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ABSTRACT OF THE THESIS

Multi-fidelity Data Fusion with Uncertainty Quantification

By
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Professor Ramin Bostanabad, Chair

In many applications in engineering and sciences analysts have simultaneous access to mul-

tiple data sources. In such cases, the overall cost of acquiring information can be reduced

via data fusion or multi-fidelity (MF) modeling where one leverages inexpensive low-fidelity

(LF) sources to reduce the reliance on expensive high-fidelity (HF) data. In this thesis we

present two main contributions in the field of data fusion and its application in engineering.

In particular, we introduce: (1) a novel neural network (NN) architecture for data fusion

under uncertainty, namely Probabilistic Neural Data Fusion (Pro-NDF), and (2) a MF cal-

ibration scheme based on Latent Map Gaussian Processes (LMGPs) for fracture modelling

of metallic components via reduced-order models (ROMs).

In the context of building an emulator for data fusion under uncertainty, we introduce Pro-

NDF, a novel NN architecture that converts MF modeling into a nonlinear manifold learning

problem. Pro-NDF inversely learns non-trivial (e.g., non-additive and nonhierarchical) biases

of the LF sources in an interpretable and visualizable manifold where each data source is

encoded via a low-dimensional distribution. This probabilistic manifold quantifies model

form uncertainties such that LF sources with small bias are encoded close to the HF source.

Through a set of analytic and engineering examples, we demonstrate that our approach

provides a high predictive power while quantifying various sources of uncertainty.

xi



In the context of fracture modelling of metallic materials with microscopic pores, we propose

a data-driven framework that integrates a mechanistic ROM with a MF calibration scheme

based on LMGPs. The proposed ROM offers computational speedup compared to direct

numerical simulations (DNS) by solving a reduced-order representation of the governing

equations and reducing the degrees of freedom via clustering. Since clustering affects local

strain fields and hence the fracture response, we employ LMGPs to calibrate the damage

parameters of an ROM as a function of microstructure and clustering, i.e., fidelity level, such

that the ROM (i.e., LF source) faithfully emulates DNS (i.e., HF source). We demonstrate

the application of our MF framework in predicting the damage behavior of a multiscale

metallic component with spatially varying porosity. Our results indicate that microstructural

porosity can significantly affect the performance of macro-components and hence must be

considered in the design process.
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Chapter 1

Introduction

In an increasing number of applications in engineering and sciences analysts have simulta-

neous access to multiple sources of information. For instance, material properties can be

estimated via multiple techniques such as (in decreasing order of cost and accuracy/fidelity)

experiments, direct numerical simulations (DNS), a host of physics-based reduced order mod-

els (ROMs), or analytical methods [1, 2, 3, 4, 5]. In such applications, the overall cost of

gathering information about the system of interest can be reduced via multi-fidelity (MF)

modeling or data fusion where one leverages inexpensive low-fidelity (LF) sources to reduce

the reliance on expensive high-fidelity (HF) data sources. Over the past few decades, many

techniques have been developed for building MF surrogates which are used in outer-loop ap-

plications such as design optimization [6, 7], calibration of computer models [8], or Bayesian

optimization [9]. The main motivation behind these techniques is to leverage the correlations

between LF and HF data sources (and the fact that sampling from the former is typically

cheaper) to improve the predictive performance of the surrogate while reducing the overall

data acquisition costs. Within the context of data fusion and its application in engineering,

we have organized the contributions of this thesis into two parts.

1



In Chapter 2, we introduce a novel NN architecture for data fusion in scenarios where data

is scarce and obtained from multiple sources with varying levels of fidelity and cost (i.e.,

data is unbalanced since more samples are available from cheaper sources). The proposed

approach not only facilitates MF modeling, but also quantifies and visualizes the discrepan-

cies/similarities between all data sources. In addition to that, we illustrate that a Bayesian

treatment, besides alleviating overfitting and providing a probabilistic surrogate (i.e., an em-

ulator), provides the means to develop a novel loss function (based on proper scoring rules)

that improves the performance and robustness of the resulting MF NN emulator. As we

demonstrate through a host of analytic and engineering examples, our approach provides a

high predictive power while quantifying various sources of uncertainty, without relying on

any prior knowledge of the hierarchy between the sources. Our codes and examples can be

accessed via GitLab1.

In Chapter 3, we present an engineering application of data fusion where we leverage an

MF emulator to calibrate a reduced-order model (ROM) for multiscale damage analysis.

In particular, we open the doors for the fracture-aware design of multiscale materials by

proposing a data-driven framework that integrates a mechanistic ROM with a MF calibration

scheme based on LMGPs. We show that the integration of these two components enables us

to build calibrated multi-fidelity ROMs that can simulate the damage behavior of multiscale

materials with spatially varying microstructures.

The main contributions of this thesis are discussed in Section 2.5 and Section 3.6, which are

summarized in Chapter 4.

1GitLab repository: https://gitlab.com/TammerUCI/pro-ndf
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Chapter 2

Probabilistic Neural Data Fusion for

Learning from an Arbitrary Number

of Multi-fidelity Data Sets

2.1 Related works and motivation

Early works in the field of data fusion focused primarily on hierarchically linking bi-fidelity

data. For instance, in space mapping [10, 11, 12] or multi-level [13, 14, 15] techniques the

inputs of the LF data are mapped following formulations such as xl = F (xh) where xl and xh

are the inputs of LF and HF sources, respectively. In this equation, F (·) is a transformation

function whose predefined functional form is calibrated such that yl(F (xh)) approximates

yh(xh) as closely as possible. These techniques are useful in applications where higher

fidelity data are obtained by successively refining the discretization in simulations [13, 14],

e.g., by refining the mesh when modeling the flow around an airfoil or estimating the fracture

toughness of a microstructure. The main disadvantages of space mapping techniques are that

3



(1) they rely on iterative and time-consuming analysis for choosing a near-optimal functional

form for F (·), (2) they cannot jointly fuse more than two data sources at a time, (3) they

quantify similarity/discrepancy between the sources based on pre-defined functions whose

space may not include the true discrepancy, and (4) they do not quantify some uncertainty

sources (such as lack of data) and are rarely formulated within a Bayesian setting that

leverages prior information.

A well-known hierarchical bi-fidelity modeling framework is that of Kennedy and O’Hagan

(KOH) [16] who assume that the discrepancy between the LF and HF sources is additive

(multiplicative terms have also been explored [17]) and that both sources as well as the dis-

crepancy between them can be modeled via Gaussian processes (GPs). Upon this modeling

assumption, KOH find the joint posterior of GPs’ hyperparameters via either fully [18, 19]

or modular Bayesian inference [20, 21, 22, 23]. While KOH’s approach considers multiple

uncertainties and has been successfully applied to a broad range of applications [24, 25, 26],

it has three main limitations: (1) it only accommodates two data sources at a time, (2) it

places a priori independence assumption between the GPs, and (3) it does not provide a low-

dimensional, visualizable, and interpretable metric that quantifies the correlations between

the data sources.

Recent works have acknowledged the limitations of hierarchical methods and devised new

methodologies to address them. For instance, MF modeling can be achieved via a recursive

scheme [27] where a bi-fidelity method is repeatedly applied from the lowest to the highest

fidelities. However, such recursive schemes inherit the limitations of bi-fidelity methods,

cannot jointly fuse multi-source data sets, and are sensitive to the ordering (i.e., the relative

accuracy of all sources must be known a priori).

As another example, [28, 29] presents MF networks (MFNets): an approach based on directed

acyclic graphs that builds a MF surrogate using an arbitrary number of data sources. MFNets

accommodate noisy data and are trained via gradient-based minimization of a nonlinear least

4



squares objective. Although MFNets can deal with many of the issues of state-of-the-art MF

models, e.g., they can learn non-hierarchical relations between data sources, they: (1) rely

on having prior knowledge on a set of latent variables that explain the relations between the

sources, (2) assume each source can be represented via a linear subspace model, (3) are not

probabilistic and also require regularization, (4) impose independence assumption among the

data sources to derive the likelihood (i.e., the objective) function, and (5) rely on iterative

approaches for finding the optimal graph structure.

Other notable works that have studied the limitations of hierarchical techniques include

[30, 31, 32] which are focused on identifying (and correcting) non-additive discrepancies

between LF and HF sources. However, the proposed solution in these works is intrusive and

relies on some rather strong modeling assumptions that largely limit the applications. These

limitations arise because the formulation of the discrepancy is learned via an embedded

operator whose functional form and interaction with the LF source are constructed a priori.

A novel GP-based approach [33] addresses the above issues by converting MF modeling

into a manifold learning problem where the relations between the sources are automatically

quantified via an appropriately learnt distance measure. The conversion is achieved via

Latent Map Gaussian Processes [33] (LMGPs, see Section 2.2.1) which enable GPs to handle

categorical variables and, correspondingly, data fusion: by augmenting the inputs via a

categorical variable (which indicates the source of a data point) and then concatenating all

the data sets, LMGPs can simultaneously learn from an arbitrary number of information

sources.

In this work , we examine the potential of NNs in matching and potentially improving state-

of-the-art techniques for MF modeling such as LMGPs. Our current studies are motivated

by the facts that (1) when viewed as (probabilistic or deterministic) graphical models [34],

NNs provide unique opportunities to use MF data sets to uncover complex hidden relations

between the corresponding sources, (2) the recent hardware and software advancements have

5



drastically accelerated architecture design and training of NNs, and (3) NNs scale to higher

dimensions and big data significantly better than GPs.

Over the past few years some NN-based approaches have been developed for MF modeling

[35, 36, 37, 38]. However, most of these works design the network architecture primarily

based on hierarchical methods and consequently inherit their limitations. For instance, [35]

builds two sequentially connected deterministic networks based on KOH’s method where the

first and second NNs are tasked to emulate the LF and HF sources, respectively. In addition

to sharing the limitations of KOH’s method, such a sequential bi-fidelity NN requires that

the two parts of the network are trained separately (unless the LF and HF training data are

available at the same inputs) and also relies on manual tuning of the architecture and loss

function. Similarly, [36] build a hierarchical bi-fidelity method that allows all-at-once training

of the two sequentially connected NNs (regardless of data location) but their approach is

also inspired by that of KOH and requires iterative fine tuning of the architecture and loss

function. It has been argued [37] that such sequentially trained NNs bridge MF modeling

with transfer learning where the knowledge gained from the LF data is used in building the

NN module that surrogates the HF source.

Non-sequential NNs are rarely used for MF modeling (especially with more than 2 sources)

due to the fact that searching for the optimum architecture (and effectively training it with

small data) is a difficult task. We address this challenge by drawing inspiration from LMGPs

where we design the architecture such that any number of MF data sets can be simultaneously

fused and the overall discrepancies between sources are quantified with visualizable metrics.

We also illustrate that making specific parts of the network probabilistic, in addition to

being superior to both deterministic and all-probabilistic NNs, enables us to infuse a proper

scoring rule [39] into the loss function and, in turn, improve the performance of the MF

emulator. The particular rule that we adopt is the negatively oriented interval score which

is frequently used in testing the quality of probabilistic predictions but, to the best of our

6



knowledge, has never been used in the training stage of a probabilistic NN. In summary, our

major contributions are as follows:

• We introduce a unique NN architecture for MF modeling that can fuse an arbitrary

number of data sets and quantify both epistemic and aleatoric uncertainties.

• We inversely learn the accuracy of the LF sources (with respect to the HF source) and

visualize the learned relations in an interpretable manifold.

• We show that a probabilistic setting allows us to develop a novel loss function (based

on proper scoring rules) that improves the performance of the emulator.

• We validate the performance of our approach on analytical and real-world examples

and show that it performs on par with the state-of-the-art while providing improved

scalability to high dimensions and big data.

The rest of this chapter is organized as follows. We review the relevant technical background

in Section 2.2 and then introduce our approach in Section 2.3. We test the performance of

our approach on a host of analytical problems and real-world data sets in Section 2.4 and

we draw conclusions in Section 2.5.

2.2 Technical Background

In this section we first review LMGPs which are extensions of GPs that handle categorical

inputs and, thus, can readily fuse any number of data sets. Then, we provide some back-

ground on Bayesian neural networks (BNNs) which form the foundation of our neural data

fusion framework.

7



2.2.1 Latent Map Gaussian Processes (LMGPs)

Let us denote the categorical inputs by t = [t1, . . . , tdt]
T where the total number of distinct

levels for qualitative variable ti is τi. To handle mixed inputs, LMGP learns a parametric

function that maps categorical variables to some points in a quantitative manifold or latent

space1. These points (and hence the mapping function) can be incorporated into any stan-

dard correlation function, such as the Gaussian, which is reformulated as follows for mixed

inputs:

r
(
(x, t), (x

′
, t

′
)
)
= exp

(
−
∥∥∥z(t)− z(t

′
)
∥∥∥2
2
−
(
x− x

′
)T

10Ω
(
x− x

′
))

(2.1)

or, equivalently,

r
(
(x, t), (x

′
, t

′
)
)
= exp

(
−

dx∑
i=1

10ωi(xi − x
′

i)
2

)
× exp

(
−

dz∑
i=1

(zi(t)− zi(t
′
))2

)
(2.2)

where ∥·∥2 denotes the Euclidean 2-norm and z(t) = [z1(t), . . . , zdz(t)]1×dz is the to-be-

learned latent space point corresponding to the particular combination of categorical vari-

ables denoted by t. To find these points in the latent space, LMGP assigns a unique vector

(i.e., a prior representation) to each combination of categorical variables. Then, it uses ma-

trix multiplication2 to map each of these vectors to a point in a latent space of dimension

dz:

z(t) = ζ(t)A (2.3)

where ζ(t) is the 1×
∑dt

i=1 τi unique prior vector representation of t and A is a
∑dt

i=1 τi× dz

matrix that maps ζ(t) to z(t). In this work, we use dz = 2 since it simplifies visualization

and has been shown to provide sufficient flexibility for learning the latent relations [40].

We construct ζ via a form of one-hot encoding where we first construct the 1 × τi vector

1Multiple mapping functions can also be used to build multiple manifolds. We leverage this in Section 2.4
where we build two manifolds for data fusion problems with categorical or mixed inputs.

2More complex transformations based on, e.g., NNs, may also be used, although we do not do so in this
work.
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vi =
[
vi1, v

i
2, . . . , v

i
τi

]
for each categorical variable ti such that vij = 1 when ti is at level k = j

and vij = 0 when ti is at level k ̸= j for k ∈ 1, 2, . . . , τi. Then, we set ζ(t) = [v1,v2, . . . ,vdt ].

For example, for the two categorical variables t1 and t2 with 2 and 3 levels, ζ(t) = [0, 1, 0, 1, 0]

encodes the combination where both variables are at level 2.

To train an LMGP, we use maximum likelihood estimation (MLE) to jointly estimate all of

its parameters:

[
m̂, ŝ2, ω̂, Â

]
= argmax

m,s2,ω,A

∣∣2πs2R∣∣− 1
2 × exp

(
−1

2
(y − 1m)T (s2R)−1(y − 1m)

)
(2.4)

where |·| denotes the determinant operator, y = [y1, . . . , yn]
T is the n× 1 vector of outputs

in the training data, R is the n × n correlation matrix with the (i, j)th element Rij =

r
(
(x(i), t(i)), (x(j), t(j))

)
for i, j = 1, . . . , n, and 1 is a n× 1 vector of ones.

After estimating the hyperparameters, we use the conditional distribution formulas to predict

the response distribution at the arbitrary point p∗ = (x∗, t∗). The mean and variance of this

normal distribution are:

E [y (p∗)] = m̂+ rT (p∗)R−1 (y − 1m̂) (2.5)

cov
(
y(p∗), y(p

′
)
)
= ŝ2r(p∗,p

′
) = ŝ2

{
1− rT (p∗)R−1r(p

′
) + g(p∗)(1TR−11)−1g(p

′
)
}
(2.6)

where E denotes expectation, r (p∗) is an (n×1) vector with the ith element r
(
p(i),p∗), and

g (p∗) = 1− 1TR−1r (p∗).

To perform data fusion via LMGP, we re-frame multi-fidelity modeling as a manifold learning

problem. Assume that we have ds data sources whose inputs and outputs are denoted by

xsi , ysi , respectively, with i = 1, . . . , ds. We first pre-process the data by appending the

inputs with a single categorical variable ts with ds levels (hereafter referred to as the source

index variable) that distinguishes the data sources. Specifically, we add ts at level i for source
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si, i.e., x
si → [xsi , insi×1], where insi×1 is an nsi × 1 vector of i’s and nsi is the number of

data points for source si. We then combine the data for all sources into one unified data set

and fit an LMGP directly to it, i.e., we fit LMGP to all of the data from all sources at once.

The fitted LMGP can provide predictions for any desired data source based on the level

used for ts and as such is an emulator for all of the data sources. Additionally, since the

data sources are distinguished via a categorical variable, LMGP learns the correlations be-

tween them via a visualizable latent representation and uses these correlations to improve

its predictions [33]. In the case that the raw inputs contain categorical variables tc, we use

separate mappings for ts and tc, i.e., we assign unique priors ζ(ts) and ζ(tc) which LMGP

uses to find mapping matrices As and Ac. The latent points corresponding to each mapping

are then zs and zc, respectively.

