
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title

Deep Learning Based Load Forecasting and Monitoring for Electric Power Systems

Permalink

https://escholarship.org/uc/item/36b9c9br

Author

Xiong, Jing

Publication Date

2023

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/36b9c9br
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

DEEP LEARNING BASED LOAD FORECASTING AND
MONITORING FOR ELECTRIC POWER SYSTEMS

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ELECTRICAL AND COMPUTER ENGINEERING

by

Jing Xiong

December 2023

The Dissertation of Jing Xiong
is approved:

Dr. Yu Zhang, Chair

Dr. Keith Corzine

Dr. Patrick Mantey

Dr. Leila Parsa

Peter Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Jing Xiong

2023

Table of Contents

List of Figures v

List of Tables vii

Abstract ix

Acknowledgments xii

1 Introduction 1

2 Literature Review 6
2.1 Short-term Load Forecasting . 6
2.2 Non-Intrusive Load Monitoring . 11

2.2.1 Single-appliance vis-à-vis Multi-appliance 14
2.2.2 Data Augmentation . 16

3 Attention-based Neural Load Forecasting: A Dynamic Feature Selec-
tion Approach 18
3.1 Proposed Approach . 19

3.1.1 Input Feature Embedding and Problem Statement 20
3.1.2 Encoder and Decoder . 21

3.2 Numerical Results . 26
3.2.1 Data Description . 26
3.2.2 Baseline and Model Setup . 26
3.2.3 Numerical Results . 28

3.3 Summary . 31

4 A Unifying Framework of Attention-based Neural Load Forecasting 33
4.1 The Proposed Load Forecasting Framework 34

4.1.1 Feature Embedding and Feature-weighting Mechanism 35
4.1.2 Short-term Load Forecasting Model 36
4.1.3 Error Correction Module . 40

iii

4.1.4 Loss Function . 43
4.2 Experiment Setup . 43

4.2.1 Data Description . 43
4.2.2 Data Preparation . 44
4.2.3 Baseline Models and Hyperparameters 46
4.2.4 Performance Metrics . 47

4.3 Simulation Results . 49
4.3.1 Case 1: Ablation Study and Discussion 49
4.3.2 Case 2: Load Forecasting Model Comparison 50
4.3.3 Case 3: Generalization Capability 53

4.4 Summary . 56

5 MATNilm: Multi-appliance-task Non-Intrusive Load Monitoring with
Limited Labeled Data 57
5.1 Preliminary . 58
5.2 Methodology . 59

5.2.1 Sample Augmentation (SA) Algorithm 60
5.2.2 Multi-appliance-task Network Architecture 63
5.2.3 Loss Function . 69

5.3 Experiment Setup . 70
5.3.1 Data Preprocessing . 70
5.3.2 Three Scenarios . 71
5.3.3 Model Details . 72
5.3.4 Performance Metrics . 73

5.4 Experiment Results . 75
5.4.1 Case 1: Performance Comparisons with Limited Training Data . 75
5.4.2 Case 2: Ablation Study and DA comparisons 77
5.4.3 Case 3: Comparison with Training on Full Dataset 80

5.5 Summary . 82

6 Conclusion and Future Work 84
6.1 Conclusion . 84

6.1.1 Contributions . 86
6.2 Future work . 87

6.2.1 Literature Review . 89
6.2.2 Problem formulation . 90

iv

List of Figures

1.1 Examples of hidden information in load data in terms of time and scale
level. The green box represents the tasks given by this research 2

3.1 The network architecture of the proposed model. The feature selection
attention in the encoder is designed to adaptively weigh the different
input features. In contrast, the hierarchical temporal attention in the
decoder focuses more on the temporal similarity to incorporate similar
day information. To simplify the demonstration, the structure in the
figure only reflects the scenario of forecasting the next day based on the
previous two days. This can be easily extended to a general case. 19

3.2 The detailed forecasting performance of nine different models over three
days. 29

3.3 Box plot comparing the relative errors of each model 31

4.1 The architecture of the proposed framework. The left side is the load
forecasting module with an input feature-weighting mechanism designed
to weigh the different input features. The right side is the error correction
module transferred from the left side model to further enhance forecasting
ability. The detailed structures of feature-weighting mechanism and load
forecasting module are shown in Fig. 4.2 and Fig. 4.3. 34

4.2 The feature-weighting mechanism structure with two linear layers. . . . 36
4.3 The network architecture of the load forecasting model. The hierarchical

temporal attention in the decoder focuses on the temporal similarity to
incorporate similar day information. 37

4.4 Illustration of the sliding window step for data processing. 45
4.5 Two-day feature weight visualization for the NAU dataset with differ-

ent approaches: (a) mutual information, (b) random forest, and (c) the
proposed feature weighting attention. 52

4.6 Forecasting curve and relative error for the ISO-NE dataset (3 days). . . 54
4.7 Forecasting curve and relative error for the NAU dataset (3 days). . . . 54

v

4.8 ISO-NE dataset: The forecasting curves and relative errors for Informer,
Informer with error correction, Informer with feature weighting, and In-
former with both feature weighting and error correction (for two days). . 55

5.1 Multi-appliance-task network architecture with temporal attention and
appliance-wise attention. The decoder comprises a stack of m identical
decoder blocks with n branches. m and n are the numbers of decoder
blocks and the number of appliances to be disaggregated, respectively.
This figure only shows the case when n = 2 and m = 1. The grey zigzag
areas can be extended as n and m increase. 65

5.2 The convergence of MAT-conv training losses. 78

6.1 Differentiable policy structure for AutoNILM. 91
6.2 Workflow of AutoNILM. 92

vi

List of Tables

3.1 Inputs of the proposed model. 26
3.2 Forecasting Errors over the test year 2014. 30
3.3 Performance comparison of six models with respect to each month. . . 30

4.1 Time-related features of the ISO-NE dataset. 45
4.2 Time-related features of the NAU dataset. 45
4.3 The ranges of hyper-parameter tuning. Bold and italic fonts indicate the

best values for the ISO-NE and the NAU datasets, respectively. 48
4.4 NAU dataset: Ablation study for the proposed framework. Acronyms:

MI (mutual information feature weight), RF (random forest feature weight),
FW (feature weighting attention), TA (temporal attention), SDA (sim-
ilar day attention), BL (baseline ARIMA error correction) and EC (the
proposed error correction). 51

4.5 Forecasting errors over the year 2019 for the ISO-NE dataset. 51
4.6 Forecasting errors over the year 1991 for the NAU dataset. 51
4.7 ISO-NE dataset: Ablation study for Informer with feature reinforced

error correction (EC) and/or feature weighting attention (FW). 55

5.1 Training, validation, and testing datasets for REDD and UK-DALE. . . 72
5.2 Performance comparisons of existing models and the proposed framework

with limited data for REDD dataset. DW, FG, MW, KT, WD are the
acronyms for “Dishwasher”, “Fridge”, “Microwave”, “Kettle”, “Washer
Dryer”. Ave and Imp stand for “Average score” and “Average improvement”. 77

5.3 Performance comparisons of existing models and the proposed framework
with limited data for UK-DALE dataset. DW, FG, MW, KT, WD are the
acronyms for “Dishwasher”, “Fridge”, “Microwave”, “Kettle”, “Washer
Dryer”. Ave and Imp stand for “Average score” and “Average improvement”. 78

