure 1.3 below represents both CS (the “total effect” in the DAG framework) 
and RV (the “direct effect” in the DAG framework) approaches. 𝑌! and 𝑌! are pretest and 
posttest respectively (I drop the 𝑗 subscript for person for the simplicity of the 
presentation), 𝑊 is the treatment indicator, and 𝐶 is the change score. 

                                            
18 “No causation without manipulation”. Holland (1986, p. 959). 
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Figure 1.3. CS and RV approaches in the DAG framework (Pearl, 2014). 

In Figure 1.3 above, 𝑌! is the mediator between 𝑊 and 𝑌!. Similar to the 𝛽! in Equation 
12, the total effect can be estimated by: 

𝑇𝐸 =  𝐸 𝐶 𝑊 = 1 − 𝐶 𝑊 = 0 .                                (14) 

Using arrows in Figure 1.3, the expression in Equation 14 is identical to (𝑏 + 𝑎𝑐)− 𝑎. 
To express the direct effect (RV approach)—𝛽! in Equation 1—we obtain: 

𝐷𝐸 = (𝐸 𝐶|𝑊 = 1,𝑌! = 𝑦 − 𝐸[𝐶|𝑊 = 0,𝑌! = 𝑦])𝑃(𝑌! = 𝑦|𝑊 = 0)! ,            (15) 

which is averaged across values of pretest and (𝐸 𝐶|𝑊 = 1,𝑌! = 𝑦 − 𝐸[𝐶|𝑊 = 0,𝑌! =
𝑦]) is known as the “controlled direct effect” (appropriate when it is assumed that 𝑌! is 
uniform over the entire population).  In the DAG framework, the last part of Equation 15, 
𝑃 𝑌! = 𝑦 𝑊 = 0 , is a weighing function (see for instance Pearl, 2009, p. 131). It sets the 
pretest for each person to the value it would have obtained before the treatment (when 
𝑊 = 0)19 (i.e., “controlling” for the pretest). Estimate in the Equation 15 is also known 
as the “natural direct effect” and is shown with the arrow 𝑏 in Figure 1.3. 

Allison (1990) noted that RV approach is only preferable when the pretest score 
can bias the posttest score or when the treatment assignment and the pretest score are 
strongly related (e.g., regression discontinuity). In these cases, pretest is a “confounder” 
and needs to be controlled. In the DAG framework, this can be expressed by reversing 
one of the arrows (arrow “a”), as shown in Figure 1.4 below (Pearl, 2014). 

                                            
19 also see Pearl, 2014 and Morgan & Winship, 2007. 
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Figure 1.4. CS and RV approaches in the DAG framework when the pretest is a 
confounder (Pearl, 2014). 

Novick (1983) and Lindley & Novick (1981), provide a global (“framework-
free”) approach and explanation for the paradox. They stress that the inference must be 
based on a careful specification of the relevant subpopulations involved—and especially 
assumption of exchangeability20. In particular, their general approach is based on De 
Finetti’s exchangeability (de Finetti, 1964, 1972) or Fisher’s subpopulation concept 
(Fisher, 1937): inference is conditional on the subpopulation the subject belongs to, and a 
careful specification of the relevant subpopulation is necessary. 

Consider an extreme example to understand their argument: group A is a sample 
of mice and group B is a sample of elephants and one of the groups receives the 
treatment. Both approaches can technically provide conclusions, but the interpretation of 
the output from the RV approach will require a hypothetical population of mice and 
elephants with the same baseline (pretest) weights21. One needs to query, then, whether 
the samples in groups A and B (e.g., mice and elephants) are exchangeable. If not, the 
RV approach is not helpful at all. The CS approach is the only alternative, although this 
approach relies on the assumption that if the treatment has no effect, two groups would 
show the similar proportions of gain22. 

We assume that two groups are exchangeable if groups are “equivalent in all 
relevant respects” (Weisberg, 2010). Equivalence of the means or medians of two groups 
on relevant covariates is a limited form of exchangeability. As a more general definition, 

                                            
20 Novick (1983): “randomization is useful, but exchangeability through modeling, blocking, and 
covariation is fundamental” (p.47). 
21 One clear advantage of the Neyman-Rubin and DAG frameworks is that such comparison of mice and 
elephants will be dismissed due to the lack of “common support” (a.k.a. “positivity” in DAG framework) 
assumption. 
22 In this extreme example, we can think of “gain” as increase in percentages. 
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two study groups are exchangeable if and only if they have identical distributions of 
response patterns. This type of exchangeability is what Rosenbaum & Rubin (1983) 
referred as strong ignorability (conditional on a set of covariates). See McCullagh (2005) 
and Weisberg (2010) for a careful presentation of the concept of exchangeability. 

There are multiple definitions of exchangeability23, and therefore I am 
intentionally using the concept of exchangeability here very loosely. By exchangeability 
of the groups, I mean comparability of the groups. Careful definition of exchangeability 
is definitely a necessary part of the argument, but it is not the main focus of this chapter. 
With imbalance on the pretreatment covariates (e.g., significant difference in the 
proportion of Hispanic students when comparing schools), we have a basis to be 
suspicious that the comparability of the two groups can be questioned. 

Inferences depend on assumptions. Assumptions require careful considerations of 
their plausibility. Arah (2008) notes that explanations and solutions of the Lord’s paradox 
lie in causal reasoning (and background knowledge) and not on statistical criteria. Bryk & 
Weisberg (1977) also note that the resolution of such arguments requires careful analysis 
of processes generating the data. They caution against blind application of RV and 
similar methods (“conditional methods”)—covariates entering the model without careful 
consideration—and warn that this will result in more model misspecification than no 
adjustment at all. Wooldridge (2005) provides a similar argument (and a short derivation) 
that the ignorability of the treatment (assumption of “as if random”) is violated by adding 
too many covariates to control, which results in overcontrolling. 

For the RV approach, we can condition on the covariates that are not balanced, 
but we are still assuming that there are no “unmeasured confounders” or that the 
covariate we are conditioning on is the only one causing the imbalance. For the CS 
approach, this latter assumption is less strict: we only assume that there are no “time-
varying unmeasured confounders”. 

However, this doesn’t mean that the CS approach is the default approach when 
the groups differ at pretreatment covariates. In addition to arguments I summarized in this 
section, in Section 1.1.7, I discuss one crucial point in choosing an appropriate 
approach—this criteria is related to the concept of exchangeability and to the concept of 
the regression to the mean. 

1.1.6  Debates on reliability 

Measurement of change became a favorite topic of psychometricians in 1970s. 
The use of CS approach has been criticized for years, and mainly was maligned through 
the 1960s and 1970s (Willett, 1997). Lord himself argued about unreliability of the 
change score (Lord, 1956). Cronbach & Furby (1970) end their paper with the following 
suggestion: “It appears that investigators who ask questions regarding gain scores would 
ordinarily be better advised to frame their questions in other ways.” (p. 80) 
On a similar cautionary note, Linn & Slinde (1977) noted that: “Problems in measuring 
change abound and the virtues in doing so are hard to find. Major disadvantages in the 
use of change scores are that they tend to conceal conceptual difficulties and they can 
give misleading results.” (p. 147) 
                                            
23 … and different types of exchangeability (e.g., full exchangeability, partial exchangeability)—see 
Greenland & Robins (2009) and Weisberg (2010) for more on this. 
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Some argue that change scores represent an accumulated error: a combination of 
two “not-perfectly-reliable” terms, as they argue, becomes “even-less-reliable”.This 
argument is based on Gulliksen (1950, p. 353) who provides a formula for the 
combination of two scores with errors. Gulliksen (1950) showed that errors accumulate 
when we combine two “not-perfectly-reliable” scores (e.g., pretest and posttest 
administered to students). In particular, reliability of the change score (from pretest, 𝑦!, 
to posttest, 𝑦!), is: 

𝑟!!!!! =
!!!!!!!!
!!!!!!!

,                                                  (16) 

in which 𝑟!!!! is the correlation between the pretest and posttest and 𝑟! is the average of 
two reliability coefficients. 

 Cattell (1982) and Gollwitzer et al. (2014) note that Gulliksen’s formula assumes 
that reliability is stable and that two tests (pre and post) have the same variance24. In an 
educational setting, for instance, variation in abilities might be decreasing among 
students as they learn and thus variance might be decreasing (i.e., the treatment might be 
making students less heterogeneous). It can be easily shown from the formula provided 
by Gulliksen (1950), that the larger the difference in variances between the pre and the 
post measures, the higher the reliability of the difference score (Zimmerman & Williams, 
1982; 1998). This point is often overlooked in attacks on the CS approach from that 
particular perspective. But, is this argument relevant at all—specifically for the inference 
between group differences? 

However, this perspective can be challenged: if the “gain” is similar among the 
subjects, the “gain” will seem to have low reliability (since similar gains cannot be 
distinguished between persons). Collins (1996) pointed that in the CS approach, the focus 
is on the intra-individual variability, and there is nothing in the concept of reliability that 
addresses that. Thus, it would be possible to have zero reliability of the measure and still 
have a precise measure of the change. 

From a similar perspective, as noted in Allison (1990), the ideal case for the 
treatment to have an effect is when the control group doesn’t change and all subject in the 
treatment group change with the same amount. But this case will result in high 
correlation between pre and post, and thus lower change score reliability. Thus, low 
reliability of the change score is irrelevant for the causal inference. If we are interested in 
precision, the concern should be the error variance in the CS approach (Allison, 1990). 

Similar confusion (and consequently another critique of the CS approach by 
psychometricians) arose from the belief that pre and post measures should correlate 
highly for the validity (construct validity) argument. This claim was dismissed later on 
(Rogosa, Brandt, & Zimowski, 1982; Rogosa & Willett, 1983) and it was shown that the 
correlation between pre and post tests can even be negative while the test is perfectly 
valid. This is mainly due to the potential heterogeneity in the gains. The lower the test-
retest reliability, the higher the gain score reliability. 

Longitudinal design provides the foundation for the causal inference because we 
know three things about causality: (1) covariation, (2) temporal precedence (time order of 

                                            
24 In Lord’s hypothetical example, mean and standard deviation of pre and post are identical in the 
treatment group. The same is true for the control group. 
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cause-effect), and (3) elimination of other causal factors (Viswanathan, 2005). Two-wave 
design (pre and post) is the least informative method to measure change. The ideal design 
to make inferences regarding the change would involve more than two waves. 

1.1.7  Regression to the mean 

Gains generally have a negative correlation with the pretest (Linn & Slinde, 1977; 
Bereiter, 1963; Thorndike, 1966). This is due to the regression to the mean25—first 
pointed by Galton (1886) and Pearson (1930). This means, that gain scores will be higher 
for the person with lower pretest and this has been regarded as unfairness due to the 
advantage to persons with a particular pretest measure. This “regression effect” can be 
seen in virtually all test-retest situations (Freedman et al. 1991). 

This claim has been dismissed since a change and a previous status will always be 
related: the current status is the product of the prior changes (Willett, 1997). The error in 
the measures will underestimate the true relationship (correlation between true score of 
pretest and true change), and Rogosa et al. (1982) proposed a correction using a method 
of moments. Correlation of pretest and gains is “an interesting fact of life” (Rogosa et al, 
1982), but does this have any implication on the choice among the two approaches? 

Regression to the mean, in my opinion, is one of the key “hints” in choosing 
which approach to use deciding how to interpret it and requires a very clear line of 
thought. Most importantly, RV and CS approaches assume “different regressions” to the 
mean, or to put it more accurately, regressions to “different means”. This aspect in 
particular is, perhaps, the most crucial (and difficult) consideration in preferring one 
approach to another and requires a careful consideration of exchangeability between the 
groups. 

The RV approach assumes that two groups will regress toward the grand mean. If 
two groups are indeed regressing to the grand mean, then the group with the lower mean 
will tend to gain more than the group with the higher mean due to the “regression to the 
mean” reality, and the difference in gains between groups will simply be the result of the 
“regression artifact”. 

However, if the group with the lower mean is in fact lower due to the social 
demarcation of some sort (e.g., gender, race, income), is the assumption of “regression 
toward the grand mean”—the assumption of the RV approach—plausible at all?  If 
groups differ at the pretest, then the exchangeability assumption (the assumption that two 
groups are coming from the same population) needs to be questioned. The only case in 
which two exchangeable groups may differ at pretest is when the random assignment is 
the unlucky one26. If this is the case, the RV approach must be the approach taken by the 
researcher. 

The CS approach, however, does not require the exchangeability assumption the 
same way as the RV approach, and assumes that the posttest scores will regress to their 
group-specific means. Similar points were argued in Allison (1990), Kenny (1975), and 
Kenny & Cohen (1980). The CS approach becomes a very robust choice in such case. 
However, this approach can give misleading results when used to compare exchangeable 
                                            
25 Regression to the mean is sometimes referred as “regression artifact”, “regression fallacy”, “regression 
effect”, or, as Galton (1886) originally put it, “regression to mediocrity”. 
26The so–called “unhappy” randomization (Kenny, 1975). 
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groups (e.g., groups resulting from random assignment, groups for which the treatment 
indicator is strongly ignorable). 

It is safe to state, then, that when two groups differ at the pretest, the CS approach 
relies on a “nonexchangeability” assumption (e.g., that group differences are not due to 
an “unhappy randomization”). Regression toward the group-specific means is not an 
issue if the goal is to compare the nonexchangeable groups. But if the groups are 
exchangeable, the findings from the CS approach might be just the result of the 
“regression artifact”—regression to the mean. In other words, due to the regression to the 
mean, the group with the lower mean will gain more than the group with the higher mean 
even if the treatment has no effect at all. 

The specification of exchangeability and “type” of the regression to the mean, 
then, are the two most difficult and important decisions one needs to make, and unless 
there is a random assignment to groups, the decision is going to require a coherent 
argument and evidence supporting the choice of the approach. Allison (1990) suggested 
that in ambiguous cases, the best strategy is to use both RV and CS approaches and trust 
only to conclusions that are consistent across methods. 

There are, however, other issues that researcher needs to consider  before 
interpreting the results, and the most important one—measurement error—will be 
discussed next. 

1.1.8  Measurement Error 

So far we have assumed that the pretest and the posttest measures do not contain 
any measurement error. However, the outcome variable is measured with error in many 
situations. Often in social sciences, when scores from the pre or post measures (e.g., 
EAP27 scores) are used in the secondary analyses, the measurement error28 in the scores is 
ignored. This section discusses the implications of ignoring the measurement error for the 
two approaches (CS and RV). When either approach does not account for the 
measurement error, between-person differences will be decreased due to the unaccounted 
noise. Thus, both approaches are inefficient when they ignore measurement error, and as 
will be elaborated below, the RV approach is biased unless the “treatment” is assigned at 
random. 

There is an extensive literature discussing approaches to deal with measurement 
error (see Carroll et al., 2006; Buonaccorsi, 2010). Accounting for measurement error 
                                            
27 EAP (expected-a-posteriori) estimates incorporate distributional information of subjects. MLE 
estimation of subject-specific latent variables uses the responses for the subject as the only information 
about the subject (by maximizing the likelihood of obtaining these values). Compared to EAP estimates, 
MLE estimates have greater prediction-error variance. For more on comparisons between MLEs and EAPs 
see Rabe-Hesketh & Skrondal (2013, pg. 111). In this chapter, EAP estimates were used for all models that 
ignore the measurement error. 
28 The error in these variables can either be non-differential or differential. Non-differential error is when 
the fallible variable (e.g., EAP estimates from the test) contains no information regarding the dependent 
variable beyond the true score. In other words, Y|(True score, fallible score) = Y|(True score). Differential 
error (a comparatively rare case) is when the fallible measure has information that is not contained in the 
true score. This can also occur when, for instance, one uses EAP estimates from the unidimensional model 
(e.g., a math test which contains geometry and algebra items) as a proxy for the true score on one of the 
dimensions only (e.g. geometry). In that case, the unidimensional observed score (EAP math score) 
contains information beyond the true score on geometry. 
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when comparing groups is simpler in situations when the outcome variable (and one of 
the independent variables) is measured using surveys or achievement tests. If we want the 
standard errors of the treatment coefficient to reflect the measurement error (in addition 
to the errors due to the variance) we traditionally use a so-called latent regression, or 
item response model with manifest predictors (Mislevy, 1987; Verhelst & Eggen, 1989; 
Zwinderman,1991; Zwinderman, 1997). What are the consequences of not using the 
latent regression approach? This is discussed next. 

1.1.8.1  Ignoring measurement error in the dependent variable – the naïve CS 
approach 

In CS approach (that ignores the measurement error), the only variable on the 
right side of the equation is the treatment indicator, which is free of error. The dependent 
variable, however, contains measurement error. If measurement error in the dependent 
variable is independent of the treatment indicator, then the OLS estimation is consistent 
and coefficients are unbiased (Wooldridge, 2002), as shown below. 

Assume that 𝑦∗ is the true gain from pretest to posttest that we don’t observe and 
𝑊 is the treatment indicator. The CS approach is simply: 

𝑦∗  = 𝛽! + 𝛽!𝑊 + 𝜖.                                                (17) 

Further assume that 𝑦 is the observed gain score, a manifestation of the true gain, which 
contains the measurement error such that 

𝑦 = 𝑦∗ + 𝑒,                                                        (18) 

and can be re-expressed as: 

𝑒 = 𝑦 − 𝑦∗.                                                        (19) 

Then, the naïve CS approach can be expressed as: 

𝑦 = 𝛽! + 𝛽!𝑊 + 𝜖 + 𝑒.                                              (20) 

If the residual term (𝜖) and measurement error (𝑒) are uncorrelated, as we usually 
assume, then the error variance in Equation 21 is larger than the error variance in the 
Equation 18, since var(𝜖 + 𝑒) = var(𝜖) + var(𝑒) > var(𝜖). This only reduces the power, but 
does not violate any assumptions of OLS. 

1.1.8.2  Ignoring measurement error in the dependent and explanatory variables – 
the naïve RV approach 

In the RV approach, fallible measures appear on both sides of the equation. 
Assume that 𝑋∗ is the true pretest score and 𝑋 is the observed pretest score and 

  𝑒! = 𝑋 − 𝑋∗,                                                     (21) 

is the measurement error at the pretest. Further assume that 𝑍∗ is the true posttest score 
and 𝑍 is the observed posttest score and 

 𝑒! = 𝑍 − 𝑍∗,                                                     (22) 

is the measurement error at posttest. The RV approach is then: 
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𝑍∗  = 𝛽! + 𝛽!𝑊 + 𝛽!𝑋∗ + 𝜖,                                        (23) 

which can be rewritten as: 

𝑍 = 𝛽! + 𝛽!𝑊 + 𝛽!𝑋 + 𝜖 − 𝑒! + 𝑒!.                                 (24) 

If we assume that measurement errors (𝑒! 𝑎𝑛𝑑 𝑒!) are uncorrelated with the 
residual (𝜖) and other terms in the model, then OLS gives consistent estimates even 
though the variance of the error increases. As long as we assume that the measurement 
error for the pretest (𝑒!) is correlated with the true pretest score only, there is nothing in 
the Equation 23 that violates the assumptions of the OLS. 

However, if we assume that measurement error (𝑒!) is correlated with the 
observed version of itself (𝑋), then the covariance of 𝑋 and 𝑒! is the variance of the 
measurement error. This case is known as the classical errors-in-variables assumption 
and violates the OLS assumptions and results in inconsistent estimates of all coefficients. 
The resulting outcome is attenuation bias—coefficients will be attenuated—positive 
coefficients will tend to be underestimated and negative coefficients will tend to be 
overestimated. The higher the relationship between the variable measured with error and 
other covariates, the worse the attenuation bias (Wooldrige, 2001). 

However, in the naïve RV approach (i.e., ignoring measurement error), if the 
treatment was allocated to groups randomly, measurement error in the covariate (i.e., 
fallible pretest score) does not bias the estimates of group mean differences (coefficient 
of the treatment indicator) and thus inferences for the group mean differences are correct 
(Carroll et al., 2006, p. 52; Buonaccorsi, 2010, p.114; Carroll et al., 1985; Carroll, 1989). 
If we assume that the treatment indicator is independent of the pretest and the expected 
value of the pretest is the same for each group—guaranteed only with proper random 
assignment—one can still use the fallible covariate (e.g., pretest) to gain efficiency and 
obtain an unbiased group mean comparison. The coefficient of the pretest, however, will 
still be biased, and needs to be interpreted with caution. 

1.1.8.3  Accounting for measurement error when comparing groups: latent 
regression 

Structural Equation Modeling (SEM) is a general framework designed to deal 
with regression of (on) latent variables. By using a model from the SEM framework (e.g., 
latent regression), we attempt to account for measurement error in the variables when 
investigating the relationship to the manifest variables. SEM models aim to account and 
correct for the measurement error in such comparisons, but the correction is only as good 
as the information provided (DeShon, 1998). 

The group indicator (e.g., male vs. female, treatment vs. control) is a manifest 
variable and the latent variable itself (or multiple latent variables) is measured using a set 
of items29—this is the measurement part of the SEM model30. Instead of regressing 

                                            
29 Responses to each item are modeled by having the measurement model in the equation.  Items can be 
either categorical (binary, ordinal, nominal) or continuous, or a mix of both. When we assume that the 
latent variable is continuous, a set of SEM models that deal with the categorical items is known as item 
response theory (IRT) models, and family of models that deal with continuous items are known as factor 
analysis (FA) models. 



 20 

predictions (e.g., EAP scores) on the group indicator, we want to regress the actual latent 
variable itself within the model. 

The analog of the naïve RV approach in the SEM framework, the RV approach 
that accounts for the measurement error in items (latent RV approach), is shown in Figure 
1.5. The two time-points are modeled as two different random-effects. One can then 
estimate the regression coefficient of the pretest “dimension” (arrow from 𝜃! to 𝜃! in 
Figure 1.5 below) in addition to the occasion-specific variances and item parameters. 

 
Figure 1.5. The RV approach in the SEM framework with four items administered 

repeatedly on two occasions. 

Alternatively, instead of estimating the regression coefficient of the pretest, we 
can estimate the correlation between the two random-effects (correlation between 
dimensions, double-sided curved arrow in Figure 1.6). This model is shown in Figure 1.6 
below and is known as Andersen’s model (Andersen, 1985) in the Rasch literature. 

 
 

 
Figure 1.6. Andersen’s model (Andersen, 1985) with four items administered repeatedly 
on two occasions. 

                                                                                                                                  
30 Measurement model can also be thought as a multilevel model. Responses to items are nested within 
person, and variation in these responses describes the level-1 variation resulting in a particular type of IRT 
model (e.g., Rasch model30 if the item-specific regression coefficients are fixed to unity). For ordinal items, 
either adjacent-category or cumulative logit link functions are traditionally used. 
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The CS approach in the SEM framework is shown in Figure 1.7. For this 
approach, responses at pretest were loaded on pretest only while responses at posttest are 
loaded on both dimension resulting in the model in which estimated abilities in the 
posttest dimension indicate the latent change. This model is also known as Embretson’s 
model for change (Embretson, 1991) in the Rasch literature.  Item difficulty estimates are 
usually anchored to establish a common metric (see Section 1.2.3) 

 
Figure 1.7. Embretson’s model for change (Embretson, 1991) with four items 

administered repeatedly on two occasions. 

The analysis of the data in this study present comparison of the RV and CS 
approaches for both naïve and latent versions. Note that, the paradox itself does not 
vanish in the latent versions of the model. 

Most of the responses at the pretest and posttest were scored polytomously and 
were analyzed using the partial credit model (PCM; Masters, 1982) and cumulative 
Rasch model (CRM; Agresti & Lang, 1993)31. Below I briefly introduce the PCM and 
CRM models, and then, for the simplicity of the presentation, continue with the simple 
Rasch model: the special case of the PCM and CRM models32 when items are binary. I 
then present the multilevel Rasch model—the main approach used in the analysis of the 
response data in the ADM study, discussed in Section 1.2.1. 

In the PCM, the probability of person 𝑗 scoring 𝑘 on item 𝑖,𝑃!"# , can be expressed 
as 

𝑃!"# =
!"# (!!!!!")

!
!!!

!"# (!!!!!")!
!!!

!!
!!!

, 𝑘 = 0,1,… ,𝑀! ,                                   (25)  

where 𝜃! , and 𝛿!" are the ability of person 𝑗 and the difficulty of step k of item 𝑖, 
respectively; 𝑀! + 1 is the number of (ordered) categories for the item, and we use the 
following notational conventions for identification: 

𝜃! − 𝛿!" ≡ 0,!
!!!                                                      (26) 

and 
                                            
31 Most of the software programs designed for IRT modeling allow only either PCM or CRM modeling, 
thus I use both to make this study easier to replicate. 
32 PCM and CRM models are two different ways of formulating ordinal logits and have different 
interpretation of parameters. See Chapter 2 of this dissertation for the detailed discussion of the models. 
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(𝜃! − 𝛿!")!
!!! ≡ 𝜃! − 𝛿!"!

!!! .                                          (27)  

In the CRM model, the probability of person 𝑗 scoring 𝑘 on item 𝑖,𝑃!"# , can be 
expressed as: 

𝑃!"# =
!"#(!!!!!")

!!!"#(!!!!!")
− !"#(!!!!!"!!)

!!!"#(!!!!!"!!)
, 𝑘 = 0,1,… ,𝑀!.                         (28) 

For binary items, the PCM and the CRM simplify to the Rasch model: 

𝑃!"! =
!"# (!!!!!)

!!!"# (!!!!!)
,                                                          (29) 

or 

 𝑙𝑜𝑔𝑖𝑡 𝑃!"! = 𝜏!"! = 𝜃! − 𝛿!,                                        (30) 

in which 𝜃!and 𝛿! are the ability of person 𝑗 and the difficulty of item 𝑖, respectively.  
Following Raudenbush et al. (2003) and Kamata & Cheong (2007), the Rasch 

model can also be expressed using a two-stage formulation, as follows:  
The item level (level 1) of the model can be expressed as: 

𝜏!" = 𝜋! + 𝜋!"𝑋!" ,!!!
!!!                                                       (31) 

where 𝑋!" is the 𝑞!!  item dummy variable for the subject 𝑗 with value equal to unity 
when 𝑖 = 𝑞 and 0 otherwise; 𝜋! is the intercept term, and 𝜋!" is the coefficient associated 
with 𝑋!". The formulation in Equation 30 allows elements of 𝐗 and 𝛕 to vary across 
subjects (by incorporating the subject subscript). By restricting these to be invariant at 
level-2, we implement the Rasch assumption regarding the item slopes (i.e., equal 
discriminations). Thus, the subject-level (level-2) is expressed as 

𝜋! = 𝛽! + 𝑢!!,                                                          (32) 

𝜋!" = 𝛽!, 𝑞 = 1,… , 𝐼 − 1,                                                 (33) 

in which 𝑢!! is the latent variable at the respondent level (“ability”).  We assume 𝑢!! to 
be distributed as N(0, 𝜉). This is in distinction to the original Rasch approach, which does 
not require the assumption of normality as it uses the conditional maximum likelihood 
(CML) estimation33 (by conditioning on the sufficient statistics). However, the CML 
approach does not readily handle covariates, which is an important part of the current 
formulation. 