Note that the correlation function in Equation (2.2) depends directly on the euclidean dis-

tance between a pair of latent points. This means that relative distances in the latent space

directly correspond to correlations, e.g., if a pair of data sources ys1 and ys2 have corre-

sponding latent points with a distance ∆ in the latent space then this directly implies by

Equation (2.2) that LMGP has found those two sources to have a correlation of exp (−∆2).

2.2.2 Bayesian Neural Networks

Feedforward neural networks (FFNNs) are one of the most common models used in deep

learning and their main goal is to learn the underlying function f(x) that maps the inputs x

to the target y [41]. To this end, an FFNN defines the mapping f̂(x;θ) whose parameters θ

are estimated such that ŷ = f̂(x;θ) best approximates f(x). NN-based approaches for MF

emulation can provide attractive advantages since they are universal function approximators

[42] and can handle high-dimensional inputs and large data sets. In this subsection, we first

briefly describe the working principle of FFNNs and then motivate the use of BNNs and
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Bayes by backprop [43].

FFNNs propagate information from the inputs x to the output y through intermediate

computations that define f̂ . They are traditionally built via a succession of L layers where

L− 2 hidden layers are placed between the input and output layers. The output of layer k

is denoted by zk and is obtained as follows:

z1 = x, (2.7)

zk = ϕk (Wkzk−1 + bk) ∀ k ∈ [2, L− 1], (2.8)

ŷ = ϕL (WLzL−1 + bL) (2.9)

where ϕ is the (typically non-linear) activation function. The parameters θk = (Wk, bk),

where Wk and bk are the weight matrices and bias vectors, respectively, correspond to the

connections between the (k − 1)th and kth layer. For brevity, we denote the parameters of

the entire network by θ.

Since f̂(x(i);θ) approximates y(i), we can write:

y(i) = f(x(i)) + ϵ ≈ f̂(x(i);θ) + ϵ (2.10)

where ϵ ∼ N (0, σ2) represents noise. Equation (2.10) indicates that P (y(i)|x(i)) ∼ N (f(x(i)), σ2)

or E[y(i)|x(i)] = f(x(i)) ≈ f̂(x(i);θ). Therefore, FFNNs can be seen as a statistical model

with parameters θ that aim to learn the expected conditional distribution E[y(i)|x(i)]. To

that end, the conditional probability P (D|θ) is written as:

P (D|θ) =
n∏

i=1

P (y(i)|x(i),θ)P (x(i)) =
n∏

i=1

N (y(i); ŷ(i), σ2)P (x(i))

=
n∏

i=1

1

σ
√
2π

exp

(
− 1

2σ2

(
y(i) − ŷ(i)

)2)
P (x(i)) (2.11)
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Since the likelihood function L(θ) ≡ P (D|θ), the parameters θ can be estimated by maxi-

mizing L(θ) (the dependence on x is dropped for brevity):

θMLE = argmax
θ

L(θ) ≡ argmin
θ
− logP (D|θ) = argmin

θ

1

n

n∑
i=1

(
y(i) − f̂(x(i);θ)

)2
(2.12)

which is equivalent to minimizing the mean squared error (MSE) of the predictions ŷ =

f̂(x;θ) with respect to the targets y. Equation (2.12) can be updated via Bayes rule to

consider prior knowledge on θ in the optimization. These maximum a posteriori (MAP)

estimates are obtained via:

θMAP = argmax
θ

P (θ|D) = argmax
θ

logP (θ|D) = argmax
θ

(logP (D|θ) + logP (θ)) (2.13)

where the first term recovers MSE as in Equation (2.12) and the second term depends on

the prior distribution assigned to the parameters. Equation (2.13) illustrates that Gaussian

and Laplacian priors are equivalent to L2 and L1 regularization, respectively [41, 43].

FFNNs are likely to overfit in scenarios where data is scarce. Additionally, they cannot

directly quantify prediction uncertainty and are often overconfident in extrapolation [44].

BNNs are developed to address these issues [45, 46]. In BNNs, the weights are endowed

with probability distributions (rather than single point estimates) which naturally results in

probabilistic predictions and can dramatically reduce overfitting via parameter regularization

and model averaging.

Predictions via a BNN requires sampling from the posterior distribution of the parameters,

i.e., P (θ|D), which does not have a closed form and is highly complex. Over the past

few years, various techniques have been developed to obtain samples from P (θ|D) (or an

approximation thereof). The most popular techniques are based on either Markov Chain

Monte Carlo (MCMC) [47] or variational inference (VI) [48] which, unlike MCMC, learns an

approximation of the posterior distribution.

12



Although MCMC methods are arguably the best techniques for sampling from the exact

posterior, their lack of scalability makes them inefficient for BNNs of any practical size

[49]. Hence, we employ Bayes by backprop [43] which is a variational method that approxi-

mates P (θ|D) with the parameterized distribution q(θ|φ) . The parameters φ are learned

by minimizing the Kullback–Leibler (KL) divergence between the true and approximated

posteriors:

KL[q(θ|φ)||P (θ|D)] =
∫

q(θ|φ) log
(

q(θ|φ)
P (θ|D)

)
dθ =

∫
q(θ|φ) log

(
q(θ|φ)P (D)
P (D|θ)P (θ)

)
dθ

=

∫
q(θ|φ) logP (D)dθ +

∫
q(θ|φ) log

(
q(θ|φ)
P (θ)

)
dθ −

∫
q(θ|φ) logP (D|θ)dθ

= logP (D) + KL[q(θ||φ)|P (θ)]− Eq(θ|φ)[logP (D|θ)] (2.14)

where Bayes rule is applied to P (θ|D) in the first line. Then, the parameters φ are estimated

by minimizing Equation (2.14):

φ∗ = argmin
φ

KL[q(θ|φ)||P (θ|D)] = argmin
φ

KL[q(θ|φ)||P (θ)]− Eq(θ|φ)[logP (D|θ)] (2.15)

where the term logP (D) is excluded as it is constant. Equation (2.15) aims to minimize

the sum of two terms. The second term corresponds to the expectation of the negative log-

likelihood while the first term acts as a regularizer and corresponds to the KL divergence

between the approximated posterior and the prior.

2.3 Probabilistic Neural Data Fusion

Designing a multi-fidelity NN that leverages an ensemble of LF data sets to better learn an

HF source is a very challenging task because of the following major reasons:

1. The relations among the data sources can be unknown. For instance, in the Rational
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example (see Table A.2 in Appendix A.1) there are three LF sources whose biases are

not additive. Additionally, these LF sources are not hierarchically ordered in the sense

that the second LF source is more accurate than the first one.

2. There are typically (but not always) more LF data available since LF sources are

generally cheaper compared to the HF source. Learning from such an unbalanced MF

data is quite difficult especially in the presence of scarce HF data (as an example, see

the sample sizes for the engineering applications described in Appendix A.2).

3. NNs can be built in many ways and, as shown in Section 2.4, their performance heavily

depends on their architecture and training mechanism. Building an optimum3 NN

with small, unbalanced, and MF data is even more difficult since the sensitivity to the

architecture and training mechanism considerably increases.

We propose to address the above challenges by converting MF modeling to a manifold4

learning problem which is then solved via an NN. We design the architecture, loss function,

and training mechanism of this NN with a particular focus on uncertainty sources that include

data scarcity (especially HF samples), noise with unknown variance (which can affect any of

the data sources), non-trivial biases of LF sources, and data imbalances.

As schematically demonstrated in Figure 2.1, we convert MF modeling to manifold learning

by augmenting the input space with the categorical variable ts whose levels (e.g., {′1′,′ 2′, · · · }

or {a, b, · · · }) indicate the source that generates a sample. We then map this source indicator

variable to a low-dimensional manifold via a BNN (see Block 1 in Figure 2.1). If the original

input space has the categorical variables tc, we similarly map them to a manifold (but this

time we use a deterministic NN, see Block 2 in Figure 2.1). Afterwards, we combine the

latent variables of these two manifolds with the quantitative inputs x via a deterministic NN,

see Block 3 in Figure 2.1. As opposed to the other two blocks, we require Block 3 to produce

3We measure optimality in terms of NN’s error in predicting unseen data from the HF source.
4A manifold or a latent-space is a compact representation of a high-dimensional object such as an image.
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Targets

Bayesian Neural Network

Feedforward Neural Network

Probabilistic Latent Mapping

Probabilistic Output

Source Indicator

Feedforward Neural Network

Deterministic Latent Mapping

Numerical Inputs

C

Source Source

Categorical Inputs

Block 1

Block 2

Block 3

Inputs

Multi-fidelity data

: ConcatenationC

Figure 2.1 Probabilistic neural data fusion (Pro-NDF): The proposed architecture allows
to combine an arbitrary number of sources by appending a source indicator variable to the data
sets and then concatenating them. Pro-NDF consists of three blocks that perform separate tasks
related to MF modeling: (1) Block 1 is a BNN that maps a quantitative prior representation of the
source indicator ζ(ts) to a continuous manifold, (2) Block 2 is an FFNN that maps a quantitative
prior representation of the categorical inputs ζ(tc) to a continuous manifold, and (3) Block 3 is an
FFNN with a probabilistic output that maps the numerical inputs and the latent variables to a
parametric distribution.

a normal probability distribution in order to capture aleatoric uncertainties. Finally, we

train the entire network on the entire5 data using our custom loss function that noticeably

improves the prediction intervals.

5By entire, we mean the combined data sets from all sources.
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In the following subsections, we elaborate on our rationale for designing a multi-block archi-

tecture and a custom loss function in Section 2.3.1 and Section 2.3.2, respectively. Then, we

provide some details on the training and inference stages in Section 2.3.3.

2.3.1 Multi-Block Architecture

Each block of our network is designed to address particular challenges associated with MF

modeling. Specifically, the BNN of Block 1 maps a quantitative prior representation ζ(ts)

of the source indicator variable ts to a continuous manifold zs. We design ζ(ts) by one-

hot encoding ts to merely inform the network about the source that generates a sample6.

We build zs based on a categorical variable because it forces the manifold to uncover the

relations between sources (i.e., the levels of ts). These relations are represented as distances in

zs where sources that produce similar data are encoded with close-by points (see Section 2.4

for multiple examples). This distance learning is in sharp contrast to existing approaches

since (1) it does not assume there is any hierarchy between the data sources, (2) it is scalable

to an arbitrary number of data sets, (3) it enables training the entire network via all available

samples, (4) it is visualizable and interpretable which helps in identifying anomalous data

sources, and (5) it does not assume any specific form (e.g., additive, multiplicative, etc.) for

the biases of LF sources.

Block 1 is the only part of our network where the weights and biases are endowed with

probability distributions. We make this choice to better learn model form errors and more

accurately quantify the epistemic uncertainties due to lack of data and source-wise dis-

crepancies. We note that, while the outputs of Block 1 do not parameterize a probability

distribution, they are probabilistic by nature since they are obtained by propagating the

deterministic vector ζ(ts) through some probabilistic hidden layers.

6If there is some prior knowledge about the relation among the sources, ζ(ts) can be designed to reflect
it. We do not pursue designing such informative priors in this work.
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Block 2 is an FFNN that maps the quantitative prior representation ζ(tc) of the categorical

inputs tc to the manifold zc (Block 2 is omitted if the original inputs are purely quantitative).

Similar to Block 1, we design ζ(tc) via one-hot encoding and use deterministic outputs.

However, unlike Block 1 we use a deterministic FFNN in Block 2 to map ζ(tc) into zc. We

make this decision to reduce the number of parameters and also because the meaning (and

hence effects) of categorical inputs across different sources is typically the same7.

We set the manifold dimension to 2 for both Block 1 and Block 2, i.e., dzs = dzc = 2. While

higher dimensions provide more learning capacities, our results in Section 2.4 and those re-

ported elsewhere [50, 51, 52, 53, 54, 55] indicate that low-dimensional manifolds are quite

powerful in learning highly complex relations. For instance, [56] shows that a single latent

variable can encode smiling in images of human faces which is a high-dimensional and com-

plex feature in the original data space. Additionally, our choice simplifies the visualization

of the manifolds and reduces the chances of overfitting since we are primarily interested in

scarce data applications.

Block 3 is also an FFNN that maps the numerical inputs and the latent variables in both

manifolds to a parametric distribution which represents the output. Block 3 has deter-

ministic weights and biases since source-wise uncertainties are propagated to it via Block 1.

However, we equip Block 3 with a probabilistic output [57] because it: (1) quantifies aleatoric

uncertainties that are inherent to the data sets8, and (2) enables designing a multi-task loss

that considers the quality of the prediction intervals (detailed in Section 2.3.2). Additionally,

Block 3 is responsible for learning the behavior for all data sources simultaneously, which

allows it to leverage correlations between sources to augment predictions through a process

akin to weight sharing.

7Due to severe discrepancies such as large model form errors, the effects of a categorical variable on the
response may be quite different across the sources.

8The predicted variance also includes epistemic uncertainties that are propagated from Block 1, see
Section 2.3.3.
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2.3.2 Uncertainty-Aware Loss

NNs typically provide overconfident predictions especially when they are trained on small

and unbalanced data. As explained in Section 2.3.1, we aim to address this issue by making

Block 1 and the network’s final output probabilistic. However, for these measures to work,

we must develop an effective optimization9 scheme where the loss function appropriately

rewards prediction intervals (PIs) that are sufficiently wide (but not too wide) to cover

unseen data (especially HF data). To design such a loss function, we draw inspiration from

strictly proper scoring rules [39] and augment Equation (2.15) with the negatively oriented

interval score. Our loss is defined as:

L = LNLL + α1LKL + α2LIS + α3L2 (2.16)

where LNLL refers to the negative log-likelihood, LKL is the KL divergence between the

prior and the variational posterior distributions on the parameters (only applicable for the

BNN from Block 1), LIS denotes the interval score term, and L2 is L2 regularization (only

applicable for deterministic NNs, i.e., Block 2 and 3). α1, α2 and α3 are hyperparameters

that, respectively, determine the relative strengths of LKL, LIS and L2 compared to LNLL.

The four terms in Equation (2.16) are calculated as:

LNLL = − 1

N

N∑
i=1

logN (y(i); µ̂(i),
(
σ̂(i)
)2
) (2.17)

LKL = KL[q(θ|φ)||P (θ)] (2.18)

LIS =
1

N

N∑
i=1

[(û(i) − l̂(i)) +
2

γ
(l̂(i) − y(i))1{y(i) < l̂(i)}+ 2

γ
(y(i) − û(i))1{y(i) > û(i)}] (2.19)

L2 = |θ|2 (2.20)

9Recall that we use Bayes by backprop which takes a variational approach towards finding the posteriors,
see Section 2.2.2.
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where LKL is computed via a Monte Carlo approximation, N is the batch size, and 1{·}

denotes the indicator function that returns 1 if the event in brackets is true and 0 otherwise.

The three terms of Equation (2.16) compose a multi-task loss where: (1) the likelihood term

LNLL penalizes the model if the predicted distribution does not match the target distribution,

(2) the KL divergence term LKL favors variational posteriors that are similar to the assumed

prior as per Equation (2.15), and (3) the interval score term LIS rewards narrow PIs while

penalizing the model for each observation y(i) that lies outside the (1−γ)× 100% prediction

interval that spans the range [l̂(i), û(i)] where l̂(i) = µ̂(i) − 1.96σ̂(i) and û(i) = µ̂(i) + 1.96σ̂(i).

In this work, we use γ = 5%, thus implying that LIS is minimized by a distribution whose

95% PI is as tight as possible while containing all the training data.

2.3.3 Training and Prediction

In BNNs, the variational posterior of θ is typically defined layer-wise as a multivariate

Gaussian with mean µ ∈ Rck and covariance matrix Σ ∈ Rck×ck , i.e., N (µ,Σ), where

ck is the total number of connections between two consecutive layers. Estimating the full

covariance matrix requires learningO(c2k) parameters and is thus computationally prohibitive

in most applications [49]. To reduce the costs, some simplifications have been adopted in the

literature, such as learning diagonal or block diagonal [58] covariance matrices. However,

our approach does not suffer from this computational issue since the only Bayesian part of

our network is Block 1 (see Figure 2.1) whose size is typically very small (we use one hidden

layer with 5 neurons for all the studies in Section 2.4). Hence, we estimate a dense covariance

matrix between any two layers of Block 1 to improve its uncertainty quantification capacity.