5.4 REDD: MAE results for ablation study of the proposed framework. MT,
TA, AA are the acronyms for “Multi-appliance-task”, “Temporal atten-
tion”, “Appliance attention”. 81

vii

5.5 REDD: MAE results for performance comparison between the proposed
SA and two existing augmentation methods. 81

5.6 REDD: Comparison of the SGN model trained on the full dataset (S1)
versus on the limited dataset with SA (S3). 82

viii

Abstract

Deep Learning Based Load Forecasting and Monitoring for Electric Power

Systems

by

Jing Xiong

The hidden information and characteristics embedded in electrical load profiles are

indispensable for the effective planning and operation of power grids. Load forecasting

plays a vitally important role in many applications for the electric industry, e.g., energy

generation and transactions, load shedding and restoration, as well as infrastructure

expansions. Based on historical data, accurate load forecasts provide a good reference

for the needed load demand, which can increase the efficiency and revenues of the

electricity generation and distribution companies. In parallel with load forecasting,

load monitoring can identify various types and statuses of loads by disaggregating the

total power consumption into individual appliance levels. A scientific procedure of load

monitoring facilitates the establishment of user-profiles, power usage habits, and peak

load shifting. This is beneficial for both the end-users and utilities, improving the overall

efficiency of the power network.

This research encapsulates three pivotal works focusing on enhancing the ac-

curacy and efficiency of predicting and monitoring electrical loads. The first work intro-

duces an attention-based neural load forecasting model that utilizes an encoder-decoder

ix

RNN and BiLSTM for dynamic feature selection and similar temporal information adap-

tively, showing superior performance in short-term load forecasting tasks. The second

piece builds upon this, offering a unifying framework that integrates time-varying fea-

ture weighting, hierarchical temporal attention, and feature-reinforced error correction.

This framework has shown outstanding efficacy in electric load forecasting on public

datasets. The third work pivots to Non-Intrusive Load Monitoring (NILM). It intro-

duces MATNilm, a multi-appliance-task framework, which efficiently disaggregates total

power usage with limited labeled data. It employs a training-efficient sample augmen-

tation (SA) scheme and a shared-hierarchical-split structure with a two-dimensional

attention mechanism, enhancing the recognition of spatio-temporal correlations among

all appliances. Collectively, these contributions underscore the integration of advanced

deep learning techniques to improve the efficiency, reliability, and accuracy of load fore-

casting and monitoring in power systems.

Extensive numerical simulations reveal that our proposed load forecasting

framework surpasses several existing forecasting methods. We emphasized the criti-

cal roles of both the feature weighting mechanism and the error correction module in

securing this superior performance. In relation to the NILM task, even with just a single

day’s training data and limited appliance operation profiles, our SA algorithm demon-

strates test performance comparable to models trained with a comprehensive dataset.

In tandem with our proposed model structure, the simulation results highlight that

our approach offers a notably enhanced performance against numerous baseline models,

reducing relative errors by over 50% on average.

x

xi

Acknowledgments

Embarking on the Ph.D. journey has been an intricate tapestry of challenges,

discoveries, and unyielding perseverance. As I stand at the culmination of this jour-

ney, I feel a profound sense of gratitude toward those who have stood by me, guiding,

supporting, and inspiring me through every step of this academic odyssey.

I would like to express my sincere gratitude to my advisor, Professor Yu Zhang,

for his invaluable guidance and unwavering support throughout the process of complet-

ing this dissertation. Under his mentorship, I had the opportunity to delve deep into

the intersection of deep learning and load forecasting and monitoring of power systems,

which formed the foundation of my research. Professor Zhang’s expertise, insightful

perspectives, and unwavering belief in my abilities have been truly transformative. His

constant encouragement and constructive feedback have not only shaped my academic

pursuits but have also contributed to my growth as a confident researcher. I am truly

inspired by Professor Zhang’s passion for the subject and his unwavering commitment

to academic excellence.

I am grateful to my committee members, Prof. Leila Parsa, Prof. Keith

Corzine, and Prof. Patrick Mantey, for their valuable feedback, thorough reviews, and

constructive suggestions. Their expertise and dedication to higher learning have sig-

nificantly contributed to refining my thesis, and I am indebted to them for leaving an

indelible mark on my academic journey.

My time at Argonne National Lab was an enriching experience, and I am

xii

particularly thankful to Dongbo Zhao and Tianqi Hong. Developing the Python power

system transient simulation platform with them provided me with practical insights

that significantly contributed to my research. Furthermore, I extend my gratitude to

my Machine Learning Intern experience at Soley Therapeutics, where I worked under

the guidance of Wenpei Liu. Prototyping the AWS ETL microscopy image pipeline

and implementing an outsourced data labeling pipeline were pivotal experiences that

enhanced my practical understanding.

The Energy, Optimization & Data Analytics Lab (eODAL) at the University of

California, Santa Cruz, has been my academic home, and I am indebted to my lab mates:

Shourya Bose, Sifat-E-Tanzim Chowdhury, Gabriel Intriago, and Kejun Chen. The bond

between them, their ability to have meaningful conversations, and their collaborative

brainstorming sessions were extremely valuable. Every moment spent in eODAL was a

great opportunity for collaborative learning.

I am also immensely grateful to the University of California, Santa Cruz, and

the Electrical and Computer Engineering department for providing me with an envi-

ronment that fostered learning, innovation, and growth.

To my parents, Xuehai Xiong and Jianni Kong, words fall short of expressing

my gratitude. My family has been a constant source of support, encouraging me to

pursue my dreams and teaching me the importance of hard work, perseverance, and

humility. Their love and support have been the foundation of my strength, guiding me

not only in my academic pursuits but in all aspects of my life.

To my friends, Lastly, I would like to acknowledge the generous funding and

xiii

support from various institutions and awards that made my Ph.D. research feasible.

Their commitment to fostering research and innovation played a pivotal role in my

academic journey.

xiv

Chapter 1

Introduction

The power system plays an indispensable role in society, serving as the foun-

dation of a country’s economy, security, and stability [1]. Consequently, enhancing the

efficiency and robustness of the power grid remains a perennial goal for scholars. With

the advent of the smart grid, the next-generation grid is expected to produce a massive

amount of data each day. Data from the market, equipment, and system provides valu-

able information for the reliable and efficient planning and operation of power grids from

SCADA and automatic meter readings. To extract meaningful insights from this vast

data, data mining and analysis have emerged as primary research areas in the power

and energy community.

Electrical load data represents one of the most prevalent measurements within

power networks, providing crucial insights into energy generation and consumption

across the entirety of the system. Figure 1.1 delineates the array of hidden information

that can be gleaned from such load data, categorized by both temporal considerations

1

Figure 1.1: Examples of hidden information in load data in terms of time and scale
level. The green box represents the tasks given by this research

and scale.

On the temporal front, load monitoring primarily centers around real-time or

recent past data, aiming to capture the current state or immediate past behavior of the

load. In contrast, load forecasting endeavors to anticipate future trends and patterns,

helping operators and planners prepare for upcoming load scenarios.