Note that 

𝜏!" = 𝛽! + 𝛽! + 𝑢!!,                                                        (34) 

which is similar to the expression in Equation 29 if we express:  

𝑢!! = 𝜃!,                                                                (35) 

and 

𝛿! = −(𝛽! + 𝛽!).                                                          (36) 
                                            
33 The Rasch model that uses the CML estimation is closely related to the CS approach, as shown in 
Appendix A.1. 
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In addition, by adding a third level subscript (e.g., for school or classroom) to the 
expression in Equation 30, we can express the three-level Rasch model using the three-
stage formulation, with level-1 expressed as: 

𝜏!"# = 𝜋!" + 𝜋!"#𝑋!"#!!!
!!! ,                                                (37) 

and level-2 expressed as: 

𝜋!" = 𝛽!! + 𝑢!!",                                                        (38) 

𝜋!"# = 𝛽!",                                                             (39) 

and level-3 can be expressed as: 

𝛽!! = 𝛾!! + 𝜈!!,                                                          (40) 

𝛽!" = 𝛾!!,                                                               (41) 

with 𝜈!! as a level-3 (e.g., school or classroom) latent variable, assuming 𝜈!!~𝑁 0,𝜓 . 
Thus, the response of person 𝑗 who is in school 𝑠 to item 𝑖: 

𝜏!"# = 𝛾!! + 𝛾!! + 𝑢!!" + 𝑣!!,                                             (42) 

with  

𝑢!!" + 𝑣!! = 𝜃! ,                                                       (43) 

and  

𝛿! = −(𝛾!! + 𝛾!!),                                                     (44) 

in which 𝑞 is the item indicator (𝑞 = 1, 2,… 𝐼 − 1; there is no dummy variable for the 𝐼!!  
item to achieve full rank of the design matrix). 

The level-2 and level-3 equations can be extended by including person-level 
(level-2) covariates such as pre-test score, and cluster-level (level-3) covariates such as 
treatment indicator in a cluster-randomized study or other cluster level indicators. 

Pretest score, essentially, is also obtained using the Rasch model within the same 
model, thus accounting for measurement error in pretest scores, resulting in multilevel 
versions of either Andersen’s (Andersen, 1985) or Embretson’s (Embretson, 1991) 
models shown in Figures 1.6 and 1.7 respectively. The resulting model can be considered 
as two-dimensional multilevel Rasch model—a special case of a multilevel SEM 
approach. 

By incorporating the item response model into the multilevel design, one can 
directly link items with respondents and account for the variation in the responses to 
items within respondents. In such a model, level-1 represents the variation in responses 
within subjects (within-subject between-item); level-2 represents the latent variables 
varying among subjects within clusters; and level-3 accounts for the variation between 
clusters (e.g., schools or classrooms). 

1.1.9  Derivation of bias of RV model if CS model is the correct model 

In Section 1.1.4, I showed that the CS approach is not a special case of the RV 
approach and that these two approaches are different models. Next, similar to Allison 
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(1990), I derive the bias that follows from incorrectly using the RV model when the 
model implied by the CS approach is the true model. 

To demonstrate that the paradox is inevitable when the RV approach is used 
incorrectly, I assume that the CS model is the correct model and that the treatment does 
not have an effect (i.e., 𝛽! = 0). As shown in Equation 8, the incorrectly used RV 
approach34, in such case is: 

𝑌!! = 𝛼 + 𝛽!𝑊! + 𝛽!𝑌!! + 𝜖!.                                         (45) 

Let 𝜌!! be the correlation between the pretest (𝑌!!) and the treatment indicator 
(𝑊!) and let 𝜌!! be the correlation between the posttest (𝑌!!) and the treatment indicator 
and let 𝜌!" be the correlation between the pretest and the posttest. For the clarity of the 
presentation I will drop the 𝑗 subscript. The partial regression coefficient of 𝑌! controlling 
for 𝑊 in the RV approach is (see for instance Sen & Srivastava, 1990; Jobson, 1991) 

𝛽!".! =
!! !!!!!

!

!! !!!!!
!

!!"!!!!!!!

!!!!"! !!!!!
!
= !!"!!!!!!!

!!!!!
! ,                             (46) 

in which the 𝛽!" is the regression coefficient of the pretest when the posttest is regressed 
on the pretest only. If the treatment does not have an effect, as we assumed above, the 
above expression can be re-expressed as: 

𝛽!".! = !!"!!!!
!

!!!!!
! .                                                     (47) 

We see from the Equation 46 above that 𝛽!".! will be less than unity—this is consistent 
with the findings in practically all pre-post studies. The partial regression coefficient for 
𝑊, controlling for 𝑌!, can be expressed as: 

𝛽!! .! =
!!!!!!"!!!

!!!!!
! .                                                  (48) 

Since we assume that there is no treatment effect, we can rewrite the above Equation 47 
as 

𝛽!! .! =
!!!!!!"!!!

!!!!!
! ,                                                (49) 

which, in turn, we can expand as: 

𝛽!! .! =
!! !!!!"!

!! !!!!!
!

!!!!!!"!!!

!!!!"! !!!!!
!
= !!!!" !!!

!!!!!
!  .                         (50) 

Let’s decompose the residual at pretest, 𝜖! in Equation 3, into stable and dynamic 
components, such that 

𝜖!! = 𝑈! + 𝑉!!.                                                (51)   

In Equation 50, 𝑈! is the stable component of the construct and 𝑉!! is the dynamic 
component (e.g., state at pretest, which can change at posttest). Recall that 𝛿 in Equations 

                                            
34 Recall that estimates are biased since 𝑌!! is correlated with 𝜖! by construction. 
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3 and 4 is the preexisting difference between the two groups and 𝑐𝑜𝑣(𝑊,𝑈)/𝑣𝑎𝑟(𝑊)  is 
the correlation between the stable component (𝑈) and the treatment indicator (𝑊). Then, 
the correlation between the treatment indicator and the pretest, 𝜌!!, can be expressed as: 

𝜌!! = 𝛿 + !"#(!,!)
!"#(!)

.                                             (52)  

If we substitute 𝜌!! in the above equation for 𝜌!! in the Equation 49, we obtain: 

𝛽!! .! =
!!!!" [!!

!"#(!,!)
!"#(!) ]

!!!!!
! .                                        (53) 

The expression above (Equation 52) will be non-zero even when there is no treatment 
effect—it will be zero only when: (1) there is no preexisting difference between the two 
groups (𝛿 = 0) AND (2) the treatment assignment is independent of the stable 
component of the construct measured repeatedly (when 𝑐𝑜𝑣(𝑊,𝑈) = 0). 

1.1.10  Implications of RV 

As was noted previously, in almost all applications, the coefficient of the pretest 
in the RV approach will be between 0 and 1. Let’s assume that the RV approach is the 
correct model and that the treatment does not have an effect. Then, 

𝑌!! = 𝛽! + 𝛽!𝑊! + 𝛽!𝑌!! + 𝜖!,                                   (54) 

can be rewritten as: 

𝑌!! − 𝛽!𝑌!! = 𝛽! + 𝛽!𝑊! + 𝜖!.                                   (55) 

If the 𝛽!=0 (coefficient of the treatment indicator is zero), as we assumed, then 

𝑌!!
!!!! − 𝛽!𝑌!!

!!!! = 𝑌!!
!!!! − 𝛽!𝑌!!

!!!!,                           (56) 

which can be re-expressed as 

𝛽!𝑌!!
!!!! − 𝛽!𝑌!!

!!!! = 𝑌!!
!!!! − 𝑌!!

!!!!,                           (57) 

and consequently, 

𝛽!(𝑌!!
!!!! − 𝑌!!

!!!!) = 𝑌!!
!!!! − 𝑌!!

!!!!.                           (58) 

This implies that the mean difference on the posttest will be less than the mean 
difference in the pretest.  In other words, two group means will come closer to the grand 
mean. This implication is not plausible when the exchangeability of the two groups is not 
a reasonable assumption, as I will discuss below. 

Allison (1990) provides a hypothetical example: the two groups are males and 
females, and all males are assigned to the treatment condition and all females are 
assigned to the control condition. Suppose that the outcome variable is the productivity at 
work, which is measured at pre and post. Further suppose that the correlation between 
productivity at the pretest and the posttest is 0.5 and variances are same at both 
occasions. If the treatment has no effect, the RV approach implies that the gender gap in 
the productivity on the posttest should be only half of the gender gap at the pretest—an 
unintuitive and unjustifiable implication. The CS approach, in turn, would show that the 



 26 

gender gap is same at both time-points, as there is no treatment effect. 

1.1.11  “It depends” 

Lord’s Paradox is considered  “by far, the most difficult paradox to disentangle 
and requires clear thinking” (Wainer & Brown, 2007, p.25)35. To the question of “which 
approach to use” the safest answer is usually “it depends.” 

The first question that needs to be answered is whether groups a researcher wants 
to compare are exchangeable with respect to the outcome of interest. For instance, it 
might be that Group A and Group B are exchangeable if the outcome of interest is the 
mean number of hours spent in the gym, and not exchangeable if the outcome of interest 
is the mean number of calories burned. Subject matter expertise is a must to answer this 
question. 

As I elaborated above, the exchangeability assumption is related to the 
assumption of the regression to the grand mean. If a researcher suspects that, instead, the 
regression to the group-specific means is more plausible assumption, then s/he should 
prefer the CS approach. If, however, the measure at pretest is the counfounder, then a 
researcher should use the RV approach. 

If the groups are not a result of random assignment, the RV approach has an 
additional drawback: measurement error. In that case, the regression model that does not 
account for the measurement error will produce biased estimates. 

“Making sure that findings are consistent when both approaches are used” is 
perhaps the safest suggestion when a researcher is confused. But this shouldn’t result in 
discarding an important insight into the intervention. By formulating the research 
question clearly and by considering the assumptions of each of the two approaches, a 
researcher can find answers that may be useful to stakeholders. This is what I attempt to 
demonstrate in the next section using some exemplary real data. 

1.2.1  ADM study 

This section examines the effects of a Data Modeling curriculum designed to 
improve statistical reasoning skills, as well as, general math achievement when compared 
to the existing curriculum. To answer that question, we conducted an ADM Efficacy 
Study, in which schools were randomly assigned to either the treatment or the control 
condition and pre- and post-tests were administered to students at these schools before 
and after the treatment36. 

The treatment indicator is manipulated at the macro-level (i.e., the school level), 
in what is known as a cluster-randomized trial (CRT). The cluster-randomized trial 
design helps in avoiding possible contamination between the treatment and control 
conditions in contexts where the within-macro randomized assignment would likely lead 
to this type of problem, and where there are important macro-level aspects of the 
treatment. 

One alternative to cluster-randomized trials is a multi-site trial design (MST), 

                                            
35 In comparison to Simpson’s Paradox and Kelley’s Paradox (see Wainer & Brown, 2007 for details). 
36 Clearly, the allocation to either the treatment or the control conditions was done before the pretest was 
administered. Therefore,,the treatment assignment does not depend on the pretest. 
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where the treatment assignment is randomized to individual units (e.g., students) within 
each cluster (e.g., school). Multisite trials are more efficient (Moerbeek, van Breukelen, 
& Berger, 2000), but at the price of the risk of interference between units in different 
treatment conditions.37 

There are also multi-site cluster-randomized trials (MSCRT), in which treatments 
are randomized for subgrous within each cluster such as treatments randomly assigned to 
teachers within each school (see Wijekumar, Hitchcock, Turner, Lei, & Peck, 2009). 

It is instructive to briefly discuss the advantages and disadvantages of the cluster-
randomized trials and assumptions of the design used in the study. Before that, I will 
briefly discuss the psychometric properties of the ADM pre- and post assessments and 
the procedure linking (e.g., putting on the same scale) these two tests. 

1.2.2  ADM assessment 

The measure that was administered as both a pretest and posttest is the ADM 
Statistical Reasoning Measure developed by Rich Lehrer at Vanderbilt in conjunction 
with the Berkeley Evaluation and Assessment Research (BEAR) Center. The measure has 
five sub-dimensions (domains): Data Display (DAD), Models of Variability (MOV), 
Chance (CHA), Concepts of Statistics (COS), and Informal Inference (INI) (see 
Appendix A.2 for the description of these constructs). The overall composite and domain-
specific scores for each student were produced based on IRT analyses—Rasch model in 
particular. For a detailed description of each of the levels of these constructs, along with 
learning progressions, see Schwartz (2012). 

Table 1.2 summarizes the analysis and psychometric properties of the pretest 
instrument consisting of 23 items, 18 of which are common with the “Post 2011” test 
(described below). These 18 items were anchored to the difficulty estimates obtained 
from the calibration of “Post 2011” to establish the common scale (discussed in the next 
section). The analysis shows a reasonable (between 3/4 and 4/3) item fit38 for the all of 
the non-anchored items. The reliability statistics were good: the EAP/PV person 
separation reliability estimate was estimated at .89 and Cronbach’s alpha was estimated 
at .84. 

The analysis also showed that the range of easy, moderate, and difficult items 
provided good coverage of the student proficiency distribution. 

Table 1.3 summarizes the analysis and psychometric properties of the postest 
instrument consisting of 25 items, 13 of which are common with the “Post 2011” 
instrument and thus were anchored to obtain the common scale. The analysis shows 
reasonable item fit for the all of the estimated items. None of the step or item parameters 
are showing problems with the fit.  The reliability statistics were again good: EAP/PV 
person separation reliability estimate was estimated at .87 and Cronbach’s alpha was 
estimated at .87. 

 

                                            
37 For more on power calculations and optimal design for cluster-randomized and multisite trials and 
comparison of the two, see Moerbeek, van Breukelen, & Berger (2000; 2001a; 2001b; 2008), Raudenbush 
& Liu (2000), Snijders & Bosker, (2012), and Ryan, (2013). 
38 A common convention of 3/4 (0.75) and 4/3 (1.33) is used as an acceptable lower and upper bounds 
(Adams & Khoo, 1996). 
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  Table 1.2. Analysis results for Pre 2013 test 
Sample Size 894 
Number of items in calibration 23 
Number of common (anchored) items 18 
Number of polytomous items 21 
Number of dichotomous items 2 
Missing data 39 none 
Model PCM 
Weighted Fit MNSQ >1.33, T sig. (Item 
Parms) 

none 

Weighted Fit MNSQ >1.33, T sig. (Step 
Parms) 

none 

Reliability estimates:  
Estimated aprior/person variance 
reliability (EAP/PV) 

.89 

Cronbach’s Alpha .84 
 

 Table 1.3. Analysis results for Post 2013 test 
Sample Size 789 
Number of items in calibration 25 total 
Number of common (anchored) items  13 
Number of polytomous items 25 
Number of dichotomous items none 
Missing data  none 
Model PCM 
Weighted Fit MNSQ >1.33, T sig. (Item 
Parms) 

none 

Weighted Fit MNSQ >1.33, T sig. (Step 
Parms) 

none 

Reliability estimates:  
Estimated aprior/person variance 
reliability (EAP/PV) 

.87 

Cronbach’s Alpha .87 

The analysis of the postest also showed that the range of easy, moderate, and 
difficult items provided good coverage of the student proficiency distribution. The 
population standard deviation was .65. 

Once pretest and posttest were linked through the “Post 2011” test (see next 
section), the gains in EAP estimates (𝐸𝐴𝑃!"#$ − 𝐸𝐴𝑃!"#) were computed for students 
who were administered both pretest and posttest. These gains were also computed for 
                                            
39 Missing responses that are not missing systematically were coded as incorrect (zero). 
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each of the relevant domain scores, namely for DAD, COS, CHA, MOV, and INI 
domains. 

Correlations between the dimensions obtained from the multidimensional analysis 
in which the posttest and “Post 2011” response data sets were calibrated together (for 
larger sample size and more number of items) are shown in the Table 1.4 below. 

      Table 1.4. Correlations between domains and variance for each domain 
  DAD MRC COS CHA MOV 

DAD      
MRC 0.84     
COS 0.77 0.81  

  CHA 0.79 0.78 0.78 
  MOV 0.69 0.78 0.81 0.87 

 INI 0.91 0.87 0.93 0.88 0.83 
variance 0.26 (0.01) 0.73 (0.02) 0.90 (0.03) 0.61 (0.02) 1.25 (0.04) 

As we see from the Table 1.4, the DAD dimension has the highest correlation with INI 
dimension and lowest with the MOV dimension—this finding will be useful in the 
coming sections. 

Equating the tests is necessary to achieve a common scale and comparability 
among the tests. Two tests need to have sufficient number of common items to allow 
common-item equating. Another option for achieving the common scale between tests 
without any common items (as is the case here) is to have a third test of reference with 
which two tests of interest share common items. This approach was used in linking the 
pre- and post- tests.  The “Post 2011” test administered to students of similar grade level 
as part of a larger study was chosen as the reference scale. The pre- and post-tests were 
calibrated by anchoring the item parameters to values obtained from the analysis of the 
“Post 2011” reference test, as discussed in the next section. 

1.2.3  Test design and linking of the tests 

In order to avoid possibilities of cross-contamination of the pre- and post- tests 
results, these two tests do not have any common items. In order to obtain change scores, 
however, we need these two measures to be on the common scale. The common scale for 
the two tests are linked using a pre-calibrated data set, a large set of ADM items 
administered in 2011 (“Post 2011”).  The pretest has 23 items and posttest has 25 items: 
of these 48 items, 32 are common with the test administered to the larger sample in 2011. 

Specifically, for the pretest, the item parameters were calibrated by (1) anchoring 
the 18 items that were administered in 2011 to the estimates obtained at that time, and (2) 
estimating the item parameters for the remaining five (new) items using the current data 
set. Similarly, for the post-test, the items were calibrated by (1) anchoring the 14 items 
that are common with the 2011 test, and (2) estimating the parameters of the remaining 
11 (new) items using the current data set. 

As a result, parameters for all of the 48 items used in the analyses were obtained 
and anchored for all of the subsequent analyses. Linking was done using both PCM and 
CRM models. This approach to analyze the pre- and post- test provides a strong factorial 
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measurement invariance (Millsap, 2011). 

1.2.4  Cluster-randomized trials 

CRT is less efficient compared to the classical randomization (Cornfield, 1978) 
and multisite trials (Moerbeek, van Breukelen, & Berger, 2000). However, in the CRT, 
the interference between units within the cluster does not bias the inference and internal 
validity of the study. Nevertheless, in CRT, we still assume no interference between 
clusters—that is, schools in different treatment conditions do not interact with each other. 
In addition to the robustness against within-cluster contamination, cluster-randomized 
trials are usually financially and logistically more convenient to implement. In settings 
where clusters are schools or classrooms, sometimes the only feasible option is to 
administer the treatment or control conditions to the whole cluster, mainly due to fairness 
and ethical considerations. 

“Randomization by cluster accompanied by an analysis appropriate to 
randomization by individual is an exercise in self-deception, however, and should be 
discouraged” (Cornfield, 1978, p.101-102). Therefore, in such designs, one needs to 
analytically account for clusters in the estimation, generally, by using hierarchical linear 
modeling (HLM) techniques. Including dummy variables for clusters in the regression 
model (the so-called fixed-effects or dummy-variable approach) is not possible since the 
treatment indicator does not vary within clusters, as opposed to multisite trials, and thus 
perfectly collinear with the combination of cluster dummies. However, in comparison to 
multisite trials, statistical power will be lower even after we account for the clustering 
when analyzing the data. 

In cluster-randomized trials, risk of imbalance between treatment and control 
groups on important covariates is higher compared to multisite trials—the number of 
randomization units (number of clusters) in CRT will always be smaller than the number 
of randomization units in multisite trials (number of individuals within clusters). 

Assume a CRT design with schools as clusters. The treatment is at the school 
level while the outcome is at the student level. For students 𝑖 = 1,2,3, . .𝑁 nested within 
clusters 𝑗 = 1,2,3,… ,𝑀, the cluster-level treatment is denoted by 𝑇! ∈ {0,1}, and the 
outcome is expressed as 𝑌!" = 𝑌!"(𝑇!). Proper random assignment guarantees 
independence, expressed as: 

𝑌!" 1 ,𝑌!"(0) ⊥ 𝑇!.                                                     (59) 

Then, the population average treatment effect (PATE) is simply 𝐸[𝑌!" 1 −
𝑌!" 0 ]. Assuming 𝑁! = 𝑁 for all 𝑗 (i.e., equal cluster sizes), the difference-in-means 
estimator, then, is: 

𝜏 ≡ !
!!

𝑇!𝑌!!
!!! − !

!!
(1− 𝑇!)𝑌!!

!!! ,                                     (60) 

in which 𝑌! is: 

𝑌! ≡ 𝑌!"/!!
!!
!!! .                                                    (61) 
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1.2.5  Cluster-randomized assignment of treatment in the ADM study 

Schools in four districts from cities in southwestern U.S. agreed to participate in 
the study. In this design, schools within a particular district might be similar with respect 
to the outcome of interest or other variables due to the common district they belong to. 
Therefore, random assignment to the treatment or control groups was done within 
districts. For instance, schools in district A were randomized separately from schools in 
district B. This type of assignment is known as blocking or stratified randomization40. 

Blocking ensures that district membership of schools do not affect our inferences. 
As a result, treatment and control groups are similar with respect to district composition 
and the imbalance between treatment and control groups arising from the district 
membership is greatly reduced. In other words, district membership is no longer a 
confounding variable after we randomly allocate to treatment or control groups within 
each district. This reduces variability between treatment conditions associated with 
particular district-specific polices, practices, and student body composition that may 
influence these learning-related outcomes. 

When comparing randomization with and without blocking, randomization with 
blocking reduces estimation variance of the causal effect (Imai, King, & Stuart, 2008). 
However, blocked randomization has fewer degrees of freedom and thus lower power in 
small samples, but this is only an issue when you have a very small number of units 
within blocks, and is still preferable to classical randomization (Imai, King, & Stuart, 
2008). Sample size within blocks should be sufficiently large to fully utilize the 
advantages of the stratified randomization. 

The blocked randomization design, as described above, is an unmatched design 
within each stratum, with the strata being the district. Schools within districts can vary 
greatly as well, and if they do, random assignment of the treatment within districts will 
not be very efficient. Recall that cluster-randomization reduces efficiency compared to 
multisite trials (Moerbeek, van Breukelen, & Berger, 2000). 

However, this loss in efficiency can be limited by pairing similar schools 
(clusters) within each stratum (i.e., district) and assigning the treatment randomly within 
each matched pair. Matching before assigning the treatment (“pre-randomization 
matching”)41, is a preferable approach from the perspective of efficiency, power, bias, 
and robustness (Imai, King, Nall, 2009). This is also known as matched pair design with 
non-exchangeable pair members (Raudenbush, 2008). This can be seen as an additional 
stratification within each strata with only two units within strata42. 

With the small number of clusters, the risk of imbalance between treatment and 
control groups is greater since clusters (and not students) are assigned at random. 
Therefore, a matched pair design is vital in such studies. Such design also improves 
precision and power of the trial (Hayes & Moulton, 2009), and results in reduced power 
only with very small samples (e.g., ten pairs) assuming equal cluster sizes (Martin, Diehr, 

                                            
40“Block what you can and randomize what you cannot” wrote Box, Hunter, & Hunter, 2005 (p. 93). 
41 Another criteria to consider when matching can be cluster sizes. 
42 The idea of matching is similar to stratification, but in paired matching, only one school is allocated to 
the treatment group and one to the control group. In stratification, (e.g., when district is the strata), in each 
district, more than one school is allocated to treatment. 
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Perrin & Koepsell, 1993). Our study used the matched pair design, and we discuss 
advantages and disadvantages of this design next. 

1.2.6  Matched pairs 

Within each district, schools were matched to form pairs. Matching43 of schools 
was performed based on previous year’s aggregate test scores. Within each matched pair 
(e.g., for two matched schools within a particular district), one treatment school was 
randomly chosen. This approach minimizes the chances of a poor split especially if the 
matching criteria—previous year aggregate test score—is correlated highly with the 
outcome variable. 

If the pairing was appropriate, the variance between similar schools in previous 
year aggregate test scores within a matched pair will be less than the variance between all 
schools. Matching itself (in the design stage, before the randomization) did not result in 
any change in the participation of any of the schools, but merely served to reduce the 
covariate imbalance (previous year’s aggregated test score of the school) between the 
groups as much as possible. 

The process used to assign schools within each district, with some additional 
considerations of the schools size, was as follows (DMS report, 2014): (1) random 
numbers were assigned to each school; (2) the group of schools were then sorted by their 
6th grade mean NCE Math score and divided into blocks; (3) within each block, schools 
were sorted by the total number of students who had completed the state’s standardized 
Math test (AIMS) in the sixth grade (this sorting variable was viewed as an indicator of 
school size); (4) each block was then split evenly into two groups: one group included the 
schools with the lowest numbers of students who had completed the AIMS Math test, and 
the other included those schools with the highest numbers; (5) groups with two schools in 
each were then created by pairing a school from the group with the highest number of 
AIMS test-takers with one from the group with the lowest number; (6) for each pair, the 
school with the lowest randomly assigned number was designated as a control school.  
The school with the highest random number was assigned to the Data Modeling treatment 
group. 

1.2.7  Dropouts 

There were a number of complications that compromised the randomization 
design of the study. A number of schools opted out after they heard the randomization 
results. In particular, four schools assigned to the treatment group opted out from the 
study immediately after the randomization results were known, as well as three more 
schools a bit later. Five schools from the control group opted out right after the 
randomization results were announced. 

Reasons for opting out are unknown. It's possible schools that opted out after 
randomization decided that the new curriculum is disruptive. The usual practice in CRT 
randomized trials is to obtain a signed consent of the administrators to stay in the study 
regardless of the randomization result in order not to bias the study, but it is difficult to 

                                            
43 “Matching” discussed here is different from the matching generally done after the treatment has been 
assigned (e.g., propensity score matching). 
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implement and enforce such procedures in practice. 
These drop-outs of clusters, particularly after learning their intervention group, in 

addition to loss of power and precision, raise the concern of selection bias. This is 
particularly problematic if schools that drop out differ from schools in the study on 
important relevant (and possibly unknown) covariates. Most importantly, however, 
missing data due to some clusters dropping out raises additional complication due to the 
specific design of the randomization that was based on pairing. Specifically, when a 
cluster (school) is lost from the trial, the entire matched pair is lost, and as a result the 
remaining cluster does not have its matched cluster for the comparison. This is 
particularly damaging for inference when there is a small number of clusters. The 
additional concern due to the loss of participants (due to the complications related to the 
timing of the pre-test) is discussed below in detail. 

Analyzing the data matched by design as if not matched, or the so-called breaking 
the matches approach (Hayes and Moulton, 2009), might not be appropriate since 
variance estimators tend to be biased (Donner, Taljaard, & Klar, 2007; Imai, 2008). 
However, in the case of dropouts and loss of clusters due to further complications, this is 
the only feasible approach and, to some degree, reduces the implications of the dropouts 
in the matched pair design. In addition, we avoid a reduction in power (less loss of 
degrees of freedom) that usually comes with matched analysis. Matched design followed 
by unmatched analysis was suggested by Diehr, Koepsell, & Cheadle (1995a) for the 
cases with fewer clusters. We therefore employ matched design with unmatched analysis, 
and this was specified before the data analysis to avoid data snooping. In addition, the 
team analyzing the data (BEAR Center) was not provided the pair indicators that would 
allow matched analysis. A more serious complication is discussed in Section 1.2.9 below. 

1.2.8  Students, teachers, and schools in the data 

Some students in the sample either changed schools during the course of the study 
or were absent during the pre- or post- administrations. We assumed that students’ 
switching schools or being absent from the test administration is unrelated to the test 
outcome (missing at random [MAR]). There were a total of 893 students who took the 
pretest and 798 students who took the posttest out of total of 914 students. These 914 
students are nested in 40 teachers from 21 schools that agreed to participate in the study. 

After students with either missing pretest or posttest were eliminated, there 
remained 768 students who were included in the analysis. Of these students, 406 are in 
the control group and 362 are in the treatment group. In the treatment group, the sample 
size decreased from 456 to 362.  The loss in the sample was smaller in the control 
group—from 458 to 406. A summary of the sample size for each group is shown in the 
Table 1.5 below. 