As for the prior, we use a zero mean Gaussian distribution with diagonal covariance matrix

which makes the KL term equivalent to L2 regularization with a rate defined by the standard

deviation of the prior distribution [59]. Thus, the standard deviation is a hyperparameter

that needs to be tuned specifically to each problem.
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Block 1

Block 2

Block 3

Probabilistic Fidelity Manifold

Predictions with 

Uncertainty Quantification

Source Indicator

Numerical Inputs

Categorical Inputs

realizationsGet

Categorical Inputs Manifold

Figure 2.2 Outputs of Pro-NDF: We visualize the outputs of Pro-NDF after it is trained on the
MF data of the HOIP data set, which does not have any numerical inputs (see Appendix A.2 for
more details). To provide probabilistic predictions that quantify both epistemic as well as aleatoric
uncertainties, Pro-NDF learns a probabilistic fidelity manifold (where sources with similar behavior
are encoded with close-by distributions) and a deterministic manifold for the categorical inputs.

BNNs represent their weights and biases by parameterized distributions which in our case are

multivariate normal with dense covariance matrices. In a forward pass during either training

or prediction, we take individual samples from these distributions and assign them to the

weights and biases. In this way, instead of explicitly obtaining the true posterior distribution

of the output of Block 1 (i.e., zs, see Figure 2.1), we obtain an empirical distribution in the

zs manifold by taking a number of forward passes, see Figure 2.2. We refer to these forward

passes as realizations and as explained below we use different number of passes in training

versus prediction.

To obtain the response (in training or testing) at the input u using Pro-NDF, which contains

20



both a BNN component and a probabilistic output, we use ensemble prediction formulas [38]:

µ̂(u) =
1

M

M∑
j=1

µ̂θj(u) (2.21)

σ̂(u) =
1

M

M∑
j=1

(
σ̂2
θj
(u) + µ̂2

θj
(u)
)
− µ̂2(u) (2.22)

where µ̂θj(u) and σ̂θj(u) are, respectively, the mean and standard deviation of the output

distribution in the jth realization and θj are the associated network parameters. For predic-

tions with a fitted NN, we use M = 1000 since it provides a higher accuracy in quantifying

the uncertainty associated with learning the fidelity manifold (i.e., zs). While training the

network, we use M = 200 to reduce the computational costs.

The performance of an NN is highly sensitive to its architecture and hyperparameters if the

training data is small, unbalanced, and multi-fidelity. To reduce this sensitivity and leverage

the low costs of training a single NN on small data, we perform automated hyperparameter

tuning10. To this end, we use RayTune [60] and Hyperopt to find the optimum hyperparam-

eters and architecture by minimizing the five-fold cross-validation errors on predicting the

high-fidelity data.

For our approach specifically, we apply the above tuning strategy to the architecture of

Block 3, the learning rate of the Adam optimizer, α1, α2 and α3 in Equation (2.16), the

prior standard deviation of weight matrices in Block 1, and the batch size. We fix the

architectures of Block 1 and Block 2 to one hidden layer with 5 neurons and the dimension

of both manifolds to 2. The activation function for all the neurons of Block 1 and 3 is

hyperbolic tangent, whereas for Block 2 it is the sigmoid function. In addition to one-hot

encoding the categorical inputs, we scale (normalize) the numerical inputs and outputs to

the range [0, 1] based on the range of the training data to assist the network in training. The

10We use this approach for all NN-based data fusion approaches (including ours) in Section 2.4.
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outputs are un-scaled to the original space after prediction. For more information and full

details on implementation, please see our GitLab repository.

2.4 Results and discussions

In this section, we validate our approach on multiple analytic and real-world MF problems

(detailed in Appendix A.1 and Appendix A.2) and compare its performance against LMGP,

multi-fidelity deep Gaussian processes (MF-DGP) [61], a single-fidelity GP (SF-GP) fit on the

HF data, and two other existing NN-based approaches which are based on simple feedforward

networks or sequential multi-fidelity (SMF) networks which are described in Appendix A.3.

The hyperparameters of all the NN-based approaches are tuned as described in Section 2.3.3.

We refer the reader to our GitLab repository for specific details on implementation, estimated

hyperparameters, and training/test data. For LMGP, SF-GP, and MF-DGP, none of its

architectural parameters (such as the kernel type, mean function, latent map, etc.) are

tuned.

We first conduct an ablation study in Section 2.4.1 to quantify the impacts of our designed

architecture, loss function, and probabilistic elements. Then, we test the performance of the

six MF approaches on the analytic and real-world problems in Section 2.4.2 and Section 2.4.3,

respectively. Finally, in Section 2.4.4 we carry out convergence studies on three bi-fidelity

examples to test the performance of our approach against existing modeling techniques over

a range of data set sizes. In each problem, the goal is to model the HF source as accurately

as possible, i.e., to obtain the lowest mean prediction error while maximizing the number

of training/test samples that fall in the 95% PI. To this end, we use normalized root mean

squared-error (NRMSE) and normalized mean negatively oriented interval score (NIS)11 as

11When used as evaluation metrics, the NRMSE and NIS are equivalent to Equation (A.1-1) and Equa-
tion (2.19), respectively, calculated over the test data and scaled by the standard deviation of the high-fidelity
training data.
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our evaluation metrics. Note that the FFNN and SMF approaches are not probabilistic, i.e.,

they provide point estimates rather than PIs and therefore they are only evaluated based on

NRMSE.

All the experiments of this section are conducted on an NVIDIA GeForce RTX 3060 with

64 GB of RAM using NVIDIA CUDA 11.2 and cuDNN 8.4.1. We use Python 3.8.10 with

Tensorflow 2.6.0, Tensorflow Probability 0.14.0, and Keras 2.6.0. We report the training

time for fitting Pro-NDF and the other MF approaches in Appendix A.4.1.

2.4.1 Ablation Study

To evaluate the impact of the key components of Pro-NDF, we perform an ablation study on

the Rational and DNS-ROM problems which are detailed in Appendix A.1 and Appendix A.2,

respectively. Namely, we analyze the impact of:

1. Using a BNN rather than a deterministic FFNN in Block 1 for probabilistically learning

the relations between the data sources.

2. Considering LIS in the loss function of Equation (2.16).

3. Fitting the model to the parameters of a distribution instead of a scalar, i.e., using a

probabilistic output.

4. Leveraging the fidelity map to detect the least accurate LF source and, in turn, assess-

ing whether this source helps emulating the HF source.

Regarding the third item above we note that we no longer use NIS in the loss once the

probabilistic output is removed. However, we still calculate the NIS after training based

on the empirical distribution of the fidelity manifold which is produced by the multiple

realizations of the BNN component.
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Problem
Model
Version

Input data Components
NRMSE NIS

HF LF1 LF2 LF3 LIS PB1 PO

Rational

Base ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.084 0.464
V1 ✓ ✓ ✓ ✓ ✗ ✓ ✓ 0.119 0.536
V2 ✓ ✓ ✓ ✓ ✓ ✗ ✓ 0.110 0.488
V3 ✓ ✓ ✓ ✓ ✗ ✓ ✗ 0.092 0.830
V4 ✓ ✓ ✓ ✗ ✓ ✓ ✓ 0.156 2.021

DNS-ROM

Base ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.101 0.520
V1 ✓ ✓ ✓ ✓ ✗ ✓ ✓ 0.119 0.632
V2 ✓ ✓ ✓ ✓ ✓ ✗ ✓ 0.155 1.186
V3 ✓ ✓ ✓ ✓ ✗ ✓ ✗ 0.140 4.379
V4 ✓ ✓ ✓ ✗ ✓ ✓ ✓ 0.100 0.564

Table 2.1 Results of the ablation study: We evaluate the effect of removing individual com-
ponents of Pro-NDF from it by reporting the NRMSE and NIS on unseen HF data. All models are
trained as discussed in Section 2.3 (e.g., all models benefit from automatic hyperparameter tuning).
For both NRMSE and NIS, lower numbers indicate better performance. The ticks indicate whether
a component is used. The acronyms and symbols are defined as: HF: high-fidelity, LF1: low-fidelity
1, LF2: low-fidelity 2, LF3: low-fidelity 3, LIS : negatively oriented interval score term in the loss
function of Equation (2.16), PB1: probabilistic Block 1, PO: probabilistic output.

We summarize the results of the ablation study on the two examples in Table 2.1. For both

problems, we observe that using all components minimizes the test NRMSE and NIS. No-

tably, both of our model’s probabilistic components significantly increase the performance:

the probabilistic output enables Pro-NDF to not only capture aleatoric uncertainty, but also

leverage NIS in its loss function. Additionally, using a BNN improves Pro-NDF’s HF emula-

tion capabilities by preventing overfitting in scarce data regions (since Block 1 is regularized)

and by partially disentangling epistemic and aleatoric uncertainties which yields better PIs.

We observe that without a probabilistic output, the NIS (and hence the uncertainty quan-

tification accuracy) drops quite significantly (compare V3 to V1 and the base in either of

the problems) since the model can no longer account for aleatoric uncertainties. By com-

paring V1 to the base model in either of the problems in Table 2.1 we see that for a model

with a probabilistic output the optimal performance is obtained when LIS is used in the

loss. That is, leveraging the NIS in training improves both mean prediction and uncertainty

quantification (measured via NRMSE and NIS, respectively).
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In both problems, evaluating V1 through V3 against one another indicates that there is a

trade-off between NRMSE and NIS. That is, versions that perform well in terms of NRMSE,

do not generally provide the smallest NIS. However, when all of these components are in-

cluded in Pro-NDF (see the base model in Table 2.1 for either of the problems), both NRMSE

and NIS are reduced. This improvement is due to the fact that the priors and LIS effectively

regularize the model whose learning capacity is substantially increased by the probabilistic

natures of Block 1 and the output.

The probabilistic fidelity manifold (i.e., output of Block 1) provides an intuitive and visual-

izable tools to learn the similarity/discrepancy among the sources. Hence, once we fit the

base model in each problem, we analyze the learned fidelity manifold to determine the LF

source that has the least similarity to the HF source, see Figure 2.4(a) and Figure 2.6(a).

Based on the distances in the fidelity manifold of each problem, we conclude that the third

LF source is the least correlated one with the HF source in both cases. We exclude this

source and its data from MF modeling and refit the base model to the rest of the data, see

version V4 for both problems.

One of the major outputs of Pro-NDF is the learned fidelity manifold which indicates which

LF source has the highest discrepancy compared to the HF source. Hence, after training

a Pro-NDF and inversely identifying the least accurate LF source, we can build another

Pro-NDF while excluding the data from this source. In the Rational problem, omitting the

lowest-fidelity source results in much worse NRMSE and NIS. We explain this observation

by noting that this problem has an extremely small number of HF samples and therefore

it is important to judiciously use all available data in training. However, in the DNS-

ROM problem version V4 achieves the best NRMSE while Pro-NDF with all components

achieves the best NIS and second best NRMSE (compare base to V4 in Table 2.1). We

explain this trend by noting that the size of the training data in the DNS-ROM problem

is significantly higher than that in the Rational problem. Therefore, omitting a highly
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inaccurate data source slightly improves mean prediction accuracy for the HF source in the

DNS-ROM problem since the input-output relationships learned by Block 3 for the different

sources are more similar. Omitting data from this source also increases the ratio of HF data

available in the unified data set which helps in learning the HF behavior. However, using

all data sources provides Pro-NDF with more information which improves the uncertainty

quantification capability and hence a smaller error on NIS.

2.4.2 Analytic Problems

In this section, we validate our approach against LMGP, SF-GP, MF-DGP, and two existing

NN-based technologies for the Rational, Wing-weight, and Borehole examples detailed in

Appendix A.1. These examples cover a wider range of input dimensionality, number of

sources, and model form errors (e.g., additive and nonlinear biases). Similar to the previous

section, we use NRMSE and NIS on HF test data as the performance metrics. The input

space of these three examples does not have categorical features and hence both Pro-NDF

and LMGP learn a single manifold. We visualize the fidelity manifolds learned by Pro-NDF

and LMGP to examine these models’ ability in inversely learning the relationships among

the data sources (note that the LF sources are not ordered based on their accuracy). We

highlight that MF-DGPs require knowledge of the relative fidelity of the sources and hence

we provide them with this additional information. We also remark that, unlike Pro-NDF,

the fidelity manifold of LMGP is not probabilistic and hence each data source is encoded

with a single point in the manifold.

The results for each approach on each problem are summarized in Table 2.2 and demon-

strate that the probabilistic approaches, i.e., LMGP and Pro-NDF, significantly outperform

the deterministic approaches and MF-DGP (which is probabilistic) in all problems. The

FFNN approach performs significantly worse than LMGP and sometimes approaches the
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Rational Wing-weight Borehole
Model NRMSE NIS NRMSE NIS NRMSE NIS

Pro-NDF 0.084 0.464 0.140 0.675 0.080 0.400
LMGP 0.085 0.413 0.112 0.540 0.074 0.365

MF-DGP 0.095 0.885 0.197 1.056 0.453 2.936
SF-GP 0.111 0.889 0.327 2.114 6.423 3.43
FFNN 0.112 - 0.146 - 0.096 -
SMF 0.612 - 0.371 - 0.273 -

Table 2.2 Results on the analytic examples for different models: We test the performance
of Pro-NDF against LMGP, SF-GP, MF-DGP, and two existing NN-based technologies for the
Rational, Wing-weight and Borehole examples detailed in Table A.2. The training procedure for
Pro-NDF, LMGP, FFNN and SMF is discussed in Section 2.3, Section 2.2.1, Appendix A.3.1 and,
Appendix A.3.2 respectively. We report the NRMSE and NIS on unseen HF data. We provide
MF-DGP with additional information that specifies the relative accuracy of the LF sources.

performance of Pro-NDF in NRMSE, while the SMF approach shows poor performance

for all problems. We explain SMF’s poor performance by noting that, as explained in Ap-

pendix A.3, hierarchical MF techniques such as SMF heavily rely on the knowledge of fidelity

levels to process the data sources sequentially in the order of increasing accuracy. Since we

assume in the problem setup that we only know which source has the highest fidelity and

do not know the relative fidelity levels of the LF sources, the LF sources are ordered sub-

optimally in the SMF approach which leads to a very poor prediction accuracy. The FFNN

approach, by contrast, does not rely on the knowledge of fidelity levels and as such per-

forms better than SMF. However, its performance lags behind that of LMGP and Pro-NDF

because the architecture is not designed with MF problems in mind.

LMGP, which is considered as our gold standard for MF problems with small data, outper-

forms Pro-NDF in both NRMSE and NIS for the Wing-weight and Borehole problems, and

in NIS for the Rational problem. The Rational problem is simultaneously the most data

deficient and least complex of the problems examined in this work: as shown in Table A.2,

there are 4 data sources with only one being especially inaccurate, the input and output are

both 1D, and there are only 5 training samples provided for the HF source. Pro-NDF and

LMGP are well suited to tackle this problem as they both perform well for low-dimensional
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Figure 2.3 High-fidelity emulation on the Rational problem: a) Four data sources and
the corresponding training data, b) SF-GP fit only to the HF data, c) LMGP fit to all available
data and d) Pro-NDF fit to all available data. Pro-NDF and LMGP approaches clearly outperform
SF-GP in terms of mean accuracy and give a narrower PI. They both produce similar results in
terms of mean prediction in interpolation. However, LMGP has a narrower 95% PI and reverts to
its mean in extrapolation.

problems with simple underlying functional forms and well-correlated sources, and as such

they have similar performance. Figure 2.3 reveals that LMGP captures all of the training

points in a narrower 95% PI compared to Pro-NDF which explains LMGP’s lower NIS in

Table 2.2. However, Pro-NDF shows a better performance for this problem in terms of mean

prediction accuracy and it also has a higher degree of agreement with the true function in

extrapolation while LMGP reverts to its mean. We therefore conclude that both methods

perform on par on the Rational problem.

The learned fidelity manifold of Pro-NDF for the Rational problem is shown in Figure 2.4(a)
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Figure 2.4 Pro-NDF and LMGP fidelity manifolds for the analytic problems: (a) Pro-
NDF for Rational problem, (b) LMGP for Rational problem, (c) Pro-NDF for Wing-weight problem,
(d) LMGP for Wing-weight problem, (e) Pro-NDF for Borehole problem, and (f) LMGP for Bore-
hole problem.

which indicates that the network has inversely learned the true relationship between the

data sources as yl1 and yl2 are encoded close to yh while yl3 is quite far from yh. These

relative distances are proportional to the accuracy of the LF sources with respect to the HF

source (in the interpolation region) which are reported in Table A.2. The fidelity manifold

also shows a high spread in the distributions of the realizations for individual sources which

indicates either a poor fit to the data or a lack of training samples. In this case, we attribute

this spread to lack of data since the performance in NIS and NRMSE is quite good.
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The Wing-weight and Borehole problems are both high-dimensional problems with relatively

complex underlying functional forms and small amounts of data. LMGP is very well suited

to tackle this type of problem [33] because the number of its hyperparameters scales much

better than NN-based approaches such as Pro-NDF . Accordingly, we observe that LMGP

achieves lower NRMSE and NIS for both examples.