When segmenting by scale, the load data can be broadly bifurcated into

system-level and household-level data. The system-level pertains to broader infrastruc-

ture components like the transmission and distribution systems, encapsulating large-

scale patterns and behaviors. The household-level, meanwhile, offers a more granular

view, spotlighting individual residential consumption patterns and behaviors.

2

Load forecasting involves predicting future load behaviors based on historical

load patterns and relevant features. At the household level, daily routines of residents

dictate the load pattern, which often exhibits stochastic behavior and is challenging to

predict [2]. As load data aggregates from a single household to the system level, the ran-

domness diminishes, while the importance of precise forecasting amplifies. Considering

that electrons travel at the speed of light and there is no practical solution yet for the

mass storage of electricity, it is imperative to balance supply and demand at all times

to ensure grid stability. System-level load forecasting offers advance notice of expected

demand. Depending on the forecast horizon, load forecasting can be categorized into

short (one hour to a week), medium (one week to a year), and long-term (one to twenty

years) forecasting. Each caters to different applications and business needs. For in-

stance, long-term forecasting is vital for power system planning, such as generation and

transmission grid strategies. Medium-term forecasting aids in scheduling maintenance.

In contrast, short-term load forecasting (STLF) is pivotal for day-ahead unit commit-

ments, market clearances, reserve plans, energy bids, and economic load dispatches [3].

As the forecasting duration narrows, the demand for precise predictions intensifies. Al-

though load forecasting has been a research focal point for years, recent incorporations

of renewable energy source, energy storage systems (or facilities), and electric vehicle

have reshaped user behaviors, posing considerable challenges to load demand prediction

[4].

While forecasts provide anticipatory data, real-time load data unveils the ac-

tual state of a system. Load monitoring assists operators and consumers in compre-

3

hending the real-time status of systems or households, enabling their ability to respond

to time-of-use (TOU) pricing, supply shortages, or outages.

There are two primary distinctions between load data at the system and house-

hold levels: the number of measurements and the granularity of data resolution. At the

system level, there are multiple sources of measurements. The SCADA system provides

a wide range of measurements, continuously monitoring the overall system status and

samples every few seconds. Additionally, the PMUs can measure both the magnitude

and phase angle of voltage and current, achieving up to 120 samples per second. Con-

versely, at the household level, the data is limited to aggregated power consumption.

Smart meters are primarily designed to measure cumulative energy consumption and

typically do not record the energy usage of individual appliances. Although these me-

ters usually compute power at a 1Hz rate, utilities collect energy from the meter over

15-minute intervals, primarily for billing purposes. Devices such as Vue or Eagle [5] can

extract data from the meter at a 1Hz frequency.

Under the smart grid paradigm, understanding customers’ power consumption

habits and offering guidance is invaluable. Customers can contribute to power genera-

tion through renewable sources and enhance grid efficiency by modifying their consump-

tion habits, thereby leveling the grid’s load curve and easing its load pressure. Although

it’s feasible to monitor household power consumption at frequent intervals, obtaining

appliance-specific data is both costly and cumbersome. Non-intrusive load monitor-

ing (NILM), or energy disaggregation, seeks to deduce individual appliance usage from

a household’s cumulative power signal without necessitating dedicated measurement

4

devices for each appliance.

In recent years, deep neural networks (DNNs) have demonstrated their prowess

in discerning intricate input-output relationships across various domains, including nat-

ural language processing [6] and computer vision [7]. These networks offer innovative

solutions within the power system sector. This research endeavors to extract the la-

tent information within load data via deep learning methodologies, aiming to refine the

precision of load prediction and monitoring.

The rest of this thesis is structured as follows: Chapter 2 covers the literature

review of short-term load forecasting and non-intrusive load monitoring. Following that,

Chapter 3 introduces an attention-based neural load forecasting approach. In Chapter 4,

a comprehensive deep learning framework for multi-horizon STLF is developed. Chapter

5 presents a solution for the NILM problem with limited training data. Lastly, Chapter

6 discusses future work.

5

Chapter 2

Literature Review

2.1 Short-term Load Forecasting

Load forecasting refers to the prediction of future load behavior derived from

the historical load pattern and its relevant features. Based on different forecast hori-

zons, load forecasting can be divided into three categories: short-term (one hour to a

week), medium-term (one week to a year), and long-term (one to twenty years) fore-

casting. Each provides benefits for various applications and business needs. Long-term

forecasting is mainly used in power system planning, such as generation and transmis-

sion expansion planning. Medium-term forecasting plays a crucial role in maintenance

scheduling. Short-term load forecasting (STLF) is indispensable for day-ahead unit com-

mitment, market clearing, spinning reserve plans, energy bidding, as well as economic

load dispatch [3].

As the forecasting time span shrinks, the requirement for forecasting accuracy

6

increases. This is due to the need for more precise predictions in a shorter time frame

to effectively manage and distribute energy resources. In addition, wide applications of

renewable energy generation, energy storage systems (or facilities), and electric vehicle

in recent years have had a huge impact on users’ load behavior. These pose significant

challenges in forecasting load demand [4]. Various approaches have been proposed to

improve the STLF accuracy. They can be roughly categorized into three classes: (i)

time series analysis, (ii) classical machine learning algorithms, and (iii) deep learning

models.

Time series analysis methods were widely studied in the late 20th century.

Methods such as autoregressive (AR) [8], autoregressive moving average (ARMA) [9],

and later on autoregressive integrated moving average (ARIMA) [10] were implemented

for STLF. These methods are easy to implement and interpret; however, they require

meticulous preprocessing to make a time series stationary [11]. Moreover, time series

approaches are sensitive to irrelevant features and may fail to capture a long-term

dependency.

After that, with the development of classical machine learning theory, re-

searchers began to explore its application in STLF. Ceperic et al. proposed a support

vector regression machines (SVR) approach for STLF, which minimizes the user inter-

action requirement by an adaptive model building strategy [12]. A random forest (RF)

model was used for STLF, which could deal with nonstationarity, heteroscedasticity,

trend, and multiple seasonal cycles load data [13]. In order to avoid information loss,

Cheng et al. used different feature sets to construct an ensemble random forest-based

7

model, which could also avoid the curse of dimensionality [14]. Taieb et al. imple-

mented component-wise gradient boosting models (GBM) for each hour for multi-step

short-term load forecasting [15]. These classic machine learning models can adapt to ir-

relevant features and are more robust in capturing the nonlinear behaviors of electricity

load. However, most of these approaches use predetermined nonlinear models, which

may prevent them from learning the true underlying nonlinearity effectively [16].

Over the past decade, deep neural networks (DNNs) have convincingly shown

their capability to uncover the input-output relationships of different complex learning

tasks in natural language processing [6] and computer vision [7]. Among different struc-

tures of DNNs, recurrent neural networks (RNNs) have been widely adopted and with

proven efficacy in sequence-to-sequence learning tasks as well as in time-series forecast-

ing tasks [17]. Despite the effectiveness of RNNs in time-series forecasting learning, a

significant limitation of the plain RNNs is the well-known gradient vanishing problem

[18]. Hochreiter and Schmidhuber proposed long short-term memory networks (LSTM)

with a "three gates" technique to address this problem. The three gates: input gate,

forget gate, and output gate, are designed to control information flows, and the rel-

evant information is kept for long-term memory through these gates while the other

information is forced to be ignored [19]. Later, in 2014, Cho et al. introduced gated

recurrent units (GRUs), also a gating mechanism-based RNN. GRUs decrease the size

of parameters by decreasing the number of gates and also reduce the training effort [20].