     Table 1.5. Students, teachers, and schools in the treatment and control groups. 
  treatment group control group 

 
students teachers schools students teachers schools 

initial sample 456 19 10 458 21 11 
nonmissing pre 
and post 362 19 10 406 21 11 
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There were a total of 40 teachers from 21 schools within four districts: six schools 
with 11 teachers (five teachers from three schools assigned to the treatment) in District A; 
four schools with five teachers (three teachers from two schools assigned to the 
treatment) in District B; five schools with 11 teachers (four teachers from two schools 
assigned to the treatment) in District C; and six schools with 13 teachers (seven teachers 
from three schools assigned to the treatment) in District D. 

1.2.9  Late pretest 

While the initial plan was to administer the pretest to all of the students before the 
treatment initiates, a subset of students from the treatment group were pre-tested after the 
treatment has initiated. In particular, nine of the 19 teachers in the treatment group were 
administered the pretest after they had taught Units 1 and 2 of the Data Modeling 
curriculum due to the delayed IRB approval. Units 1 and 2 of the ADM curriculum 
correspond to the DAD module of the curriculum44. 

Due to the late pretest, the pretest score for a subset of the treated students is not a 
“pre-treatment variable” anymore and this complication needs to be addressed properly. 
We did not completely eliminate students who took the pretest late from the analysis 
sample; however, we separated them from students who were pretested before the 
treatment started. We will still use this subset of the treatment group data to support our 
findings on the treatment effect. In particular, three groups45 were formed: 

Group A (treatment_A): schools assigned to the treatment condition and pretest 
administered before the treatment, 

Group B (treatment_B): schools assigned to the treatment condition and pretest 
administered shortly after the treatment was initiated (potentially biasing the pretest), and 

Group C (control): schools assigned to the control condition. 
Summary of sample size for each the three groups is shown in the Table 1.6 below 

         Table 1.6. Students, teachers, and schools in three groups 
  students teachers schools 

Treatment Group A 189 10 6 
Treatment Group B 173 9 6 
Control Group C 406 21 11 

The main approach in estimating the treatment effect will consist of comparing 
the treatment Group A (consisting of 189 students from 6 schools) with the control Group 
C (consisting of 406 students from 11 schools). However, the comparison of (i) Group B 
with Group A, and (ii) Group B with Group C may provide additional insights to support 
findings. 

                                            
44 The new curriculum (treatment) consists of the modules that instruct students on topics related to the five 
related dimensions (domains): DAD, COS, CHA, MOV, and INI, discussed in Section 1.2.2 and Appendix 
A.2. 
45 The difference between groups A and B in the pretest is that group B received the DAD module and 
group A did not. That “pseudo-treatment” (being in Group B vs Group A) can be assumed to be assigned 
randomly since we have no reason to assume that schools that were delayed due to IRB approval differ 
systematically on important background characteristics. 
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RV and CS approaches used in the study are illustrated in Figures 1.8 and 1.9 
respectively, where three lines are used to represent the three groups. Distances between 
the lines indicate the magnitude of the treatment effect for the three groups. Notice that 
the distance between the lines in CS approach (Figure 1.8) differs from the distances in 
the RV approach (Figure 1.9). One can visually observe from Figure 1.8 that group A 
(treatment_A, blue line) has higher gains than group C (control group, red line). In the 
RV approach, in contrast, this difference disappears. This is one form of Lord’s paradox. 

 
Figure 1.8. CS approach to the ADM study: three lines represent 45° line for three 
groups. 
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Figure 1.9. RV approach to the ADM study: three lines represent the coefficient of pretest 
(slope of line = 0.44). The red and gray lines are on top of each other. 

It is clear what we would expect to find from the comparison of groups A and the 
control group: if the treatment has an effect, gains in group A will be higher than gains in 
group C. This statement can be formulated with further specificity: if the randomization 
was proper and if the treatment has an effect, groups A and C should not differ on the 
pretest but group A should be higher than group C on the posttest. 

How, then, can we formulate our hypotheses when the group B is involved in 
pair-wise comparisons? If the treatment has an effect, we would expect differences in 
both pretest and posttest when comparing groups B and C. This is because both pretest 
and posttest of group B is a post-treatment measure, specifically for the module that was 
taught before the pretest in group B (DAD domain). 

When comparing group B with group A, however, we would expect no difference 
in means at posttest but difference in means at pretest. This is because at posttest, groups 
A and B both have completed the same treatment and we wouldn’t expect to see any 
differences. At the pretest, however, group B was already exposed to the treatment and 
we would expect to see differences in means at pretest, if the treatment has an effect and 
if “natural” assignment to groups A and B was not biased. 
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If the treatment has an effect, the difference in change scores between groups B 
and C is expected to be less than the difference in change scores between group A and C. 
This is because, if the treatment has an effect, group B should already have gained scores 
between their actual start of the treatment (2-3 weeks before the pretest) and the actual 
pretest date.46 A different formulation of this hypothesis is: if the treatment has an effect, 
gains for group the A should be higher than gains for the group B. 

To address the issue of the late pretest, our collaborators on the project suggested 
eliminating items measuring the DAD dimension from the estimation of the composite 
score in the pretest and posttest instead of eliminating students who were pretested late, 
However, as shown in Section 1.2.2, the DAD dimension is highly correlated with the 
other dimensions and there is a risk that Units 1 and 2 of the curriculum had impact not 
only on the performance of students at pretest on DAD related items but also on 
performance on items measuring other dimensions. In addition, the EAP estimates of the 
composite score with and without DAD items are highly correlated (more than .92). 

Also notice that the elimination of the group B from the pure treatment group 
(group A) is not due to the noncompliance or any other factor related to the outcome. One 
might argue that we should still keep group B together with Group A and obtain the 
intention-to-treat (ITT) estimator (Fisher et al., 1990), which gives an unbiased estimate 
in the case of noncompliance or missing outcomes. Teachers in group B haven’t been 
noncompliant (i.e., didn’t violate any intervention protocols). The main motivation to 
separate group B from the pure treatment group (group A) is that the pretest scores of 
students in group B are not valid for the estimation of treatment effect utilizing the pre-
post design and gains of students in group B will bias the estimate of the treatment effect 
by indicating smaller gains from the treatment. 

The multidimensional nature of the construct will be utilized in the next section to 
provide evidence for the treatment effect. In particular, given that Units 1 and 2 are aimed 
at increasing the performance in the DAD dimension, the implication of the comparisons 
of the groups A and C with the group B will be different whether the outcome being 
compared is the DAD score or a non-DAD score. 

1.2.10  Pre-treatment balance 

Considering the design of the ADM study described above, if the treatment and 
control groups differ significantly on important covariates at the pretest, we would 
conclude that either the randomization wasn't successful, or the dropouts after learning 
their condition resulted in the imbalance. The latter case implies incomparability 
(nonexchangeability) of the two groups. There is a chance for unhappy randomization in 
this study—randomization relies on chance and number of units (schools) is small. 

Balance in covariates, however, is not necessary for the CS approach as long as 
we assume that the covariates that are not balanced do not affect the dynamic component 
of the main outcome. Table 1.7 below shows percentages of males, students with 
disability, English language learners, and proportions of Hispanic and White students by 
each group (treatment groups A and B, and the control group). 

 
                                            
46 It is not straightforward to formulate analogous hypothesis using the RV approach.	
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             Table 1.7. Covariates by each of the three groups. 
   group A group B control group total 
male 46% 51% 49% 48% 
disability 7% 7% 5% 6% 
ELL 8% 5% 5% 6% 
hispanic 53% 64% 34% 45% 
white 31% 22% 50% 39% 

 
As can be seen in Table 1.7, there are differences in proportions of Hispanic and white 
students between the groups. Considering all the factors that can potentially undermine 
the virtues of randomization (e.g., dropouts of clusters after learning the randomization 
results), the design we ended up with may well be considered the so-called nonequivalent 
control group design. 

Tables 1.8 and 1.9 below show balance on composite and component EAP scores 
at pretest between the three groups. Scores are obtained from the partial credit model 
(PCM) and the cumulative Rasch (CRM) models respectively. 

  Table 1.8. Composite and component scores at the pretest using the partial credit model. 
PCM group A group B control group 

  mean var mean var mean var 
composite -0.53 (0.05) 0.44 (0.05) -0.21 (0.04) 0.25 (0.03) -0.31 (0.04) 0.45 (0.04) 

DAD -0.60 (0.07) 0.53 (0.10) -0.03 (0.05) 0.24 (0.06) -0.63 (0.05) 0.59 (0.08) 
CHA -0.64 (0.09) 1.38 (0.21) -0.41 (0.07) 0.71 (0.12) -0.16 (0.06) 1.02 (0.11) 
COS -1.18 (0.14) 3.13 (0.50) -0.74 (0.13) 2.55 (0.41) -0.81 (0.10) 3.08 (0.33) 
MOV -0.09 (0.10) 1.29 (0.23) 0.02 (0.10) 1.23 (0.23) 0.09 (0.07) 1.42 (0.17) 
INI -0.31 (0.07) 0.31 (0.11) 0.00 (0.05) 0.11 (0.06) -0.03 (0.03) 0.14 (0.04) 

Table 1.9. Composite and component scores at the pretest using the cumulative Rasch 
model. 

CRM group A group B control group 

 
mean var mean var mean var 

composite -1.07 (0.09) 1.54 (0.18) -0.58 (0.09) 1.12 (0.14) -0.63 (0.07) 1.60 (0.13) 
DAD -1.14 (0.11) 1.23 (0.27) -0.17 (0.11) 0.88 (0.24) -1.18 (0.08) 1.50 (0.21) 
CHA -1.22 (0.16) 4.07 (0.57) -0.81 (0.13) 2.29 (0.36) -0.41 (0.10) 2.92 (0.29) 
COS -2.00 (0.21) 6.69 (1.00) -1.33 (0.20) 5.50 (0.83) -1.39 (0.14) 6.54 (0.66) 
MOV -0.39 (0.14) 2.76 (0.44) -0.21 (0.14) 2.73 (0.46) -0.10 (0.10) 2.94 (0.32) 
INI -0.76 (0.13) 1.42 (0.37) -0.05 (0.12) 0.68 (0.28) -0.16 (0.08) 0.95 (0.21) 

As we see in Tables 1.8 and 1.9, the mean of the treatment B group is higher than the 
mean of the treatment A group at pretest in all of the scores. The mean of the treatment B 
group is higher than the mean of the control group at pretest in composite, DAD, and INI 
domains. Also, variances of all scores in the group B are lower than in the group A and 
control groups. We will return to the comparison of scores between the three groups at 
pretest to gather evidence for the treatment effect. 
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1.2.11  Exploiting the multidimensional nature of the test to investigate the 
treatment effect 

William Cochran had two major pieces of advice when drawing causal 
conclusions from observational studies (cited in Rubin, 2006, p. 11). First, he advised 
researchers to speculate about sources and directions of residual bias. One should ask 
what unmeasured disturbing variable might be affecting the conclusions of the study and 
how might these conclusions change if the variables were controlled. 

And second, he advised researchers to formulate complex and interrelated causal 
hypotheses. This implies that one, for instance, should ask: if there is a causal effect of 
the treatment, which outcome variables should be most affected and which least, and for 
which groups should the effect be largest and smallest? This is what I attempt to do next. 

In this section, investigate and gather evidence by posing elaborate questions by 
exploiting the three of the following: (1) the multidimensionality of the pretest and 
posttest, (2) the multi-module47 nature of the treatment curriculum, and (3) the late pretest 
for the group B. All comparisons of groups in this section are based on the so-called 
latent regression model (see Section 1.1.8). 

We have seen arguments that make the reliance on the random assignment of the 
treatment questionable (see Section 1.2.10). However, since groups A and B both ended 
up in the treatment group, and the formation of the groups A and B can be assumed to be 
at random (i.e., we assume that the IRB approval being late is not related to the outcome 
or any other relevant covariate). Then we can assume that the comparison of the groups A 
and B are free of confounders, barring covariate imbalance purely due to the number of 
clusters (since clusters, not students, are assigned to treatment or control, and therefore 
chances for an unlucky split are higher)48. 

For the ease of presentation and interpretation, let 𝐿! = 1 if the student 𝑗 received 
the pretest after the DAD module (domain) of the treatment (Units 1 and 2) was 
introduced and 𝐿! = 0 otherwise.  As we pointed out earlier, the subgroup that started the 
treatment curriculum before the pretest cannot be ignored since this may confound results 
in two ways: (1) pretest score on the DAD dimension will be reflecting not only the pre-
existing differences but also the "low dose" post-treatment differences; (2) since 
performances in domains are correlated, skills taught in DAD module of the curriculum 
might help students in their pretest subscores in the composite score and other domains of 
the construct. 

Let 𝑊! = 1 if the student is in the treatment group and 𝑊! = 0 if the student is in 
the control group. Three distinct groups can be expressed as:  

group A: 𝑊! = 1|𝐿! = 0; 
group B: 𝑊! = 1|𝐿! = 1; 
group C: 𝑊! = 0|𝐿! = 0 (control group). 

Using the above arguments, I investigate differences between groups A and B in the 
DAD domain in the next section. 

                                            
47 The treatment curriculum consists of the modules that instruct students on topics related to five 
dimensions (CHA, COS, DAD, INI, MOV) described in Section […]. 
48 CRT reduces the chance of nonequivalent groups but does not eliminate it.	
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1.2.11.1  Effect of the “DAD instruction” vs. “no instruction” 

If the DAD module of the treatment curriculum has an effect on the DAD scores, 
as is the aim of the curriculum, we would expect to see differences between groups A and 
B on the pretest most pronounced in the DAD dimension and less pronounced in the 
remaining (CHA, COS, INI, and MOV) dimensions. At posttest, however, we would 
expect to see no significant differences between groups A and B (assuming these groups 
are balanced in all the ways that matter) in all dimensions since both groups A and B 
receive the same treatment by the time they take the posttest. Comparison of groups A 
and B at pretest (using both PCM and CRM models) and accounting for clustering at the 
teacher level is shown in Table 1.10 below. 

 Table 1.10. Difference at pretest between groups B and A (reference group). 
domain model treatment effect z-value p-value 
DAD PCM 0.50 (0.12) 4.12 0.00 

 
CRM 0.90 (0.23) 3.93 0.00 

CHA PCM 0.09 (0.23) 0.38 0.70 

 
CRM 0.15 (0.39) 0.38 0.70 

COS PCM 0.26 (0.37) 0.70 0.48 

 
CRM 0.41 (0.54) 0.76 0.45 

MOV PCM 0.01 (0.23) 0.05 0.96 

 
CRM 0.05 (0.33) 0.15 0.88 

INI PCM 0.24 (0.11) 2.14 0.03 

 
CRM 0.59 (0.26) 2.26 0.02 

  Note: Z-values are shown to demonstrate the magnitude of the difference 
between the groups. Comparison of groups is based on latent regression 
and includes a random effect for the teacher level (to account for 
clustering). 

As we see from the Table 1.10, differences between groups A and B at pretest are 
most pronounced in the DAD dimension (group B is significantly higher in DAD than 
group A at 0.01 level). Differences in INI dimension are also significant at 0.05 level. 
Note that the INI dimension has the highest correlation with the DAD dimension among 
all other dimensions—correlation is 0.91 as reported in Table 1.4 of the Section 1.2.2 
(and 0.90 as reported in Schwartz, 2012). Assuming that groups A and B are comparable 
(i.e., formed at random), this finding serves as an evidence of the effect of the DAD 
module of the treatment compared to no instruction at all. 

Comparison of groups A and B at posttest, accounting for clustering at the 
classroom level, are shown in Table 1.11 below (using both PCM and CRM models). 
  At posttest, differences between groups A and B are not significant for any of 
the dimensions. Notice that the difference in DAD and INI dimensions found at pretest 
does not persist at posttest. 
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Table 1.11. Difference at posttest between groups B and A (reference group). 
module model treatment effect z-value p-value 
DAD PCM 0.00 (0.10) 0.04 0.97 

 
CRM 0.02 (0.26) 0.09 0.93 

CHA PCM     -0.06 (0.09)   -0.66 0.51 

 
CRM     -0.02 (0.18)   -0.10 0.92 

COS PCM 0.10 (0.15) 0.66 0.51 

 
CRM 0.19 (0.29) 0.65 0.51 

MOV PCM 0.39 (0.26) 1.54 0.12 

 
CRM 0.66 (0.42) 1.59 0.11 

INI PCM 0.02 (0.14) 0.16 0.87 

 
CRM 0.08 (0.26) 0.32 0.75 

 Note: Z-values are shown to demonstrate the magnitude of the difference between 
the groups. Comparison of groups is based on latent regression and includes a 
random effect for the teacher level (to account for clustering). 

The research question investigated above can also be approached from the 
following perspective: if the treatment has an effect, we would expect to see higher gains 
(from pretest to posttest) in group A’s DAD scores compared to group B’s DAD scores 
(since group B’s DAD scores are higher at the pretest and thus should not increase 
substantively from the pretest to posttest. If there are any gains in the DAD dimension for 
the group B, this may be attributed to the effect of other modules on the DAD score due 
to positive correlation. Results of this comparison are shown in the Table 1.12 below. 

 Table 1.12. Difference in gains between groups B and A (reference group) in the 
DAD domain using PCM and CRM models. Comparison of groups is based on 
latent regression. 

  treatment effect z-value p-value 
PCM -0.49 (0.09) -5.60 0.00 
CRM      -0.83(0.18) -4.65 0.00 

               Note: Comparison of groups is based on latent regression. 

As we see in the Table 1.12, group A is significantly higher in gains from pretest to 
posttest in DAD domain than group B. 

Similarly, due to the positive correlation between dimensions, we would expect to 
see slightly higher gains in CHA, COS, INI and MOV in group A compared to gains in 
group B. Additional evidence would be if gains for the group B on dimensions that 
correlate with the DAD domain the highest were found to be smaller than gains on 
dimensions that correlate with the DAD domain the lowest. This hypothesis is supported 
by summaries in Table 1.13 below. 
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Table 1.13. The difference in gains between groups B and A (reference group) in CHA, 
COS, MOV and INI domains using PCM and CRM models. Comparison of groups is 
based on latent regression. 

    treatment effect z-value p-value 
CHA PCM -0.27 (0.12) -2.22 0.03 

 
CRM -0.40 (0.22) -1.83 0.07 

COS PCM -0.27 (0.19) -1.43 0.15 

 
CRM -0.37 (0.28) -1.31 0.19 

MOV PCM  0.32 (0.16)  1.95 0.05 

 
CRM  0.57 (0.25)  2.32 0.02 

INI PCM -0.22 (0.09) -2.32 0.02 
  CRM -0.51 (0.19) -2.65 0.01 

As we see in the Table 1.13, the gains for dimensions CHA, COS, and INI are higher for 
the group A (reference group) and gains in INI are significantly higher in group A at 
0.05. Surprisingly, gains in MOV dimension are higher in the group B (compared to 
group A), significant at 0.05 level. Note that MOV has the lowest correlation with DAD 
(see Table 1.4 in Section 1.2.2). Also recall that the INI dimension has the highest 
correlation with the DAD dimension. 

1.2.11.2  Full-dose vs. partial-dose 

We can compare gains of the group B with gains of group A to obtain the effect 
of “non-DAD modules” (partial dose of the treatment) vs. entire curriculum (full dose of 
the treatment) on the composite score. The composite score is obtained by loading all 
items on a single dimension. Alternatively, the composite score can be obtained by 
excluding the DAD items. This can be helpful for the following comparison: we would 
expect the difference in gains in the composite score to be more apparent when the DAD 
items are included, compared to the comparison of gains in the composite score when the 
DAD items are excluded. This is because the effect of the partial dose (all modules 
except DAD) shouldn’t be substantively different from the full dose when the outcome 
variable is the composite score that does not include the DAD items. However, when the 
DAD items are included in the estimation of the composite score, the “full dose” group 
(group A) should have a more apparent advantage in gains compared to the “partial dose” 
(group B). This hypothesis is confirmed in the Table 1.14 below. 

Table 1.14. Difference in gains between group B and group A (reference group) in 
composite domains using PCM and CRM models. Comparison of groups is based on 
latent regression. 

    treatment effect z-value p-value 
composite (all items) PCM -0.21 (0.06) -3.24 0.00 

 
CRM -0.24 (0.13) -1.81 0.07 

composite (DAD items excluded) PCM -0.11 (0.08) -1.32 0.19 
  CRM -0.13 (0.15) -0.83 0.40 
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As we see from the table above, the group A (full-dose) has higher gains than the group B 
(partial-dose) when the composite score includes the DAD items, and this difference is 
significant at the 0.01 level for the PCM and at 0.1 level for the CRM models. Also note 
that the difference between groups A and B is smaller (and not significant) when the 
comparison is made on the composite score that does not include the DAD items. 

1.2.12  Comparison of the treatment groups with the control group: does the 
treatment have an effect? 

In this section, I present results from the comparison of groups A, B and C for 
both the change score (CS) and regressor variable (RV) approaches. For all of the 
comparisons, I present estimated treatment effects when we: (1) ignore the measurement 
error in the scores (regular regression of EAP scores on a treatment dummy), and (2) 
attempt to account for the measurement error in these scores—by using latent regression. 

I include the results that ignore the measurement error to demonstrate the 
differences or similarities of CS and RV approaches across types of regression methods 
(regular vs. latent regression). Interpretation of the group difference, however, is based on 
findings from the models that account for the measurement error (latent regression). 
Comparisons of these two approaches are accounting for the clustering at the teacher 
level. Since the ways that CS and RV approaches account for clustering are different, 
comparisons that ignore clustering at the teacher level are presented in Appendix A.3. 

We have seen some results of comparisons between groups A and B. The main 
interest of the study, however, is in the comparison of the groups A (treatment group) and 
C (control group). However, the difference between groups B and C in gains from the 
pretest to posttest would give the effect of the partial treatment (effect of CHA, COS, INI, 
and MOV modules) of the new ADM curriculum vs. regular curriculum. If the treatment 
has an effect (i.e., difference in gains between groups A and C is positive and 
significant), then the effect of the partial treatment (difference in gains between groups B 
and C) would be expected to be smaller in magnitude. 

We find a significant treatment effect when we compare composite scores of the 
group A with the control group using the CS approach. As shown in the Table 1.15 
below, the treatment group is significantly higher (at 0.05) than the control group in the 
composite score using the CS approach for both PCM and CRM models. As we would 
expect, the difference between groups B and C is smaller than the difference between 
groups A and C (i.e., partial dose vs. full dose). 

The RV approach, however, does not indicate any significant differences between 
the groups. Note that findings from the RV approach will be closer to the findings from 
the CS approach only for the outcome variables for which there is no difference at the 
pretest. 
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Table 1.15. Comparison of the treatment groups with the control group (reference group) 
in the composite construct using CS and RV approaches and accounting for the teacher 
level random effect49. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs control 

    regular regression -0.04 (0.08) 0.09 (0.17) 0.00 (0.07) 0.08 (0.16) 
latent regression -0.05 (0.07) 0.06 (0.22) 0.01 (0.10) 0.08 (0.20) 
group A vs control 

    regular regression 0.11 (0.08) 0.25 (0.16) 0.03 (0.07)  0.05 (0.15) 
latent regression 0.17 (0.07)** 0.35 (0.15)**  -0.03 (0.12) -0.04 (0.24) 

*** <0.01, ** <0.05, * <0.1 

Table 1.16. Comparison of groups B and A (reference group) on composite construct 
using the CS and the RV approaches and accounting for the teacher level random effect. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression -0.15 (0.10) -0.16 (0.23)  -0.03 (0.09) 0.03 (0.20) 
latent regression -0.24 (0.09)***  -0.31 (0.17)*   0.02 (0.11) 0.10 (0.22) 

*** <0.01, ** <0.05, * <0.1 

Table 1.16 above shows results from the comparison of groups B and A using both the 
CS and the RV approaches. As we see from the table, these two groups differ on gains 
significantly at the 0.01 level when the PCM model is used. 

Tables 1.17 and 1.18 below show findings when we compare these groups on the 
DAD domain only. For the DAD domain, both the CS and the RV approaches indicate 
that the treatment does have a negative effect for the group B when we compare it to both 
control group (Table 1.17) and the group A (Table 1.18), which is what we would expect 
since the pretest of the group B may already be reflecting the effect of the training in the 
DAD module. We do not find a significant treatment effect on the DAD domain when we 
compare the group A (new curriculum) with the control group (existing curriculum). 

Notice that the CS and the RV approaches give similar results when we compare 
groups A and C (Table 1.17) in the DAD domain. This is because groups A and C do not 
differ at pretest on the DAD domain. 

 
 
 
 
 
 

                                            
49 Here we account only for the teacher cluster: variance of the school level random-effect was either not 
significant or likelihood-ratio test preferred the simpler model (the one that accounts only for the teacher-
level clustering). 
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Table 1.17. Comparison of the treatment groups with the control group (reference group) 
in the DAD domain using the CS and the RV approaches and accounting for the teacher 
level random effect 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs control 

    regular regression -0.43 (0.09)*** -0.67 (0.14)*** -0.06 (0.06) -0.13 (0.14) 
latent regression -0.56 (0.09)*** -0.98 (0.20)*** -0.01 (0.11) -0.05 (0.24) 
group A vs control  

    regular regression -0.04 (0.09) -0.07 (0.14) -0.01 (0.05) -0.02 (0.13) 
latent regression -0.04 (0.09) -0.07 (0.19)  0.00 (0.10) -0.01 (0.24) 

*** <0.01, ** <0.05, * <0.1 

Table 1.18. Comparison of groups B and A (reference group) in the DAD domain using 
the CS and the RV approaches and accounting for the teacher level random effect 

  CS approach RV approach 
      PCM     CRM PCM CRM 
group B vs group A 

    regular regression -0.39 (0.09)*** -0.61 (0.16)*** -0.03 (0.06)  -0.08 (0.16) 
latent regression -0.52 (0.10)*** -0.90 (0.21)***  0.00 (0.09)   0.03 (0.23) 

*** <0.01, ** <0.05, * <0.1 

Table 1.19. Comparison of the treatment groups with the control group (reference group) 
in the CHA domain using the CS and the RV approaches and accounting for the teacher 
level random effect 

  CS approach RV approach 
     PCM    CRM PCM CRM 
group B vs control 

    regular regression 0.20 (0.15) 0.33 (0.25) -0.04 (0.02) -0.05 (0.04) 
latent regression 0.07 (0.11) 0.12 (0.20) -0.18 (0.11) -0.29 (0.20) 
group A vs control 

    regular regression 0.29 (0.16)* 0.46 (0.27)* -0.01 (0.02) -0.03 (0.04) 
latent regression 0.36 (0.12)*** 0.54 (0.20)*** -0.09 (0.12) -0.20 (0.22) 

     *** <0.01, ** <0.05, * <0.1 

Table 1.20. Comparison of groups B and A (reference group) in the CHA domain using 
the CS and the RV approaches and accounting for the teacher level random effect 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression -0.08 (0.19) -0.12 (0.33) -0.02 (0.02) -0.02 (0.04) 
latent regression -0.28 (0.13)** -0.41 (0.23)* -0.08 (0.10) -0.07 (0.21) 

    *** <0.01, ** <0.05, * <0.1 

We also found a significant (at 0.01 level) effect of the treatment on CHA domain 
when we compare group A with the control group (Table 1.19). In addition, we found 
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that group A is significantly higher than group B in changes in the CHA domain, shown 
in Table 1.20 above. 

Tables 1.21 and 1.22 below shows finding when we compare three groups on the 
COS domain. We found that the treatment has a positive effect when compared to the 
control group, significant at 0.1 level when using the CS approach. As we see in the 
Table 1.21, there are no significant differences between groups A and B on the COS 
domain. 