Comparing the performance of Pro-NDF across the two high-dimensional problems, we ob-

serve that it performs much better on the Borehole problem. Examining the fidelity manifold

learned by Pro-NDF and LMGP for the Wing-weight problem, see Figure 2.4(c) and Fig-

ure 2.4(d), respectively, we see that both approaches accurately determine the relationship

between the sources as they agree with the NRMSEs reported in Table A.2. Specifically, yl1

is closer to yh than yl2 , which in turn is closer than yl3 . Notably, both LMGP and Pro-NDF

have the same relative ordering and positioning of the sources, i.e., (1) the mean position

of all sources lies on an axis, and (2) yl1 is in the opposite direction relative to yh from yl2

and yl3 . This reinforces our earlier assertion in Section 2.3: the positions of the sources

in the fidelity manifold learned by Pro-NDF reflect correlations between the data sources.

However, the relative distances between the LF sources in the latent space found by LMGP

more accurately represents the true relationships between the sources because the position

for yl3 is much more distant from yh than encoded positions of the other sources.

In Figure 2.4(a) we observe a large spread in the realizations (i.e., the posterior distributions

in the fidelity manifold are quite wide) which partially explains the poor12 performance in

this problem. We attribute this performance level to the relative accuracy of the data sources

since only one source, yl1 , is at all accurate with respect to yh while the other LF sources

are quite inaccurate. LMGP’s performance is not inherently hampered by including poorly

correlated sources in the data fusion problem [33] since its performance, upon successful

optimization, is at worse on par with fitting separate GPs to each source. By contrast, since

12Poor with respect to LMGP. The performance of Pro-NDF is still much better than the other four
approaches.
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Figure 2.5 Predictions vs noisy test outputs: We compare the predictions of Pro-NDF on
10, 000 random HF samples for the two high-dimensional analytical problems. The noisy test data
are within the 95% PIs which indicates that Pro-NDF is achieving a high performance in uncertainty
quantification.

Pro-NDF’s Block 3 is responsible for learning the relations between all sources and uses

weight sharing, including especially inaccurate sources leads to relatively poor performance

as shown in 2.4.1.

Lastly, we note that the performance of MF-DGPs, especially in uncertainty quantification

(as measured by NIS), is much worse than both LMGP and Pro-NDF. This is an especially

interesting result since we provide MF-DGP with the correct ordering of the data sources

since it processes the data sequentially (e.g., for the Rational problem, MF-DGP knows that

yl2 is the most accurate LF source which is then followed by yl1 and yl3). We attribute the

deficiencies of MF-DGP to its sequential architecture which prevents the model from using

all available data in emulating all the sources (e.g., as opposed to our approach, HF data

does not directly contribute to learning any of the LF sources).

2.4.3 Real-World Problems

In this section, we validate our approach against LMGP, SF-GP, MF-DGP, and two existing

NN-based technologies on two engineering applications which are detailed in Appendix A.2.
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We again use NRMSE and NIS on HF test data as our performance metrics and examine the

manifolds learned by Pro-NDF and LMGP. In both of these applications, the input space

has categorical features (so Pro-NDF and LMGP each build two manifolds) and we do not

know the underlying relationships between the data sources.

The results for each approach on each problem are summarized in Table 2.3 and demonstrate

that the probabilistic approaches again significantly outperform the deterministic ones as well

as MF-DGP which is provided with the additional information on the relative accuracy of

each data source (this information is not provided to any of the other approaches). The

FFNN approach performs nearly as well as LMGP and Pro-NDF in the DNS-ROM prob-

lem, but lags behind Pro-NDF and LMGP in the HOIP problem in terms of NRMSE. The

SMF approach shows poor performance for both problems for the same reasons provided in

Section 2.4.2. Notably, Pro-NDF outperforms LMGP for both problems in terms of both

metrics which we partially explain by noting that there are much more data are available in

these real-world problems compared to the analytical examples of Appendix A.1. Being an

NN-based approach, Pro-NDF scales very well with additional data while the performance

of LMGP has diminishing returns and eventually plateaus (recall that the latent map and

DNS-ROM HOIP
Model NRMSE NIS NRMSE NIS

Pro-NDF 0.101 0.520 0.470 1.855
LMGP 0.105 0.706 0.473 2.510

MF-DGP 0.140 0.791 - -
SF-GP 0.123 0.653 0.779 5.923
FFNN 0.113 - 0.580 -
SMF 0.130 - 0.663 -

Table 2.3 Results on the real-world examples for different models: We test the perfor-
mance of Pro-NDF against LMGP, SF-GP, MF-DGP, and two existing NN-based technologies for
the DNS-ROM and HOIP data sets detailed in Appendix A.2. We report the NRMSE and NIS on
unseen HF data. We provide MF-DGP with additional information that specifies the relative ac-
curacy of the LF sources. MF-DGP and vanilla GPs cannot handle categorical variables and hence
for the HOIP example we do not apply MF-DGP and use LMGP (which can handle categorical
inputs) instead of vanilla GPs for the SF-GP method.
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kernel of LMGP are not tuned which contribute to this plateauing performance).

As shown in Figure 2.6(a-b), the fidelity manifolds learned by Pro-NDF and LMGP for the

DNS-ROM problem are nearly analogous as the relative distances are quite similar. However,

LMGP finds all sources to be on the diagonal axis while Pro-NDF learns a more nuanced

relationship between the sources, which may contribute to its superior performance. We also

observe that the spreads in the individual realizations for each point are fairly tight, which

indicates that Pro-NDF is able to learn the relations between the sources reasonably well and,

accordingly, provide good performance in terms of NRMSE and NIS. Like in Section 2.4.2, we

show the HF predictions at test inputs in Figure 2.7 in order to facilitate the comprehension

of the accuracy of Pro-NDF in these two problems.

The HOIP problem has three categorical inputs with 10, 3, and 16 levels and as such Pro-

Figure 2.6 Pro-NDF and LMGP fidelity manifolds for the real-world problems: (a)
Pro-NDF for DNS-ROM data set, (b) LMGP for DNS-ROM data set, (c) Pro-NDF for HOIP data
set, (d) LMGP for HOIP data set.
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Figure 2.7 Predictions vs noisy test outputs: We compare the predictions of Pro-NDF on test
data for the two high-dimensional engineering problems. The noisy test data are within the 95%
PIs which indicates that Pro-NDF is achieving a high performance in uncertainty quantification.

NDF uses two separate latent transformations (one for the data source and the other for the

three categorical variables) that correspond to Blocks 1 and 2 in Figure 2.1. The learned

categorical manifolds for Pro-NDF and LMGP are shown in Figures 2.8 and 2.9 where the zc

is visualized four times as the combinations of the categorical variables are color-coded based

on the levels of each of the three categorical variables and based on the average value of the

output 13. Since there are no numerical features, the combined inputs are u = [ζ(ts), ζ(tc)]

and ν = [zs, zc] are the inputs to Block 3 of Pro-NDF . Recall that we only use a BNN in

Block 1 and as such we show only one realization for the manifold for Pro-NDF that encodes

the categorical variables.

Pro-NDF outperforms LMGP in terms of NRMSE by a small margin and NIS by a significant

margin for this problem which we attribute to the size of the data sets. Pro-NDF is able

to leverage these additional data much more readily than LMGP which only uses simple

mapping functions to handle categorical variables ts and tc. Pro-NDF also finds fairly tight

spreads in the probabilistic fidelity manifold, see Figure 2.6(c); indicating that it has high

certainty in its outputs and that we should expect good performance. We note that all

sources are found to be roughly on one axis and roughly spaced evenly from each other, which

13This average is obtained using the entire data set including both the training and test data.
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Figure 2.8 Pro-NDF categorical manifold for the HOIP problem: The combination of the
categorical variables’ levels are color-coded based on: (a) the levels of tc1, (b) the levels of tc2, (c)
the levels of tc3, (d) the average output value.

may indicate that Pro-NDF has failed to learn the more nuanced relationships between the

sources. Equally likely, however, is that the relationships between the sources are simple

enough to be represented in this way; since we do not know the underlying functional forms

for this problem, we cannot give a definitive answer.

We can also glean some information about the relationships between the categorical variable

levels and their impact on the output by examining the corresponding manifolds in Fig-

ures 2.8 and 2.9. Figure 2.8(c) shows that Pro-NDF finds distinct clusters for all 16 levels

of tc3 which indicates that distinguishing between the levels of tc3 is important to learning

the output. Similarly, the levels of tc2 are distinguishable in Figure 2.8(b) as tc2 affects the

35



Figure 2.9 LMGP categorical manifold for the HOIP problem: The combination of the
categorical variables’ levels are color-coded based on: (a) the levels of tc1, (b) the levels of tc2, (c)
the levels of tc3, (d) the average output value.

response value. By contrast, Figure 2.8(a) shows no apparent trend between the 10 levels

of tc1 which implies that tc1 has little effect on the output as Pro-NDF does not learn to

distinguish the levels from each other. By contrast, the manifold found by LMGP, shown

in Figure 2.9 shows much less distinct clustering for each of the three categorical variables,

which may help explain why it achieves a lower NIS than Pro-NDF . Finally, we examine

whether the latent positions for the categorical combinations are influenced by the average

output value in Figure 2.8(d) and Figure 2.9(d). The manifold for Pro-NDF shows a clear

trend of the average output value increasing as the latent points move from the bottom-left

of the space to the top-right, while for LMGP there is no obvious trend. Based on these
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manifolds, Pro-NDF shows superior ability to discern relationships between the categorical

combinations and between levels of categorical variables.

Lastly, we observe MF-DGP provides the worst performance in the DNS-ROM example even

though it is provided with the correct ordering of the data sources. We believe MF-DGP does

not perform well because it sequentially stacks a set of GPs that (1) prevents bi-directional

information flow between any two sources where the data from source i informs the model

about source j only if source j is believed to be more accurate than it, and (2) if two sources

are not immediately related by two sequential GPs, their relations is only indirectly learnt

via intermediate GPs.

2.4.4 Convergence Study

In this section, we perform a convergence study to assess the performance of Pro-NDF against

three other methods on three analytical examples while varying the sizes of the data sets.

We compare our approach to LMGP, MF-DGP, and multi-fidelity neural networks (MFNN)

[36]. All the examples in this subsection are bi-fidelity since MFNN can only fuse two data

sources (for this reason MFNN is not used in Section 2.4.2 and Section 2.4.3). The three

problems studied here are listed in Table A.2 and include the Polynomial function of [62]

and the adapted versions of the Wing-weight and Borehole examples where we only use two

data sources (yh(x) and yl2(x) for the Wing-weight, and yh(x) and yl3(x) for the Borehole).

We show the results of the convergence study in Figure 2.10 in terms of NRMSE and NIS for

different data set sizes. The size of the initial data sets (at k = 1) for the three problems are

nh
1 = 5 and nl

1 = 20. The sizes of the subsequent data sets are increased via a multiplicative

factor k, i.e., nh
k = k × nh

1 and nl
k = k × nl

1. The results show that all methods, including

Pro-NDF, provide higher accuracy as the number of samples for both sources increase. We

also observe that for high-dimensional problems (Wing-weight and Borehole), the GP-based
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Figure 2.10 Convergence study: We compare four data fusion methods in terms of NRMSE
and NIS across three examples as the sizes of the data sets increase. The Polynomial (a,d), Borehole
(b,e) and Wing-weight (c,f) problems are detailed in Table A.2. The size of the initial data sets
(at k = 1) for the three problems are nh

1 = 5 and nl
1 = 20. These sizes increase as nh

k = k× nh
1 and

nl
k = k × nl

1.

approaches are more accurate when data sets are small (e.g., when k ≤ 4).

In these bi-fidelity examples, both MFNN and MF-DGP naturally leverage the hierarchy

between the LF and HF sources since both of them are structured such that the information

from the LF source is directly propagated to the part of the model that surrogates the HF

source. However, LMGP and Pro-NDF do not leverage this information in that they both

aim to emulate both sources as accurately as possible using the cross-correlation between the

LF and HF data sets. As we demonstrate in Section 2.4.2 and Section 2.4.3 such hierarchical

approaches provide poor performance in applications where there are more than two data

sources.

Despite not being designed for bi-fidelity problems, Pro-NDF achieves a comparable perfor-

mance to the other state-of-the-art methods in these examples. Rather, Pro-NDF is better

suited for MF problems with more than two sources, which we demonstrate by comparing the
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results in Figure 2.10 with the ones from previous subsections. For instance, in Figure 2.10

we can see that MF-DGP is able to outperform Pro-NDF in some data sets for the Borehole

and Wing-weight examples. However, when using all the available data (not just two sources

of data), we observe in Section 2.4.2 and Section 2.4.3 that Pro-NDF significantly outper-

forms MF-DGP for all the examples (in fact, in both Borehole and Wing-weight examples,

the performance of MF-DGP drops once it is provided with LF data from two additional

sources, compare Figure 2.10 to Table A.2).

2.5 Conclusions

In this work, we introduce Pro-NDF for data fusion under uncertainty. Pro-NDF is based

on a multi-block NN where each block is designed to take on specific tasks for MF modeling

problems that arise in typical engineering applications. One of these blocks is probabilistic

whose visualizable output can be used to detect LF sources with large model form errors.

The final output of Pro-NDF is also probabilistic which enables to not only quantify aleatoric

uncertainties, but also leverage strictly proper scoring rules during training.

We validate each of the key components of Pro-NDF by performing an ablation study on

an analytic and a real-world example. We also demonstrate that on multi-source problems

Pro-NDF outperforms other NN-based data fusion approaches by a large margin. Moreover,

Pro-NDF performs on par to LMGP in low-dimensional cases with small data sets and

slightly lags behind LMGP (a competing GP-based approach) in high-dimensional examples

with very small data sets. However, as the size of the training data increases, Pro-NDF

scales better than LMGP and provides smaller errors. We obeserve based on the reported

NIS that Pro-NDF performs comparably to LMGP at avoiding overconfidence, which we

attribute to our novel loss function. In these studies, we test the performance on unseen HF

data but note that Pro-NDF builds an MF emulator that probabilistically surrogates all the
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data sources simultaneously.

Our convergence study indicates (1) the performance of Pro-NDF, similar to other MF

modeling techniques, improves as the data set sizes increase, and (2) the advantages of our

approach are more pronounced in problems with more than two data sources as we can use

data on any source to better learn another source.

A particularly useful output of Pro-NDF is its learnt fidelity manifold which encodes source-

wise similarities/discrepancies. While the learnt distances in this manifold do not directly

link correlation between the sources, we observe that the fidelity manifold of Pro-NDF and

LMGP look quite similar in our studies. Since the fidelity manifold of LMGP is embedded

in its kernel and hence indicates the correlations, we believe the fidelity of Pro-NDF also

estimates a scaled version of correlation. An added benefit of Pro-NDF’s fidelity manifold

is that it is probabilistic where wide distributions can indicate if Pro-NDF is able to learn

the relation between the data sources. Reducing this uncertainty via domain knowledge

(especially qualitative information in engineering applications) is a future direction that we

plan to investigate.

The performance of any data fusion approach (including ours) can drop if there are one

or more very inaccurate LF sources. With Pro-NDF , the learned fidelity manifold can be

used to identify-discard such sources and then retrain Pro-NDF anew. This process can be

repeated until all LF sources are encoded close to the HF source in the fidelity manifold.

This iterative approach is, however, quite inefficient so we plan to develop an automated

mechanism that perhaps leverages the fidelity manifold to adjust the loss function and, in

turn, prevent Pro-NDF from learning the highly inaccurate LF sources.

Finally, we stress the fact that the fidelity manifold currently provided by Pro-NDF is only

a function of the source indicator, thereby providing a global correlation measure between

the sources. However, for future work, we aim to extend Pro-NDF to include a fidelity

40



manifold that is also dependent on the inputs. This extended approach would enable the

learning of a local correlation measure, conditioned on the inputs, thus allowing for the

detection of regions in the feature space where the correlation between sources is either high

or limited. Another possible direction involves changing the BNN blocks in the architecture

to another probabilistic or stochastic model. For example, dropout regularization acts as

an approximation of Bayesian inference and has a similar interpretation as an ensemble [63]

while providing better computational tractability than BNNs.
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Chapter 3

Data-Driven Calibration of

Multi-fidelity Multi-scale Fracture

Models Via Latent Map Gaussian

Process

3.1 Motivation

Multiscale models are increasingly employed to quantify the effects of manufacturing-induced

microscopic defects on the performance of macroscopic components. In such models, a

microstructure or a representative volume element (RVE) is associated with each integration

point (IP) of the discretized macrostructure. Traditional multiscale simulations use the finite

element method (FEM) to solve the nonlinear equilibrium equations at both scales where

macroscopic deformation gradients FM and RVE effective stress σM
FEM are exchanged between

the two scales at each iteration, see Figure 3.1(a). A major challenge associated with such
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Figure 3.1 Proposed data-driven framework for multiscale damage modeling: LMGP
creates a multi-fidelity emulator for the ROMs and DNS. It is then used in an inverse optimization
to determine the damage parameters that must be used in ROMs such that they approximate
DNS as closely as possible conditioned on the microstructure. Upon this calibration, a multiscale
simulation is run where ROMs are used at the microscale.

nested simulations is the computational expenses which prohibitively increase in the presence

of nonlinear microscale deformations that involve damage. Reducing these costs holds the

key to understanding the relation between microscopic defects and components’ fracture

behavior and, in turn, guiding the “design for fracture” process. To this end, we propose

a data-driven framework that has two major components: (1) a mechanistic reduced-order

model (ROM) with an adjustable degree of fidelity, and (2) a multi-fidelity modeling and

calibration scheme based on latent map Gaussian processes (LMGPs) [40, 33]. Integration of

these two components enables us to build calibrated multi-fidelity ROMs that can simulate

the damage behavior of multiscale materials with spatially varying microstructures.