Sequence-to-sequence (seq2seq) learning [21] is one of the tasks that resolve the

mapping between the sequential inputs and outputs of the task, which shares various

8

similarities with time-series learning problems. The encoder-decoder structure usually

serves as the backbone for most seq2seq models [22, 23]. Specifically, in time-series

tasks, the encoder encodes the historical input features sequence into a single fixed-

length vector, based on which the decoder yields the output. However, coping with a

long input series is a challenge for the structure. To bypass this limitation, the attention

mechanism was introduced to search for a set of positions in historical time steps where

the most relevant information is concentrated [24]. For this new paradigm, a context

vector is designed to bridge the gap between the encoder and the decoder, filtered for

each output time step.

Although literature studies have shown that deep learning methods generally

have better performance, single-level networks are challenging to deal with different

data set conditions. In order to further improve the prediction accuracy, more modules

can be added to the pipeline to combine the advantages of each module. Especially for

STLF, feature engineering and error correction modules are necessary.

Rather than selecting a subset of features, feature weighting attempts to weight

each feature based on their importance or relevance with the output [25]. Utilizing the

feature weights given by the random forest, Xuan proposed a multi-model fusion based

deep neural network to forecast the load demand [26]. Qin et al. proposed an input

attention layer as feature weighting that can be trained simultaneously with the model

[16]. However, their scheme is based only on the past information which cannot capture

all the information of the entire input sequence. Moreover, the feature weighting part is

embedded in the encoder, which makes it hard to be adopted for other basic structures;

9

e.g. the convolutional neural network (CNN).

The prediction error generally comes from two parts: the learning ability of

the original model and the newly emerging unknown data. In order to further improve

the prediction accuracy, the error correction module can learn useful hidden informa-

tion from the error value to reduce the impact of the two parts mentioned above. Deng

et al. proposed a hybrid model that includes a decomposition module, a forecasting

module, and an error correction module for wind speed forecasting. Wind speed is first

decomposed with empirical wavelet transform into several subseries. Then, each sub-

series is forecasted via an Elman neural network. Lastly, an ARIMA model is employed

to forecast the error of each subseries and update the final output [27]. Inspired by

the dynamic mode decomposition (DMD) method in fluid dynamics, Kong et al. used

the DMD algorithm to capture the potential spatiotemporal dynamics of error series

for STLF. This algorithm first constructs the error Hankel matrix and then does the

pattern decomposition of the error. After that, an error series was reconstructed and

finally forecasting the error [4]. The existing approach for an error correction system is

usually to design a completely new model such as ARIMA [28] [27] or ELM [29] [30] to

forecast the error. The new model will face the following shortcomings: 1) Increase the

cost of learning. Model selection and hyperparameter tuning are inevitable, which will

greatly increase design complexity and time usage. In addition, training a new model

from scratch requires a large amount of data and is time-consuming, especially for deep-

learning models. 2) Loss of the existing knowledge learned by the original model. This

is even more critical. The original forecasting model learned some useful hidden pat-

10

terns that could be useful for forecasting errors. The existing error correction system

only deals with the error sequence and ignores the useful hidden knowledge learned by

the predictive model.

In order to solve the above problems, the transfer learning approach came into

being. Transfer learning was first discussed in the “Learning to Learn” workshop held

by Neural Information Processing Systems (NIPS) in 1995. The motivation of transfer

learning is to use previously acquired domain knowledge to solve new problems faster or

with better solutions [31]. In recent years, transfer learning has been successfully used for

classification, regression, and clustering problems. In load forecasting, researchers have

also explored the use of transfer learning. In this context, they explore the way that

the knowledge is transferred from one region/household to another region/household

[32] [33] [34]. In this case, the source and target domains are the same, which are

load and relative features, and the task is also the same, which is load forecasting.

The key challenge for applying transfer learning in error correction is incorporating the

error information into the target domain without changing the input dimension, while

capitalizing on previously acquired feature knowledge.

2.2 Non-Intrusive Load Monitoring

Exploring users’ power usage patterns and providing energy saving guidance

is important for smart power grids. Users can participate in power production activ-

ities through renewable energy generation and effectively improve power efficiency by

11

adjusting power usage patterns to shift the peak load demand [35]. It is relatively easy

to install a meter that monitors the household power consumption every few seconds,

or at a higher sampling rate. However, recording the power usage of each appliance

involves dedicated monitoring instrumentation for each appliance, which is impractical

and expensive. In this context, non-intrusive load monitoring (NILM), also known as

energy disaggregation, aims to leverage a household’s aggregate power consumption sig-

nal to make inferences about individual appliance usage without using extra sensors.

Based on the measurement sampling rate, NILM can be divided into two categories.

High-frequency measurements are in the order of 10 kHz, including various features

such as harmonics [36] and V-I trajectory [37, 38]. This type of data requires sophisti-

cated and prohibitively expensive instrumentation hardware and is very costly. NILM

via low-frequency data is a more challenging task. As the sampling rate drops below 1

Hz, distinct features used in the high-frequency data are no longer available. Therefore,

extracting high-level hidden features is the key to achieving better performance.

NILM was first studied by Hart in 1992 [39]. Afterward, many classical models

were developed to deal with the problem. [40] proposes the factorial hidden Markov

model (FHMM). Based on that work, researchers design a conditional factorial hidden

semi-Markov model that can incorporate extra features about the appliance status in

[41]. More classical models are summarized in review papers [42–44].

Over the past few years, deep neural networks (DNNs) have demonstrated re-

markable achievements in various fields, such as natural language processing and com-

puter vision. Several studies in NILM have also delved into the utilization of DNNs, as

12

highlighted in the work by Bousbiat et al. [45]. Classic DNN layers such as convolu-

tional neural network (CNN) [46], recurrent neural network (RNN) [47] and temporal

convolutional network (TCN) [48] have been investigated extensively. In [49], the au-

thors propose a bidirectional long short-term memory (LSTM) model to capture the

context information of the aggregated consumption. A Bayesian-optimized framework

is utilized to select the best configuration of the proposed regression model. In [50], a

parallel CNN and a bidirectional gated recurrent unit network are developed to extract

spatial-temporal features whose weights are updated through an attention mechanism.

In [51], the NILM task is modeled as a multiple-instance learning problem, and a con-

volutional recurrent neural network is trained with weak supervision.

An increasing number of works have investigated advanced DNNs for NILM.

In [52], the authors develop a subtask gated network (SGN). The regression subnet-

work outputs the electricity usage while the classification counterpart, which is used as

a gating unit, specifies the on/off state for each given appliance. Based on this work,

[53] enhances the model’s effectiveness by incorporating an attention mechanism into

the regression subnetwork. This integration intensifies the network’s ability to identify

and focus on the most pertinent parts of the input sequence, thereby amplifying its

representational prowess. [54] develops an architecture using different receptive field

size branches. Branch-wise gates connect corresponding branches in two subnetworks.