Table 1.21. Comparison of the treatment groups with the control group (reference group) 
in the COS domain using the CS and the RV approaches and accounting for the teacher 
level random effect 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs control 

    regular regression 0.02 (0.23) 0.08 (0.33) 0.04 (0.07) 0.07 (0.15) 
latent regression 0.01 (0.18) 0.09 (0.27) 0.06 (0.13) 0.09 (0.23) 
group A vs control 

    regular regression 0.20 (0.22) 0.35 (0.31) -0.01 (0.07) -0.02 (0.15) 
latent regression 0.31 (0.17)* 0.51 (0.27)* -0.04 (0.13) -0.07 (0.24) 

         *** <0.01, ** <0.05, * <0.1 

Table 1.22. Comparison of groups B and A (reference group) in the COS domain using 
the CS and the RV approaches and accounting for the teacher level random effect 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression -0.18 (0.31)  -0.25 (0.45) 0.05 (0.09) 0.09 (0.18) 
latent regression -0.30 (0.20)  -0.41 (0.31) 0.09 (0.15) 0.16 (0.28) 

       *** <0.01, ** <0.05, * <0.1 

Tables 1.23 and 1.24 show results from the comparison of the groups on MOV domain. 
For the MOV domain at pretest, the mean of the group B is closer to the mean of the 
control group (as shown in the Table 1.8). Therefore, CS and RV approaches produce 
similar results when we compare the group B with the control group. 

We found that the group B is significantly higher than the control group on the 
MOV domain, as shown in Table 1.23 below. However, we didn’t find a significant 
difference between group A and the control group. 
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Table 1.23. Comparison of the treatment groups with the control group (reference group) 
in the MOV domain using the CS and the RV approaches and accounting for the teacher 
level random effect 

           CS approach RV approach 
     PCM    CRM     PCM     CRM 
group B vs control 

    regular regression 0.28 (0.15)* 0.51 (0.24)** 0.19 (0.07)*** 0.38 (0.14)*** 
latent regression 0.46 (0.15)*** 0.78 (0.23) ***  0.37 (0.14)*** 0.63 (0.23)*** 
group A vs control 

    regular regression 0.12 (0.14) 0.18 (0.21)  0.02 (0.07)  0.01 (0.16) 
latent regression 0.18 (0.16) 0.26 (0.25)  0.01 (0.16) -0.01 (0.26) 

*** <0.01, ** <0.05, * <0.1 

Table 1.24. Comparison of groups B and A (reference group) in the MOV domain using 
the CS and the RV approaches and accounting for the teacher level random effect 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression 0.15 (0.18)  0.33 (0.29) 0.17 (0.11) 0.37 (0.24) 
latent regression 0.29 (0.18) 0.53 (0.30)   0.37 (0.21)*   0.65 (0.35)* 

     *** <0.01, ** <0.05, * <0.1 

Tables 1.25 and 1.26 show comparisons of groups on the INI domain. We found that the 
group A is significantly higher (at 0.05 level) in gain then the control group. We also 
found that group A is significantly higher (at 0.05 level) in gain than group B. 

Table 1.25. Comparison of the treatment groups with the control group (reference group) 
in the INI domain using the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs control 

    regular regression -0.01 (0.07) 0.02 (0.12) 0.00 (0.08) 0.04 (0.14) 
latent regression -0.01 (0.09) 0.01 (0.19) 0.01 (0.11) 0.09 (0.22) 
group A vs control 

    regular regression 0.05 (0.06) 0.17 (0.12)** 0.02 (0.07) 0.06 (0.14) 
latent regression 0.23 (0.09)** 0.57 (0.20)*** 0.00 (0.11) 0.03 (0.24) 

*** <0.01, ** <0.05, * <0.1 

Table 1.26. Comparison of groups B and A (reference group) in the INI domain using the 
CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression -0.06 (0.08)  -0.15 (0.16)  -0.02 (0.09) -0.01 (0.17) 
latent regression -0.24 (0.11)** -0.57 (0.22)**   0.02 (0.12)  0.06 (0.24) 

*** <0.01, ** <0.05, * <0.1 
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Using the CS approach and accounting for the clustering at the teacher level, I 
found that the treatment has a significant effect on the composite score (significant at 
𝛼 = 0.05 level). Mean change in the composite score of students in the treatment group 
was 0.17 logits (0.35 for the CRM model) higher than the mean change in the composite 
score of students in the control condition. Similarly, mean change for the treatment group 
was estimated higher in the CHA domain (significant at 𝛼 = 0.01 level); COS domain 
(significant at 𝛼 = 0.1 level); and INI domain (significant at 𝛼 = 0.05 level). These 
findings were consistent for both PCM and CRM models. 

I provided arguments on why the RV approach is not reliable. In particular, I 
argued that the exchangeability assumption is questionnable due to: (1) imbalance 
between treatment and control groups on important covariate (race); and (2) dropout of 
clusters after learning the results of randomization. 

I also speculated on differences between the three groups with respect to various 
outcomes and found evidences that support those conjectures. 

1.3  Discussion 

In the ADM study, groups A, B, and C differ on pretest and other pretreatment 
covariates. If we think that the lack of balance is the result of the unhappy randomization, 
then the RV approach is the right approach since groups are still exchangeable and the 
assumption of the regression to the grand mean is plausible. If the lack of the balance 
between groups at pretest might be a result of any other factor such as nonignorable 
dropouts and any form of selection to/out of the treatment, then the RV approach might 
be misleading. 

The purpose of almost every evaluation study, including this two-wave design 
discussed in this chapter, is to make a causal statement. For the causal statement, the 
dilemma of comparing oranges with apples is the most important one to consider. The 
only method that guarantees comparability of groups is randomization—the greatest 
contribution of Ronald Fisher. Sir Ronald Fisher, the man who single-handedly 
established the foundations of modern statistics, consistently claimed that “you cannot 
prove anything without randomized experimental design” (Salsburg, 2002). 

There is a price that needs to be paid when there is no randomization, but that 
price needs to be made as small as possible. That price can be expressed in terms of the 
assumptions: we want a minimum number of assumptions and we need to avoid “heroic” 
assumptions. The justification for the assumption should be as complete as possible (and 
assumptions need to be laid out clearly in the first place). The decision on 
exchangeability should be justified (and the research community should find it 
acceptable). 

By assessing balance on available pre-treatment covariates in the ADM study, I 
showed that the assumption of exchangeability is questionable, and therefore the RV 
approach is not reliable. While it is difficult to provide evidences for the 
“nonexchangeability” (so that we can discard the possibility of the regression to the 
mean), the CS approach is still the preferred method among the two when 
exchangeability is questionnable. Conditioning on covariates on which the groups are not 
balanced can be another alternative and I didn’t discuss implication of additional 
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covariates in RV and CS approaches in order not to dilute the attention from the central 
argument in the paradox. 

I attempted to explain the Lord’s paradox and provide guidelines on choosing 
between the two approaches. One important message of the chapter is that measurement 
error is not the source of the paradox. Second finding/message is that we have 
“measurement” analogues of the CS and RV approaches in the IRT literature, and same 
guidelines apply in the IRT framework. The third finding is that, when the groups being 
investigated are not results of randomization, the pre-treatment balance on important 
covariates require careful investigation and judgment on the plausibility of the 
exchangeability assumption. “Regression to the grand mean” or “regression to the 
group-specific means” are two important considerations in selecting among the 
approaches. I presented arguments why the CS approach relies on “nonexchangeability” 
with respect to response patterns when groups are not balanced at pre-treatment. 

In summary, when two groups are not formed by the means of randomization, 
researcher needs to justify and provide evidences for: (1) the assumption of 
exchangeability if the RV approach is to be used; (2) the assumption of 
nonexchangeability when groups are not balanced on pretreatment covariates (to make 
sure that lack of balance is not due to the “unhappy randomization”) if the CS approach is 
to be used, especially when the number treatment-level units (e.g., number of schools in 
cluster-randomized trials) is small. 
 

Limitations of the study.  This chapter did not provide a survey of which types 
of evidences need to be provided for exchangeability assumption (e.g., tests of means, 
medians, or distributions of relevant pretreatment covariates between the two groups). 
This study also fell short of providing alternative approaches to RV and CS—these two 
are the two simplest ones (it might be the case that more elaborate methods are 
necessary). The comparison of apples with oranges is definitely not a good idea, but if 
one still needs to compare, the RV approach is the tricky one. In such cases, the CS 
approach, which assumes that the change would have been the same in both groups had 
both received the treatment, is preferred. For the case with clustered data, this chapter 
didn’t focus on implications of exchangeability when randomization is at the person level 
vs. cluster level.  
 
 
 
 
 
 
 
 
 
 



 50 

Appendix A.1: First-differencing (CS approach) and Rasch model (with CML) 

Rasch model with CML estimation procedure is an analog of the differencing estimator 
(see for instance Skrondal and Rabe-Hesketh, 2007). In particular: 

𝑃 𝑦!" = 1 𝑥!! ,… 𝑥!" , 𝑐! = !"# !"!"!!!
!!!"# !"!"!!!

  

where 𝑦!" are independent conditional on 𝑐! and 𝑥!" are item dummy indicators. Consider 
two items (𝑦!! and 𝑦!!): 

𝑃 𝑦!! = 0,𝑦!! = 1 𝑥!, 𝑥!, 𝑐! ,𝑦!! + 𝑦!! = 1 50 

=
Pr 𝑦!! = 0,𝑦!! = 1

Pr 𝑦!! = 0,𝑦!! = 1 + Pr 𝑦!! = 1,𝑦!! = 0
 

=

1
1 + exp 𝛽𝑥!! + 𝑐!

∗
exp 𝛽𝑥!! + 𝑐!

1 + exp 𝛽𝑥!! + 𝑐!
1

1 + exp 𝛽𝑥!! + 𝑐!
∗

exp 𝛽𝑥!! + 𝑐!
1 + exp 𝛽𝑥!! + 𝑐!

+
exp 𝛽𝑥!! + 𝑐!

1 + exp 𝛽𝑥!! + 𝑐!
∗ 1
1 + exp 𝛽𝑥!! + 𝑐!

 

=

exp 𝛽𝑥!! + 𝑐!
[1+ exp 𝛽𝑥!! + 𝑐! ] ∗ [1+ exp 𝛽𝑥!! + 𝑐! ]

exp 𝛽𝑥!! + 𝑐! + exp 𝛽𝑥!! + 𝑐!
[1+ exp 𝛽𝑥!! + 𝑐! ] ∗ [1+ exp 𝛽𝑥!! + 𝑐! ]

 

=
exp 𝛽𝑥!! + 𝑐!

[exp 𝛽𝑥!! + 𝑐! + exp 𝛽𝑥!! + 𝑐!
=

exp 𝛽𝑥!!
[exp 𝛽𝑥!! + exp 𝛽𝑥!! ]

 

 

=

exp 𝛽𝑥!!
exp 𝛽𝑥!!

[exp 𝛽𝑥!! + exp 𝛽𝑥!! ]/ exp 𝛽𝑥!!
=

exp 𝛽 𝑥!! − 𝑥!!
1+ exp 𝛽 𝑥!! − 𝑥!!

 

= 𝐺[𝛽(𝑥!! − 𝑥!!)] 

in which 

𝐺 𝑤 = exp 𝑤 /(1+ exp 𝑤 ) 
 
 
 
 
 
 
 

                                            
50 With the only two items, condition 𝑦!! + 𝑦!! = 1 is necessary for identification.  
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Appendix A.2: ADM Constructs 
Data Display (DAD): DAD domain represents students' ability to read and 

interpret graphical representation of the data with focus on reasoning related to the 
properties of aggregate. 

Conceptions of Statistics (CoS): COS domain represents students’ ability to 
recognize that statistics are summary measures of data that are developed to answer 
research questions about distributions’ measures of central tendency and dispersion that 
reflects the sample-to-sample variation. 

Chance (Cha): CHA domain represents students’ ability to understand that 
concepts such as chance, probability, and uncertainty are related to produce distributions 
of outcomes. 

The Models of Variability (MOV): MOV domain represents students’ ability to 
reason about the role and importance of chance to model a distribution of measurements 
and observations. 

Informal Inference (InI): INI domain represents students ability to make an 
inference based on outcomes obtained from single or multiple samples. 
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Appendix A.3: Comparison of three groups using CS and RV approaches and ignoring 
the clustering of students. 

Table 1.13b. Comparison of the treatment groups with the control group (reference 
group) in the composite construct using the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs control 

    regular regression -0.05 (0.05) 0.07 (0.09) 0.00 (0.03) 0.10 (0.07) 
latent regression -0.04 (0.04) 0.08 (0.10) 0.00 (0.04) 0.11 (0.08) 
group A vs control  

    regular regression 0.14 (0.05) *** 0.28 (0.09) *** 0.03 (0.03) 0.06 (0.07) 
latent regression 0.15 (0.05) *** 0.32 (0.10) *** 0.04 (0.04) 0.07 (0.08) 

*** <0.01, ** <0.05, * <0.1 

Table 1.14b. Comparison of groups B and A (reference group) in the composite construct 
using the CS and the RV approaches. 
  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression -0.18 (0.06)*** -0.21 (0.12)* -0.03 (0.05) 0.05 (0.09) 
latent regression -0.19 (0.06)*** -0.23 (0.12)**  0.00 (0.04) 0.05 (0.11) 

*** <0.01, ** <0.05, * <0.1 

Table 1.15b. Comparison of the treatment groups with the control group (reference 
group) in the DAD domain using the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs control 

    regular regression -0.43 (0.05)*** -0.66 (0.10)*** -0.07 (0.03)*** -0.15 (0.07)** 
latent regression -0.56 (0.07)*** -0.95 (0.14)***  0.02 (0.04)***  0.07 (0.12)** 
group A vs control  

    regular regression -0.03 (0.05) -0.06 (0.10)  -0.02 (0.03)  -0.05 (0.06) 
latent regression -0.05 (0.08) -0.10 (0.14)  -0.02 (0.04)  -0.08 (0.11) 

*** <0.01, ** <0.05, * <0.1 

Table 1.16b. Comparison of groups B and A (reference group) in the DAD domain using 
the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression -0.40 (0.07)*** -0.60 (0.12)*** -0.02 (0.03) -0.04 (0.08) 
latent regression -0.49 (0.09)*** -0.83 (0.18)***  0.05 (0.05)  0.14 (0.14) 

*** <0.01, ** <0.05, * <0.1 
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Table 1.17b. Comparison of the treatment groupswith the control group (reference group) 
in  the CHA domain using the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs control 

    regular regression 0.16 (0.08)** 0.25 (0.13)* -0.04 (0.01)** -0.05 (0.03)** 
latent regression 0.08 (0.10) 0.12 (0.17) -0.17 (0.06)*** -0.28 (0.10)*** 
group A vs control 

    regular regression 0.34 (0.08)*** 0.56 (0.14)*** -0.01 (0.02) -0.03 (0.03) 
latent regression 0.35 (0.11)*** 0.53 (0.18)*** -0.13 (0.06)** -0.27 (0.11)** 

*** <0.01, ** <0.05, * <0.1 

Table 1.18b. Comparison of groups B and A (reference group) in the CHA domain using 
the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression -0.18 (0.09)** -0.30 (0.16)* -0.02 (0.02) -0.02 (0.03) 
latent regression -0.27 (0.12)** -0.40 (0.22)* -0.05 (0.07) -0.00 (0.14) 

*** <0.01, ** <0.05, * <0.1 

Table 1.19b. Comparison of the treatment groups with the control group (reference 
group) in the COS domain using the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
groupB vs control 

    regular regression 0.00 (0.14) 0.06 (0.21) 0.04 (0.03) 0.08 (0.07) 
latent regression 0.02 (0.17) 0.10 (0.25) 0.08 (0.06) 0.13 (0.11) 
group A vs control 

    regular regression 0.25 (0.13)* 0.41 (0.20)** -0.02 (0.03) -0.04 (0.07) 
latent regression 0.29 (0.16)* 0.47 (0.24)** -0.07 (0.06) -0.15 (0.12) 

*** <0.01, ** <0.05, * <0.1 

Table 1.20b. Comparison of groups B and A (reference group) in the COS domain using 
the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs groupA 

    regular regression -0.26 (0.16)  -0.35 (0.23) 0.06 (0.04) 0.12 (0.08) 
latent regression -0.27 (0.20) -0.37 (0.28) 0.15 (0.07)** 0.28 (0.14)** 

*** <0.01, ** <0.05, * <0.1 
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Table 1.21b. Comparison of the treatment groups with the control group (reference 
group) in the MOV domain using the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs control 

    regular regression 0.25 (0.09)*** 0.48 (0.14)*** 0.20 (0.04)*** 0.40 (0.08)*** 
latent regression 0.49 (0.14)*** 0.80 (0.21)*** 0.41 (0.08)*** 0.69 (0.14)*** 
group A vs control 

    regular regression 0.14 (0.09) 0.20 (0.14) 0.01 (0.04)  0.00 (0.08) 
latent regression 0.20 (0.14) 0.25 (0.21) 0.01 (0.09) -0.05 (0.15) 

*** <0.01, ** <0.05, * <0.1 

Table 1.22b. Comparison of groups B and A (reference group) in the MOV domain using 
the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression 0.11 (0.11)  0.28 (0.17)* 0.18 (0.05)*** 0.39 (0.10)*** 
latent regression 0.32 (0.16)** 0.57 (0.25)** 0.43 (0.12)*** 0.76 (0.20)*** 

*** <0.01, ** <0.05, * <0.1 

Table 1.23b. Comparison of the treatment groups with the control group (reference 
group) in the INI domain using the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs control 

    regular regression 0.01 (0.04) 0.05 (0.07) 0.01 (0.04) 0.07 (0.07) 
latent regression 0.00 (0.07) 0.04 (0.15) 0.03 (0.06) 0.13 (0.12) 
group A vs control 

    regular regression 0.05 (0.04) 0.18 (0.08)**  0.03 (0.04)  0.06 (0.07) 
latent regression 0.21 (0.07)*** 0.54 (0.16)*** -0.04 (0.06) -0.05 (0.12) 

*** <0.01, ** <0.05, * <0.1 

Table 1.24b. Comparison of groups B and A (reference group) in the INI domain using 
the CS and the RV approaches. 

  CS approach RV approach 
  PCM CRM PCM CRM 
group B vs group A 

    regular regression -0.04 (0.05)  -0.13 (0.09) 0.00 (0.04) 0.03 (0.09) 
latent regression -0.22 (0.09)** -0.51 (0.19)*** 0.08 (0.07) 0.19 (0.14) 

*** <0.01, ** <0.05, * <0.1 
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Appendix A.4: A note on clustering 

Measures taken from students at two time-points are nested within students, while 
students in the study are nested within classrooms, which in turn are nested within 
schools and schools are nested within districts. There can be variability between and 
within clusters (students, classrooms, schools, district) at each level, due to (1) random 
variation among units nested within different clusters at each level, (2) non-random 
variation among units nested within different clusters, including factors that are not 
correlated with the treatment, and factors that are associated with the treatment. 

Dependence induced by clustering can be accounted for by using random-effects 
or fixed-effects approaches. However, the only cluster that we can account for using the 
fixed-effects approach is a clustering at the district level. This is due to the fact that the 
treatment indicator is at the school-level, and thus does not vary within schools or 
classrooms: this makes the treatment indicator perfectly collinear with classroom or 
school dummies. Therefore, for classrooms and schools, random effects need to be 
included if we want to account for clustering. Note that this necessity to account for 
clustering does not apply to the CS approach described earlier (see Section 1.1.4). 

The choice of random effect vs. fixed effect also relates to the inferences we are 
attempting to make. In particular, if the interest lies in the inference for all schools from 
the relevant population of schools, then a random-effects approach is necessary (which 
requires assumptions regarding the distribution of these random-effects). 

Using the CS approach, however, we eliminate random-effects and avoid 
additional assumptions. The only assumption we make when using the CS approach is, 
however, that the random-effects are independent of the dynamic factors between two 
time-points. In other words, we assume that the coefficient of the time dummy variable in 
Equation 9 does not vary randomly over clusters. 

Before applying the first-differencing operator (CS approach), it is worth 
specifying the full model with all the clustering detailed, and discussing how dependence 
induced by clustering is handled for each level separately. The fully random-effects 
approach to this nested structure results in a five-level model. These five levels are: two 
occasions (level-1) nested in students (level-2), which in turn are nested in classrooms 
(level-3), which are nested in schools (level-4), which are finally nested in districts 
(level-5). The equation for this model specification is shown below in Equation 61: 

𝑦!"#$% = 𝛽! + 𝛽!𝑊!!"# + 𝛽!𝑎!!"#$% + 𝜁!!"#$
(!) + 𝜁!!"#

(!) + 𝜁!!"
(!) + 𝜁!!

(!) + 𝜖!"#$%.         (61) 

In the Equation 61, the elements are: 

Level 1: (occasion), 𝑖 
𝑦!"#$%: ADM test,  
𝑎!!!"#$: occasion (1, 2) 
𝜖!"#$%: occasion specific random error 

Level 2: (student), 𝑗 
𝜁!!"#$
(!) : person-specific random effect 

Level 3: (classroom), 𝑘 
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𝜁!!"#
(!) : teacher (classroom) specific random effect 

Level 4: (school), 𝑙 
𝜁!!"
(!) : school-specific random effect 
𝑊!!"#: treatment dummy 

Level 5: (district), 𝑚 
𝜁!!
(!): district-specific random effect 

The model above assumes that all random effects are normally distributed with 
zero mean, and are independent of each other and of the remaining terms in the model. In 
Section 1.1.4, I demonstrated that the CS approach is equivalent to first-differencing the 
above model and eliminates terms that are not varying across occasions (all terms without 
the 𝑖 subscript). 

Prior to employing the multilevel modeling, however, one should consider the 
number of clusters and the number of units within clusters to evaluate the appropriateness 
and feasibility of specifying random vs. fixed effects. With only four districts, for 
instance, it is not feasible to specify a random effect for the district and thus it is 
imperative to include district dummies if one wishes to account for the district 
membership. Note, however, if the random assignment of the treatment to schools was 
blocked at the district level, such inclusion of the district dummies may not be necessary 
after all. 

For the analysis that includes groups A and C, the number of students is 595, and 
the number of classrooms is 31, and the number of schools is 17. Schools cannot be 
included as fixed effects (as dummies) since the treatment (main variable of interest) is at 
the school level. However, even if the treatment were assigned within schools, an option 
to include schools as fixed-effects would not be feasible option due to small number of 
classrooms within each school.51The model shown in Equation 61 is not estimated due to 
the restrictions discussed above and since it is not the main focus of the chapter. 

Since the treatment effect is at the school-level, standard error for the treatment 
dummy is important for the inference. Raudenbush (1997) discusses the degree to which 
the standard errors of the experimental condition coefficient can be decreased (and thus 
power increased) when an added covariate is strongly related to the outcome variable. 
Note that in a multilevel approach, the standard error of the treatment coefficient depends 
more strongly on the number of clusters, rather than the cluster sizes (Raudenbush, 1997). 
 
 
 
 
 
 
 
 
                                            
51 See Rabe-Hesketh & Skrondal, 2012, p. 159, for suggested cluster sizes and number of clusters for each 
random-effects and fixed-effects approaches. 



 57 

Chapter 2   

Data expansion for ordinal modeling 

Ordinal response data obtained from surveys and tests are often modeled using 
cumulative, adjacent-category, or continuation-ratio logit link functions. Instead of using 
one of these specifically designed procedures for each of these formulations of logits, we 
can modify the structure of the data in such a way that methods designed for dichotomous 
outcomes (i.e., binary logistic regression) allow us to achieve the targeted polytomous 
contrasting (cumulative, adjacent-category, or continuation-ratio). Thus, one can 
implement procedures designed for dichotomous outcomes on appropriately expanded 
data. The techniques presented in this chapter, which we refer to as data expansion 
techniques, represent this approach. 

In the psychometrics literature, little is known about using data expansion for 
fixed and random effects estimators when applied to polytomous items. Data expansion 
provides a practical solution for modeling ordinal data without using specialized 
statistical packages. This is particularly important for using complex latent variable 
models for which software for the ordinal responses may not even exist. In addition, data 
expansion techniques have not been investigated for the adjacent-category logit model—a 
model that is widely used in psychometrics. 

In the case of multiple binary responses from each subject, consistent estimates 
can be obtained by conditioning on the sufficient statistics without making any 
distributional assumptions about subject-specific effects. In most polytomous IRT models 
for ordinal responses, sufficient statistics do not exist. Therefore, another advantage of 
data expansion techniques is that a version of conditional maximum likelihood estimation 
can be used by applying conditional logistic regression on the subsets of the data. 

We briefly review the biostatistics and econometrics literature on data expansion 
methods for the continuation-ratio and cumulative logit models, along with their 
analogous counterparts in psychometrics, for both fixed and random effects approaches. 
We then investigate the potential of data expansion for the adjacent-category logit model 
and demonstrate that this works with a fixed-effects approach only.  

We also provide an explanation as to why data expansion for the adjacent-
category logits does not work for the random-effects approach. We demonstrate 
consistency of the methods that should work theoretically by applying the estimator to 
“population data” that can be thought of as datasets with infinite sample size. Lastly, 
using the example dataset, we present a comparison of methods based on data expansion 
techniques to methods specifically designed to ordinal data. 

2.1  Introduction 

Data collected from psychological, sociological, and marketing surveys and 
educational tests are often categorical in nature and are therefore coded either 
dichotomously or polytomously. Often, the primary purpose of analyzing such data is to 
estimate the relationship between response probabilities and observed or latent variables.  

Variables can be either nominal (unordered) or ordinal. Nominal variables do not 
have any inherent ordering in the levels of the variable, such as political party affiliations 
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or blood type. Ordinal response variables—the focus of this chapter—as the name 
implies, arise from natural ordinal ranking or have explicit ordering in its levels (from 
smallest to largest). Nominal variables are sometimes referred as qualitative variables, 
and from that perspective, ordinal models are considered quantitative, although they are 
somewhere in between qualitative and metric variables. 

Dichotomous variables have exactly two levels: for instance, success/failure, or 
pass/fail. Polytomous variables have three or more levels: for instance, performance on a 
task or on an essay in an educational test might be scored as 0, 1 and 2. Such scoring of 
constructed-response items is common in educational assessments as well as other fields 
using survey-based data collection.  

Rating scales are another example of how ordinal variables arise. For instance, a 
respondent in a survey might be asked to choose from options such as strongly 
disagree/disagree/agree/strongly agree to express (self-reported) agreement with a 
particular statement. Response types of this sort are known as Likert scores (Likert, 
1932). They are mostly used to measure attitudes, preferences, or opinions in scales that 
contain multiple statements and have no “correct” response/answer. 

Developments in the modeling of ordinal variables, particularly thanks to the 
contributions of Goodman (1979), Nerlove & Press (1973), Bishop, Feinberg & Holland 
(1975),  McCullagh (1980), Agresti (1984), made these models accessible. On a parallel 
front, polytomous item-response models gained popularity in psychometrics thanks to 
contributions by Samejima (1969), Bock (1972), Andrich (1978), Masters (1982), Tutz 
(1990), Wilson (1992), and Muraki (1992), to name a few. 

In the behavioral and social sciences, researchers often collapse polytomous 
outcomes into two categories to avoid additional burdens in modeling and interpretation. 
Indeed, in some cases a lack of software that handle ordinal response variables makes this 
necessary. However, such practices result in a loss of information. Armstrong & Sloan 
(1989) report a ~25% loss in efficiency when trichotomous variables are dichotomized, 
and 25–50% loss in efficiency when a five-category ordinal variable is dichotomized. In 
addition, collapsing multiple categories into two categories adds unnecessary subjectivity 
in choosing the cut-point for dichotomization. 

At the other extreme, ordinal variables are sometimes treated as unordered. 
However, there is also a loss in interpretation when methods designed for nominal 
variables are applied to ordinal variables (without any constraints). It is important to 
preserve the ordinal nature of the variables when modeling to avoid: (1) loss of power to 
detect significant relationship between variables; (2) maintain parsimony in interpreting 
results; and (3) avoid many parameters (as with nominal variables; Agresti, 2015, p.209).  