The rest of this chapter is organized as follows. In Section 3.2, we review existing works on

reduced-order modeling and discuss the research gaps that we aim to address. The overview

and technical details of our approach are provided in Section 3.3 and 3.4, respectively. We

evaluate the performance of our approach in Section 3.5 and draw conclusions in Section 3.6.
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3.2 Background on reduced-order modeling

Mechanistic ROMs are increasingly employed to accelerate nonlinear materials modeling by

using a combination of methods from linear algebra and machine learning that result in re-

ducing the number of unknown variables that characterize, e.g., microstructural strain and

stress fields. Transformation field analysis (TFA) and its successor nonuniform transforma-

tion field analysis (NTFA) are two of the earliest ROMs [64, 65, 66]. These two methods

approximate plastic strain as either piecewise constants or spatially varying orthonormal

eigenstrains which are pre-selected in an offline stage. These eigenstrains evolve in the on-

line stage based on pre-defined analytical functions that involve thermodynamic forces and

potentials.

Clustering-based ROMs are recent techniques that decompose microstructure domains into

a set of clusters whose interactions and deformations are modeled. For instance, the self-

consistent analysis (SCA) [67] lumps material points with similar elastic responses and

then quantifies cluster-to-cluster interactions by the incremental Lippmann-Schwinger equa-

tion. Finite element-based cluster analysis [68] approximates the microstructural effective

responses by following the cluster minimum complementary energy principle. Deflated clus-

tering analysis (DCA) [69] agglomerates close-by material integration points (IPs) into clus-

ters and the cluster-wise quantities of interests are computed in a multi-grid fashion where

unknown variables are projected back and forth between different meshes. In this work, we

use cluster-based ROMs as they provide higher efficiency and versatility compared to other

methods such as TFA.

Successful application of any ROM depends on two primary factors: (1) the coarsening

degree (e.g., the chosen number of clusters) which makes a tradeoff between fidelity level

and computational costs, and (2) the calibrated material properties. Both of these factors

depend on the microstructure as well as the properties of interests. For example, accurate

44



prediction of the damage behavior requires different damage parameters and a number of

clusters for the two microstructures in Figure 3.1(a). In particular, given a desired level of

accuracy with respect to high-fidelity direct numerical simulations (DNS), the analysis of

the more complex microstructure in Figure 3.1(b) generally requires more clusters (i.e., less

coarsening or data reduction).

Regarding the second requirement of the successful application of ROMs, we note that

accurate prediction of damage behavior necessitates the calibration of material properties to

account for the diffusive stress and strain fields of any ROM. The diffusion typically depends

on the microstructure topology, and it unrealistically increases the tolerance of the material

system to localized phenomena. The superficial increase of material strength upon clustering,

therefore, must be counteracted in ROM to ensure solution accuracy. We clarify that, in

this paper, we use the word ‘diffusion’ to exclusively refer to the artificially strengthening of

material clusters in ROMs (which aim to capture the homogenized behavior of the material

encompassed in the cluster) and not the transfer of matter by diffusion.

While calibrating material properties plays a vital role in ensuring that ROMs can be reliably

used in multiscale simulations, there is still a lack of systematic approaches that dispense

with manual calibration which is time-consuming and suboptimal. As explained in the next

sections, our contribution is to develop a data-driven framework to automate the calibration

process of ROMs with any fidelity level as a function of material morphology.

3.3 Proposed Framework

Our framework relies on two primary components for damage modeling in multiscale metals

with porosity: a novel cluster-based ROM and LMGP-based calibration which are detailed

in Section 3.4.3 and Section 2.2.1, respectively. We provide an overall description of these
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components in this section.

The ROM surrogates DNS and estimates the stress field in a microstructure under arbitrary

displacement boundary conditions that may result in plasticity and damage. The fidelity

of the ROM is determined by the user-defined parameter k which indicates the number of

clusters and balances costs and accuracy.

As argued in Section 3.2, the material properties that must be used in ROM should be

different than the true values that are used in DNS, i.e., the ROM requires calibration.

This difference depends on both the microstructure complexity and, more importantly, k.

Hence, we use a data-driven approach that relies on emulation via an LMGP to calibrate

the material properties for ROMs. In particular, we use the trained LMGP emulates ROM

and DNS to answer the following question:

Given k and one microstructure, what damage parameters should be used in the ROM such

that it predicts the same fracture response as DNS which uses the true damage parameters?

We answer the above question by solving an inverse optimization problem whose objective

function relies on LMGP, see Figure 3.1(c). To make the optimization problem tractable, we

make two mild assumptions. Firstly, we consider a small set of integer values for k, i.e., we

assume k = 800,1600, or 3200 but more values can be used within our framework. As shown

in Section 3.4.3, all these values are much smaller than the number of elements in a typical

mesh used in DNS and hence result in massive data reduction or coarsening. Secondly, the

very high dimensional morphology of microstructures can be represented with a reduced set

of quantitative descriptors that in our case characterize the geometry and spatial distribution

of the pores.

We note that the clustering-based ROMs are new methods developed in recent years. Even

though ROMs dramatically improve simulation efficiency, the number of clusters in ROMs

is currently chosen in an ad-hoc manner and there still lacks theoretical proof on the criteria
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to choose the number of clusters for arbitrary material systems. This is because material

systems can be very different in local morphology, material composition/property, defect

types/distributions, etc. More complex material systems generally require higher fidelity

models and therefore more clusters. The goal of our work is to replace this manual approach

for selecting the number of clusters with an automated method. In this work, we start

with 800 clusters and then doubled this number twice to get 1600 and 3200 clusters. We

intentionally did not study lower/higher clusters because we aim to develop a rather general

calibration scheme that is not sensitive to the chosen cluster numbers.

To build the LMGP, we generate the training samples by the design of experiments (DoE)

where the inputs are microstructural descriptors and calibration parameters that control

the damage behavior. For sample i, we first use a reconstruction algorithm to build the

microstructure corresponding to the ithset of descriptors. Then, we calculate the fracture

response of the ith microstructure via a simulator (i.e., DNS or one of the ROMs) while using

the ith set of damage parameters. When obtaining the responses, we select the simulator

based on its computational costs, i.e., the frequency of using a simulator is inversely propor-

tional to its costs (e.g., we employ an ROM with small k much more than DNS or an ROM

with large k).

It is noted that the optimization problem uses LMGP rather than a traditional Gaussian

process (GP) since we view the data source indicator as a categorical input rather than a

quantitative one, see Figure 3.1(c). This choice is justified since alternating the data source

(e.g., DNS vs. ROM with k = 800 vs. ROM with k = 3200) encodes the diffusive nature of

strain-stress fields which cannot be readily characterized with quantitative inputs. Hence,

our treatment of data source motivates the use of LMGP and greatly simplifies the emulation

as it eliminates the manual conversion of the source label to a quantitative variable.

Once LMGP is built, we are ready to run a multiscale simulation where ROMs are used

at the microscale instead of DNS, see Figure 3.1(d). We first assign spatially varying mi-
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crostructures to the IPs on the macro-component. Then, based on the complexity of the

microstructures and any prior knowledge (if available) on the macro-locations where exces-

sive deformations can occur (e.g., near sharp corners), we choose the k values for ROM.

Next, we use the trained LMGP to assign the damage parameters that must be used at ith

macro-IP given the k and microstructure assigned to it. Upon this assignment, we conduct

the multiscale simulation to find the performance of the macro-component while considering

microstructural porosity.

3.4 Technical details

We first provide the details on damage modeling with our ROM in Section 3.4.1 through

3.4.3. Then, we explain our optimization-based calibration algorithm in Section 3.4.4. For

details on the training process of LMGPs, we refer the reader to Section 2.2.1.

3.4.1 Stabilized micro-damage model

Damage includes strain-softening which causes convergence issues in implicit time integration

schemes. To address this issue, we use a stabilized damage model [70] to simulate microstruc-

tural effective responses during fracture progression. This model decouples damage evolution

from elasto-plasticity by introducing three reference RVEs that share state variables with

the original damaged RVE. By tracing the elasto-plasticity in one of the referenced RVEs

via a classic implicit scheme, the effective fracture stress and states can be mapped to the

damaged RVE.

The homogenized damage stress in an arbitrary RVE can be written as:

Sd
M = Cd

M : Eel
M = Cd

M :
(
EM − Epl

M

)
(3.1)
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where Sd
M represents the effective damage stress, Cd

M is the homogenized damaged tangent

modulus matrix, EM, E
el
M and Epl

M are the RVE effective strain, elastic strain, and plastic

strain, respectively. The subscript M indicates that the variable is a macroscopic quantity.

The symbol “:” represents the double dot product that contracts a pair of repeated indices.

The first reference RVE shares the same elasto-plastic deformation as the original RVE but

is not damaged. Its effective stress is therefore computed as

S1
M = Cel

M : Eel
M = Cel

M :
(
EM − Epl

M

)
(3.2)

where S1
M and Cel

M represent the homogenized stress and the undamaged elastic modulus,

respectively (superscript 1 refers to the first referenced RVE). By combining Equation (3.1)

and 3.2, we can express the referenced stress as

S1
M = Cel

M :
(
Cd

M

)−1
: Sd

M (3.3)

The second reference RVE has the same effective stress (S2
M = S1

M) and material property as

the first RVE but is assumed to deform elastically.Thus, its effective elastic strain Eel
M is

Eel
M =

(
Cel

M

)−1
: S1

M =
(
Cel

M

)−1
: S2

M (3.4)

The effective stress and strain of the second reference RVE are equivalently expressed as the

volume average of its microscale stress and strain as

S2
M =

1

|Ω|

∫
Ω

S2
mdΩ (3.5)

Eel
M =

1

|Ω|

∫
Ω

Eel
m2dΩ (3.6)

where |Ω| is the RVE volume, the subscript m indicates that the variable is a microscopic
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quantity, and the microscale stress S2
M is proportional to the microscale elastic strain Eel

m2

at any microscopic point by the elastic modulus Cel via

S2
m = Cel : Eel

m2 (3.7)

The third reference RVE has the same elastic strain as the second one
(
Eel

m3 = Eel
m2

)
but its

modulus is assumed to be identical to the original fractured RVE as

S3
m = Cd

m : Eel
m3 (3.8)

Cd
m = (1−Dm)Cel (3.9)

where Cd
m is the microscale damaged tangent modulus and Dm is the damage parameter

at a microscopic IP. The value of Dm is determined by the plastic strain states in the first

reference RVE

Dm

(
Ēpl;α, Ēcr

)
= 1− Ēcr

Ēpl
m1

exp
(
−α
(
Ēpl

m1 − Ēcr
))

(3.10)

where Ēpl is the equivalent plastic strain, Ēpl
m1 is the equivalent plastic strain at a microscale

IP in the first referenced RVE, and Ēcr is the critical plastic strain. α is the damage evo-

lutionary rate parameter and a larger value of α results in faster material degradations and

rapid effective stress drop amid softening. We note that local damage is initiated (Dm = 0)

when the effective plastic strain equals the critical strain
(
Ēpl

m1 = Ēcr
)
and damage reaches

total rupture (Dm = 1) when the effective plastic strain is much larger than the critical

plastic strain.

The effective damaged stress of the original RVE is assumed to be equal to the homogenized

stress of the third reference RVE and is calculated as

Sd
M = S3

M =
1

|Ω|

∫
Ω

S3
mdΩ (3.11)
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For the multiscale damage analysis in Section 3.5.4, the macroscale damage parameter is

computed as the ratio of the norms of effective stress tensors of the original and the first

reference RVE as

DM = 1−
∥∥Sd

M : S1
M

∥∥
∥S1

M : S1
M∥

(3.12)

where DM is the homogenized damage parameter representing the fracture status of a

macroscale IP (and its associated RVE) on a macroscale component.

3.4.2 Condensation method

When using the stabilized microdamage model of Section 3.4.1 in a multiscale simulation,

the effective elastic tangent moduli Cel
M elastic tangent moduli is needed at each macroscopic

IP, see Equation (3.2). Since we assign spatially varying RVEs with complex morphologies

to macro-IPs, Cel
M M needs to be computed via variational principles for each RVE [71]. This

numerical procedure is needed since the constitutive laws of the RVEs are not available in

closed form.

As variational calculations are expensive, we employ the condensation method [72] to com-

pute the effective tangent modulus of an RVE. The condensation method starts by parti-

tioning the microstructural system of equations as

 Kpp Kpf

Kfp Kff


 δup

δuf

 =

 δfp

0

 (3.13)

where δup and δuf represent the displacement variations at the prescribed and free nodes,

respectively, in an RVE where the indices p and f represent the prescribed and free degrees

of freedom, and δfp is the external force on the nodes with prescribed forces. Kpp, Kpf ,

Kfp, and Kff are the corresponding partitions of the RVE’s stiffness matrix. Eliminating δuf

from Equation (3.13) leads to a reduced system, with a reduced stiffness Kr which directly
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relates the variations of the prescribed displacements with nodal forces

Krδup = δfp (3.14)

Kr = Kpp −Kpf (Kff )
−1Kfp (3.15)

To transform Kr to the tangent modulus that relates variations of stress and strain, we

substitute Equation (3.14) into the variational form of the macroscopic stress

SM(X) =
1

|Ω0m|

∫
Γ0m

tm ⊗ (x− x0) dΓ (3.16)

where x and x0 are the microscale IPs at the deformed and original configurations, SM is

the macroscale stress at the macroscopic IP X, tm is the microscale surface traction, Γ0m is

the RVE boundary, and ⊗ denotes the tensor product between tm and the position vector

(x− x0). Upon some algebraic modifications, the homogenized tangent (elastic) modulus

matrix of an RVE can be obtained as

Cel
M =

1

|Ω0m|
[(x− x0)⊗Kr ⊗ (x− x0)]

LT (3.17)

where “LT” denotes the transposition between the two left indices.

We note that even though the condensation method accelerates the calculation of Cel
M for

each RVE, parallel computations based on it in a multiscale analysis are memory demanding

and still quite expensive. Hence, to avoid the online condensation procedure, we utilize a

GP to learn the relation between microstructural morphology and effective elastic tangents

for different RVEs which are precomputed by the condensation method in an offline stage.
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3.4.3 Deflated clustering analysis (DCA)

In a multiscale simulation, the elasto-plastic response of the RVEs associated with the macro-

IPs can be obtained via the stabilized micro-damage algorithm (see Section 3.4.1). These

computations are very expensive and so we use the DCA method [69] to dramatically accel-

erate them. Compared to other clustering-based ROMs [68, 70, 73] which primarily speed

up micro analyses, our method can accelerate both macro- and micro-simulations. Its high

efficiency comes from the fact that (1) the degrees of freedom are significantly reduced from a

large number of finite elements to a few clusters by employing material clustering techniques

and (2) the algebraic system on the reduced system has much fewer close-to-zero eigenvalues

(and hence better convergence behavior) compared to the classic finite element system.

DCA uses clustering to agglomerate neighboring finite elements to a set of interactive irregu-

larly shaped clusters. Clustering is an unsupervised machine learning technique to interpret

and group similar data. Among many mature clustering algorithms [74], we adopt k-means

clustering [75] in this work due to its simplicity. We start the k-means clustering by feeding

the coordinates of element centers into a feature space where cluster seeds are randomly

scattered and serve as initial cluster means. Then, we assign each element to the cluster

with the closest mean. Meanwhile, cluster shapes are iteratively updated to minimize the

within-cluster variance, see an illustration in Figure 3.2. Mathematically, the clustering can

be stated as the following minimization problem:

C = argmin
C

k∑
I=1

∑
n∈CI

∥φn − φ̄I∥2 (3.18)

where C represents the k-clusters with C = {C1, C2, . . . , Ck}. φn and φ̄I are the coordinates

of the nth element center and the mean of the Ith cluster, respectively. Upon clustering,

we construct a reduced mesh by connecting cluster centroids via Delaunay triangularization

where topological relations are preserved by checking the connectivity between clusters. We
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Figure 3.2 Illustration of material points clustering: (a) a generic 2D RVE is discretized
with 5000 triangle finite elements and (b) the elements are grouped into 100 clusters via k-means
clustering where the elements in the same cluster are indicated by the same color.

assume the motions of cluster centroids are directly related to the grouped nodes. Specifi-

cally, the displacement of the cluster centroid u(x) is computed by interpolating the nodal

displacements via the polynomial augmented radial point interpolation method [76] as

u(x) =
n∑

i=1

Ri(x)ai +
m∑
j=1

Zj(x)bj (3.19)

where ai is the coefficient of the radial basis function Ri at the ith FE node and bj is the

coefficient of the polynomial basis Zj. n and m are the number of cluster nodes and the

number of polynomial basis functions, respectively. The coefficients ai and bj are determined

by enforcing Equation (3.19) for all nodal displacements in the cluster where polynomial basis

and radial coefficients are assumed to satisfy Equation (3.20) to ensure solution uniqueness

[76].
n∑

i=1

Zj(x)ai = 0, j = 1, 2, . . . ,m (3.20)

We then augment the displacements of cluster centroids with rotational degrees of freedom

to represent rigid-body motions (three translations and three rotations in 3D) in a deflation

space [77, 78, 79] where a reduced stiffness matrix is constructed with six degrees of freedom

on each node. Performing nonlinear analyses on the reduced mesh and projecting the results
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back to the finite element nodes at the end of computations reads

uj
i = Wj

iλi (3.21)

where uj
i is the displacement vector at the ith node in the jth cluster, λi is the rigid-

bodymotion of the centroid of the jth cluster, and Wj
i is the deflation matrix for the ith

node group in the jth cluster

λj = [ujx, ujy, ujz, θjx, θjy, θjz]
T (3.22)

Wj
i =


1 0 0 0 zji −yji

0 1 0 −zji 0 xj
i

0 0 1 yji −xj
i 0

 (3.23)

where ujx and θjx are the displacement and rotation of the jth cluster along the x-axis, and

(xj
i , y

j
i , z

j
i ) are the relative 3D coordinates of the ith node with respect to the centroid of the

jth cluster.