To improve the performance, the authors employ a Wasserstein generative adversarial

network (WGAN) with gradient penalty during the model’s training. Other GAN struc-

tures are also explored. [55] proposes an EnerGAN++ structure for the NILM task. An

13

autoencoder is implemented as the GAN generator, enabling a nonlinear signal source

separation. The aggregate input concatenating with actual or estimated appliance con-

sumption is the discriminator’s input. In [56], the adversarial training process and the

joint adaptation loss are introduced to leverage the hidden information from unlabeled

data.

2.2.1 Single-appliance vis-à-vis Multi-appliance

There are different setups for NILM, which can be categorized based on the

learning tasks. Typically, the regression task involves the inference of individual ap-

pliance’s power usage. The classification task aims to determine the appliance’s on/off

status or different states related to power levels [57]. As summarized in the previous

section, various machine learning approaches have been proposed for both tasks. In

addition, tools such as pattern matching [58] and source separation [59] can also be

found in the literature; see details in [60].

Given an aggregate power consumption signal, a learning model can be trained

for each appliance separately, or it can be used to estimate the power signals for all

appliances in consideration. We use the terms “single-appliance” and “multi-appliance”

to refer to those two approaches, respectively. Most of the existing regression models

adopt the single-appliance approach, which ignores the interactions among different

appliances. For example, it is uncommon to operate a dishwasher and a microwave at

the same time. The use of a dryer often comes after a washer. In contrast, such context-

aware information can be implicitly incorporated by the multi-appliance approach into

14

the modeling process, which can improve the disaggregation accuracy.

The multi-appliance approach in previous works focuses on the on/off sta-

tus and state classification. For instance, a semi-supervised multi-label deep learning

framework is proposed in [61] to monitor the on/off status of multiple appliances simul-

taneously. In [62], an HMM-based model is designed to infer appliance states over time

by eliminating the possibility of unmodeled loads and outputting the used energy. A

WaveNet, which is fed with active, reactive, and apparent power as inputs, is used to

estimate appliance states and currents [57]. In addition, the total energy consumption

of a set of appliances with similar operational patterns is estimated[63].

The direct regression task in multi-appliance setups is still an ongoing devel-

opment, with research studies such as [52] and [64] highlighting its advantages over

state classification. Direct regression allows for more accurate and detailed estima-

tions for individual appliances. However, existing approaches have certain limitations,

which include the vanilla neural network for multi-appliance (VMA) in [65], the U-Net

architecture in [66], and the transfer learning techniques employed in [67]. These meth-

ods directly output power consumption for multiple appliances from the output layer

without explicitly considering the inter-appliance relationships at different time steps.

This limitation hinders their effectiveness in achieving more accurate estimations in

real-world scenarios.

15

2.2.2 Data Augmentation

Data augmentation for improving NILM performance has been explored in

the literature. [68] generates synthetic training data by randomly adding the appliance

profile to the user’s aggregate load. Besides the on-duration period of appliances, [69]

also considers the off-duration when generating augmented synthetic data. However, it

is hard to determine how much synthetic data is really needed. On the other hand, this

type of data augmentation (DA) only incorporates existing appliance profiles, which are

very limited compared with the potentially vast array of models of each appliance. In or-

der to generate more appliance profiles, [54] proposes an on-state augmentation method

by adding extra noise to the fridge power consumption signal and the corresponding

aggregation input. Existing data augmentation algorithms are mainly designed for

generating a synthetic dataset for each aggregate and appliance pair, which acts as a

regularizer for each appliance separately, for increasing the generalization capability of

the model [64]. Moreover, these methods are still trained by a full dataset, which may

not fit the limited data scenario.

Some existing works also analyze the limited data scenario in the testing phase.

In [70], the author compares the energy disaggregation performance with 100%, 50%,

and 25% of each house data in the REDD dataset. In [54], the author shows the dish-

washer and microwave performance of the proposed network with 20% of the training

data and fridge with 5% and 10% of the training data. These works do not focus on

data-limited scenarios, but validate the effects of data-limited scenarios on the proposed

16

model. Therefore, there is a lack of sufficient mining of the conditions of limited data

scenarios. In [71], a semi-supervised graph-based approach is proposed with a limited

amount of ground-truth data and a large pool of unlabeled observations to classify the

activation status of the appliances accurately. A novel LSTM combined with a proba-

bilistic neural network (PNN) algorithm is proposed to classify the active appliance type

in [72]. The authors leverage the transfer learning techniques to lower the requirements

for training data further.

17

Chapter 3

Attention-based Neural Load

Forecasting: A Dynamic Feature

Selection Approach

Encoder-decoder-based recurrent neural networks (RNNs) have made signifi-

cant progress in sequence-to-sequence learning tasks such as machine translation and

conversational models. Recent works have shown the advantage of this type of network

in dealing with various time series forecasting tasks. This chapter focuses on the prob-

lem of multi-horizon short-term load forecasting, which plays a key role in the power

system’s planning and operation. Leveraging the encoder-decoder RNN, an attention

model is designed to select the relevant features and similar temporal information adap-

tively. First, input features are assigned with different weights by a feature selection

attention layer, while the updated historical features are encoded by a bi-directional

18

Figure 3.1: The network architecture of the proposed model. The feature selection
attention in the encoder is designed to adaptively weigh the different input features. In
contrast, the hierarchical temporal attention in the decoder focuses more on the tem-
poral similarity to incorporate similar day information. To simplify the demonstration,
the structure in the figure only reflects the scenario of forecasting the next day based
on the previous two days. This can be easily extended to a general case.

long short-term memory (BiLSTM) layer. Then, a decoder with hierarchical temporal

attention enables a similar day selection, which re-evaluates the importance of historical

information at each time step.

3.1 Proposed Approach

The novel architecture of our proposed attention-based DNN model, whose

backbone is a competitive encoder-decoder structure, is illustrated in Fig. 3.1. In this

section, we will elaborate on the details of each module by highlighting the new design

of dynamic feature selection and similar day selection for multi-horizon STLF.

19

3.1.1 Input Feature Embedding and Problem Statement

By transforming categorical data into a numeric vector, embedding is widely

used in machine learning when inputs contain one or more discrete values or items

from a finite set of choices. For STLF, the inputs can contain meteorological conditions

(e.g., temperature, humidity, wind speed and direction, etc), indicator of holiday, and

utility discount programs, e.g., TOU pricing. In this work, we simply use the one-

hot encoding for categorical features. After embedding, the inputs of the encoder are

the concatenation of embedded categorical features, continuous numeric features, and

historical target values (active power demand) at each time step t ∈ [t−Th +1, t], while

inputs of the decoder are the concatenation of embedded categorical features, continuous

numeric features at each time step t ∈ [t + 1, t + Tf], and historical feature matrix Xi

and future feature matrix Xf , where Th and Tf are the window size of historical and

future data, respectively.

Let X = (x1, x2, . . . , xn) ∈ R(Th+Tf)×n collect all embedded input features

across the entire horizon of interest. Thus, each row vector of X denoted as xt =

(x1
t , x2

t , . . . , xn
t) represents all n input features at time t. For the multi-horizon STLF

task, given the historical feature inputs Xh := {xh}t−Th+1
h=t and the corresponding target

values yh = (yt, yt−1, . . . , yt−Th+1)⊤, we aim to learn a function f(·) that can predict

future target values yf = (yt+1, yt+2, . . . , yt+Tf
)⊤ for the given future features Xf :=

{xf}
t+Tf

f=t+1; i.e., yf = f(Xf | yh,Xh).