Perhaps the most common shortcut is to treat ordinal variables as continuous 
variables. Such approaches will give misleading answers (Long, 1997). Indeed, a linear 
modeling approach to categorical dependent variable: (1) is not efficient in the statistical 
sense and (2) does not justify distributional assumptions of the linear model. However, 
most importantly, moment structure hypotheses are violated resulting in inconsistent 
estimates (Bollen & Curran, 2006, p. 231).  

In a multivariate setting (when multiple ordinal variables are collected from a 
single subject), a common practice is to assume multivariate normality for responses and 
proceed with standard factor analysis techniques. However, such an approach may lead to 
biased estimates, incorrect standard errors, and incorrect goodness of fit tests (Moustaki, 
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2007). 
In spite of all of these arguments against analyzing ordinal variables as if they 

were interval-scale variables, this is still the most commonly used approach in the social 
sciences. This paper proposes methods that are easy to implement and preferable to the 
shortcuts described above. 

2.1.1  Methods for ordinal variables 

Methods applied to dichotomous variables are always based on contrasting one 
level with another, such as dead vs. alive, or correct vs. incorrect.  Ordinal variables, 
however, are focused on mainly three different formulations of contrasts (or coding 
schemes) that utilize the ordering of the variables (Agresti, 1984). 

One method is based on contrasting higher level(s) with the remaining lower 
level(s). For instance, for the trichotomous variable with levels of poor/average/good, two 
possible contrasts ( preserving the strict ordering of categories) are poor vs. 
average/good, and poor/average vs. good. Parameters obtained from these contrasts are 
known as thresholds. This type of contrast is used in cumulative logit52 models 
(McCullagh, 1980). The structure of this contrast is shown in the second panel of Figure 
2.1 where bold lines between categories represent the cut-points for the contrasts. The 
cumulative logit model has also some unique properties, which is discussed later in the 
chapter and articulated in Appendix B.4. Thresholds for this model must be strictly 
ordered. 

A second alternative is to contrast each individual level of the variable with the 
next higher category. For instance, for categories poor/average/good, two contrasts are 
poor vs. average, and average vs. good. Models using this type of contrasting are mainly 
known as an adjacent-category logit models (Goodman, 1983) and are shown in the 
second panel of Figure 2.1. Adjacent-category logit models can be expressed as log-linear 
models and can also be estimated by fitting constrained nominal (or baseline category) 
models (Adams, Wilson, & Wang, 1997). 

A third approach, mostly used when it is believed that the occurrence of the levels 
is the result of a sequential (or underlying stage-like) process, is to contrast each 
individual level with the level(s) above. For example, with three ordered categories 
poor/average/good, two possible contrasts are, poor vs. average/good and average vs. 
good. This type of contrasting is known as continuation-ratio model (Feinberg, 1980; 
McCullagh & Nelder, 1983) and is shown in the third window of Figure 2.1. This model 
is identical to Cox’s proportional logit hazard’s model (Cox, 1972) for survival data in 
discrete time53.  

Notice that for the particular ordinal variable, numbers of comparisons (number of 
threshold parameters—bold vertical lines between two ordered categories in Figure 2.1) 
are the same for all three types of contrasts; the interpretation, however, differs.54 

                                            
52 There is also cumulative probit (Aitchison & Silvey, 1957; McKelvey & Zavoina, 1975) model, however 
we limit our discussion only to models using the logit link. 
53 When the complementary log-log link is used, this is proportional hazards model. Use of clog-log link 
does not require data expansion. One then obtains hazard ratios instead of odds ratios. 
54 For models that deal with multinomial (a.k.a. baseline, nominal) variables see Bradley & Terry (1952), 
Luce (1959), McFadden (1974), a.k.a. conditional logit or discrete-choice models. 
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Figure 2.1. Ordinal contrasts for the four-category ordinal variable. Numerators of 

the expressions for each of the model are highlighted. 

2.1.2  Multiple ordinal responses 

When multiple ordinal responses are obtained from a particular individual, 
within-person dependence needs to be accounted for. In item response theory, 
independence of responses is assumed to be conditional on the continuous person-
specific effect, usually denoted as 𝜃 and interpreted as “ability”.55 

For logit models for multiple binary responses from each subject, consistent 
estimates can be obtained without making any distributional assumptions about 𝜃 by 
conditioning on the total score. This is achieved by conditional maximum likelihood 
(CML), which conditions on the total score (sufficient statistic) to avoid the incidental 
parameters problem56(Rasch, 1960, Breslow & Day, 1980).  

Unlike in marginal maximum likelihood (MML), in CML, subject-specific effects 
(𝜃) are considered parameters (and not random variables), but are conditioned out of the 
likelihood function instead of using joint estimation. In contrast, marginal ML method, 
the most commonly used method in IRT, assumes that person-specific parameters are 
random variables with a particular distribution. The marginal likelihood has no closed 
form solution and involves computing intractable integrals. See Skrondal and Rabe-
Hesketh (2004, chapter 6) for a detailed explanation. 

There are also nonparametric approaches for the analysis of ordinal variables. For 
                                            
55 When categories are ordered, higher score reflects higher ability and lower score reflects lower ability. 
This is the requirement of the monotonicity assumption in IRT. For the results to be meaningful, we need to 
make sure that ordered categories are in the same direction regardless of the mixture of positively and 
negatively worded items. 
56 See Andersen (1970) and Pfanzagl (1993) on consistency of the CML and Neyman and Scott (1948) for 
incidental parameter problem.  



 61 

nonparametric approaches when the dependent variable is at the ordinal level, see 
Weinberg & Goldberg, (1990, chapter 19) for univariate responses; Cliff (1996), Cliff & 
Keats (2013) for multivariate responses; Sijtsma & Molenaar (2002, chapters 7 and 8) for 
nonparametric polytomous IRT methods. For log-linear approaches to categorical data—
which are closely related to adjacent category logit, as we will elaborate on later—see 
Haberman (1974), Bishop, Feinberg, & Holland (1975), Goodman (1985), Clogg & 
Shihadeh (1994), Bergsma & Croon (2005). Lastly, see Anderson & Yu (2007) for 
connections of log-multiplicative models with IRT models. 

Thissen & Steinberg (1986) provide a taxonomy of polytomous IRT models that 
might help one to understand the focus of ordinal IRT models and the underlying 
response process they attempt to characterize. See also Nering & Ostini (2010), van der 
Linden & Hambleton (1997) and Ostini & Nering (2006) for more detailed treatment of 
polytomous IRT models. 

2.2  Models for ordinal responses 

Let the response variable 𝑦! have S ordered categories, 𝑠 = 1… 𝑆. Category-
specific odds (defined differently for the different models described in Section 2.1.2) can 
be modeled as 𝐻! = exp(𝛼! + 𝒙!!𝜷) where 𝛼! is category-specific intercept, 𝒙! is a vector 
of covariates and 𝜷 is a set of regression coefficients assumed to be constant across the 
categories for each covariate 𝑖 and 𝒙!!𝜷 implies that covariate effects are additive.57 
Define 𝐼! as the inverse logit transformation of the linear predictor 𝛼! + 𝒙!!𝜷, so that 

𝐻! =
!!

!!!!
.                                                          (1) 

To keep the notation simple, we drop the 𝑖 subscript from 𝑦! and do not show the 
conditioning on 𝒙𝒊. 

2.2.1  Continuation-ratio logit model 

The continuation-ratio odds are modeled as  
! !!!
! !!!

= 𝐻!,   𝑠 < 𝑆.                                                   (2) 

It follows that the conditional response probability that 𝑦 equals 𝑠, given that 𝑦 is at least 
𝑠 is: 

 𝑃 𝑦 = 𝑠 𝑦 ≥ 𝑠 = !!
!!!!

≡ 𝐼!,   𝑠 < 𝑆,                                     (3) 

where 𝐼! can also be interpreted as the conditional probability of not progressing beyond 
level s. When categories represent discrete survival times, 𝐼! is called a discrete hazard. 
The unconditional response probabilities are given by 

                                            
57 The assumption that these coefficients are constant across categories for a particular covariate can be 
relaxed with exp(𝛼! + 𝜷𝒔𝒙𝒊!). However this saturated model will result in more parameters. See Fullerton 
(2009) for a general framework and Fullerton & Xu (2012) for compromise between fully constrained and 
unconstrained formulations. 
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𝑃 𝑦 = 𝑠 = 𝑃 𝑦 = 𝑠 𝑦 ≥ 𝑠 𝑃 𝑦 ≠ 1 𝑃 𝑦 ≠ 2 𝑦 ≥ 2 …𝑃 𝑦 ≠ 𝑠 − 1 𝑦 ≥ 𝑠 − 1
! !!!

 , (4) 

and can be expressed as 58 

𝑃 𝑦 = 𝑠 = 𝐼! 1− 𝐼! ,   𝐷! = 1!!!
! .                                    (5) 

To fit the continuation ratio logit model with the correct likelihood function, we can fit a 
binary logistic regressions after expanding the data based on the form of the probabilities 
in Equation 5. In particular, the product of 𝐼! and 1− 𝐼! represented in (6) can be seen as 
probabilities of positive and negative response in binary logistic regression when we 
define a new binary response variable 𝑑 for each of 𝑠 − 1 contrasts. The expanded data 
has a row of data for each term in the product shown in Equation 5: when 𝑦 = 2, expand 
to 2 rows of data 𝑟 = 1,… , 𝑠, making the linear predictor 𝛼! + 𝒙𝒊!𝜷 and the response 
variable 𝑑! = 0 and 𝑑! = 1. For 𝑦 = 𝑆, delete the last row of data since 𝐼! can be 
obtained from 𝐼!,… , 𝐼!!!. Logistic regression then gives probabilities 𝑃 𝑑! = 0 = 1−
𝐼! for 𝑟 = 1,… , 𝑠 − 1 and 𝑃 𝑑! = 1  for 𝑟 = 𝑠. This expansion methods is shown in the 
first panel of Figure 2.2 for 𝑆 = 4 ordered categories. 
            In Figure 2.2, 𝐶!" is the likelihood contribution from the binary logistic regression 
model for row 𝑟 and response category 𝑦. The data can be fully represented by a table 
such as the one in Figure 2.2 for each distinct set of covariate values, with frequency 
weights 𝑁! denoting the number of subjects having 𝑦 = 𝑠 for that set of covariate values. 
Concentrating on one set of covariate values, the required likelihood for that subset of the 
data is  

𝑃 𝑦 = 𝑠 !!! .                                                  (6) 
Using logistic regression on the expanded data, the total likelihood is  

𝐶!"
!!
!!!

!!
! .                                                (7) 

This likelihood is correct since 𝑃 𝑦 = 𝑠 = 𝐶!"
!!
!!!  where the product is over the 𝑅! 

values 𝑟 that exist for category 𝑠 in the data expansion as seen from Equation 5. In other 
words, the likelihood of the expanded data from binary logistic regression is identical to 
likelihood from the continuation-ratio logit model59. 

Allison (1982) suggested using this data expansion technique in the context of 
discrete-time survival analysis. Related ideas were proposed in Wu & Ware (1979) in 
which they followed a similar approach to model data consecutively as it became 
available. D’agostino, Lee, Belanger, Cupples, Anderson, & Kannel, (1990) pooled the 
observations collected at different time-points and applied a similar technique. See also 
Armstrong & Sloan (1989), Ananth & Kleinbaum (1997), Greenland (1994), and Cole & 
Ananth (2001) for more on this topic. 

Recall that when two or more ordinal responses are obtained from each subject, 
the within-subject dependence needs to be accounted for in the model. To model such 

                                            
58 If we were to include covariates 𝒙, this expression is: 
 𝑃 𝑦 = 𝑠|𝒙 = 𝐼!|𝒙 1 − 𝐼!|𝒙!!!

!  
59 Likelihoods has to be identical since strata implied by dichotomizations are conditionally independent in 
the continuation-ratio logit model. 
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responses, Tutz (1990) proposed using a sequential one-parameter logistic model—to 
represent the hypothesized underlying stage-like response process and showed how 
conditional and unconditional (joint)60 ML estimates can be obtained via the 
dichotomization of steps. Tutz (1990) and Mellenberg (1995) discuss the rating scale 
version of this sequential model. These models can be estimated using the data expansion 
technique to obtain consistent estimates.  

Note that for the continuation-ratio logits model, there are two ways of expressing 
ordered contrasts: categories could be grouped in an increasing order or in a decreasing 
order. These two produce different results, thus do not have a palindromic invariance 
(McCullagh, 1978) property. See Sijtsma & Hemker (2000, p. 284) for further discussion 
on reversibility. See Appendix B.1 for the alternative formulation of the continuation-
ratio logits model. 

2.2.2  Cumulative logit model 

The cumulative logit model is the most widely used model in ordinal regression 
modeling due to its ease of interpretation. In addition, in this model, regression 
parameters are invariant to grouping of categories: meaning, when adjacent categories are 
merged, this does not affect the remaining parameters. This model is also called 
proportional odds model due to the assumption of proportionality of cumulative odds 
across all cut-points. In other words, odds ratios are constrained to be the same for all 
partitionings of response variables. 

The cumulative odds are modeled as 
!(!!!)
!(!!!)

= 𝐻!, 𝑠 < 𝑆                                                    (8) 

in which we are comparing the odds of being above versus below any point on the 
response scale. The corresponding cumulative probabilities are 

𝑃 𝑦 > 𝑠 = 𝐼!,   𝑠 < 𝑆.                                                  (9) 
It follows that the individual response probabilities are given by 

𝑃 𝑦 = 𝑠 = 𝑃 𝑦 > 𝑠 − 1 − 𝑃 𝑦 > 𝑠 = 𝐼! − 𝐼!!!,  where  𝐼! = 1, 𝐼! = 0.        (10) 
Cole et al. (2004), Choi & Cole (2004), and Wellman (2006) use the “person-threshold” 
expansion shown in the second table of Figure 2.2. This expansion, however, produces an 
incorrect likelihood since 

𝑃 𝑦 = 1 ≠ (1− 𝐼!)(1− 𝐼!)(1− 𝐼!).                                (11) 

In other words, the probabilities in Equation 10 do not factorize into products of terms of 
the form 𝐼! and 1− 𝐼!. This expansion, however, produces correct odds, 

!!!!!!!!
!!

= !!
!!!!

, !!!!!
!!!!!

= !!
!!!!

, !!
!!!!!!!!

= !!
!!!!

.                        (12) 

                                            
60 Note that unconditional ML method—method still used by some IRT software packages—has the 
incidental parameter problem (Neyman & Scott, 1948) and is not consistent, resulting in bias in parameter 
estimates that does not disappear as sample size increases 
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Thus, using this expansion, we can obtain correct point estimates when the model for 
these odds is saturated for each set of covariate values.61 Note that each of the subtables 
in the second panel of the Figure 2.2 represent each of the odds expressed in Equation 12. 
Since these odds are assumed to be equal, each of the subtables could also be analyzed 
independently, but this approach is less efficient.  

Notice that in the second panel of Figure 2.2 (cumulative logit model), the 
number of rows for the expanded data for each category is the same since all 𝑆 logits are 
involved in 𝑠 − 1 contrasts—this is why these are sometimes called global logits62 (see 
for instance Bartolucci et al., 2007). In other words, unlike the other two models, data 
expansion for the cumulative model uses the full data in obtaining the parameters for 
each cut-point. 

A correct likelihood can be obtained by combining data expansion with a 
composite link function, as shown in Rabe-Hesketh & Skrondal (2007). 

Cole, Allison, & Ananth (2004) presented the data expansion technique for this 
model with a single outcome. Their main goal was to relax the proportional odds 
assumptions in order to obtain threshold-specific log-odds ratios. When this assumption 
is relaxed only partially, or not relaxed at all, the dependence induced by rows of the 
same subject in the expanded data needs to be accounted for. Cole et al. (2004) handled 
this dependence using generalized estimating equations with an autoregressive working 
covariance structure. Note that within-person variability does not cause any issues when 
the proportional odds assumption is relaxed completely (Cole et al, 2004). 

Sufficient statistics do not exist for cumulative logit model to obtain conditional 
ML estimates. A solution is, then, to translate the ordinal data into binary 
dichotomizations (“pseudo-responses”)—for which sufficient statistics do exist—and 
simultaneously fit conditional ML on binary data. Agresti & Lang (1993) proposed this 
transformation into binary dichotomizations to obtain estimates similar to conditional ML 
estimates. In particular, they used maximum likelihood with additional constraints to fit a 
quasi-symmetry model63 on the binary collapsings of the ordinal variables. Binary 
collapsings in their model were based on a cumulative logit formulation. Their approach 
to binary data gives identical estimates as the conditional ML estimates obtained from the 
one-parameter logistic (1-PL) model, first pointed out by Tjur (1982). 

Mukherjee, Ahn, Liu, Rathouz, & Sanchez (2008), using similar expansion 
techniques to Agresti & Lang (1993), demonstrated the use of data expansion to obtain 
conditional maximum likelihood estimates, which they called amalgamated conditional 
logistic regression. In Mukherjee et al. (2008), the dependence induced by multiple 
dichotomizations from each person’s response in the expanded data was accounted for 
using generalized estimating equations. 

More recently, in the economics literature, Baetschman (2012)—likely unaware 
of developments in disjoint literature—proposed similar ideas to Mukherjee et al. (2008) 
and Agresti & Lang (1993). Baetschman (2012) used cluster standard errors to account 
                                            
61 IRT models generally do not include covariates, except item dummies	
62 In contrast to global logits, adjacent-category logits are sometimes referred as “local” logits.	
63 For a two-way table, the quasi-symmetry model holds if odds ratios contrasting rows 𝑖 and 𝑖’ and 

columns 𝑗 and 𝑗’ 𝜃!"(!!!!) =
!!"!!!!!

!!!!!!!!
= 𝜃!!!!(!") for 𝑖 ≠ 𝑖!, 𝑗 ≠ 𝑗′. In particular, a symmetric interaction is 

imposed by 𝑙𝑜𝑔 𝐹!" = 𝜆 + 𝜆! ! + 𝜆! ! + 𝜆!" !"  where  𝜆!" !" = 𝜆!" !" . 
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for the dependence induced by the same individual in the expanded data. This model is 
identical to the 1-PL model with amalgamated conditional ML estimates. Muggeo & 
Aiello (2011) proposed a similar data expansion technique to obtain random-effects (i.e., 
marginal ML) estimates of the cumulative logit model with alternative link functions. 

 
Figure 2.2. Data expansion rules for the variable with four ordered categories.  
Note: 𝑦 indicates the original response category and  𝑑 is the constructed binary response 
variable for the expanded data,  and 𝑟 indicates the subtable in the expanded data. 

In  Figure 2.2, 𝑟 indicates the sub-data (sub-table)—subset of the data on which 
binary logistic regression is performed. Note that for the continuation-ratio and adjacent 
category logit models, 𝑑 in the table represents the numerator in each of the models 
presented Equations 2, 8, and 13 for continuation-ratio, cumulative, and adjacent 
category logit models respectively. In other words, it indicates whether 𝑟 = 𝑦 for 
continuation-ratio and adjacent-category, while in cumulative logits model, 𝑑 indicates 
whether 𝑟 > 𝑦. Also note that 𝐶!" indicates the likelihood contribution. 

The cumulative logit model for polytomous item is unique among the three 
models in that it can expressed using the latent response formulation, as shown in 
Appendix B.4. 

2.2.3  Adjacent-category logit model 

In adjacent-category logit models, logits are formed locally. In particular, 
adjacent-category odds are modeled as 
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!(!!!)
!(!!!!!)

= 𝐻!,   𝑠 > 1                                                 (13) 

and the corresponding conditional probabilities are 

𝑃 𝑦 = 𝑠 𝑦 ∈ 𝑠 − 1, 𝑠 = 𝐼!,   𝑠 > 1.                                    (14) 

The unconditional response probabilities can be derived by 
! !!!
! !!!

= ! !!!
! !!!!!

! !!!!!
! !!!!!

… = 𝐻!!
!!! ,   𝑠 > 1,𝐸! = 1.               (15) 

It follows that 

𝑃 𝑦 = 𝑠 = 𝑃 𝑦 = 1 𝐻!!
!!! ,   𝑠 > 1.                              (16) 

Since the probabilities must sum to 1, we obtain 

𝑃 𝑦 = 𝑠 = !!!
!!!

!!!
!!!

!
!!!

 .                                            (17) 

Choi & Cole (2004) use the data expansion shown in the third table in Figure 2.2. 
However, this produces an incorrect likelihood since 𝑃 𝑦 = 1 ≠ 1− 𝐼!,𝑃 𝑦 = 2 ≠
𝐼! 1− 𝐼! . The probabilities in (17) do not factorize into products of terms of the form 𝐼! 
and (1− 𝐼!) because the denominator, 1+ 𝐻! + 𝐻!𝐻! + 𝐻!𝐻!𝐻! +⋯ does not factorize 
into products of terms having the form 1+ 𝐻!. For example, for 𝑆 = 3, the product 
1+ 𝐻! 1+ 𝐻! = 1+ 𝐻! + 𝐻! + 𝐻!𝐻! gives an extra term 𝐻!. 

However, this data expansion produces correct adjacent-category odds 
asymptotically. In particular, since 

 !!
!!
= !!

!!!!
, !!
!!
= !!

!!!!
, !!
!!
= !!

!!!!
,                                          (18) 

the estimates are correct when the model for these odds is saturated for each set of 
covariate values (i.e., with all possible response patterns). Equation 18 essentially implies 
that when the response is in the, say, second category, only those who responded in the 
second or first category are involved in estimating the step parameter. 

The data expansion for conditional logistic regression to obtain conditional ML 
estimates for adjacent categories is given in the last table in Figure 2.2 where “term” is 
the numerator of the unconditional probabilities, each value of 𝑦 is a different group, and 
we condition on the sum of responses being 1 for each group. 

Figure 2.3 shows the first three tables shown in Figure 2.2 with reordered rows so 
that contrasts that are shown reflect contrasts presented in Figure 2.1 for the respective 
ordinal model.  
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Figure 2.3. Data expansion rules for the variable with four ordered categories reflecting 
contrasts presented in Figure 2.1 sorted by 𝑟 (i.e., subtable).  

The adjacent-category logit model can be viewed as a constrained multinomial 
logit model which in turn can be estimated by expanding the data using conditional 
logistic regression (Agresti, 1993); Poisson regression (Chen and Kuo, 2001); or 
stratified Cox regression (Allison & Christakis, 1994; Chen & Kuo, 2001). 

In the psychometrics literature, Masters (1982) proposed an IRT analogue of this 
model—a partial credit model (PCM)—with joint and conditional ML estimation; Wilson 
& Adams (1993) proposed marginal ML estimation. The PCM is unique among the 
polytomous IRT models due to its sufficiency property. In particular, the counts of 
subjects completing each step of an item are jointly sufficient for the item steps (Wright 
& Masters, 1982). The rating scale model (RSM; Andrich, 1978) is identical to PCM in 
the underlying response structure: it assumes however, that the residual thresholds across 
items are constrained to be same. This model is useful when items have the same ordered 
categories  as Likert scales. The difference between the PCM and RSM models is 
illustrated in Appendix B.2. 

Agresti (1993) used the rating scale model and obtained conditional maximum 
likelihood estimates by fitting a log-linear model. Note that PCM can be considered a 
special case of the nominal response model (Mellenbergh, 1995). Another related model 
is Wilson’s (1992) ordered partition model (OPM). The OPM allows nominal levels 
within any given ordered level.64 

                                            
64 Wilson (1992; Wilson & Adams, 1993) developed the ordered partition model (OPM) as an extension of 
the PCM. The OPM is designed to model data that is neither entirely nominal nor completely ordered. In 
particular, it is viewed as appropriate model for items that have ordered levels, but where there may be a 
number of nominal response categories within any given level. Wilson suggests that the OPM may be 
particularly relevant for data resulting from the performance assessments. 
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2.2.4  Data expansion for the PCM model when marginal maximum 
likelihood method is used 

Recall that each subtable provides information about the random intercept and 
different subsets of subjects are represented in different subtables. If the latent variable of 
the subject is high, subject’s response will be in the higher category. In other words, for 
the lowest two categories in the adjacent-category model, the mean of the latent variable 
will be lower than in the highest two categories. Therefore, when there is a random-effect 
(latent variable), each subset of the data will have a different latent variable mean and 
variance that is different from the mean and variance of the entire population—the 
variance of the latent variable, will be smaller in each subset of the data than the variance 
in the population (entire data). Data expansion will not produce consistent estimates for 
the PCM model when marginal maximum likelihood method is used (see Table 2 below 
for the direction of the bias). 

Also note that this issue does not apply to the cumulative logit model since the 
data for each contrast is not a subset of the data (as can be seen from Figure 2.1) –it is 
just the data itself but with additional variables indicating the contrasts. 

2.3  Population study 

To evaluate the consistency of the estimators and to demonstrate the performance 
of the data expansion technique asymptotically, we generated a sample with all possible 
response patterns (i.e., saturated data) using probabilities as frequency weights and used 
probabilities of these response patterns as weights for the log-likelihood contribution65. 
Similar approaches were taken in Breinegaard, Rabe-Hesketh, & Skrondal (2015) and 
Jeon & Rabe-Hesketh (2015)66. 

Before presenting the conditions of the population parameters, I briefly present 
models from which the true parameters were generated (i.e., “gold standard”): cumulative 
1-PL and partial credit models. 

In the partial credit model, the probability of person 𝑗 scoring 𝑘 on item 𝑖,𝑃!"# , can 
be expressed as 

𝑃!"# =
!"# !!!!!"

!
!!!

!"# !!!!!"!
!!!

!!
!!!

,     𝑘 = 0,1,… ,𝑀! ,                                   (19)  

where 𝜃! , and 𝛽!" are the ability of person 𝑗 and the difficulty of step k of item 𝑖 
respectively; 𝑀! + 1 is the number of (ordered) categories for the item, and we use the 
following notational conventions for identification: 

𝜃! − 𝛽!" ≡ 0,!
!!!                                                      (20) 

and 

(𝜃! − 𝛽!")!
!!! ≡ 𝜃! − 𝛽!"!

!!! .                                          (21)  
                                            
65 Analyses of the population data was carried out using gllamm (Rabe-Hesketh, Skrondal, & Pickles, 
2005) package in Stata (see Appendices B.3a and B.3b).  
66 For earlier applications of this approach see Rotnitzky & Wypij (1994) and Heagerty & Kurland (2001). 
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In the cumulative 1-PL model, which is the special case of the graded response 
model with all discrimination parameters fixed at one, the probability of person 𝑗 scoring 
𝑘 on item 𝑖,𝑃!"# , can be expressed as67: 

𝑃!"# =
!"#(!!!!!")

!!!"#(!!!!!")
− !"#(!!!!!"!!)

!!!"#(!!!!!"!!)
,      𝑘 = 0,1,… ,𝑀!.                         (22) 

where 𝜃! , and 𝛾!" are the ability of person 𝑗 and the difficulty of step k of item 𝑖, 
respectively. 
For binary items, both of the models above simplify to the Rasch model: 

𝑃!"! =
!"# (!!!!!)

!!!"# (!!!!!)
,                                                          (23) 

or 

 logit 𝑃!"! = 𝜏!"! = 𝜃! − 𝛿!,                                        (24) 

in which 𝜃!and 𝛿! are the ability of person 𝑗 and the difficulty of item 𝑖, respectively.  
To investigate the data expansion for the cumulative 1-PL model, we generated 

data from this model for three hypothetical items with three categories in each, with step 
parameters 𝛾!! = −2.0, 𝛾!" = −1.0; 𝛾!" = 0.0, 𝛾!! = 0.5; 𝛾!" = −1.0, 𝛾!" = 1.0, and a 
variance for the latent variable, 𝜓 = 1.0. Note that in this model, step parameters within a 
given item should be ordered with 𝛾!! < 𝛾!! < ⋯ < 𝛾!!!.