We note that material points are assumed to share the same stress and strain values in each

cluster. Hence, the local plastic strain fields are reproduced in a diffusive manner with lower

strain concentrations which, in turn, delay the onset of localized fracture. This diffusive

behavior motivates the damage parameter calibration using LMGP in the next subsection.

3.4.4 Calibration via LMGP

The detailed steps of the proposed framework are included in Algorithm 1. Our LMGP-based

data-driven calibration has two major steps which are detailed below and demonstrated in

Section 3.5.4.

In the first step, we build the training dataset where the responses (UTS and toughness)

55



Algorithm 1 Framework of the data-driven calibration for ROM damage parameters via
LMGP
1: procedure ▷ Calibrate the damage parameters of ROMs with different morphologies

and fidelity levels
2: ▷ DoE variables include pore descriptors, damage model parameters, and simulation

fidelity levels
3: ▷ Fidelity level = 1, 2, and 3: use ROMs as simulators with different numbers of

clusters k.
4: ▷ Fidelity level = 4: use DNS as the damage simulator
5: ▷ Step-1:
6: Set up upper and lower bounds of DoE variables and load DoE
7: for i← 1 to N do ▷ Loop over a total of N DoE samples
8: Read pore descriptors at the DoE point-i
9: ▷ MCR: microstructure characterization and reconstruction
10: Reconstruct RVE’s geometry via MCR based on pore descriptor values
11: Load mesh module to generate FE mesh on the reconstructed RVE geometry
12: ▷ CM: condensation method
13: Load CM (Section 3.4.2) to compute the effective elastic modulus Cel

M

14: ▷ Assume the effective RVE properties are isotropic
15: Compute Lame constants from Cel

M

16: Save the effective Lame constants of the RVE-i
17: Read the damage parameters and fidelity level at the DoE sample point-i
18: ▷ Damage responses include ultimate tensile strength (UTS) and toughness
19: Perform damage analyses (Section 3.4.1)
20: if fidelity level ← {1, 2, 3} then
21: ▷ Use ROM for damage analyses
22: Read k and load ROM (k) to compute effective damage responses (Sec-

tion 3.4.3)
23: else if fidelity level ← 4 then
24: ▷ Use DNS for damage analyses
25: Load DNS to compute effective damage responses
26: end if
27: Save the effective damage responses for each DoE sample point-i
28: end for
29: ▷ Step-2:
30: Read effective damage responses
31: Encode damage responses to let LMGP surrogate two damage responses (UTS and

toughness)
32: Load LMGP (Section 2.2.1) ▷ Consider model fidelity levels as categorical variables
33: ▷ Calibrate ROM damage parameters (Ēcr and α) for different RVE and fidelity level
34: for i← 1 to N do ▷ Loop over N RVE samples
35: for j ← {1, 2, 3} do ▷ Loop over three different ROM fidelity levels
36: ▷ Use damage parameters as optimization variables
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37: Minimize the difference of the damage responses between DNSi and ROMij

38: Save the optimal ROM damage parameters toa database
39: end for
40: end for
41: return the database of the calibrated damage parameters of ROMs
42: end procedure

characterize RVEs’ effective softening behavior while the inputs are pore morphology de-

scriptors, damage parameters, and simulation fidelity level. While the latter input is quali-

tative/categorical and is chosen based on the simulator cost, the other inputs are all quanti-

tative and selected via DoE. For training sample i, we generate the RVE corresponding to the

ith set of descriptors via descriptor-based reconstruction techniques. We then deform this

RVE via the simulator with the chosen fidelity level which uses the damage parameters of

training sample i. Once the training dataset is built, we train the LMGP that simultaneously

surrogates all the data sources.

In the second step, we solve an optimization problem to estimate the damage parameters

that must be used for an ROM such that it predicts the same UTS and toughness as DNS

which uses known material properties (i.e., a fixed set of values for Ēcr and α) for any RVE.

The estimated Ēcr and α for an ROM depend on the microstructural descriptors of the RVE

(numerical inputs) and the ROM’s fidelity level (a categorical input). Hence, the objective

function of the (inverse) optimization problem measures the difference between predictions

of ROM and DNS conditioned on these mixed inputs. Once Ēcr and α (i.e., the modified

material properties) are estimated for each RVE for all ROMs, we conduct multiscale damage

analyses where microscale simulations are carried out via ROMs.
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3.5 Results

We apply the proposed data-driven framework to calibrate the ROMs in a multi-fidelity and

multiscale model that simulates the damage behavior of a metallic component with spatially

varying microstructures. In Section 3.5.1, we train a GP to emulate the condensation method

to accelerate the online calculation of Cel
M for each microstructure. In Section 3.5.2, we

construct a multi-fidelity model via LMGPs which are then used in Section 3.5.3 to calibrate

the damage parameters of ROMs. In Section 3.5.4, we use the calibrated ROMs to investigate

the influence of porosity on the structural damage responses of a multiscale model.

The material studied in this work is the cast aluminum alloy A356 whose elastic properties

are:

Y = 540× 104 MPa, ν = 0.33 (3.24)

where Y and ν are Young’s modulus and Poisson’s ratio, respectively. The alloy’s plasticity

is modeled by following the J2 plasticity theory with the piecewise linear hardening curve in

Figure 3.3. We assume that plasticity satisfies an associative plastic flow rule with the yield

condition as

S̄ ≤ SY (Ē
pl) (3.25)

where S̄, Ēpl and SY are Mises equivalent stress, equivalent plastic strain, and yield stress,

respectively.

The softening behavior of A356 is modeled by the progressive damage model in Equa-

tion (3.10) with two damage parameters that are applied for all ROMs and DNS: critical

plastic strain (Ēcr) and damage evolutionary rate parameter (α). The two damage param-

eters are selected for calibration in this work because they both significantly affect damage

responses; however, more parameters can be calibrated using our proposed framework.

Ēcr determines the onset of softening that influences the largest stress that a material can
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Figure 3.3 Hardening behavior: piecewise linear hardening.

withstand and α controls the amount of released fracture energy which determines the degra-

dation rate of material properties amid damage evolution. The values of damage parameters

used in DNS are given in Equation (3.26), while their values for ROMs need to be calibrated

based on microstructural morphology and fidelity levels

Ēcr = 0.03 α = 100 (3.26)

Our method is implemented in MATLAB [80] and we obtain the RVE responses on a high-

performance cluster paralleled by 40 cores (AMD EPYC processor running at 4.1 GHz) with

120GB RAM.

3.5.1 Gaussian Process Modeling for Microstructure Effective Tan-

gents

As described in Section 3.4.1 and 3.4.2, the effective elastic tangent matrix relates the effec-

tive reference stresses with elastic strains. This matrix plays a fundamental role in continuum

damage analysis since it enables simulating the progressive fracture evolutions at any IPs

in a multiscale model, see Figure 3.1(a). However, computing the effective tangents often
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involves intensive computational efforts even when condensation methods are applied, see

line 13 of Algorithm 1. Hence, we improve efficiency by developing a GP surrogate that

correlates porosity morphology with microstructural effective tangent matrix.

We approximate the complex pores via overlapping ellipsoids whose geometry and spatial

distribution are characterized by the following four descriptors: porosity volume fraction Vf ,

number of pores Np, aspect ratio between ellipsoidal axes Ar, and the mean nearest distance

between centroids r̄d. In addition, as we assume to work with isotropic microstructural

responses, the components of the tangent matrix are reduced to two effective Lame constants

(µ and λ). In this manner, our GP aims to build a predictive model between [Vf , Np, Ar, r̄d]

and [µ, λ].

To construct the GP, we first generate a training dataset with 160 RVEs. The inputs in this

data set are generated via a DoE where each sample specifies the values of [Vf , Np, Ar, r̄d]

for each RVE. We let the pore parameters satisfy the ranges in Equation (3.27) where L

represents RVE’s side length.Then, we use a microstructure reconstruction algorithm [81] to

rebuild RVEs corresponding to DoE points. We demonstrate 12 reconstructed microstruc-

tures from the DoE datasets in Figure 3.4 where their pore descriptors [Vf , Np, Ar, r̄d] are

enumerated in Table 3.1. In the reconstructed RVEs, the pore sizes are much smaller than

the microstructures which reduce the property variations across different microstructure re-

alizations that have the same four descriptors.

Once the dataset of RVEs is built, we use the condensation method to calculate the effective

Lame constants for each RVE. Finally, we train a GP to emulate the relation between

[Vf , Np, Ar, r̄d] and [µ, λ] 

1% ≤ Vf ≤ 20%

10 ≤ Np ≤ 100

1 ≤ Ar ≤ 5

0.1L ≤ r̄d ≤ 0.5L

(3.27)
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Figure 3.4 12 examples of reconstructed microstructures in (a)− (l): the values of mi-
croscale porosity descriptors and effective Lame constants are listed in the Table 3.1.

RVE Vf Np Ar r̄d µ(×1010) λ(×1010)
(a) 6.56% 26 1.31 23.3 1.94 3.51
(b) 9.21% 20 3.33 19.7 1.82 3.05
(c) 2.06% 13 1.14 28.1 2.08 3.96
(d) 3.29% 29 2.37 20.5 2.03 3.78
(e) 9.97% 48 1.16 20.4 1.85 3.23
(f) 7.80% 20 2.15 25.9 1.89 3.31
(g) 1.92% 22 4.95 22.4 2.08 3.92
(h) 3.12% 60 2.11 16.9 2.04 3.81
(i) 2.61% 31 1.09 21.6 2.07 3.91
(j) 9.70% 51 2.47 18.2 1.82 3.09
(k) 1.15% 36 1.84 21.1 2.11 4.03
(l) 4.48% 77 1.43 14.5 2.01 4.02

Table 3.1 Pore descriptors and effective Lame constants. Note: the numbers correspond
to the reconstructed microstructures in Figure 3.4.

To test the GP’s accuracy, we split the data set by using 80% for training and 20% for

validation. Comparisons of the predictions with the test samples are shown in Figure 3.5.

To assess the convergence and whether sufficient training data are used, we split the dataset

into 100 samples for training and 60 samples for testing. We sequentially increase the size of

the training data from 10 to 100 and evaluate the accuracy of the corresponding GPs on 60

test samples (all GPs are evaluated on the same set of test samples). The prediction errors
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Figure 3.5 Emulation accuracy: comparison of the actual values of the two microstructural
effective Lame constants against the GP predictions on unseen test samples in (a) and (b).

are computed by Equation (3.28)

Ey =
1

Nv

Nv∑
i=1

∥ŷi − yi∥
∥yi∥

(3.28)

where Nv is the number of validation samples, Ey is the relative prediction error of responses

y = [µ,λ], ŷi and yi are the predicted effective Lame constants of the ith RVE. The con-

vergence curve is shown in Figure 3.6 where it is observed that with the increase of training

samples, prediction errors monotonically decrease. With 100 samples the prediction error

drops to lower than 0.4%, indicating highly accurate predictions. Therefore, we use the GP

emulated effective modulus to replace the condensation method amid online computations

to accelerate damage analyses for all microstructures.
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Figure 3.6 Error convergence: GP estimation errors of the predicted Lame constants with
respect to the number of training points.

3.5.2 LMGP Modeling of Damage Parameters

In this subsection, we train an LMGP that is used in Section 3.5.3 for ROM calibration,

see Figure 3.1(c) where the LMGP is used in the inverse optimization. We first demon-

strate the importance of calibration and then provide the details on the training and vali-

dation of the LMGP. To demonstrate the importance of parameter calibrations of ROMs,

let us consider the microstructure in Figure 3.7(a) with pore descriptors [Vf , Np, Ar, r̄d] =

[15.9%, 25, 1.4, 24.3] and damage parameters in Equation (3.26). We subject this RVE to

the deformation gradient in Equation (3.29) and compute its responses via the DNS using

68, 675 finite elements as shown in Figure 3.7(b) where significant strain concentrations are

observed in the vicinity of pores. We then model this RVE via an ROM with 3200 clusters

using the same damage parameters as the DNS. The plastic strain distributions are shown

in Figure 3.7(c) which demonstrates the diffusive nature of local clustering

FM =


1.1 0 0

0 0.95 0

0 0 0.95

 (3.29)
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Figure 3.7 Equivalent plastic strain fields: (a) the porosity morphology of a microstructure
with 25 pores, (b) plastic strains are simulated via DNS, (c) plastic strains are approximated by
ROM (k = 3200) without calibration, and (d) plastic strains are approximated by ROM (k = 3200)
with calibration.

Comparison of strain distributions in Figure 3.7 demonstrates that the label of the data

source (i.e., DNS or ROM), which we consider as a categorical variable in LMGP, must

encode the diffusive nature of the local solutions. Additionally, compared to the DNS,

the clusterwise solutions of ROMs have lower magnitudes of plastic strains which result in

delayed fracture initiation, higher UTS, and larger material toughness, see Figure 3.8(a) and

Table 3.2.

The accuracy of ROMs can be improved by calibrating their damage parameters (Ēcr and

α). We illustrate calibration effects on the local strain concentrations and effective behav-

Precalibration After calibration
Simulation fidelity UTS Toughness UTS Toughness
DNS 1.03× 108 3.71× 106 - -
k = 800 1.15× 108 4.10× 106 1.07× 108 3.85× 106

k = 1600 1.09× 108 3.93× 106 1.043× 108 3.783× 106

k = 3200 1.06× 108 3.85× 106 1.046× 108 3.776× 106

Table 3.2 Damage responses. Note: values of the UTS and toughness of DNS and ROMs for
the microstructure in Figure 3.7.
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iors in Figure 3.7(d) and 3.8(b), respectively. It is evident that compared to the ROMs with

the damage parameters of DNS, the calibrated ROMs provide more accurate and effective

stress–strain responses. Specifically, the calibration algorithm calibrates (i.e., reduces) the

ROMs’ critical plastic strain to induce early softening so that their UTS values become

closer to that observed in DNS. Meanwhile, the calibration also decreases the ROMs’ dam-

age evolutionary rate parameters to compensate for the toughness reduction due to early

softening.

We further compare the values of the material toughness and UTS between DNS and ROMs

in Table 3.2 where we find that the accuracies of both damage responses are improved after

calibrations. The improvement is demonstrated by the enumerated errors in Table 3.3 where

we observe that the calibrations significantly reduce the ROMs’ model errors (r) for all ROM

fidelity levels (k = 800, 1600, 3200). Additionally, the magnitudes of the normalized errors

r = (rtoughness, rUTS2) continuously drop with the increase of clusters, which validates our

observation in Figure 3.8 that the ROM with more clusters provides closer solutions to the

DNS in both pre and post-calibration scenarios.

We provide the values of the calibrated damage parameters in Table 3.4. We note that

with the decrease of simulation fidelity levels from DNS to the ROMs (k = 3200, 1600, 800),

both values of Ēcr and α decrease. This trend implicitly validates our previous observation

in Figure 3.7(b) and 3.7(c) that fewer clusters result in more diffusive cluster-wise plastic

strains with delayed damage initiations in Figure 3.8(a). This is because, to counteract the

Errors (r) w/o LMGP
calibration (%)

Errors (r) w. LMGP
calibration (%)

ROM clusters (k) UTS Toughness ∥r∥ UTS Toughness ∥r∥
800 11.5 10.6 15.61 3.74 3.64 5.22
1600 5.5 5.8 7.99 1.28 1.96 2.34
3200 3.2 3.7 4.86 1.55 1.73 2.33

Table 3.3 ROM prediction error. Note: errors of ROMs on UTS and toughness for the
microstructure in Figure 3.7.
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Simulation fidelity Ēcr α
ROM (k = 800) 0.021 36.31
ROM (k = 1600) 0.024 47.65
ROM (k = 3200) 0.027 72.27
DNS 0.030 100

Table 3.4 Calibrated damage parameters. Note: values of calibrated ROM damage parame-
ters for the microstructure in Figure 3.7.