20

3.1.2 Encoder and Decoder

The encoder-decoder structure is a workhorse in state-of-the-art deep neural

networks. For time series forecasting, the encoder maps historical input features xt and

output yh,t at each time step t to a hidden vector ht that is passed to the decoder.

Then, the decoder uses the last step hidden state of the encoder as its initial hidden

state and outputs future target values based on future feature inputs.

3.1.2.1 Encoder with feature selection attention

As shown in Fig. 3.1, the encoder consists of two sublayers: a feature selection

attention layer and a BiLSTM layer. The time range for the encoder is from time

t− Th + 1 to t.

Feature selection is key for almost all machine learning tasks. Irrelevant fea-

tures can significantly affect the model’s performance. By using feature selection atten-

tion, the proposed model is able to adaptively weigh different features and give more

attention to features that contribute more to the target values. The weight αk
t of each

feature k at time t is calculated via the softmax operator

αk
t =

exp
(
ek

t

)
∑n

i=1 exp
(
ei

t

) , k = 1, 2, . . . , n (3.1)

where ek
t is the k-th element of the vector et = (e1

t , e2
t , . . . , en

t)⊤ ∈ Rn that is given by

et = Ve tanh
(

We

[
he

t−1
⊤; xt; yt

]⊤
+ bw

)
+ bv. (3.2)

21

The weight matrices Ve ∈ Rn×p, We ∈ Rp×(2hs+n+1) and bias term bw ∈ Rp×1, bv ∈

Rn×1 are trained jointly with the proposed model. p is a hyper-parameter while hs is

the hidden size of the BiLSTM. [a; b] denotes the concatenation of two row vectors a

and b. he
t−1 is the hidden vector of the encoder BiLSTM at time t − 1. Then, the

weighted feature input is given by x̃t =
(
α1

t x1
t , α2

t x2
t , . . . , αn

t xn
t

)
.

The BiLSTM consists of two LSTM layers in opposite directions which can

capture the complete information of the entire input sequence at each time step. Let hf
t ,

hb
t ∈ Rhs denote the hidden state of forward and backward LSTM at time t, respectively.

Given the weighted input x̃t, the hidden states of the encoder are updated iteratively

from time t− Th + 1 to t as follows [73]

hf
t = LSTMf (hf

t−1, x̃t) (3.3a)

hb
t = LSTMb(hb

t+1, x̃t) (3.3b)

he
t =

[
hf

t

⊤
; hb

t
⊤
]⊤

. (3.3c)

22

The LSTM(·) involves the following detailed updates [19]:

it = σ
(
Wixx̃⊤

t + bix + Wihht−1 + bih

)
(3.4a)

ft = σ
(
Wfxx̃⊤

t + bfx + Wfhht−1 + bfh

)
(3.4b)

gt = tanh
(
Wgxx̃⊤

t + bgx + Wghht−1 + bgh

)
(3.4c)

ot = σ
(
Woxx̃⊤

t + box + Wohht−1 + boh

)
(3.4d)

ct = ft ⊙ ct−1 + it ⊙ gt (3.4e)

ht = ot ⊙ tanh (ct) , (3.4f)

where it, ft, gt, ot are the input, forget, cell, and output gates, respectively. W·,x ∈

Rhs×n, W·,h ∈ Rhs×hs are the weight matrices; b·,· ∈ Rhs the bias vectors; ct ∈ Rhsthe

cell state; σ(·) the sigmoid function; and ⊙ the Hadamard product (element-wise mul-

tiplication).

3.1.2.2 Decoder with hierarchical temporal attention

The decoder leverages the encoder’s last-step hidden state and cell state as

its initial state. Using the last forecast value as the input for the next time step may

introduce error propagation. Instead, we design a BiLSTM along with a feed-forward

layer to predict the final target sequence once the BiLSTM learns all input information.

The time range for the decoder is from time t + 1 to t + Tf .

Incorporating the information of similar days and hours has been considered

in the literature for load forecasting; see e.g., [74, 75]. However, such information is

23

often treated as additional input features or used to generate separate models. In this

section, we develop a novel hierarchical temporal attention layer, which incorporates a

similar day soft selection to re-evaluate the importance of historical information at each

time step t.

Consider using previous M days of historical data to forecast the hourly loads

for the next day, where each day includes td = 24 data points. Thus, we have Th = M×td

and Tf = td. Let Xi = (x1
i , x2

i , . . . , xn
i) ∈ Rtd×n and Xf = (x1

f , x2
f , . . . , xn

f) ∈ Rtd×n col-

lect the historical features for day i and the future features for the next day, respectively.

We use the sum of feature-by-feature dissimilarities D(Xi, Xf) =
∑n

k=1 ∥xk
i − xk

f∥2 to

quantify the distance between all features of those two days. Then, the similar day

weight γi is calculated as the softmax of the reciprocal of the distance:

γi = exp
(
D−1(Xi, Xf)

)∑M
i=1 exp (D−1(Xi, Xf))

, i = 1, 2, . . . , M. (3.5)

When forecasting load at time t, not all historical data contribute equally to the

model’s output. Hence, the attention mechanism facilitates the extraction of historical

information that is more important to the current forecast value. Let subscript i denote

the i-th day and j for j-th hour. Then, the attention weight βi,j,t is given by

βi,j,t = exp(di,j,t)∑M
i=1

∑td
j=1 exp(di,j,t)

, (3.6)

where di,j,t is the (i× td + j)-th element of vector dt = (d1
t , d2

t , . . . , dTh
t)⊤ ∈ RTh , which

24

is given as

dt = Vd tanh
(

Wd

[
hd

t−1
⊤; xt

]⊤
+ bwd

)
+ bvd. (3.7)

The parameters Vd ∈ RTh×p′ , Wd ∈ Rp′×(2hs+n), bvd ∈ RTh×1 and bwd ∈ Rp′×1 are

trained jointly with the proposed model. hd
t−1 is the hidden vector of the decoder

BiLSTM at time t− 1.

To this end, let hi,j denote the historical hidden state for the j-th hour in

the i-th day from the encoder. The context vector of hierarchical temporal attention is

calculated as at =
∑M

i=1
∑td

j=1 γiβi,j,thi,j . Given the future feature input xt and context

vector of hierarchical temporal attention at, the hidden state of the decoder is updated

iteratively from time t + 1 to t + Tf as hd
t = BiLSTM(hd

t−1, hd
t+1, [xt; a⊤

t]).

Finally, a fully connected layer with the rectified linear unit (ReLU) activation

function is used to transform the hidden information to the forecast output

yf = VyReLU(Wyhd
t+1:t+Tf

+ bwy) + bvy, (3.8)

where Vy ∈ RTf ×p′′ and Wy ∈ Rp′′×(Tf ×2hs) are weight matrices; bvy ∈ RTf ×1 and

bwy ∈ Rp′′×1 are bias term; and vector hd
t+1:t+Tf

=
[
hd

t+1
⊤; hd

t+2
⊤; . . . ; hd

t+Tf

⊤]⊤. In the

decoder module, both p′ and p′′ are hyper-parameters to be tuned.