68 
Using the generated “population” data (with the cumulative 1-PL model as the 

true model), we applied data expansion technique by using probabilities of each response 
pattern as weights.  

Results from the population study with the cumulative 1-PL model are shown in 
Table 2.1 below. As can be seen from the table, by using the data expansion technique on 
the population data, we were able to recover parameter estimates of the cumulative 1-PL 
model using both marginal and conditional ML methods. The third column provides 
“population” standard errors—these are standard errors for the sample size of 1. To 
obtain the standard error had the sample size been, say, 1000, we would have to divide 
the respective standard error with 1000. These standard errors for N=1000 are provided 
with the obtained point estimates for the marginal ML method (for both Tables 2.1 and 
2.2).  

Note that data expansion with conditional ML method fixes the step parameter for 
the first item at zero. Thus, parameters from the “True” model were adjusted to have first 
two parameters constrained at zero.  

 
 
 

                                            
67 See for instance Samejima (1997) for the 2-PL version of the model. Although I call the cumulative 1-
PL model as the cumulative Rasch model in the first and third chapters of this dissertation, some might 
disagree that such a model “qualifies” as the Rasch model.	
68 Ordering of the threshold parameters in cumulative 1-PL and partial credit models has been the topic of 
recent discussions (Adams, Wu, & Wilson, 2012; Andrich, 2013).	
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      Table 2.1. Population parameter estimates for the cumulative 1-PL model. 
		 		 marginal	ML	 	 conditional	ML					
Parameters	 True	 expanded	 population	SE	 True	(adj.)	 expanded	

𝛾!!	 -2.0	 -2.00	(0.11)	 3.31	 	0.0	 0.00	
𝛾!"	 -1.0	 -1.00	(0.08)	 2.65	 	0.0	 0.00	
𝛾!"	 	0.0	 	0.00	(0.08)	 2.42	 -2.0	 -2.00	(0.78)	
𝛾!!	 	0.5	 	0.50	(0.08)	 2.48	 -1.5	 -1.50	(0.70)	
𝛾!"	 -1.0	 -1.00	(0.08)	 2.65	 -1.0	 -1.00	(0.77)	
𝛾!"	 	1.0	 	1.00	(0.08)	 2.65	 -2.0	 -2.00	(0.77)	
𝜓	 	1.0	 	1.00	(0.13)	 4.12	 	1.0	

	Note: Robust standard errors for the marginal ML were obtained by converting probability weights from 
the population data into frequency weights by multiplying each probability (i.e., “frequency” of each 
response pattern) by 1000 (i.e., N=1000). Conditional ML estimates using data expansion with cluster 
robust standard errors were obtained using clogit command in Stata. 

To investigate the data expansion for the partial credit model, we generated data 
from the PCM model for three hypothetical items with three categories in each, with step 
parameters: 𝛽!! = 0.5, 𝛽!" = 0.2; 𝛽!" = 0.0, 𝛽!! = 1.0; 𝛽!" = 0.6, 𝛽!" = 0.2, and a 
variance for the latent variable, 𝜓 = 1.0.  

Results from the population study with the partial credit model are shown in 
Table 2.2 below. Note that estimates obtained from the data expansion using marginal 
ML method are inconsistent for the reasons detailed in Section 2.2.4. We can observe 
from Table 2.2 that parameters for the first step within each of the three items 
(𝛽!!,𝛽!",𝛽!") are underestimated while parameters for the second step within each item 
(𝛽!",𝛽!!,𝛽!") are overestimated. This is because the mean of the latent variable of those 
who “pass” the second threshold in each item is higher than the mean of those who do not 
pass the second threshold. As a result, first step parameters appear “more difficult” than 
they actually are (i.e., estimated “easiness” is lower than the true “easiness”). Similarly, 
second step parameters appear “less difficult” than the true estimates (estimated 
“easiness” is higher than the true “easiness”). 

Table 2.2. Population parameter estimates for the partial credit model. 
		 		 Marginal	ML	 	 			conditional	ML	
Parameters	 True	 expanded	 population	SE	 True	(adj.)	 expanded	

𝛽!!	 0.5	 0.09	(0.10)	 3.09	 0.0	 0.00	
𝛽!"	 0.2	 0.46	(0.09)	 2.76	 0.0	 0.00	
𝛽!"	 0.0	 	-0.52	(0.11)	 3.49	 -0.5	 	-0.50	(0.80)	
𝛽!!	 1.0	 1.28	(0.10)	 3.19	 	0.8	 0.80	(0.86)	
𝛽!"	 0.6	 0.19	(0.10)	 3.12	 0.1	 0.10	(0.82)	
𝛽!"	 0.2	 0.44	(0.09)	 2.73	 0.0	 0.00	(0.95)	
𝜓	 1.0	 0.73	(0.15)	 4.82	 1.0	

	Note: Robust standard errors for the marginal ML were obtained by converting probability weights from 
the population data into frequency weights by multiplying each probability (i.e., “frequency” of each 
response pattern) by 1000. CML estimates using data expansion with cluster robust standard errors 
were obtained using clogit command in Stata. 
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For both cumulative 1-PL and partial credit models, data expansion technique 
provides consistent estimates. Stata code for the simulation of the population data is 
provided in Appendices B.3a and B.3b for both cumulative and adjacent-category logit 
models. 

We also confirmed that the data expansion for both cumulative and adjacent-
category logit models perfectly recovers the parameters when there is no latent variable 
or random effect (See Appendices B.3c and B.3d for the population study code). 

2.4  Example: HADS depression dataset 

The demo dataset contains responses of 201 oncological patients to 14 ordinal 
polytomous items that measure anxiety (7 items) and depression (7 items), according to 
the Hospital Anxiety and Depression Scale questionnaire developed by Zigmond & 
Snaith (1983). The data is publicly available (see Appendix B.3e for details) and was 
collected by Newell, Sanson-Fisher, Girgis, & Ackland, 1999, within a larger cross-
sectional study, which in addition to assessing anxiety and depression aimed to assess the 
prevalence and predictors of physical symptoms and perceived needs among oncological 
patients of the academic outpatient medical oncology department (see Newell et al, 
1999). The research was conducted in general medical outpatient clinics on adults of both 
genders between the ages of 16 and 65 who suffered from a wide variety of complaints 
and illnesses. 

For this demo example, only items measuring depression from the HADS 
instrument were selected (see Appendix B.5). All items have 4 response categories: the 
minimum value 0 corresponds to a low level of depression, whereas the maximum value 
3 corresponds to a high level of depression. 

Estimates of item step parameters for the cumulative1-PL model (i.e., 1-PL 
version of the graded response model) are shown in the Table 2.3 below.  

The first column in Table 2.3 represents estimates obtained using data expansion 
method with cluster-robust standard errors. The second column in Table 2.3 represents 
estimates for the cumulative Rasch model using cumulative logit link (i.e., exact method, 
benchmark). 

The third column in Table 2.3 represents estimates from the exact method with 
rescaled step parameters. In particular, to be able to compare to the conditional ML 
method, we adjusted estimates obtained from the cumulative 1-PL by setting three step 
parameters of the first item to zero (by subtracting 𝛾!!, 𝛾!", and 𝛾!" from 𝛾!!, 𝛾!!, and 𝛾!! 
respectively). 

The fourth column in Table 2.3 represents estimates obtained using data 
expansion method with amalgamated conditional ML estimates and cluster-robust 
standard errors.  

As we see from the Table 2.3 above, data expansion technique worked well to 
obtain estimates for the cumulative 1-PL model. 

 

 

 



 72 

Table 2.3. Estimates for the cumulative 1-PL (1-PL graded response) model using 
depression items in the HADS instrument 

	
Marginal	MLE	 Conditional	MLE	

parameters	
	Data	

expansion	
exact	(1-PL	

GRM)	
adjusted	
exact	

Data	
expansion	

𝛾!! -0.88	(0.29)	 -0.89	(0.21)	 0.00	 0.00	
𝛾!" 2.83	(0.33)	 2.82	(0.28)	 0.00	 0.00	
𝛾!" 4.32	(0.48)	 4.31	(0.42)	 0.00	 0.00	
𝛾!"	 -0.23	(0.28)	 -0.27	(0.20)	 0.62	 	0.62	(0.24)	
𝛾!!	 1.15	(0.29)	 1.04	(0.21)	 -1.79	 -1.72	(0.31)	
𝛾!"	 3.19	(0.35)	 3.10	(0.30)	 -1.21	 -1.18	(0.42)	
𝛾!"	 -2.01	(0.32)	 -2.05	(0.24)	 -1.16	 -1.07	(0.33)	
𝛾!"	 1.15	(0.28)	 1.09	(0.21)	 -1.73	 -1.72	(0.30)	
𝛾!!	 3.71	(0.41)	 3.69	(0.35)	 -0.62	 -0.63	(0.45)	
𝛾!"	 -3.48	(0.43)	 -3.54	(0.33)	 -2.65	 -2.51	(0.47)	
𝛾!"	 -0.14	(0.29)	 -0.16	(0.20)	 -2.98	 -3.02	(0.35)	
𝛾!"	 3.43	(0.39)	 3.40	(0.32)	 -0.91	 -0.92	(0.58)	
𝛾!"	 0.37	(0.27)	 0.43	(0.21)	 1.32	 1.22	(0.29)	
𝛾!"	 2.65	(0.34)	 2.61	(0.27)	 -0.21	 -0.19	(0.39)	
𝛾!"	 4.18	(0.44)	 4.06	(0.39)	 -0.25	 -0.14	(0.60)	
𝛾!"	 -0.46	(0.29)	 -0.48	(0.20)	 0.41	 0.40	(0.29)	
𝛾!"	 2.43	(0.31)	 2.40	(0.26)	 -0.43	 -0.42	(0.35)	
𝛾!"	 4.32	(0.45)	 4.29	(0.42)	 -0.02	 0.00	(0.61)	
𝛾!"	 -1.16	(0.31)	 -1.19	(0.21)	 -0.29	 -0.27	(0.36)	
𝛾!"	 1.11	(0.28)	 1.04	(0.21)	 -1.78	 -1.75	(0.33)	
𝛾!"	 4.67	(0.51)	 4.60	(0.47)		 0.29	 0.34	(0.63)	

Note: Estimates for the exact method was obtained using clogit command in Stata. Code the exact and data 
expansion methods is provided in Appendix B.3e. Standard errors are larger than expansion method. 
Robust standard errors are provided in column 3 and they never differ from model-based standard 
errors more than 0.02. 

Estimates of item step parameters for the partial credit model are shown in the 
Table 2.4. The first column in Table 2.4 shows conditional ML estimates obtained using 
data expansion method for partial credit model. The second column shows conditional 
ML estimates for the partial credit model using specialized software for polytomous 
items (eRm package in R; ). Third column in Table 2.4 shows adjusted values of the 
exact methods similar to that of Table 2.3 (adjusting for the step parameters of the first 
item constrained to zero). 
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Table 2.4. Conditonal ML estimates of the item location parameters using the partial 
credit model applied on depression items in the HADS instrument. 

parameters	 Expansion	 Exact	PCM	
Adjusted	
exact	PCM	

𝛽!! 0.00	 0.00	 0	
𝛽!" 0.00	 3.18	(0.36)	 0	
𝛽!" 0.00	 2.80	(0.51)	 0	
𝛽!"	 1.20	(0.32)	 1.09	(0.26)	 1.09	
𝛽!!	 -2.58	(0.42)	 1.09	(0.29)	 -2.09	
𝛽!"	 -0.72	(0.56)	 2.61	(0.36)	 -0.19	
𝛽!"	 -0.98	(0.38)	 -0.86	(0.27)	 -0.86	
𝛽!"	 -1.92	(0.34)	 1.62	(0.26)	 -1.56	
𝛽!!	 -0.22	(0.55)	 3.10	(0.39)	 0.30	
𝛽!"	 -2.25	(0.51)	 -2.08	(0.37)	 -2.08	
𝛽!"	 -3.09	(0.39)	 0.56	(0.24)	 -2.62	
𝛽!"	 -0.28	(0.69)	 3.23	(0.35)	 0.43	
𝛽!"	 1.44	(0.31)		 1.24	(0.24)	 1.24	
𝛽!"	 -0.79	(0.48)	 2.61	(0.34)	 -0.57	
𝛽!"	 -1.05	(0.98)	 2.84	(0.49)	 0.04	
𝛽!"	 0.42	(0.31)	 0.45	(0.24)	 0.45	
𝛽!"	 -0.64	(0.43)	 2.59	(0.31)	 -0.58	
𝛽!"	 0.09	(0.82)	 3.13	(0.49)	 0.33	
𝛽!"	 -0.04	(0.40)	 0.04	(0.25)	 0.04	
𝛽!"	 -2.11	(0.38)	 1.30	(0.26)	 -1.88	
𝛽!"	 1.08	(0.78)	 4.12	(0.49)	 1.32	

Note: Estimates for the exact method was obtained using clogit command in Stata. Code for the 
exact and data expansion methods is provided in Appendix B.3e. 

Notice that due to the small sample size (N=201), data expansion for the partial 
credit model didn’t work as well as in the cumulative 1-PL model. As was shown in the 
population study, estimates from the data expansion method are consistent and will hence 
be closer to the estimates from the exact method as the sample size increases. Next we 
analyze the data using the rating scale model (RSM), which has less number of 
parameters. 

Recall that the rating scale model is a special case of PCM, which assumes that 
the threshold parameters across the items are constrained to be the same (see Appendix 
B.2 for the graphical illustration). By slightly modifying the expression for the PCM 
model (Equation 19), the RSM can be expressed 

𝑃!"# =
!"# !!!(!!!!!)

!
!!!

!"# !!!(!!!!!)!
!!!

!!
!!!

,     𝑘 = 0,1,… ,𝑀!.                           (24) 

Similar to the PCM, data expansion with the conditional ML method can be 
applied to the data to approximate the estimates from the RSM model. However, step 
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parameters across all items (which are equal across items in the RSM model) are not 
estimated when using data expansion technique. 

Item location parameters from the rating scale model for the items in the demo 
dataset (using conditional ML method for both exact and data expansion methods) are 
shown in the Table 25 below. Notice that, unlike estimates in the previous table (Table 
2/4, PCM), estimates from the data expansion method in Table 2.5 are closer to the 
estimates from the exact method. This is because the RSM has fewer  parameters and 
thus the data expansion method is  more efficient than for the unconstrained PCM. 

Table 2.5. Conditonal ML estimates of the item location parameters using the rating scale 
model applied on depression items in the HADS instrument. 

parameters 
Exact	

method	
Data	

expansion	
𝛽! -0.32	(0.15)	 -0.25	(0.20)	
𝛽! -0.83	(0.15)	 -0.96	(0.18)	
𝛽! -1.53	(0.16)	 -1.82	(0.22)	
𝛽! 	0.50	(0.16)	 	0.61	(0.22)	
𝛽! 	0.08	(0.16)	 	0.09	(0.19)	
𝛽! -0.53	(0.15)	 -0.57	(0.22)	

Note: Location of the first item is constrained to zero for the identification of the model. 
Conditional ML estimates for the exact method was obtained using eRm package in R. Data 
expansion estimates were obtained using Stata (see Appendix B.3e for the code). 

2.5  Discussion 

In choosing among the three coding schemes mentioned above, researchers might 
prefer the one that is easiest to interpret, or more simply, the one that is most often used 
in their field. For instance, adjacent-category logits model is mostly used in educational 
measurement, while cumulative logits model is commonly used in biostatistics and 
economics, and continuation-ratio logits model is often used in biostatistics and 
sociology. However, the choice of which model to use ought be based on the specific 
research question, research design, and a careful consideration of the underlying response 
processes. 

Indeed, if the focus is on investigating the odds of advancing beyond a particular 
level conditional on reaching that level, a continuation ratio should be preferred. If, on 
the other hand, the focus in on investigating odds of being at or beyond a particular level, 
then a cumulative logits model would be preferred. And similarly with a focus on odds of 
being at a higher category of two adjacent categories, then the adjacent-category logits 
model would be a suitable option. When the ordering of the category parameters is the 
matter of investigation, however, then adjacent-category logit model will likely be most 
appropriate since it does not have order constraints69, as is the case with the cumulative 
logit model. Statistical tests can be conducted by comparing if more parsimonious model 
(adjacent-category) fits as good as baseline category logit model (Tuerlinckx & Wang, 

                                            
69	Though not requirement of the rating scale or partial credit model, ordering of the threshold parameters 
has been the topic of recent discussions (Adams, Wu, & Wilson, 2012; Andrich, 2013).	
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2004). Another direction of research might be in developing methods for checking 
assumptions and goodness of fit of the polytomous IRT models. 

The data expansion techniques discussed in this chapter are useful tools, in 
particular when used on the datasets with larg sample size. These techniques can be 
easily employed when the software that allows the exact methods is not available. One 
can also use these techniques to obtain a version of the conditional ML estimates with the 
cumulative logit model. Using the population data, we showed that results obtained from 
the data expansion are asymptotically correct. We demonstrated how to apply data 
expansion for both marginal and conditional ML methods. We also explained why one 
should not use data expansion for the partial credit model with marginal ML method. 
Results obtained from the data expansion technique are more reliable when the sample 
size is large. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 76 

Appendix B.1: Continuation-ratio model with decreasing order. 

Recall that continuation-ratio logit model can be in either increasing or decreasing order 
of categories. The former was presented in Figures 2.1 and 2.2. Below I present the latter, 
in particular: 

!(!!!)
!(!!!)

= 𝐻!, 𝑠 < 𝑆, 

 
Figure 2.4. Continuation-ratio logit model with decreasing order. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 77 

Appendix B.2: Hypothetical estimates from the partial credit and rating scale models.  
 
Assume four items with four categories ("strongly disagree", "disagree", "agree", 
"strongly agree").  
 

 
Figure 2.5. Hypothetical estimates of the three step parameters for each of the four items 
in the partial credit model. Note that distances between points are allowed to vary within 
each item. 
 
 

 
Figure 2.6. Hypothetical estimates of the three step parameters across four items. Note 
that distances between the points within each item is fixed across items. 
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Appendix B.3a: Population study: STATA code for data expansion for cumulative 
logit model 

**** Graded-response model 
* 3 items, 3 categories 
global nitem = 3 
global ncat = 3 
* generate all possible response patterns 
clear 
set obs 1 
generate pattern=1 
forvalues i=1/$nitem{ 
 expand $ncat 
 by pattern, sort: generate y`i'=_n 
 replace pattern=_n 
} 
reshape long y, i(pattern) j(item) 
* make up model parameters & calculate log-likelihood contributions for 
* each pattern 
tabulate item, generate(i_) 
matrix a=(-2, -1, 0, .5, -1, 1, 1) 
gllamm y, i(pattern) link(ologit ologit ologit) lv(item) adapt nip(30) 
/// from(a) copy eval 
gllapred loglik, ll 
* calculate probabilities of response patterns 
generate double prob = exp(loglik) 
********* analyze model by MLE for population data 
generate double wt2 = prob 
gllamm y, i(pattern) link(ologit ologit ologit) lv(item) adapt nip(30) 
/// weight(wt) 
****** analyze by data expansion for population data 
save gradedp, replace 
* >1 
use gradedp, clear 
generate set=1 
generate d = y>1 
gllamm d i_*, nocons i(pattern) link(logit) fam(binom) adapt nip(30) 
/// weight(wt) 
save graded_g1, replace 
* amalgamated CML 
clogit d i_2 i_3 [pweight=prob], group(pattern) 
 
* >2 
use gradedp, clear 
generate set=2 
generate d = y>2 
gllamm d i_*, nocons i(pattern) link(logit) fam(binom) adapt nip(30) 
/// weight(wt) 
* amalgamated CML 
clogit d i_2 i_3 [pweight=prob], group(pattern) 
 
**** pool datasets 
append using graded_g1 
forvalues i=1/3 { 
 generate i_`i'_2 = i_`i' *(set==1) 
 generate i_`i'_3 = i_`i' *(set==2) 
 drop i_`i' 



 79 

} 
egen pattset = group(pattern set) 
gllamm d i_*, nocons i(pattset) link(logit) fam(binom) adapt nip(30) 
/// weight(wt) 
* amalgamated CML 
clogit d i_2* i_3* [pweight=prob], group(pattset) vce(cluster pattern) 
* to obtain robust standard errors 
generate freq = round(1000*prob, 1) 
drop wt2 
generate double wt2 = freq 
gllamm d i_*, nocons i(pattset) link(logit) fam(binom) adapt nip(30) 
weight(wt) robust 
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Appendix B.3b: Population study: STATA code for data expansion for adjacent-
category logit model 

**** partial credit model 
* 3 items, 3 categories 
global nitem = 3 
global ncat = 3 
* generate all possible response patterns 
clear 
set obs 1 
generate pattern=1 
forvalues i=1/$nitem{ 
 expand $ncat 
 by pattern, sort: generate y`i'=_n 
 replace pattern=_n 
} 
reshape long y, i(pattern) j(item) 
* expand data for estimation using gllamm 
generate pers_it = _n 
expand $ncat 
by pers_it, sort: generate r=_n 
forvalues i=1/$nitem{ 
 forvalues c=2/$ncat { 
  generate i_`i'_`c'= (r>=`c')*(item==`i') 
 } 
} 
generate d = (y==r) 
* make up model parameters & calculate log-likelihood contributions for 
* each pattern 
matrix a=(0.5, 0.2, 0, 1.0, 0.6, 0.2, 1) 
eq abil: r 
gllamm r i_* , nocons i(pattern) link(mlogit) expanded(pers_it d o) /// 
eqs(abil) adapt nip(30) from(a) copy eval trace 
gllapred loglik, ll 
* calculate probabilities of response patterns 
generate double prob= exp(loglik) 
********* analyze model by MLE for population data  
generate double wt2 = prob 
gllamm r i_* , nocons i(pattern) link(mlogit) expanded(pers_it d o) /// 
eqs(abil) adapt nip(30) weight(wt)  
* without random effects 
gllamm r i_* , nocons i(pattern) link(mlogit) expanded(pers_it d o) /// 
eqs(abil) init nip(30) weight(wt) 
clogit d i_* [pweight=prob], group(pers_it)  
* check effect of rounding 
generate freq=round(10000*prob,1) 
clogit d i_* [fweight=freq], group(pers_it) 
drop freq 
***** make unexpanded data 
drop i_*  
/* keep just the "data" */ 
keep if d==1 
drop d r 
save pcreditp, replace 
****** analyze by data expansion for population data 
* 2 versus 1 
use pcreditp, clear 
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keep if y==1|y==2 
generate set=1 
generate d = y==2 
tabulate item, generate(i_) 
gllamm d i_*, nocons i(pattern) link(logit) fam(binom) adapt nip(30) 
/// trace weight(wt) 
save precredit12, replace 
* without random effect 
logit d i_* [pweight=prob], nocons 
* fixed-effects 
clogit d i_2 i_3 [pweight=prob], group(pattern) 
* 3 versus 2 
use pcreditp, clear 
keep if y==2|y==3 
generate set=2 
generate d = y==3 
tabulate item, generate(i_) 
gllamm d i_*, nocons i(pattern) link(logit) fam(binom) adapt nip(30) 
/// trace weight(wt) 
save precredit23, replace 
* without random effect 
logit d i_* [pweight=prob], nocons 
* fixed-effects 
clogit d i_2 i_3 [pweight=prob], group(pattern) 
***** pool datasets 
use precredit12, clear 
append using precredit23 
forvalues i=1/3 { 
 generate i_`i'_2 = i_`i' *(set==1) 
 generate i_`i'_3 = i_`i' *(set==2) 
 drop i_`i' 
} 
egen pattset = group(pattern set) 
gllamm d i_*, nocons i(pattset) link(logit) fam(binom) adapt nip(30) 
/// trace weight(wt) 
* without random effect 
logit d i_* [pweight=prob], nocons 
* fixed-effects 
clogit d i_2* i_3* [pweight=prob], group(pattset) vce(cluster pattern) 
generate freq = round(10000*prob, 1) 
clogit d i_1* i_3* [pweight=prob], group(pattset) vce(cluster pattern) 
disp _se[i_1_2]*sqrt(18/10000) 
clogit d i_1* i_3* [fweight=freq], group(pattset) vce(cluster pattern) 
* expand data by frequency weights 
* 2 versus 1 
use pcreditp, clear 
drop pers_it 
reshape wide y, i(pattern) j(item) 
generate freq = round(10000*prob, 1) 
expand freq 
generate id=_n 
reshape long y, i(id) j(item) 
save pcredit_exp, replace 
keep if y==1|y==2 
generate set=1 
generate d = y==2 
tabulate item, generate(i_) 
save junk, replace 
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* 3 versus 2 
use pcredit_exp, clear 
keep if y==2|y==3 
generate set=2 
generate d = y==3 
tabulate item, generate(i_) 
append using junk 
forvalues i=1/3 { 
 generate i_`i'_2 = i_`i' *(set==1) 
 generate i_`i'_3 = i_`i' *(set==2) 
 drop i_`i' 
} 
egen idset = group(id set) 
clogit d i_1* i_3* , group(idset) vce(cluster id) 
drop wt2 
drop freq 
generate freq = round(1000*prob, 1) 
generate double wt2 = freq 
gllamm d i_*, nocons i(pattset) link(logit) fam(binom) adapt nip(30) 
trace weight(wt) robust 
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Appendix B.3c: Population study: STATA code for data expansion for cumulative 
logit model without random effect 

**** cumulative logit model 
* 3 items, 3 categories 
global nitem = 3 
global ncat = 3 
* generate all possible response patterns 
clear 
set obs 1 
generate pattern=1 
forvalues i=1/$nitem{ 
 expand $ncat 
 by pattern, sort: generate y`i'=_n 
 replace pattern=_n 
} 
reshape long y, i(pattern) j(item) 
* make up model parameters & calculate log-likelihood contributions for 
each pattern 
tabulate item, generate(i_) 
matrix a=(-2, -1, 0, .5, -1, 1, 0) 
gllamm y, i(pattern) link(ologit ologit ologit) lv(item) adapt nip(30) 
from(a) copy eval 
gllapred loglik, ll 
* calculate probabilities of response patterns 
generate double prob = exp(loglik) 
********* analyze model by MLE for population data 
generate double wt2 = prob 
gllamm y, i(pattern) link(ologit ologit ologit) lv(item) adapt nip(30) 
weight(wt) 
****** analyze by data expansion for population data 
save gradedp, replace 
* >1 
use gradedp, clear 
generate set=1 
generate d = y>1 
save graded_g1, replace 
logit d i_2 i_3 [pweight=prob] 
* >2 
use gradedp, clear 
generate set=2 
generate d = y>2 
logit d i_2 i_3 [pweight=prob] 
**** pool datasets 
append using graded_g1 
forvalues i=1/3 { 
 generate i_`i'_2 = i_`i' *(set==1) 
 generate i_`i'_3 = i_`i' *(set==2) 
 drop i_`i' 
} 
egen pattset = group(pattern set) 
logit d i_1* i_2* i_3* [pweight=prob],  vce(cluster pattern) 
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Appendix B.3d: Population study: STATA code for data expansion for adjacent-
category logit model without random effect 