Figure 3.8 Importance of calibration: (a) the effective stress–strain curves without damage
parameters calibration and (b) the effective response with calibration.

artificial delay of softening, the calibration algorithm needs to lower Ēcr so that softening

occurs at smaller deformation conditions. Meanwhile, the calibration decreases α to lower the

material’s degradation rates during damage evolutions which helps to approximate ROMs’

toughness to that of DNS.
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Once the accuracy of ROMs is improved via calibration, they can substitute DNS. We

compare the computational time of DNS against the ROMs in Figure 3.9 by CPU time.

We observe that while DNS takes 29.8 h to finish the damage simulation, it only takes

about 68.8, 27.9, and 15.6 min for the ROMs with 3200, 1600, and 800 clusters, respectively.

The ROMs’ computational costs can be further reduced to online time since their offline

stages (clustering and preprocessing) are performed only once and are unnecessary in future

calculations. Thus, by comparing the online time with DNS, the acceleration factors of

the ROMs with 3200, 1600, and 800 clusters are 44.1, 99.9, and 242.9, respectively. After

demonstrating the necessity of ROM calibration, we now describe the proposed LMGP-based

calibration approach. Compared to manual calibrations, the proposed data-driven approach

is highly efficient in automatically allocating the optimal values of the damage parameters

for the ROMs based on their fidelity levels as well as the microstructure.

To use LMGP for calibration, we generate a data set consisting of six inputs x = [x1 . . . , x6]
T

and two outputs y, as shown in Table 3.5. The first four inputs represent the pore descriptors

(i.e., [Vf , Np, Ar, r̄d]) and the last two inputs represent the two damage parameters (i.e.,

evolutionary rate parameter α and critical effective plastic strain Ēcr). We generate DoE

sample points via Sobol sequence by satisfying the ranges of descriptor values and damage

parameters in Equation (3.27) and 3.30, respectively. Two LMGP outputs are the two

Figure 3.9 Time reduction: computational time comparison between DNS with ROMs.
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damage responses (UTS and material toughness)

 1% ≤ Ēcr ≤ 3%

10 ≤ α ≤ 100
(3.30)

We append each sample point with a categorical variable to encode the data source which

is denoted by t1 = {1, 2, 3, 4} where label 4 corresponds to DNS while labels 3, 2, and 1

correspond to the ROM with k = 3200, k = 1600, and k = 800 respectively. To enable

x1 x2 x3 x4 x5 x6 t1 t2 y
0.021 13 1.14 28.1 54.7 0.015 4 1 1.12× 108

...
...

...
...

...
...

...
...

...
0.066 26 1.31 23.3 71.2 0.017 4 1 1.15× 108

0.098 87 1.89 12.4 75.6 0.020 3 1 1.13× 108

...
...

...
...

...
...

...
...

...
0.045 77 1.43 14.5 80.7 0.023 3 1 1.26× 108

0.030 70 3.93 12.6 73.4 0.066 2 1 1.21× 108

...
...

...
...

...
...

...
...

...
0.026 31 1.10 21.6 98.3 0.029 2 1 1.33× 108

0.078 34 2.77 17.4 21.3 0.012 1 1 1.08× 108

...
...

...
...

...
...

...
...

...
0.016 88 3.13 14.4 61.7 0.027 1 1 1.36× 108

0.021 13 1.14 28.1 54.7 0.015 4 2 3.14× 106

...
...

...
...

...
...

...
...

...
0.067 26 1.31 23.3 71.2 0.017 4 2 3.00× 106

0.098 87 1.89 12.4 75.6 0.020 3 2 3.26× 106

...
...

...
...

...
...

...
...

...
0.045 77 1.43 14.5 80.7 0.023 3 2 3.93× 106

0.030 70 3.93 12.6 73.4 0.066 2 2 3.07× 106

...
...

...
...

...
...

...
...

...
0.026 31 1.10 21.6 98.3 0.029 2 2 4.72× 106

0.078 34 2.77 17.4 21.3 0.012 1 2 3.17× 106

...
...

...
...

...
...

...
...

...
0.016 88 3.13 14.4 61.7 0.027 1 2 5.05× 106

Table 3.5 Training data set of LMGP: four microstructure descriptors (x1 ∼ x4), two damage
parameters (x5 ∼ x6), and two categorical inputs (t1 ∼ t2) which encode data source and response
type.
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LMGP to simultaneously surrogate two damage responses, we also appended the samples

with a second categorical variable encoding the type of responses by t2 = {1, 2} where label

1 corresponds to UTS and label 2 indicates material toughness. Part of the resulting single-

response training dataset is shown in Table 3.5. Our entire data set contains 600 samples

that are created from four different fidelity sources: 70, 110, 170, and 250 samples are from

DNS and the ROMs with 3200, 1600, and 800 clusters respectively.

To investigate the effects of sample sizes on prediction accuracy, we fit our LMGP to 100,

200, 300, and 400 samples and test its performance on 200 testing samples across 50 random

repetitions. We note that our data set is unbalanced because we have fewer samples from

high-fidelity source that requires high computational costs and much more data points from

low-fidelity models. In particular, 10% of the training samples are obtained from DNS, 20%

from ROM with 3200 clusters, 30% from ROM with 1600 clusters, and 40% from ROM with

800 clusters. These ratios are the same across all sub-data sets that are created using the

entire data set.

We scale LMGP outputs to [0, 1] and compute the mean absolute errors (MAE) of predictions

as shown in Figure 3.10. We observe that with the increase of training samples, both MAE

and its variance decrease. Therefore, we choose 400 samples as our training data set which

contains 40 samples of DNS, 80, 120, and 160 samples from the ROMs with 3200, 1600,

and 800 clusters, respectively. Based on users’ computational budgets, various combinations

of different fidelity sources can be explored. Minimizing the costs of training data sets for

multi-fidelity models is, however, out of the scope of this work.

From Figure 3.10, we also notice that the scale of the vertical axis in Figure 3.10(b) is

smaller than that of Figure 3.10(a), suggesting that our LMGP provides better predictions

for toughness than UTS (we elaborate on the underlying reasons below).

Once LMGP is trained, we can visualize the learned latent space where each combination
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Figure 3.10 LMGP’s MAEs: normalized MAE of UTS and toughness with respect to different
numbers of training samples.

of the two categorical variables is mapped to a latent position in Figure 3.11. Based on

the latent points of the underlying (fidelity level, response) combinations, it is evident that

latent axes z1 and z2 encode, respectively, the types of damage response and the simulation

fidelity levels (note that this encoding is learned automatically by LMGP). We observe that

the scale of z1 is one order of magnitude larger than z2, suggesting that the latent points

are primarily grouped by their damage responses (z1). For the same damage response, the

latent points are further distinguished by their fidelity levels (z2). Specifically, we find that

the positions of k = 3200 are far from k = 800 but close to DNS, suggesting the damage

responses predicted by ROMs with 3200 clusters share more similarity with the DNS than

the ROMs with only 800 clusters. This also indicates that low fidelity models (e.g., k = 800)

exhibit model form error compared to the higher-fidelity sources.

LMGP provides significant insights and interpretations of the characteristics of the studied

datasets in Figure 3.11. For example, the vertical distance between DNS and k = 800 along

the z2 direction is about 0.06; suggesting a correlation value of (e−0.062 = 0.9964) between the

two data sources, see Equation (2.2). Given this correlation, LMGP can use the knowledge

from the low-fidelity data (i.e., k = 800) to improve its accuracy in emulating the high-
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Figure 3.11 Learnt latent space of LMGP: each latent position encodes simulation fidelity
level and damage response.

fidelity source (i.e., DNS). We also notice that the horizontal distance along the z1-axis is

about 0.6, resulting in the correlation value of e−0.62 = 0.6977. It suggests the two responses

are positively correlated, consistent with our expectation that the delayed fracture initiation

from ROMs’ diffusive local solutions not only increases predicted UTS but also enlarges

material toughness, see the discussion in Figure 3.8(a).

To assess LMGP’s accuracy, we split the 600 sample points into training and validation sets

where 400 samples are used for training and the remaining 200 samples are for validation. The

validation dataset contains 20, 40, 60, and 80 samples from DNS, the ROM with k = 3200,

1600, and 800, respectively. LMGP’s prediction accuracy is quantified by the MAE in

Table 3.6 where it is observed that the prediction errors are higher for the highest-fidelity

source (DNS) as well as the lowest-fidelity ROM with 800 clusters compared to the other

two fidelity sources. The reason for the large prediction errors on DNS comes from its data

scarcity, and the errors of k = 800 are due to its inherent model errors.

We plot LMGP’s predictions against validation samples for the two damage responses in

Figure 3.12 where the predictions of both responses are found to be quite accurate. Specifi-

cally, we notice that the predictions of UTS have higher errors than those of toughness. This
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Figure 3.12 Performance on unseen test data: comparison of the true responses against the
LMGP’s predictions for (a) UTS and (b) toughness.

MAE
Simulation fidelity UTS Toughness
ROM with k = 800 0.0430 0.0152
ROM with k = 1600 0.0277 0.0104
ROM with k = 3200 0.0274 0.0100
DNS 0.0444 0.0283

Table 3.6 Error analysis: MAE of the LMGP’s prediction for the two damage responses and
four data sources.

observation is consistent with our discussions in Figure 3.10. One plausible reason is that

UTS, as a point measurement of the maximum stress that an RVE can tolerate, is sensi-

tive to some important factors that are not considered in this surrogate, e.g., the directions

of crack propagations. In contrast, RVE toughness, which is a global estimation for the

amount of released fracture energy amid damage evolution (which is an integral quantity),

is characterized by our model quite well.

3.5.3 Calibration of Damage Parameters

To improve solution accuracy, the damage parameters of ROMs need to be calibrated as

shown in Figure 3.1(c). We perform the calibration by solving an inverse optimization prob-

lem whose objective function is evaluated via LMGP. We estimate the calibration parameters
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for the ith microstructure and the jth source level such that the estimated damage responses

from ROM match the ones from DNS that uses the true damage parameters: αDNS = 100

and Ēcr
DNS. The optimization problem is hence formulated as

[
α̂, Ēcr

]
= argmin

α,Ēcr

∥∥yp

(
xi
DNS

)
− yp

(
xi
j

)∥∥2 (3.31)

where yp are the predicted damage responses by LMGP and xi
DNS = [V i

f , N
i
p, A

i
r, r̄

i
d, αDNS,

Ēcr
DNS, t1 = 4, t2] represents the input vector of the ith microstructure for predicting the

responses of DNS. xi
j = [V i

f , N
i
p, A

i
r, r̄

i
d, α, Ē

cr, t1 = j, t2] is the input vector of the ith mi-

crostructure for predicting the damage responses for ROM at the jth fidelity level (note that

we pass t2 as a vector to get both damage responses). We use a gradient-based optimization

method to solve Equation (3.31).

In Figure 3.13, we demonstrate the values of the calibrated damage parameters for the 600

microstructures in the database. We note that the calibration is performed based on an

inverse optimization which tends to minimize the difference between the damage responses

of DNS and ROM where both are surrogated by LMGP, that is, no online microstructure

simulation is performed for calibration. Since the optimization relies on an inexpensive

surrogate, its computational cost is very small.

Figure 3.13 Calibrated damage parameters: calibrated damage parameters of 600 samples
simulated by ROMs with three fidelity levels where two RVEs with distinct pore morphologies are
highlighted.
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From Figure 3.13, we observe the same trend across all samples. Specifically, we highlight the

calibrated damage values of two distinct RVEs that were not used in training the LMGP. We

find that (1) the values of the ROM’s calibrated damage parameters are smaller than those

of DNS (represented by dashed lines) and (2) the values of calibrated damage parameters are

closer to the DNS’ values as we increase the number of clusters (k). For instance, the cali-

brated parameters of both RVEs with 800 clusters are much smaller than their counterparts

in DNS or ROMs with 1600 or 3200 clusters. The underlying reason is that as k decreases,

the ROM’s local plastic strain becomes more diffusive which delays damage initiation and

artificially increases UTS and toughness. Therefore, to counteract this diffusive behavior,

the calibrated damage parameters tend to reduce the strength of the materials to induce

early damage such that the ROMs can faithfully approximate DNS.

3.5.4 Multiscale Damage Analyses

Since manufacturinginduced porosity significantly affects material properties [82, 83, 84], in

this section we can apply the reduced multiscale damage model to a 3D L-shape bracket to

quantify the impact of microporosity on the bracket’s fracture behavior. Our simulations

follow Figure 3.1(d) where the calibrated ROMs are used to accelerate the microscale analyses

in the multiscale model.

The dimensions of the L-bracket are shown in Figure 3.14. The bracket is fixed on the

top surface, and it is subject to a Dirichlet boundary condition on the right surface (d =

20 mm). The bracket model is discretized with 2113 linear tetrahedron elements with reduced

integrations.

For multiscale analysis, we divide the bracket into two subdomains: a monoscale region and

a multiscale region with spatially varying porosity distribution. This choice is motivated by

the observation that under large deformations the fracture happens in the multiscale domain
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Figure 3.14 Multiscale model: the dimensions and boundary conditions of a 3D L-shape bracket
model with a thickness of 5 mm where two RVEs with distinct pore descriptors are associated with
two macroscale IPs in the multiscale domain.

where high accuracy and microstructural effects are needed, and hence the other regions of

the bracket can be modeled as a single scale.

For each of the 147 IPs in the multiscale region, we randomly assign a microstructure from the

database generated in Section 3.5.2. The effective damage behavior in each microstructure

is simulated by ROMs with three fidelity options: 800, 1600, or 3200 clusters. For each

ROM with a selected cluster number, its optimal damage parameters are readily available

from the LMGP-based calibration process described in Section 3.5.3. Specifically, among

the 147 macro-IPs, 77 IPs are associated with the RVEs simulated by 800 clusters, 50 and

20 IPs are assigned to the RVEs with 1600 and 3200 clusters, respectively. We note that

the RVEs with higher numbers of clusters are assigned to the IPs with anticipated softening

that is predicted by a preliminary single-scale simulation without micro-pores, see the two

highlighted RVEs with distinct local pore morphologies that are assigned to different IPs in

the multiscale region in Figure 3.14.

In our multiscale simulations, we ensure the released fracture energy is consistent between

the scales by equating microstructure volumes to macroscopic mesh sizes. Additionally, we

75



apply a nonlocal damage function with a feature size of 15 mm on the bracket model to

prevent pathological mesh dependency and convergence difficulty.

We demonstrate the simulated fracture pattern, local plastic strain distributions, and load-

displacement response (with and without multiscale treatment) in Figure 3.15. In Fig-

ure 3.15(a), we demonstrate the macro-fractures by elements’ effective damage values DM

in Equation (3.12) where DM = 1 represents complete material ruptures. We notice that the

highlighted two macro-IPs are located in the damage zone, and we plot the distributions of

microscopic equivalent plastic strains in Figure 3.15(b) exhibiting significant local strain con-

centrations. Specifically, we observe that large plastic strains are accumulated in proximity

to pore surfaces in the two RVEs which cause the macroscale fractures in Figure 3.15(a). In

Figure 3.15(c), we observe that porous microstructures significantly deteriorate the bracket’s

load-carrying capacity which drops by 10.22% from 70.86 N to 63.62 N, and the bracket

breaks at a much lower displacement boundary condition. Therefore, compared to the single

scale model that only considers dense materials and neglects pores, the multiscale model

provides us with a more realistic prediction by considering fractures across scales.

Our multiscale simulation is paralleled by 40 CPU cores on a high-performance HPC, and

it is finished in 15.2 h. Based on the efficiency comparison between the ROM and DNS in

Figure 3.9, the estimated computational time for DNS (classic FE2) is more than 2623.5 h

(109.3 days), that is, our calibrated ROM speeds up the overall computation compared to

DNS with an acceleration factor of 172.6.

Figure 3.15 Results of multiscale damage analysis: (a) the top view of the fracture patterns
on the L-bracket model, (b) the distributions of equivalent plastic strains in the two highlighted
RVEs, and (c) the force–displacement responses.
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3.6 Conclusions

We propose a multi-fidelity reduced-order model for multiscale damage analysis that con-

siders manufacturing-induced spatially varying porosity. Our model is not only significantly

faster than multiscale simulations based on the FE2 approach but also has lower memory re-

quirements. Our approach relies on a mechanics-based ROM that accelerates the microscale

elasto-plastic-damage deformations by clustering the degrees of freedom. Since this cluster-

ing artificially increases microstructures’ tolerance to damage initiation and evolution, we

develop a calibration scheme to estimate the damage parameters that must be used in ROM

such that it can faithfully approximate high-fidelity simulations.