25

Table 3.1: Inputs of the proposed model.

Input Size Description
yh 168× 1 Historical target values
Temperature 192× 1 Historical and future temperature
Holiday 192× 1 Holiday and non-holiday indicators
Hour of Day 192× 24 One-hot encoding
Day of Week 192× 7 One-hot encoding
Month of Year 192× 12 One-hot encoding

3.2 Numerical Results

3.2.1 Data Description

We evaluated the proposed model on an hourly load data introduced by the

Global Energy Forecasting Competition 2014 extended (GEFCom2014-E) dataset [76].

The dataset includes load demand, temperature, and timestamps across a total of 9

years between January 1, 2006 to December 31, 2014. We use the data from the year

2010 to 2012 for training, the year 2013 for validation, and the year 2014 for testing.

The data of the past seven days are used to forecast the next day. Specifically, the

inputs of the model are listed in Table 3.1. The dataset is first standardized (subtract

the mean and divide by the standard deviation) to mitigate the magnitude impact of

different input features.

3.2.2 Baseline and Model Setup

To show the effectiveness of our proposed model, we compared two differ-

ent types of models: classical machine learning models and LSTM based models. We

26

implemented the Support Vector Regression (SVR), Random Forest (RF), and Gradi-

ent Boosting Machine(GBM) by using Scikit-Learn 0.23.2. For LSTM based meth-

ods, we considered the basic Encoder-Decoder based LSTM (EDLSTM), Encoder-

Decoder based BiLSTM (EDBiLSTM) using bidirectional LSTM in the Decoder, pro-

posed method with attention only applied in the encoder (eAttention), proposed method

with attention only applied in the decoder (dAttention) and proposed method with fea-

ture weight calculated by Random Forest [77] (RFAttention). All the LSTM based

methods are trained by the Adam optimizer with the mean squared error (MSE) loss

function, which are implemented via PyTorch 1.6.0. To ensure fair comparisons, all

models share the same training, validation, and testing datasets as well as input fea-

tures. The grid search is used to tune the hyper-parameters. The final setting are listed

as follows:

• SVR: linear kernel with C = 0.1.

• RF: number of estimators = 1, 000, max-depth = 20, min-samples-split = 2, min-

samples-leaf = 1.

• GBM: loss = “ls”, learning rate = 0.01, number of estimators = 1, 000, max-depth

= 5, min-samples-split = 2, min-samples-leaf = 15.

• EDLSTM: batch = 64, hidden size = 1, 024, epochs = 5.

• EDBiLSTM: batch = 64, hidden size = 1, 024, epochs = 5.

• RFAttention: batch = 128, hidden size = 256, epochs = 15.

27

• dAttention: batch = 256, hidden size = 128, epochs = 5.

• eAttention: batch = 256, hidden size = 128, epochs = 20.

• ANLF: batch = 128, hidden size = 256, epochs = 5.

3.2.3 Numerical Results

Table 3.2 presents a comprehensive assessment of the performance of nine com-

peting models over the entire testing period. Using four error metrics, namely mean

absolute error (MAE), root mean square error (RMSE), mean absolute percentage error

(MAPE), and normalized root mean square error (nRMSE) [78], the evaluation offers a

detailed insight into each model’s forecasting capabilities. GBM is considered to be one

of the best performers among classical machine learning models, with a performance

that is comparable to dAttention and EDBiLSTM. A deeper dive into LSTM-based

models reveals that incorporating attention mechanisms into both the encoder and de-

coder results in a marked improvement in accuracy. This is evident when comparing

the likes of EDLSTM to its attention-enhanced counterparts. The results associated

with RFAttention and ANLF underscore the efficacy of the proposed feature selection

layer. Distinguished from its peers, the ANLF model, with its encoder-decoder RNN ar-

chitecture, sophisticated attention mechanisms, and the capability to assign differential

weights to input features coupled with bi-directional LSTM, excels in capturing intri-

cate patterns, leading to unparalleled forecasting precision. Undoubtedly, the ANLF

approach stands out, substantially surpassing all other baseline models in performance.

28

Figure 3.2: The detailed forecasting performance of nine different models over three
days.

The effectiveness of this approach is highlighted by the simulation results, which demon-

strate the significance of the attention mechanism in identifying relevant features and

corresponding temporal data for the STLF task. A granular 3-day forecasting perfor-

mance is delineated in Fig. 3.2. Here, the relative error between the forecasted value ŷ

and the actual value y is articulated as RE = |y−ŷ|
y × 100%. Furthermore, Table 3.3

provides a comprehensive month-wise performance comparison of six prominent models.

This comparison serves to highlight the consistent superiority of ANLF across different

temporal scopes.

In the box plot (Figure 3.3), we compared the relative errors of each model

for the test data in the year 2014, illustrating the distribution of relative errors. The

blue box represents the interquartile range, indicating values between the 25th and 75th

29

Table 3.2: Forecasting Errors over the test year 2014.

Model MAE RMSE MAPE (%) nRMSE (%)
GBM 71.48 94.61 2.15 2.84
RF 85.36 113.67 2.55 3.42

SVR 79.23 108.27 2.33 3.26
EDLSTM 74.73 97.95 2.26 2.94

EDBiLSTM 71.48 92.94 2.17 2.79
RFAttention 73.72 97.83 2.23 2.95
dAttention 70.91 91.42 2.15 2.75
eAttention 65.33 87.85 1.97 2.65

ANLF 64.80 86.74 1.93 2.61

Table 3.3: Performance comparison of six models with respect to each month.

Month ANLF EDBiLSTM EDLSTM GBM RF SVR
1 2.15 2.72 2.17 2.62 3.36 2.12
2 1.79 2.39 2.34 2.08 2.56 2.42
3 2.36 3.84 3.93 2.81 3.50 2.57
4 1.82 2.24 2.77 2.36 2.89 2.24
5 1.83 1.88 2.00 1.75 1.99 1.89
6 1.66 2.01 1.79 1.79 2.05 2.22
7 1.96 1.79 2.00 1.88 2.32 2.77
8 1.45 1.50 1.46 1.76 2.08 2.32
9 1.67 2.00 2.05 1.95 2.25 2.49
10 1.52 1.74 1.70 1.79 1.78 1.71
11 2.55 1.94 2.57 2.87 3.39 2.64
12 2.44 2.08 2.37 2.21 2.66 2.51

Overall 1.93 2.17 2.26 2.15 2.55 2.33

percentiles, while the orange line indicates the median of the relative errors. The blue

numbers denote the count of forecasting points with errors exceeding 10%. Notably, our

proposed model only has 16 such points, significantly fewer than other models. This

improvement can be attributed to the hierarchical temporal attention mechanism, as

30

Figure 3.3: Box plot comparing the relative errors of each model

evidenced by our ablation study. Such performance further underscores the proposed

model’s capability to achieve a high level of accuracy and reliability.

3.3 Summary

In this chapter, we developed an end-to-end attention-based neural load fore-

casting framework for multi-horizon STLF. For the proposed approach, the dynamic

feature selection layer combined with a BiLSTM encoder is designed to extract more

relevant features. Then, a BiLSTM decoder with a hierarchical temporal attention layer

decodes the next day load based on the future input features. The temporal attention

layer provides a systemic way to incorporate similar day information. The extensive

31

simulation results show the effectiveness of our proposed approach that has an edge

over the state-of-the-art benchmarks.