**** adjacent-category logit 
* 3 items, 3 categories 
global nitem = 3 
global ncat = 3 
* generate all possible response patterns 
clear 
set obs 1 
generate pattern=1 
forvalues i=1/$nitem{ 
 expand $ncat 
 by pattern, sort: generate y`i'=_n 
 replace pattern=_n 
} 
reshape long y, i(pattern) j(item) 
* expand data for estimation using gllamm 
generate pers_it = _n 
expand $ncat 
by pers_it, sort: generate r=_n 
forvalues i=1/$nitem{ 
 forvalues c=2/$ncat { 
  generate i_`i'_`c'= (r>=`c')*(item==`i') 
 } 
} 
generate d = (y==r) 
* make up model parameters & calculate log-likelihood contributions for 
each pattern 
matrix a=(0.5, 0.2, 0, 1.0, 0.6, 0.2, 0) 
eq abil: r 
gllamm r i_* , nocons i(pattern) link(mlogit) expanded(pers_it d o) 
eqs(abil) adapt nip(30) from(a) copy eval trace 
gllapred loglik, ll 
* calculate probabilities of response patterns 
generate double prob= exp(loglik) 
* without random effects (exact method) 
gllamm r i_* , nocons i(pattern) link(mlogit) expanded(pers_it d o) 
eqs(abil) init nip(30) weight(wt) 
***** make unexpanded data 
drop i_* 
 /* keep just the "data" */ 
 keep if d==1 
drop d r 
save pcreditp, replace 
****** analyze by data expansion for population data 
* 2 versus 1 
use pcreditp, clear 
keep if y==1|y==2 
generate set=1 
generate d = y==2 
tabulate item, generate(i_) 
save precredit12, replace 
* without random effect 
logit d i_* [pweight=prob], nocons 
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* 3 versus 2 
use pcreditp, clear 
keep if y==2|y==3 
generate set=2 
generate d = y==3 
tabulate item, generate(i_) 
save precredit23, replace 
* without random effect 
logit d i_* [pweight=prob], nocons 
***** pool datasets 
use precredit12, clear 
append using precredit23 
forvalues i=1/3 { 
 generate i_`i'_2 = i_`i' *(set==1) 
 generate i_`i'_3 = i_`i' *(set==2) 
 drop i_`i' 
} 
egen pattset = group(pattern set) 
* without random effect 
logit d i_* [pweight=prob], nocons 
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Appendix B.3e: STATA code for HADS dataset (depression items only) 

# To obtain HADS dataset, use R code provided below 
# make sure that working directory in both R and STATA are in the same 
folder 
# to obtain the HADS dataset from R, use 
# install.packages("MultiLCIRT") 
library(MultiLCIRT) 
data(hads) 
hads_d <- hads[,c(1,3,4,5,9,13,14)] 
write.csv(hads_d, file="hads_d.csv") 
****** STATA 
***** cumulative 1-PL model using HADS dataset 
insheet using hads_d.csv, clear 
drop v1 
rename item1 ta1 
rename item3 ta2 
rename item4 ta3 
rename item5 ta4 
rename item9 ta5 
rename item13 ta6 
rename item14 ta7 
gen one=1 
collapse(sum) wt2=one, by(ta1-ta7) 
gen id = _n 
reshape long ta, i(id) j(item) 
drop if ta==. 
tab item, gen(i_) 
gllamm ta, i(id) weight(wt) l(ologit ologit ologit ologit ologit ologit 
ologit) lv(item) f(binom) adapt nip(30) 
**** data expansion  
insheet using hads_d.csv, clear 
drop v1 
rename item1 ta1 
rename item3 ta2 
rename item4 ta3 
rename item5 ta4 
rename item9 ta5 
rename item13 ta6 
rename item14 ta7 
gen one=1 
collapse(sum) wt2=one, by(ta1-ta7) 
gen id = _n 
reshape long ta, i(id) j(item) 
drop if ta==. 
tab item, gen(i_) 
save hads_0, replace 
* >0 
use hads_0, clear 
generate set=1 
generate d = ta>0 
gllamm d i_*, nocons i(id) link(logit) fam(binom) adapt nip(50) 
weight(wt) 
save hads_g1, replace 
* >1 
use hads_0, clear 
generate set=2 
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generate d = ta>1 
gllamm d i_*, nocons i(id) link(logit) fam(binom) adapt nip(50)  
weight(wt) 
save hads_g2, replace 
* >2 
use hads_0, clear 
generate set=3 
generate d = ta>2 
gllamm d i_*, nocons i(id) link(logit) fam(binom) adapt nip(50) 
weight(wt) 
* pool datasets 
append using hads_g1 
append using hads_g2 
forvalues i=1/7 { 
 generate i_`i'_2 = i_`i' *(set==1) 
 generate i_`i'_3 = i_`i' *(set==2) 
 generate i_`i'_4 = i_`i' *(set==3) 
 drop i_`i' 
} 
egen idset = group(id set) 
gllamm d i_*, nocons i(idset) link(logit) fam(binom) adapt nip(50) 
weight(wt) 
* to obtain cluster-robust standard errors 
gllamm, cluster(id) 
**** data expansion to obtain amalgamated conditional ML estimates 
* >0 
use hads_0, clear 
generate set=1 
generate d = ta>0 
clogit d i_2 i_3 i_4 i_5 i_6 i_7 [fweight=wt2], group(id) vce(cluster 
id) 
save hads_g1_cond, replace 
* >1 
use hads_0, clear 
generate set=2 
generate d = ta>1 
clogit d i_2 i_3 i_4 i_5 i_6 i_7 [fweight=wt2], group(id) vce(cluster 
id) 
save hads_g2_cond, replace 
* >2 
use hads_0, clear 
generate set=3 
generate d = ta>2 
clogit d i_2 i_3 i_4 i_5 i_6 i_7 [fweight=wt2], group(id) vce(cluster 
id) 
* pool datasets 
append using hads_g1_cond 
append using hads_g2_cond 
forvalues i=1/7 { 
 generate i_`i'_2 = i_`i' *(set==1) 
 generate i_`i'_3 = i_`i' *(set==2) 
 generate i_`i'_4 = i_`i' *(set==3) 
 drop i_`i' 
} 
egen idset = group(id set) 
clogit d i_2* i_3* i_4* i_5* i_6* i_7* [fweight=wt2], group(idset) 
vce(cluster id) 
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***** partial credit model using HADS dataset 
insheet using hads_d.csv, clear 
drop v1 
rename item1 ta1 
rename item3 ta2 
rename item4 ta3 
rename item5 ta4 
rename item9 ta5 
rename item13 ta6 
rename item14 ta7 
gen one=1 
collapse(sum) wt2=one, by(ta1-ta7) 
gen id = _n 
reshape long ta, i(id) j(item) 
*drop if ta==. 
save hads0, replace 
forvalues i=0/2 { 
 use hads0, clear 
 generate set = `i' 
 local ip = `i' + 1 
 keep if ta==`i'|ta==`ip' 
 generate d=ta==`ip' 

clogit d i.item [fweight=wt2], group(id) 
 save hads`i'_`ip', replace 
} 
use hads0_1, clear 
append using hads1_2 
append using hads2_3 
sort id item ta set 
tab item, gen(i) 
tab set, gen(s) 
forvalues k=1/7 { 
 forvalues l=1/3 { 
generate i`k'_s`l' = i`k'*s`l' 
 } 
} 
egen idset = group(id set) 
gllamm d i1_* i2_* i3_* i4_* i5_* i6_* i7_*, nocons i(idset) weight(wt) 
link(logit) fam(binom) nip(30) 
**** conditional ML 
*** partial credit model 
clogit d i2_* i3_* i4_* i5_* i6_* i7_* [fweight=wt2], group(idset) 
vce(cluster id) 
*** rating scale model 
clogit d i2 i3 i4 i5 i6 i7 [fweight=wt2], group(idset) vce(cluster id) 
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Appendix B.4: Latent response formulation and relationship between three 
polytomous models 

Rasch model, expressed as (and discussed in Chapter 1 of the dissertation): 

𝑃 𝑌 = 0 𝜃 = !
!!!!!!

, 

𝑃 𝑌 = 1 𝜃 = !!!!

!!!!!!
, 

can be re-expressed using the integral notation, as: 

𝑃 𝑌 = 0 𝜃 = !!!(!!!)

(!!!(!!!)!!)!
𝑑𝑥

!

!!
, 

𝑃 𝑌 = 1 𝜃 = !!!(!!!)

(!!!(!!!)!!)!
𝑑𝑥

!

!
, 

in which we can see that this formulation is consistent with the so called “latent 
response” formulation, in which the probability of obtaining “1” represents the area 
above 0 and probability of obtaining “0” represents the area below 0. Below I present 
extension of this idea to the trichotomous item. 

Cumulative logit model for ordinal items 

Among the polytomous models, the cumulative 1-PL model is unique in that it 
can be expressed using the latent response formulation similar to the binary Rasch model. 
Assume a trichotomous item with two step parameters 𝛾! and 𝛾! with the constraint of 
𝛾! < 𝛾!. Further assume that 𝑏! and 𝑏! are −∞ and +∞ respectively. Then, category-
specific probabilities (see for instance Samejima, 1997, for the 2-PL version) are: 

𝑃 𝑌 = 0 𝜃 =
𝑒(!(!!!!)) − 𝑒(!(!!!!))

(𝑒(!(!!!!)) + 1) ∗ (𝑒(!(!!!!)) + 1)
 

, 

𝑃 𝑌 = 1 𝜃 =
𝑒(!(!!!!)) − 𝑒(!(!!!!))

(𝑒(!(!!!!)) + 1) ∗ (𝑒(!(!!!!)) + 1)
 

, 

𝑃 𝑌 = 2 𝜃 =
𝑒(!(!!!!)) − 𝑒(!(!!!!))

(𝑒(!(!!!!)) + 1) ∗ (𝑒(!(!!!!)) + 1)
 

, 
Expressions above can be re-expressed in the integral notation using the the latent-
response formulation. We, then, obtain: 

𝑃 𝑌 = 0 𝜃 =
𝑒!!((!!!!)!(!!!!))

(𝑒!!((!!!!)!(!!!!)) + 1)!
𝑑𝑥

!!!!

!!

 

, 
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𝑃 𝑌 = 1 𝜃 =
𝑒!!((!!!!)!(!!!!))

(𝑒!!((!!!!)!(!!!!)) + 1)!
𝑑𝑥

!!!!

!!!!

 

, 

𝑃 𝑌 = 2 𝜃 =
𝑒!!((!!!!)!(!!!!))

(𝑒!!((!!!!)!(!!!!)) + 1)!
𝑑𝑥

!

!!!!

 

. 
Note that for all of the three expressions above, the only part of the expression that varies 
depending on the response are the upper and lower limits of the integral expressions. 

In order to visualize how all three of the polytomous models discussed in this 
chapter are related, we can graph category characteristic curves for the trichotomous item 
for each of three polytomous models. In the Figure 2.7 below, I assume that the two step 
parameters are −1 and 1 for all three models. 

Figure 2.7. Ordinal contrasts for the four-category ordinal variable. 

We can see that for the cumulative model, step parameters are locations on the scale (x-
axis) on which category-specific probability functions intersect with the 0.5 probability 
line. For the adjacent-category logit model, these step parameters are locations where 
functions for the adjacent categories intersect. For the sequential (continuation-ratio) logit 
model, the interpretation of the first step parameter is identical to the cumulative logit 
model and the interpretation of the second (i.e., last) step parameter is identical to the 
adjacent category logit model. This can also be verified by comparing the contrasts in the 
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continuation-ratio logit model in Figure 2.1 to the cumulative and the adjacent-category 
logit model in the same figure. 
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Appendix B.5: Depression items on HADS questionnaire 

I still enjoy the things I used to enjoy 
 Definitely as much 
 Not quite as much 
 Only a little 
 Hardly at all 
I can laugh and see the funny side of things 
 As much as I always could 
 Not quite so much now 
 Definitely not so much now 
 Not at all 
I feel cheerful 
 Not at all 
 Not often 
 Sometimes 
 Most of the time 
I feel as if I am slowed down 
 Nearly all the time 
 Very often 
 Sometimes 
 Not at all 
I have lost interest in my appearance 
 Definitely 
 I don't take so much care as I should 
 I may not take quite as much care 
 I take just as much care as ever 
I look forward with enjoyment to things 
 As much as ever I did 
 Rather less than I used to 
 Definitely less than I used to 
 Hardly at all 
I can enjoy a good book or radio or TV programme 
 Often 
 Sometimes 
 Not often 
 Very seldom 
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Chapter 3   

Second-order Rasch model 

This chapter aims to contribute to the estimation and interpretation of multidimensional 
item response theory (MIRT) models within the field of psychometrics and latent variable 
modeling. The main goal of the chapter is to advance the use of the second-order Rasch 
model. 

A second-order (higher-order70) Rasch model assumes an overall dimension as a 
second order factor that explains the covariance between the first-order (component) 
dimensions. The model allows both dichotomous and polytomous items. Polytomous 
items can be estimated using the partial credit (Masters, 1982) or the cumulative Rasch 
(Agresti & Lang, 1993) models. The second-order solution is based on the factorization 
of the correlation matrix among the component (first-order) dimensions. A related model 
was proposed by de la Torre & Song (2009) in the 2-PL context using MCMC method for 
estimation. In contrast, estimates in the model discussed in this chapter are obtained using 
a marginal maximum likelihood method. The main purpose of the model is to provide an 
overall and domain scores simultaneously from the single model. 

The main contribution of the chapter is to suggest ways of using the model by still 
preserving the advantages of the Rasch model71. There lacks a clear set of guidelines of 
the use of the second-order model for the Rasch model specifically. Historically, the main 
challenge in the use of such models were (1) computationally intensive estimation and (2) 
availability of software. In addition, it is difficult to obtain reliable and meaningful 
estimates in cases when a variance of one of the dimensions is low relative to other 
dimensions. In such cases, one first needs to re-assess if the multidimensional structure is 
appropriate. One, then, can use alternative parameterization of the model to avoid 
difficulties in the estimation, and guidelines in this chapter provide recommendations on 
how to achieve such parameterizations with the Rasch model.  

I also present alternative parameterization of the Rasch testlet model and 
extension of that model and discuss how to interpret estimates obtained using second-
order and bifactor models. Using a real example dataset, I demonstrate how these models 
are related, 

I start with the motivation and literature review of the factor models with some 
history that led to developments of multidimensional IRT models. Then I formally 
present the multidimensional models within the Rasch framework. 

In addition to the elaboration on the interpretational differences between the 
models72, I provide comparison of these models in terms of their limitations and 
necessary restrictions for identification. 

 
                                            
70 I prefer to use “second-order” instead of “higher-order” although the two are used interchangeably in the 
literature. “Higher-order” is not specific enough since third-order factor models can also be estimated (see 
for instance Rijmen, Jeon, Rabe-Hesketh, & von Davier, 2014). A third-order factor is the factor that is 
extracted from the covariance between two or more second-order factors. 
71 See Wilson (2005) and van der Linden (1994) for the advantages of the Rasch model. 
72 Note that all of the models discussed in this chapter are appropriate when “dimensions” (i.e., constructs, 
latent variables) are correlated and correlations are meaningful. 
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3.1.1  Introduction 

There is a growing interest in multidimensional IRT models (Adams, Wilson, & 
Wang, (1997); Brouwer, Meijer, & Zevalkink, 2013; Cai, Yang, & Hansen, 2011; de la 
Torre & Song, 2009; Jeon, Rijmen, & Rabe-Hesketh, 2013; Reckase, 1985, 2009; Reise, 
Morizot, & Hays, 2007; Rijmen 2010, 2011; Wang, Wilson, & Adams, 1997; Yao, 2010). 
These models are seen to be promising in modeling multicomponent data, such as data 
from large-scale assessments and surveys with complex structures (e.g., multiple 
dimensions73, testlets). If such structures exist in the data, then the assumption of local 
item independence of simpler models is violated. 

Often scientific questions arise about the underlying psychometric factor and 
dimensionality structure of the assessed constructs. Such studies are mainly concerned 
about the structural validity of the constructs. The main question is whether the 
instrument (e.g., a depression scale) should be considered as one single scale or if 
subscales should be distinguished. 

Another question is what the hypothetical factor structure of the scales should be. 
Failing to account for the dimensional structure of the latent variable under consideration 
might have implications on inferences made from the instruments. For instance, 
Ackerman (1992) demonstrated that failing to account the dimensional structure of the 
test might result in incorrect conclusions regarding item bias.74 

The issue of factor structure needs to be approached not only statistically, but also 
substantively. Given the prominent use of latent variables in social science, very little 
work has focused on their nature (Bollen, 2002), and the theoretical status of the latent 
variable has not been resolved yet (Borsboom, Mellenbergh, & Heerden, 2001). There are 
still no definite solutions to finding the dimensional structure of constructs for a set of 
response data and research in this area is greatly needed (Yao, 2010). 

In addition, there is a growing interest in the models for score reporting in 
educational assessments. Policy makers are interested in overall scores. Teachers and 
parents are interested in component scores. Component scores are more interpretable and 
provide useful diagnostic and instructionally relevant information to guide instruction or 
remedial interventions.  

Overall scores, in turn, serve better as summaries and allow macro level 
comparisons such as comparisons of schools within districts. Models that provide both 
types of scores simultaneously provide an elegant approach and serves all involved 
stakeholders. A researcher using such a model obtains scores for component and overall 
dimensions along with model-based standard errors. 

                                            
73 For instance, “achievement in math” can be seen as being comprised of achievement in, say, geometry, 
algebra, and arithmetic skills. All three are qualitatively distinct constructs. Math is the overall dimension. 
Geometry, algebra, and arithmetic skills are component dimensions. A test can be multidimensional when 
one set of items measures one factor while another distinct set of items measures another (qualitatively 
distinct) factor. This is known as between-item multidimensionality.  An item can also be considered 
multidimensional if that item prompts more than one of these constructs. This is known as within-item 
multidimensionality (Wang et al., 1997). 
74 This is due to the fact that between-group differences in performance on the different dimensions of the 
multidimensional test cannot be disentangled from item bias when the factor structure of the test is not 
accounted for properly. 



 95 

3.1.2  Factor models 

Latent variables (factors, unobserved variables, constructs, dimensions) are 
studied in fields such as psychology (e.g. personality, self-esteem), sociology (e.g. 
attitude regarding abortion), political science (e.g. political efficacy), education (e.g. 
reading ability), marketing (e.g. brand preference).  They can be continuous or 
categorical. Latent variables considered in this chapter will be assumed to be continuous. 

Studies of factor structure have their origins in early research on intelligence and 
school achievement.  The most prominent early theories are Spearman’s Two-factor 
Theory (Spearman, 1904, 1927) and Thurstone’s Primary Factor Theory (Thurstone, 
1938). These theories represent early steps in the development of factor analysis 
techniques. Unlike multidimensional item response theory (MIRT) methods, which 
model categorical manifest variables (e.g. agree vs. disagree, treated vs. control), factor 
analysis methods traditionally model continuous manifest variables (e.g. age, salary). 

Spearman’s Two-factor theory assumes that constructs measured by tests are 
comprised of a general factor (g) and a specific factor. Specific factors are assumed to be 
unique to each test. The basic idea is to extract the general factor from the correlation 
matrix75 of multiple ability tests. Spearman’s Model, shown in the Figure 3.1 below, is 
the simplest factor structure. Arrows from g to 𝑉!-𝑉! in Figure 3.1 represent factor 
loadings. Factor loadings are the weights and correlations between each variable and the 
factor (the higher the load the more relevant the indicator in defining the factor). 

                                
Figure 3.1. Spearman’s Model. Each 𝑉!-𝑉! are tests, and 𝑈!-𝑈! are uniquenesses that 
consist of specificity and random error for each test. 

Thurstone’s model (“multifactor theory”), shown in Figure 3.2 below, emerged as 
an alternative and became popular quite rapidly in the factor analytic tradition, used 
mostly with Kaiser’s (1960) method of rotation (varimax criterion). This model assumes 
multiple orthogonal group factors without a general factor. Oblique (or correlated) factors 
can also be modeled (Caroll, 1957; Jennrich, 1973). Note that the orthogonality is 
indicated in Figure 3.2 by the absence of a direct link between 𝐹! and 𝐹!. 

                                            
75 The “observed data” in traditional factor analysis are correlation coefficients. 
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Figure 3.2. Thurstone’s Model. A multiple-factor model with two independent group 
factors (𝐹!, 𝐹!). 

Thurstone was influential in the development of factor methods and formulated 
these methods in terms of matrix algebra (Carroll, 1993). In earlier work, Hotelling 
(1933) pointed to the fact that some procedures in factor analysis are related to 
mathematical problems of finding latent roots and vectors of a matrix and provided a new 
method for computations (Hotelling, 1933, 1936). These methods are related to principal 
components analysis, which had been developed by Pearson (1901). Multiple-factor 
solution, a generic term originated by Thurstone (1931), includes multiple overlapping 
group factors and avoidance of a general factor (Harman, 1967). In addition to 
Thurstone’s alternative to Spearman’s model, Kelley (1928) published one of the earliest 
works on multiple factors, which demonstrated the existence of “group factors” in 
addition to the general factor. 

As alternatives to Spearman’s and Thurstone’s models, two different confirmatory 
factor models—the bifactor (Holzinger & Swineford, 1937) and the second-order factor 
models (Schmid & Leiman, 1957)—were proposed. 

Bifactor models (a.k.a. general-specific model, nested factor model; Gustafsson & 
Balke, 1993) assume that each item is influenced by two factors—a general factor and a 
group factor—and that the general factor and group factors are independent first order 
(a.k.a., lower order) factors. The structure of a bifactor model is shown in the Figure 3.3 
below. In the bifactor model, the general factor is derived directly from the observed 
variables. 

 
Figure 3.3. Bifactor model proposed by Holzinger & Swineford (1937) with statistically 
independent factors. 

In contrast, a second-order model assumes a general factor as a second order 
factor that explains the covariance between the first order (component, group) factors. 
The second-order solution is the factorization of the correlation matrix among the 
component factors. To put it more simply, “it is from the correlations among the group 
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factors that the second-order g is derived” (Jensen, 1998). The hypothesized structure of a 
second-order model is shown in the Figure 3.4 below. 

 
Figure 3.4. Second-order model proposed by Schmid & Leiman (1957). 

Both bifactor and second-order methods can be seen as different ways of 
combining Spearman’s and Thurstone’s models. Schmid & Leiman (1957, p. 54, see also 
Yung, Thissen & McLeod, 1999; Rijmen, 2009) demonstrated that bifactor and second-
order structures could be transformed into each other or shown to be special cases of a 
more general structure shown in Figure 3.5 below. 

 
Figure 3.5. Directed acyclic graph of the second-order model with direct effects (Yung et 
al., 1999) or bi-factor model with conditional independence restriction (Rijmen, 2009). 
Note that 𝑋!-𝑋! are items, but can be replaced by tests (𝑉!-𝑉!). 

The model in Figure 3.5 is not identified without further restrictions. Eliminating 
loadings from a general factor (g) to group factors (𝐹!, 𝐹!), results in the traditional 
bifactor structure shown in Figure 3.3. Note that the group factors in Figure 3.3 are 
considered to be orthogonal wheras they are not in Figures 4 and 5 (due to their common 
dependence on g. 

An alternative restriction, through the elimination of loadings from a general 
factor (g) to items (𝑋!-𝑋!) in Figure 3.5 also results in the second-order factor structure 
(Schmid & Leiman, 1957), shown in the Figure 3.4. The so-called Schmid-Leiman 
transformation essentially attributes the variation in the primary factors to the second-
order factors. Note that these factors are necessarily correlated, due to the assumed causal 
structure. 

3.2  Multidimensional item response theory 

The assumption of unidimensionality in traditional IRT models is violated when 
items are measuring more than a single underlying dimension. The inferences from the 
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unidimensional IRT model are valid only to the extent that the unidimensionality 
assumption is tested and confirmed. 

Multidimensional models in IRT were proposed as “categorical” variants of the 
factor analysis methods, and confirmatory factor analysis (CFA) in particular (McKinley 
& Reckase, 1983a; Reckase, 1985). MIRT is sometimes referred to as full information 
factor analysis (Bock et al., 1988), due to the fact that IRT models are fitted to the raw 
data directly rather than to summary statistics such as polychoric correlations.  

CFA and IRT are both “confirmatory” methods, aimed at confirming a 
hypothetical structure of the data.76 FA models for categorical data exist and in some 
circumstances parameters estimated from these models can be converted into IRT 
parameters (McLeod, Swygert, & Thissen, 2001). However, unlike IRT models, FA 
models were not originally developed for categorical data. Multidimensional IRT 
methods can prove to be quite useful in many practical situations and have attracted 
significant interest and contributions within the last two decades (see Ackerman, 1996). 

The main estimation limitation of MIRT models is that the dimensionality of the 
integration during the estimation of the models increases exponentially with each 
dimension. Thus, it becomes increasingly difficult to obtain solutions as the number of 
dimensions rises. However, as was shown in Gibbons & Hedeker (1992), based on Stuart 
(1958), a dimension reduction technique can be employed in some circumstances due to 
an assumed simplicity in the item structure in the model. One common situation which 
result in many “dimensions” is the use of testlets,which will be discussed later in the 
chapter (Section 3.2.4).  

For all of the models presented below, let items be indexed as 𝑖 = 1, 2… 𝐼 and 
categories as 𝑘 = 0, 1…𝐾, each item having 𝐾! + 1 response categories. Assume that 
𝑑 = 1, 2,… ,𝐷 domain-specific dimensions (i.e., group factors) and the overall dimension 
(i.e., general factor) for the second-order and bifactor structures underlie the responses of 
𝑝 = 1, 2,… ,𝑃 examinees. Domain-specific dimensions will be denoted as 𝜽 =
(𝜃!,  𝜃!, . . ,𝜃! , . . ,𝜃!) and the overall dimension will be denoted as 𝜃!. Let response 
patterns be indexed as 𝑟 = 1, 2…𝑅. The random variable 𝑋!"# can be expressed such 
that: 

𝑋!"# =    1 if response of person 𝑝 on item 𝑖 is in category 𝑘,
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                               

                (1) 

Then, 𝑿!" = (𝑋!"!,  𝑋!"!,… ,𝑋!"#) is a binary vector over K categories and 𝑿! =
(𝑿!!,𝑿!!, . . ,𝑿!") is a matrix indicating a response vector for person p. 

3.2.1  Multidimensional random coefficients multinomial logit model – 
Multidimensional Rasch model 

The Multidimensional random coefficient multinomial logit (MRCML) model 
(a.k.a., multidimensional Rasch model) was proposed by Adams et al., (1997) to analyze 

                                            
76

 Within MIRT, there are two broad types of models in terms of a hypothesized cognitive process and the 
formulation of the likelihood: compensatory and non-compensatory models. Models discussed in this paper 
fall into the former category. An example of the noncompensatory (also called conjunctive or partially 
noncompensatory) model is Multicomponent Latent Trait Model (MLTM) of Embretson (1980). See 
DiBello et al. (2007).	
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the data in the multidimensional item response modeling framework. The model assumes 
that a set of D domain-specific dimensions underlie the examinee responses. The general 
formulation of the model (in terms of the factor structure) is “open”— the model does not 
make the restrictive assumptions that the bifactor and second-order factor models make.  
MRCML uses two matrices, namely the scoring matrix B,77 in which relationships 
between items and dimensions are represented, and a design matrix A,78 in which 
relationships between items and item or step parameters are represented. 
Then, the MRCML model can be formulated as: 

P 𝑋!"# = 1;𝐀,𝐁, 𝛏 𝛉! =  !"# 𝐛!!"#𝛉!! 𝐚!!"!

!"# 𝐛!!"#𝛉!!𝐚!!"!
!!
!!!

 ,                      (2) 

in which 𝛉! = (𝜃!!,𝜃!!,… ,𝜃!") is a 𝐷x1 vector of dimension parameters for person 𝑝; 
𝐛!!"#  is a 1x𝐷 vector of person 𝑝 for item 𝑖 and category 𝑘 representing relationship with 
the dimension 𝑑; 𝝃 is a 𝑚x1 vector of item parameters, and 𝐚!!" is a 1x𝑚 vector that 
represents the link between items and corresponding item or step difficulties. Item 
parameter vector 𝝃 is considered fixed79. The vector of ability parameters 𝛉! is 
considered random and assumed to have the multivariate normal distribution with a mean 
of 𝜇 and a variance-covariance matrix of 𝛴, both of which are fixed unknown parameters. 
The software ConQuest (Adams, Wu, & Wilson, 2015) implements the MRCML as its 
core structure. ConQuest estimates these parameters by maximizing the marginal 
maximum likelihood (MML) for a set of 𝑅 response patterns, as in 

𝐿 𝛏,𝛂 𝐗 = 𝛹 𝛉, 𝛏 exp 𝑥!! 𝐁𝛉+ 𝐀𝛏 𝑑𝐺 𝛉;𝛂𝛉
!
!!! ,                 (3) 

in which 𝛂 = (𝛍,𝜮) and 𝐺(𝛉;𝛂) is the cumulative distribution function for the 
multivariate normal distribution. See Adams et al. (1997) for a more detailed presentation 
of the model and Briggs & Wilson (2003) for an explication of the model. 