We employ LMGPs to build a multi-fidelity emulator which is then used in our calibration

scheme. In addition to providing high accuracy and versatility for emulation, we show that

the learned latent space of LMGP is interpretable and provides insights into the problem

(e.g., determining the relative accuracy of multiple ROMs with respect to DNS). This LMGP-

based calibration scheme differs from existing calibration works such as Refs. [85, 86] which

focus on calibrating simulations using experimental data. In contrast to these works, we

focus on calibrating ROMs against DNS such that these ROMs can be used in multiscale

simulations where microstructural details vary over the macro-component.

In this work, we use the calibrated ROMs in a multiscale simulation to study the effect of

spatially varying micro-porosity on the macroscopic response of an L-bracket model. Our

results indicate that porosity noticeably decreases the strength of the material and hence

must be considered in “design for fracture”.

In this work, we neglect the inherent uncertainty in material properties, i.e., our simulations

(based on either ROMs or DNS) are deterministic. More realistic fracture modeling requires

embedding uncertainty sources in our calibration scheme and multiscale simulations. With

this treatment, we will obtain probabilistic distributions for the calibrated parameters (con-
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ditioned on a selected fidelity level). These microscale distributions are spatially correlated at

the macroscale and quantifying their effects on the macroscale quantities relies on sampling

technique [87] (e.g., based on Markov chain Monte Carlo). We believe our ROMs provide a

unique opportunity for such sampling-based multiscale uncertainty quantification and plan

to pursue this direction in our future works.

The proposed data-driven multi-fidelity damage model in this paper opens up some interest-

ing future research directions. For example, the ROMs with calibrated damage parameters

can efficiently generate material response databases correlating intricate microstructural mor-

phologies with effective material behaviors under complex loading conditions. Such databases

enable deep learning-based surrogates for a direct mapping between material local morphol-

ogy and their responses for computationally demanding nonlinear analyses. In addition,

applying our multi-fidelity model to investigate the effects of material uncertainty on struc-

tural behaviors is vital for robust designs as engineered material systems are inherently

embedded with manufacturing-induced uncertainties that propagate across scales.
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Chapter 4

Final remarks

In this thesis we present two works in the field of data fusion and its application in engineer-

ing.

In Chapter 2, we introduce Pro-NDF, a novel NN architecture that converts MF modeling

into a nonlinear manifold learning problem. Pro-NDF is based on a multi-block neural

network where each block is designed to take on specific tasks for MF modeling problems

that arise in typical engineering applications. The main contributions of this work are:

• We present a novel NN architecture for data fusion that can accommodate an arbitrary

number of data sets (without requiring prior knowledge of their fidelities) and quantify

both epistemic and aleatoric uncertainties.

• We validate each of the key components of Pro-NDF by performing an ablation study

on an analytic and a real-world example. In particular, we show that a probabilistic

setting not only improves the performance of the emulator but also allows us to develop

a novel loss function (based on proper scoring rules) that enhances its robustness.

• We show the usefulness of the fidelity manifold learned by Pro-NDF, which encodes
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source-wise similarities/discrepancies. In this manifold, the distance between the en-

coded sources provides a global measure of their correlation. Thus, it can be used to

detect very accurate (or inaccurate) LF sources with respect to the HF source.

• Through a host of multi-source problems, we demonstrate that Pro-NDF outperforms

other NN-based data fusion approaches by a large margin. Moreover, Pro-NDF per-

forms on par to LMGP in cases with small data sets and shows better scalability as

the size of the training data increases.

In Chapter 3, we present a multi-fidelity reduced-order model for multiscale damage analysis

that considers manufacturing-induced spatially varying porosity. The proposed approach

relies on a mechanics-based ROM that accelerates the microscale elasto-plastic-damage de-

formations by clustering the degrees of freedom. Since this clustering artificially increases

microstructures’ tolerance to damage initiation and evolution, we develop a MF calibration

scheme based on LMGPs to estimate the damage parameters that must be used in ROM

such that it can faithfully approximate high-fidelity simulations. The main contributions of

this work are:

• We open the doors for the fracture-aware design of multiscale materials by proposing

a data-driven framework that integrates a mechanistic ROM with a MF calibration

scheme based on LMGPs.

• We show that the proposed method is significantly faster than multiscale simulations

based on the FE2 approach.

• We demonstrate the effectiveness of LMGP for MF calibration tasks. We also show

that the learned latent space of LMGP is interpretable and enables to determine the

relative accuracy of the ROMs with respect to DNS.

• We validate the application of our MF framework in predicting the damage behavior
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of a multiscale metallic component with spatially varying porosity. The results show

that porosity noticeably decreases the strength of the material and hence must be

considered in the design process.

The contributions made in this thesis suggest several promising areas for further investiga-

tion, which are discussed in Section 2.5 and 3.6.
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Appendix A

Probabilistic Neural Data Fusion for

Learning from an Arbitrary Number

of Multi-fidelity Data Sets

We provide the formulations of the analytic problems in Appendix A.1, the background and

details of the real-world problems in Appendix A.2, and the methodology and details of the

FFNN and SMF methods in Appendix A.3.

A.1 Table of Analytic Examples

Table A.2 details the analytic functions used for the examples covered in Section 2.4. For

each multi-fidelity problem, we calculate the accuracy of each LF source with respect to the

HF source via normalized root mean squared error (NRMSE):

NRMSE =

√
(yl − yh)T (yl − yh)

10000× var(yh)
(A.1-1)
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where yl and yh are 10000× 1 arrays of outputs sampled randomly via Sobol sequence from

the LF and HF sources, respectively. We use the same sample locations and outputs as our

test data when evaluating MSE and IS in Section 2.4.1 and Section 2.4.2.

A.2 Background on Real-World Examples

The DNS-ROM data set is extracted from the work presented in Chapter 3 [2] and is de-

tailed in Section 3.5.2. In this work, the goal is to accelerate multiscale damage simulations

of cast aluminum alloys by replacing direction numerical simulations (DNS) that are done

at the microscale via reduced-order models (ROMs). These ROMs provide computational

acceleration by solving a reduced-order representation of the governing equations and, de-

pending on how much the governing equations are simplified (to achieve speedups), provide

different levels of accuracy with respect to the DNS. A data point in the DNS-ROM data

set contains the toughness of a microstructure as a function of four microstructural descrip-

tors (pore volume fraction, number of pores, pore aspect ratio, average nearest neighbor

distance among the pores) and two material properties which affect the damage behav-

ior of the microstructure (evolutionary rate parameter and critical effective plastic strain).

Hence, this data set has 1 output1 (toughness) and 6 inputs. The response of each sample

is obtained via either DNS (HF source) or one of three ROMs (LF sources) which differ in

terms of their accuracy and cost (i.e., there is a total of four sources). The data set has

nh = 70, nl1 = 110, nl2 = 170, nl3 = 250 samples.

The HOIP problem deals with the composition of HOIP crystals, which are a relatively

recently developed class of materials with desirable photovoltaic properties for applications in

solar cells [88]. The quantity of interest is the inter-molecular binding energy between a HOIP

and solvent pair used in a solar cell, which is used as an indicator of the cell’s photovoltaic

1Note that we only consider one of the responses shown in Table 3.5 (i.e., toughness) for the experiments
performed in Section 2.4.3.
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conversion efficiency. HOIPs are perovskite materials and therefore their crystals have an

ABX3 configuration, i.e., they are composed of three compounds corresponding to sites

A (organic or inorganic cation), B (inorganic metal cation), and X3 (halide combination).

There are a number of choices for each site and any combination of these choices is feasible,

so the possible HOIP compositions comprise a very large combinatorial space. The data

set we use in this paper has three categorical inputs with l1 = 10, l2 = 3, and l3 = 16

levels which correspond to 10 possible X3 halide compositions2, 3 possible choices for the

organic/inorganic A site cation3, and 16 possible choices of solvent4, respectively. The B site

cation is held constant as lead, as other choices are exceedingly rare [88]. The output is the

inter-molecular binding energy between the input HOIP and solvent. There are one HF and

three LF data sets with unknown levels of fidelity and nh = 480, nl1 = 480, nl2 = 179, nl3 =

240 samples. We use 90% of the available samples for each source for training and 10% for

testing. We refer the reader to [88] for further details on HOIPs.

A.3 Other Multi-Fidelity NN-Based Approaches

A.3.1 Feedforward Neural Networks

As depicted in Figure A.1, for MF modeling via an FFNN we simply feed the numerical

inputs x, the prior representation of the source indicator ζ(ts) and the prior representation

of the categorical inputs ζ(tc) into the FFNN to produce the output. This approach has

two clear disadvantages with respect to Pro-NDF: (1) it does not provide a tool such as the

fidelity manifold of Pro-NDF that provides a direct visualization of the correlation between

the data sources, and (2) it has a fully deterministic setting which does not enable uncertainty

2All possible three-element combinations of chlorine, bromine, and iodine.
3Methylammonium, formamidinium, or cesium.
4Acetone, methanol, chloroform, etc.
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Targets
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Numerical Inputs
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Categorical Inputs
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Multi-fidelity data

Feedforward Neural Network

Source Source

: ConcatenationC

Figure A.1 FFNN for multi-fidelity modeling: As Pro-NDF , this approach allows to use
an arbitrary number of sources by appending a source indicator variable to each data set and
concatenating them. The FFNN maps the numerical inputs x, a priori representation of the source
indicator ζ(ts), and categorical inputs ζ(tc) to the output.

quantification and thus using a loss function based on proper scoring rules. In particular,

we use the following loss function for training the FFNN:

L = LMSE + βL2 (A.3-2)

where LMSE is the mean squared error of the predictions and L2 is L2 regularization:

LMSE =
1

N

N∑
i=1

(y(i) − ŷ(i))2 (A.3-3)

L2 = |θ|2 (A.3-4)
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We employ Adam as the optimizer and use RayTune [60] and Hyperopt with five-fold cross-

validation to find the optimum architecture and hyperparameters which include the learning

rate, regularization parameter β, and batch size N . For further details on implementation,

please see our GitLab repository.

A.3.2 Sequential Multi-Fidelity Networks

SMF is our extension of the approach detailed in [35] to more than two sources of data.

Unlike the other methods presented in this paper, multi-fidelity modeling via SMF requires

training a separate surrogate for each data source. As depicted in Figure A.2, individual

FFNNs are trained for each source in the sequence that ends with the HF source. After a

surrogate is trained for a data source, its outputs are used to augment the inputs of the next

model in the sequence and hence the resulting input-output relationships are:

ŷs1 = f̂ s1 (us1)

ŷs2 = f̂ s2 (us2 , ŷs1(us2))

· · ·

ŷsds = f̂ sds (usds , ŷsds−1(usds)) (A.3-5)

where ŷsi is the output of the FFNN , f̂ si is the mapping defined by the FFNN, usi is the

combined numeric and categorical input u = [x, ζ(tc)], and i denotes the data source with

i = ds being the HF source. Each individual FFNN employs the same loss function and

optimizer as in the FFNN method presented in Appendix A.3.1.

Like MF-DGP, the SMF approach is highly sensitive to the ordering of the data sources in

the sequence. In the case that the fidelity levels are known, they are assigned in the order

of increasing fidelity, i.e., source 1 is the least accurate LF source while source ds − 1 is
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Multi-fidelity data

Targets

LF Source

Inputs Targets

LF Source

Inputs Targets

HF Source

Inputs

Numerical Inputs

Categorical Inputs

Feedforward Neural Network

Numerical Inputs

Categorical Inputs

Feedforward Neural Network

Numerical Inputs

Categorical Inputs

Feedforward Neural Network

Figure A.2 Sequential Multi-fidelity (SMF) Networks: SMF is a hierarchical approach that
relies on sequentially training a model (e.g., an FFNN) for each data source in an ascending order
based on the fidelities. The inputs of a model are augmented with the outputs of the previous one
until reaching the model of the HF source.

the most accurate. With this ordering, the SMF approach leverages the entire data set to

achieve good HF prediction accuracy by minimizing the complexity of the mapping learned

by each successive FFNN. However, in the case that the fidelities are not known, the order of

the LF sources is assigned randomly. In this case, the mappings of the successive FFNNs no

longer monotonically approaches that of the HF function, and the SMF approach is unable

to properly leverage the additional LF data. In this paper, we assume that the fidelity levels

are unknown and therefore assign the data source ordering randomly when using SMF.

Similar to the FFNN approach, the SMF approach does not provide a latent mapping and is
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entirely deterministic. Like all hierarchical approaches, it also requires knowledge of fidelity

levels for good performance. These factors lead to a marked disadvantage in the context of

the problems examined in this paper, and we therefore expect the SMF method to perform

poorly.

We use RayTune and Hyperopt with five-fold cross-validation to find the optimum architec-

ture and hyperparameters for each FFNN in the SMF method. Namely, we tune the learning

rate, regularization parameter β, and batch size N. We also tune an additional parameter

that determines whether to use the numeric and categorical inputs u in the final FFNN,

since the mapping may be simple enough to learn from just the previous FFNN outputs in

the case that the last LF source is highly accurate. For further details on implementation,

please see our GitLab repository.

A.4 Additional details on simulations

A.4.1 Computational time

The required training time for each MF approach and problem assessed in Section 2.4.2 and

Section 2.4.3 is shown in Table A.1.

Rational Wing-weight Borehole DNS-ROM HOIP
Pro-NDF 195.80 65.99 91.32 35.96 32.43
LMGP 3.35 49.40 133.88 127.53 112.95

MF-DGPa,b 304.12 983.16 2312.01 3533.04 -
SF-GP 6.43 5.80 4.88 5.10 12.76
FFNN 75.42 418.39 71.11 183.94 387.55
SMF 96.76 108.99 476.85 165.05 935.42

Table A.1 Training time for different models on each example (in seconds).

aSimulations for MF-DGP were conducted on a workstation equipped with an 11th Gen Intel Core i7-
11700K CPU, with a clock speed of 3.60 GHz, 8 cores and 16 threads.

bMF-DGP cannot handle categorical variables and hence is not applied to the HOIP example.
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Name Source ID Formulation n σ2 NRMSE

Rational

yh(x) 1
0.1x3+x2+x+1

5 0.001 -

yl1(x) 1
0.2x3+x2+x+1

30 0.001 0.23

yl2(x) 1
0×x3+x2+x+1

30 0.001 0.15

yl3(x) 1
0×x3+x2+0×x+1

30 0.001 0.73

Polynomiala
yh(x)

4x2
1−2.1x4

1 +
x6
1

3
− 4x2

2 + 4x4
2 + x1x2

5 1 -

yl(x) yh (0.7x1, 0.7x2) + x1x2 − 65 20 1 5.77

Wing-weight

yh(x)
0.036S0.758

ω W 0.0035
fω

(
A

cos2(Λ)

)0.6
q0.006×

15 25 -

λ0.04
(

100tc
cos(Λ)

)−0.3

+ (NzWdg)
0.49 + SωWp

yl1(x)
0.036S0.758

ω W 0.0035
fω

(
A

cos2(Λ)

)0.6
q0.006×

50 25 0.20

λ0.04
(

100tc
cos(Λ)

)−0.3

+ (NzWdg)
0.49 + 1×Wp

yl2(x)
0.036S0.8

ω W 0.0035
fω

(
A

cos2(Λ)

)0.6
q0.006×

50 25 1.14

λ0.04
(

100tc
cos(Λ)

)−0.3

+ (NzWdg)
0.49 + 1×Wp

yl3(x)
0.036S0.9

ω W 0.0035
fω

(
A

cos2(Λ)

)0.6
q0.006×

50 25 5.75

λ0.04
(

100tc
cos(Λ)

)−0.3

+ (NzWdg)
0.49 + 0×Wp

Borehole

yh(x) 2πTu(Hu−Hl)

ln ( r
rw
)
(
1+ 2LTu

ln( r
rw )r2wkw

+Tu
Tl

) 15 6.25 -

yl1(x) 2πTu(Hu−0.8Hl)

ln ( r
rw
)
(
1+ 1LTu

ln( r
rw )r2wkw

+Tu
Tl

) 50 6.25 3.67

yl2(x) 2πTu(Hu−3Hl)

ln ( r
rw
)
(
1+ 8LTu

ln( r
rw )r2wkw

+0.75Tu
Tl

) 50 6.25 3.73

yl3(x) 2πTu(1.1Hu−Hl)

ln ( 4r
rw
)
(
1+ 3LTu

ln( r
rw )r2wkw

+Tu
Tl

) 50 6.25 0.38

yl4(x) 2πTu(1.05Hu−Hl)

ln ( 2r
rw
)
(
1+ 2LTu

ln( r
rw )r2wkw

+Tu
Tl

) 50 6.25 0.19

Table A.2 Table of analytic functions: The analytic examples have different input dimension-
ality, number of sources, and forms of model error. n denotes the number of samples, σ2 is the
variance of the noise, and NRMSE is the normalized root mean squared error of an LF source with
respect to an HF source, see Equation (A.1-1).

aExtracted from [62].
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