Thus, using this multidimensional Rasch model, apart from item difficulties and 
dimension-specific person abilities80, modeled parameters include the variance for each 
dimension and correlations between dimensions. Figure 3.6 shows the factor structure of 
the three-dimensional Rasch model. In that model, all item loadings for each dimension 
are constrained to unity and we denote variances and covariances by 𝜓 and 𝜁 
respectively. 

                                            
77A response of person 𝑝 in category 𝑘 on factor𝑠 of item 𝑖is scored 𝑏!"#$, thus 
𝒃!"# = (𝑏!"#!, 𝑏!"#!, . . , 𝑏!"#$) representing scoring across 𝐷 factors and 𝑩!" = (𝒃!"!,𝒃!"!, . . ,𝒃!"#) 
representing scoring matrix for item 𝑖 and person 𝑝, and  𝑩! = (𝑩!!,𝑩!!,… ,𝑩!") representing scoring for 
person 𝑝 across 𝐼 items. 
78Items are described by 𝝃 = (𝜉!, 𝜉!, . . , 𝜉!) vector of m item parameters. Let 𝒂!" = (𝑎!"!, 𝑎!"!,… , 𝑎!"#) 
indicate design vector that describes the empirical characteristics of the response category𝑘 of item𝑖, 
𝑨 = (𝒂!!,𝒂!",… ,𝒂!!! ,𝒂!",… ,𝒂!!! ,… ,𝒂!!�) then being the design matrix. 
79 See De Boeck (2008) for models that assume that item parameters are “random.” 
80 Note that person “abilities” are random variables and not parameters when MML is used (thus person 
abilities are “predictions”). 
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Figure 3.6. Three-dimensional Rasch model. 

The advantage of the flexible factor structure (e.g., MRCML) over the other two 
restricted structures presented next (bifactor and second-order structures) is that items do 
not have restrictions on the number of factors on which it can load. In other words, items 
can freely load on any number of items as long as conditions for the identification of the 
model detailed in Volodin & Adams (1995) are satisfied. 

3.2.2  Full information bifactor model 

Gibbons & Hedeker (1992) (see also Gibbons et al.,2007) adapted the structure 
originally proposed by Holzinger & Swineford (1937) to the IRT family of models, for 
dichotomous and polytomous models respectively. The full information bifactor model 
changes the traditional MIRT model with simple structure items by adding a general 
factor that all indicators are supposed to load on. Thus, each item is an indicator of an 
overall dimension and one of the D domain-specific dimensions. Dimensions are 
assumed to be uncorrelated81 and normally distributed. See also Cai et al. (2011) for a 
formulation of the bifactor structure with various dichotomous and polytomous MIRT 
models. 

The main advantage of the bifactor structure in terms of estimation, as opposed to 
less restricted MIRT models, is the reduction in the dimensionality of integration during 
the estimation82. When items have a simple structure, the covariance matrix is determined 
by the loadings of the domain-specific dimensions, and the probability of the particular 
pattern (𝑿!) can be evaluated in terms of one-dimensional integrals (Stuart, 1958), as in: 

𝑃 𝑿! 𝜽 = 𝛷!"
!!"!!"#!!

!!!
!
!!! 𝜃! 𝑔 𝜃! 𝑑𝜃!! !

!
!!!  ,                (4) 

in which 𝑤!" = 1 when item 𝑖 has a non-zero loading on dimension 𝑑, and 0 otherwise. 
The above equation can be generalized to the bifactor model (Gibbons & Hedeker, 1992) 
by adding the overall dimension (𝜃!) and thus requiring only a series of two-dimensional 
integrations as in: 
𝑃 𝑿! 𝜃! ,𝜽 = 𝛷!"

!!"!!"#!!
!!!

!
!!! 𝜃! ,𝜃! 𝑔 𝜃! 𝑑𝜃!! !!

!
!!! 𝑔 𝜃! 𝑑𝜃!! !!

. 
(5) 

                                            
81 See Paek, Yon, Wilson & Kang (2009) for the case with correlated domain-specific dimensions. 
82 However, not many estimation routines exploit this advantage. 
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Thus, for the bifactor model, the dimensionality of the integration depends on the 
hierarchy of the factors and not on the number of factors. Note, however, that this 
advantage of the bifactor model (over the MIRT model) applies to the estimation aspect 
of the model only, and might be void of any use if the substantive theory on which the 
items are based is not consistent with a bifactor structure. 

Yung et al. (1999) (see also Rijmen 2009) showed how second-order and bifactor 
models are identical. Rijmen (2009) showed that second-order factor model is “nested” 
within the bifactor model (is a special case of the bifactor model). 

The bifactor model is sometimes referred as hierarchical model (see for instance 
McLeod et al., 2001). However, this should not be confused with the set of models aimed 
for handling the nested (i.e., multilevel) data, to which the bifactor model can be 
extended straightforwardly. 

3.2.2.1 Rasch testlet model and possible extensions 

The Rasch testlet model presented in Wang & Wilson (2005) is a special case of the 
bifactor model. Its underlying structure is depicted in the Figure 3.7 below. Note that all 
of the item loadings for both overall and domain-specific dimensions are constrained to 
unity. 

 
Figure 3.7. Rasch testlet (bifactor) model with three group factors. In this 

example, we estimate four variances (𝜓! ,𝜓!,𝜓!,𝜓!) and 12 item intercepts (i.e., item 
difficulties). 

The Rasch testlet model can be also presented using the parameterization shown 
in Figure 3.8 below. In this parameterization, we still estimate 12 item intercepts. Instead 
of estimating four variances, however, we estimate four sets of loadings (𝛼! ,𝛼!,𝛼!,𝛼!) 
and fix all four variances to unity. 
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Figure 3.8. Rasch testlet (bifactor) model with alternative parameterization. 

One intuitive extension, then, would be to allow loadings of items on overall 
dimension to vary across domains. The underlying structure of such extension is 
presented in the Figure 3.9 below. 

 

 
Figure 3.9. Extended Rasch testlet (bifactor) model with alternative 

parameterization. 

Note that instead of estimating a single set of loadings (𝛼!) on overall dimension 
for all items, we estimate three sets of loadings (𝛼!!,𝛼!!,𝛼!!).  

The extended bifactor Rasch model is closely related to the second-order Rasch 
model. Estimates for item intercepts and the number of parameters are identical in the 
two, as will be shown in the demonstration example below. 
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3.2.3  A Second-order Rasch model 

In the second-order factor model, domain-specific (first-order) dimensions (i.e., 
𝐹! and 𝐹! in Figure 3.5) serve as indicators. This formulation attempts to aggregate 
multiple domain-specific dimensions using correlations between these dimensions. 
Domain-specific dimensions are expressed as linear functions of the overall dimension, 
that is, 

𝜃! = 𝜆!𝜃! + 𝜖!,                                                    (6) 

in which 𝜆! indicates the (latent) regression coefficient of regressing the domain-specific 
dimension (𝜃!) on the overall dimension (𝜃!). The error term 𝜖! represents the part of 𝜃! 
that is unique, and all 𝜖! are assumed to be independent of one another and of 𝜃!. The 
structure of the second-order model is similar to the testlet model presented in Bradlow, 
Wainer, & Wang, 1999 (see for instance Wainer, Bradlow & Wang, 2007). 

Note that the second-order model does not allow within-item multidimensionality 
(such models are not identified). Also note that the model with only two first-order 
factors is not identified without additional restrictions. This is due to the fact that when 
only two group factors are modeled, the estimates of the regression coefficients are not 
unique. This is because different pairs of regression coefficients can result in the same 
correlation coefficient between two domain-specific dimensions. One particular 
restriction, then, is to constrain the regression coefficients to be equal83. 

In the second-order model, an a priori specified number of correlated domain-
specific dimensions are estimated first, and the overall dimension is estimated as the 
second-order factor. Unlike in the bifactor model, the overall dimension in the second-
order model does not have a direct “effect” on respondent’s performance and the 
performance of respondents is accounted for solely by the domain-specific dimensions. 
Thus, the structure of the bifactor model can be considered as a “top-down” structure 
while the structure of the second-order model can be considered as a “bottom-up” 
structure (Jensen, 1998). 

In the second-order Rasch model, the dimensions shown in Figure 3.6 are 
considered first-order dimensions. These first-order dimensions, in turn, serve as 
indicators of the second-order (overall) dimension. Instead of three covariance estimates, 
however, we obtain three regression estimates—loadings of the component dimensions 
on the overall dimension. This model is shown in the Figure 3.10 below. In Figure 3.10, 
regression estimates (arrows from 𝜃! to 𝜃!,𝜃!,𝜃!) are denoted as 𝛾 and variances are 
denoted as 𝜓. In order to estimate these 𝛾’s (loadings of the component dimensions on 
the overall dimension) we constrain the variance of the overall score to unity.84 

                                            
83 In this case, the overall dimension we obtain from the second-order Rasch model is identical to the 
average of two dimensions we obtain from the two-dimensional Rasch model. However, we in addition 
obtain model-based standard errors for the overall dimension when using the second-order Rasch model. 
84 Alternatively, we could constrain one of these regression coefficients (e.g., 𝛾!) to unity and free the 
variance of the overall score. This may be preferable for interpretation under certain circumstances. 
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Figure 3.10. Structure of the second-order Rasch model 

However, the model in the Figure 3.10, in its current form may be difficult to 
estimate when unique variances in one or more of the domain-specific dimensions is low. 
Before I show an alternative formulation, however, note that it is possible to 
reparameterize the multidimensional Rasch model (shown in Figure 3.6 above) as the 
model shown in Figure 3.11 below. In this (Figure 3.11) formulation of the 
multidimensional Rasch model, we estimate item loadings for each dimension 
(𝛼!,𝛼!,𝛼!)—which are identical for items within dimensions—and instead constrain the 
variances of dimensions to unity. Variances in Figure 3.6 can be easily reproduced using 
loadings in Figure 3.11 by taking the squares. 

 
Figure 3.11. Alternative parameterization of the multidimensional Rasch model. 

The alternative parameterization of the second-order Rasch model follows the 
same logic of the parameterization shown in Figure 3.11. Such parameterization of the 
second-order model (shown in Figure 3.12) avoids difficulties in estimation of the model 
when some of the domain-specific dimensions are correlated very highly (i.e., high 
loadings on the overall dimension) and thus result in very small unique domain-specific 
variances. When these variances are close to zero, the software may need to fix them to 
zero to avoid negative variance. 
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Figure 3.12. Second-order Rasch model with alternative parameterization. 

When there are three domain-specific dimensions, the number of parameters in 
the second-order Rasch model is identical to the number of parameters we would obtain 
from the multidimensional Rasch model. 

Bifactor and second-order models presented above can be used to determine the 
so called “testlet effect” when the response data contains testlets85 . The most common 
approaches of modeling the response data with testlets are discussed next. 

3.2.4  Testlets 

Items are locally independent of each other if, once we know the respondent and 
item locations, there is no more information needed to calculate their joint probability. 
This assumption can be violated when several items have a relationship over and above 
what would be indicated by their respective difficulties, and the respondents’ abilities. 
One such case appears when several items relate to the same stimulus material, such as in 
a paragraph comprehension test. In this case, understanding or misunderstanding the 
paragraph can improve or worsen the performance on all items in the set, but not on other 
items in the test.  

Thus, responses to items belonging to the same testlet are conditionally 
dependent, a point first made by Rosenbaum (1988). Note that the motivation to account 
for such dependence is somewhat different from accounting for dependence due to the 
multidimensionality discussed above. In the case of multidimensionality, the 
dependencies between items due to the group factors are of the primary interest and the 
necessity to account for the dependence stems not only from the statistical requirement of 
the model but also from the scientific interest. In the cases with testlets, in which 
statistically similar issues arise (i.e., a residual dependency is likely, and needs to be 
accounted for), the dependencies within testlets are regarded as nuisances (or random 
components representing person-testlet interaction), and thus the necessity for accounting 

                                            
85 Group of items that share some stimulus (stem or content) in common are known as item bundles 
(Rosenbaum, 1988; Wilson & Adams, 1995) or testlet (Wainer & Kiely, 1987; Bradlow et al., 1999). 
Testlets are used in many educational contexts (see Wainer et al., 2007). 
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for such dependencies is primarily a statistical issue, rather than a substantive scientific 
issue. 

One simple approach for handling dependency due to the testlet structure is the 
so-called “sum-score” method. This approach essentially considers the testlet as a single 
polytomous item (Wilson & Adams, 1995). As a result, the conditional independence 
between item bundles (polytomous ”items”) can be assumed. Note that in this approach, 
responses to individual items within the bundle become “invisible”. Also, complications 
in the interpretation might arise if the items within testlets are polytomous themselves. 
For discussion of these issues see Wilson, (1988) and Wilson & Adams, (1995). 

An alternative method to account for testlets is by introducing a random effect for 
each testlet (Bradlow et al., 1999; Scott & Ip, 2002; Wainer et al., 2007) using the 
bifactor and second-order factor models we described above. As a result, items within the 
particular testlet will be regarded as independent conditional on the testlet-specific 
random effect. A slightly modified version of the testlet model (Bradlow et al., 1999) 
described in Tuerlincks & De Boeck (2004) is presented below.86 

Assume the simplest case in which the test with I items contains a single testlet 
with I* items within the testlet (1<I*<I). Let an item predictor 𝑍!(!!!) be defined as 

𝑍!(!!!) =
 1    if item 𝑖 belongs to testlet  
0    otherwise                               

.                               (7) 

Then, the response probability of the person 𝑝 on the item 𝑖 can be expressed as 

 𝑃 𝑋!" = 𝑥!" = !"# (!!!!!! !!! !!!!!!)
!!!"# (!!!!!! !!! !!!!!!)

,                              (8) 

in which 𝜃!! is the person-specific testlet effect, generally assumed to be normally 
distributed with the mean of zero and the variance of 𝜎!!. The covariance between the 
random intercept (𝜃!!) and the testlet effect (𝜃!!) is generally assumed to be zero. See 
Rijmen (2009) for the example of the use of bifactor and second-order models. 

3.2.5  Interpretation of factors in a bifactor model87 

The overall dimension in the bifactor model (“g” in Figure 3.3) represents 
common variance shared by all of the items in the model. Domain-specific dimensions 
(𝐹! and 𝐹! in Figure 3.3) represent the variance that is unique to the items loading on the 
particular domain. Thus, the overall dimension is independent of domain-specific 
dimensions by definition. However, group factors may be allowed to be correlated if such 
a model is identified (Little, 2013)—see for instance Paek, Yon, Wilson & Kang (2009) 
for the case with Rasch testlet model. 

Recall that in the 2-PL bifactor model, if the loadings of items on the overall 
dimension are substantively larger than loadings on domain-specific dimensions, we can 
conclude that items are unidimensional. In the Rasch framework, since all loadings are 

                                            
86 Following Tuerlincks & De Boeck (2004), unlike Bradlow et al. (1999), slope parameters 
(discriminations) are assumed to be known and logit link used instead of the probit link.	
87 See Briggs & Wilson (2003), Adams et al. (1999), and Reckase (2009) for the interpretation of 
dimensions in the MIRT models. 
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fixed to unity, the criteria of judging the dependence induced by domain-specific 
dimensions (or, testlets) is based instead on the variances of the domain-specific factors 
(see for instance Wang & Wilson, 2005). 

The most important distinction of the bifactor model from the multidimensional 
IRT model is that dimensions are considered orthogonal from each other. This implies 
that domain-specific dimensions are defined as being independent to the overall 
dimension. For instance, in a mathematics test measuring geometry, algebra, and 
probability, the overall dimension obtained from the bifactor model represents the 
mathematics ability that is orthogonal to the unique geometry, algebra, and probability 
dimensions. Put another way, the geometry, algebra, and probability dimensions 
represent the part of those domains that are orthogonal to the overall mathematics 
dimension. Therefore, MIRT or UIRT models are more appropriate for such settings. In 
turn, the bifactor model is ideal when domain-specific dimensions are considered 
nuisance dimensions and need to be accounted away as in the case with testlets.  

3.2.6  Interpretation of dimensions in the second-order model 

Interpretation of overall dimension in the second-order model is similar to the 
interpretation in the bifactor model. The main difference is in how the second-order 
factor (overall dimension) is extracted. In the second-order model, the overall dimension 
is extracted from the common variation among first-order factors. Thus, items are 
involved indirectly (unlike bifactor model, in which items are involved directly).  

Covariance between lower-order factors, however, can be estimated post-
estimation by multiplying loadings of the relevant factors with each other and multiplying 
the result with the variance of the second-order factor (which is constrained to unity for 
identification, as discussed above). 

Domain-specific dimensions in the second-order model are implicitly assumed to 
be correlated. However, this correlation is attributed to the overall dimension (second-
order factor). In other words, it is assumed that the correlation between first-order factors 
is due to the second-order factor. Thus, although the overall dimension is interpreted 
similarly in the second-order and bifactor models, interpretation of domain-specific 
dimensions in the second-order model is different from the bifactor model and is similar 
to the interpretation of dimensions in the MIRT model. 

3.3  Demo dataset: ADM assessment 

Details of the ADM assessment were presented in Chapter 1 of this dissertation. 
For demonstration purposes, I use items from the ADM Post-test 2013 instrument 
measuring only three of the dimensions: DAD (Data Display), COS (Conceptions of 
Statistics), and INI (Informal Inference). I analyze this response data using (1) three-
dimensional Rasch; (2) second-order Rasch; (3) bifactor Rasch; and (4) extended bifactor 
Rasch models.  

There are a total of 19 polytomous items, with five, eight, and six items 
measuring DAD, COS, and INI dimensions respectively. Item and step fit statistics are all 
within the accepted lower and upper bounds of 3/4 and 4/3 (Adams & Khoo, 1996) when 
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analyzed using three-dimensional Rasch model (using adjacent-category logit link88). 
EAP/PV reliabilities are 0.85, 0.79, and 0.86 for DAD, COS, and INI dimensions 
respectively. (Note, this is not surprising, as these items have already been selected partly 
on the basis that they are fitting the model reasonably well.)  

Second-order and bifactor Rasch models were obtained using Mplus (Muthen & 
Muthen, 2011), which has only cumulative logit link option in the latest version (for the 
modeling of polytomous responses). Therefore, the three-dimensional Rasch model was 
also estimated using the cumulative logit link.  

Table 3.1 below shows variances and correlations between three dimensions 
obtained using the cumulative logit link from the three-dimensional Rasch model. For 
comparison, Table 3.2 shows variances and correlations between dimensions using the 
adjacent-category logit link. Notice that correlations from the two models are not very 
different, although the variances are quite different. The difference in the two variances 
can be attributed to the difference in the variances of item parameters between the two 
models. In particular, the variance of step parameters in the cumulative Rasch model is 
higher than the variance of parameters in the partial credit model. Recall that in the 
cumulative Rasch model, item parameters are following a strict ordering (see Chapter 2 
of this dissertation and Adams, Wu, & Wilson, 2012, for a detailed explanation). In other 
words, step parameters in the cumulative Rasch model are strictly increasing. As a result, 
within each item, step parameters in the cumulative Rasch model in general will tend to 
have higher variance than step parameters in the partial credit model, especially for items 
with higher number of response categories.89 

Table 3.1. Correlations between domains and variance for each domain using the 
cumulative Rasch model 

  DAD COS INI 
DAD    
COS 0.88   
INI 0.99 0.91  

variance 1.79 (0.15) 1.35 (0.12) 2.01 (0.15) 

Table 3.2. Correlations between domains and variance for each domain using the partial 
credit model 

  DAD COS INI 
DAD    
COS 0.84   
INI 0.99 0.87  

variance 0.28 (0.03) 0.49 (0.05) 0.59 (0.05) 

                                            
88 See Chapters 1 and 2 of this dissertation for more on adjacent-category and cumulative logit link 
functions. 
89 For instance, when variances (from the cumulative Rasch and partial credit models) of only first step 
parameters (of all 19 items) are compared, the variance of the step parameters from the partial credit model 
is slightly higher. However, variability of step parameters in the cumulative Rasch model is higher when all 
step parameters are investigated together. This is due to higher variability of step parameters within each 
item in cumulative Rasch model. 
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Table 3.3 below shows fit statistics for four of the models using 30 quadrature nodes for 
each dimension as implemented in Mplus 7 (Muthen & Muthen, 2011). It also shows fit 
information for the unidimensional Rasch model. 

Table 3.3. Model fit statistics (using cumulative logit link) 
MODEL deviance AIC BIC # of parameters 

three-dimensional Rasch 30792.3 30948.3 31313.5 78 
second-order Rasch 30798.3 30954.3 31319.5 78 
testlet-Rasch 
extended bifactor Rasch 

30840.4 
30795.6 

30992.4 
30951.6 

31431.7 
31402.5 

76 
78 

unidimensional Rasch 30858.6 31004.7 31346.5 73 

When the model is a special case of the less restricted model (such as 
unidimensional Rasch model being nested in multidimensional Rasch model), the 
difference in deviances is assumed to have a chi-square distribution with the difference in 
the number of parameters as degrees of freedom. Thus, we can statistically test if the less 
restricted model fits the data significantly better than the simpler (i.e., more restricted) 
model. When the models are not nested, this likelihood ratio test cannot be used. Instead, 
model fit indices such as Akaike Information Criterion (AIC; Akaike, 1974) and 
Bayesian Information Criterion (BIC; Schwarz, 1978) can be used to compare the models 
in terms of fit. Using AIC and BIC90 shown in Table 3.3, we can conclude that the three-
dimensional Rasch model is the best fitting model when applied on this data. 

Estimates from the three-dimensional Rasch model are shown in Figure 3.13 
below. Correlations between dimensions are indicated on double-headed arrows between 
circles. In this model, each item measures only one dimension with items 1-5 measuring 
DAD dimension, and items 6-13 and 14-19 measuring COS and INI dimension 
respectively. 

Figure 3.13. Results from the three-dimensional Rasch model. 

The correlation between DAD and INI dimensions is very high and could well be 
modeled as a single dimension. However, this is not the primary focus of this example 
and therefore will not be investigated further. 

                                            
90 Smaller is “better” 
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Figure 3.14 below shows estimates obtained using the second-order Rasch model 
(with alternative parameterization). Note that after extracting the overall dimension, 
loadings of DAD and INI items on respective domain-specific dimensions are very small. 
Correlation of the DAD EAP scores obtained from the MIRT model and the second-order 
Rasch model is high at 0.999 (similarly for the COS and INI dimensions). 

Figure 3.14. Results from the second-order Rasch model. 

Figure 3.15 below shows estimates obtained from the Rasch testlet model with the 
alternative parameterization. Notice that the number of parameters in this model is less 
than the number of parameters in the two previous models shown above.

Figure 3.15. Results from the Rasch testlet model with alternative parameterization. 

Figure 3.16 below shows estimates obtained from the extended Rasch bifactor 
model (with alternative parameterization). One can easily approximate the three sets of 
loadings on the overall dimension in the extended bifactor Rasch model (Figure 3.16) 
using estimates from the second-order Rasch model (Figure 3.14). For instance, the 
product of 0.08 and 16.3 (=1.304 ) in Figure 3.14, which is quite close to the loading of 
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the DAD items on the overall dimension in Figure 3.16 (1.33), and which is also true for 
the other two subdimensions. The correlation of EAP scores among the overall 
dimensions from these two models is 1.00. 

Figure 3.16. Results from the extended Rasch testlet model. 

The correlations provided by the three-dimensional Rasch model (Table 3.1) 
range from 0.88 to 0.99 and indicate that dimensions are highly correlated. In particular, 
we found that the correlation between DAD and COS dimension is 0.88, the correlation 
between the COS and INI dimensions is 0.91, and the correlation between DAD and INI 
is 0.99. High correlations in this dataset are not surprising since all of these domains are 
parts of a single curriculum. 

The second-order Rasch model provides regression coefficients instead of 
correlations. We can observe that the loadings of the DAD and INI dimensions (on the 
overall dimension) are very high (when compared to that of COS). After the common 
variance between these two first-order dimensions is extracted, the remaining dimension-
specific variation is minimal, as can be seen from loadings of DAD and INI items on 
their respective dimensions (Figure 3.14). Had we not used the alternative 
parameterization in the estimation of the second-order Rasch model, the variance for 
DAD and INI dimensions would have been estimated approximately at 0.082 = 0.0064 
and 0.072 = 0.0049 respectively, which would most likely be difficult to estimate 
accurately. 

The Rasch testlet model, shown in Figure 3.15, was found to have the worst fit 
among the four models. Judging by BIC alone, unidimensional Rasch—the simplest 
model, which assumes that all items measure the same construct—is preferred to the 
Rasch testlet model when applied on this demonstration data. Findings related to the 
loadings of DAD, COS, and INI items on their respective dimensions are very similar to 
that of the second-order Rasch model.  

Recall that Rasch testlet model assumes that items from all the three dimensions 
load equally on the overall dimension. The extended bifactor Rasch model (Figure 3.16) 
relaxes this assumption. I found that items from the INI dimensions load the highest on 
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the overall dimension. This finding is very similar to the observation from the second-
order Rasch model, where the INI dimension loads the highest on the overall dimension. 

3.4  Discussion 

The three-dimensional Rasch model was found to be the best fitting model when 
judged by both AIC and BIC. This model is the most flexible in terms of the structure 
(i.e., both within- and between-item multidimensionality are allowed) and does not 
assume any hierarchy in constructs. This model is ideal when the main purpose is to 
estimate respondents’ location in these constructs by exploiting the covariance between 
constructs. 

One the other hand, the second-order Rasch model may be preferred if the main 
focus of the analysis is to estimate respondents’ location on the overall and domain-
specific dimensions simultaneously while assuming that the two are linearly related. 
However, there are several limitation to this model:  the model requires that only 
between-item multidimensionality be included, and also there is an assumption that the 
overall dimension “causes” domain-specific dimensions. 

Bifactor models, in turn, are useful when domain-specific dimensions are 
nuisances that nevertheless need to be accounted for. They can lead to difficult 
interpretations of the domain-specific dimensions if the conditioning on the main 
dimension is not borne in mind.  The extended bifactor Rasch model relaxes the 
assumption of the Rasch testlet model that all items from all domains load equally and 
provides a more flexible approach. 

 
Limitations of the study.  One limitation of the current chapter is that I didn’t 

address how reliability is affected by accounting for the dimensionality differently (and 
failing to account for the structure of the dimensionality properly). Reliability is one 
important consideration when opting for multidimensional models (instead of 
unidimensional models). For instance, the reliability of EAP scores of domain-specific 
dimensions tend to be higher when the multidimensional Rasch model is used, instead of 
modeling each dimension separately (Briggs & Wilson, 2003).  

Secondly, I didn’t discuss extensions of these models to (1) the nested data; and 
(2) regression on manifest variables (i.e., latent regression). Extensions to such cases 
should be straightforward and can be implemented readily using programs such as Mplus 
(Muthen & Muthen, 2011) and Latent Gold (Vermunt & Magidson, 2013). 

All the models I discuss in this chapter assume that latent variables are 
continuous. These latent variables can also be assumed categorical or ordinal (e.g., 
bifactor model with ordinal latent variables). See Cho, Cohen, & Kim (2014) for one 
possible extension to such a model. 
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