32

Chapter 4

A Unifying Framework of

Attention-based Neural Load

Forecasting

Accurate load forecasting is critical for reliable and efficient planning and op-

eration of electric power grids. In this chapter, a unifying deep learning framework is

proposed for load forecasting, which includes time-varying feature weighting, hierarchi-

cal temporal attention, and feature-reinforced error correction. The framework adopts a

modular design with good generalization capability. First, the feature-weighting mecha-

nism assigns input features with temporal weights. Second, a recurrent encoder-decoder

structure with hierarchical attention is developed as a load predictor. The hierarchical

attention enables a similar day selection, which re-evaluates the importance of historical

information at each time step. Third, an error correction module is developed that ex-

33

Figure 4.1: The architecture of the proposed framework. The left side is the load
forecasting module with an input feature-weighting mechanism designed to weigh the
different input features. The right side is the error correction module transferred from
the left side model to further enhance forecasting ability. The detailed structures of
feature-weighting mechanism and load forecasting module are shown in Fig. 4.2 and
Fig. 4.3.

plores the errors and learned feature hidden information to further improve the model’s

forecasting performance. The framework provides an effective solution to the electric

load forecasting problem, which can be further adapted to many other forecasting tasks.

4.1 The Proposed Load Forecasting Framework

In the following section, we introduce the overall load forecasting framework

structure as shown in Fig. 4.1. The framework mainly consists of three modules: (i) the

feature-weighting mechanism, (ii) the short-term load forecasting module, and (iii) the

error correction module.

34

4.1.1 Feature Embedding and Feature-weighting Mechanism

Input features can generally be divided into two categories: numeric features

and categorical features. As the model requires numeric input, a categorical feature

would be transformed into a numeric vector. For STLF, the inputs can contain meteo-

rological conditions (e.g., temperature, humidity, wind speed and direction, etc), time

related features (e.g., indicator of holidays, season, etc), and utility discount programs

e.g. TOU pricing. For those categorical features, we use the one-hot encoding in this

work. After the embedding, all input features X = (x1, x2, . . . , xn) ∈ R(Th+Tf)×n are the

concatenation of encoded categorical features and continuous numeric features. Each

row of X, denoted as xt = (x1
t , x2

t , . . . , xn
t), represents all features at time t.

Feature selection plays a crucial role in machine learning methods [79]. Irrele-

vant features can significantly affect the model performance. Instead of making a hard

feature selection which is a special case of feature weighting mechanism, the proposed

model is able to adaptively weigh different features and give more attention to features

that contribute more to the target values. In [80], the feature selection layer is entangled

in the encoder. Therefore, it is hard to transfer to other load forecasting modules. In

order to modularize the proposed framework, we separate the feature selection layer

from the encoder, and the weight αk
t of each feature k at time t is calculated via the

softmax operator:

αk
t =

exp
(
hk

t

)
∑n

i=1 exp
(
hi

t

) , k = 1, 2, . . . , n, (4.1)

where hk
t is the k-th entry of the vector ht = Vα tanh

(
Wαx⊤

t + bwα

)
+ bvα ∈ Rn.

35

Figure 4.2: The feature-weighting mechanism structure with two linear layers.

The parameters Vα ∈ Rn×dfw
h , Wα ∈ Rdfw

h
×n, bvα ∈ Rn×1, bwα ∈ Rdfw

h
×1 are

trained jointly with the proposed model. dfw
h is the number of neurons in the hidden

layer and a hyper-parameter to tune. Then, the weighted feature input is given by

x̃t = αt ⊙ xt, where ⊙ denotes the element-wise multiplication. The detailed structure

for the feature weighting mechanism is shown in Fig. 4.2.

The encoder’s inputs are the concatenation of embedded categorical features,

continuous numeric features, and historical target values (e.g. active power demand) at

each time step t ∈ [t−Th+1, t]. The decoder’s inputs are the concatenation of embedded

categorical features and continuous numeric features at each time step t ∈ [t+1, t+Tf].

Th and Tf are the window size of historical and future data, respectively.

4.1.2 Short-term Load Forecasting Model

4.1.2.1 Encoder-decoder structure

The encoder-decoder structure is a workhorse in state-of-the-art deep neural

networks. For time series forecasting, the encoder maps historical input features xt

and output yh,t at each time step to a hidden vector ht that is passed to the decoder.

Then, the decoder uses the last step hidden state of the encoder as its initial hidden

state, and outputs future target values based on future feature inputs. In this work, a

36

Figure 4.3: The network architecture of the load forecasting model. The hierarchical
temporal attention in the decoder focuses on the temporal similarity to incorporate
similar day information.

bi-directional recurrent layer (RL) is used for both encoder and decoder. We abbreviate

the formulation for bi-directional RL as ht = BiRL(·), where RL can be chosen as

recurrent neural network (RNN), LSTM or gated recurrent unit (GRU).

The BiRL consists of two sub-layers in opposite directions which can cap-

ture the complete information of the entire input sequence at each time step. Let hf
t ,

hb
t ∈ Rhs denote the hidden state of forward and backward recurrent layer at time

t, respectively. Given a sequence of historical weighted feature and target value pairs

37

(x̃t, yt), the encoder’s hidden states are updated from time t− Th + 1 to t as

hf
t = RLf (hf

t−1, [x̃t; yt]⊤), (4.2a)

hb
t = RLb(hb

t+1, [x̃t; yt]⊤), (4.2b)

he
t =

[
hf

t

⊤
; hb

t
⊤
]⊤

, (4.2c)

where [a; b] denotes the concatenation of vectors a and b.

Using future weighted feature x̃t and context vector of hierarchical tempo-

ral attention at (see next subsection) as inputs, the decoder updates the hidden state

iteratively from time t + 1 to t + Tf with initial state he
t . Hence, we have hd

t =

BiRL(he
t , [x̃t; a⊤

t]) with the detailed steps as

hf
t = RLf (hf

t−1, [x̃t; a⊤
t]), (4.3a)

hb
t = RLb(hb

t+1, [x̃t; a⊤
t]), (4.3b)

hd
t =

[
hf

t

⊤
; hb

t
⊤
]⊤

. (4.3c)

Finally, a fully connected layer with the rectified linear unit (ReLU) activation

function is used to transform the hidden information to the forecast output:

yf = VyReLU(Wyhd
t+1:t+Tf

+ bwy) + bvy, (4.4)

where Vy ∈ RTf ×do
h and Wy ∈ Rdo

h×(Tf ×2hs) are weight matrices, bvy ∈ RTf ×1 and

38

bwy ∈ Rdo
h×1 are bias term, and hd

t+1:t+Tf
=
[
hd⊤

t+1; hd⊤
t+2; . . . ; hd⊤

t+Tf

]⊤
.

4.1.2.2 Hierarchical temporal attention mechanism

Incorporating the information of similar days and hours has been considered in

the literature for load forecasting; see e.g., [74, 75]. However, such information is often

treated as additional input features or used to generate separate models. This work

uses a novel hierarchical temporal attention layer designed from the previous chapter,

which incorporates a similar day soft selection to re-evaluate the importance of historical

information at each time step t.

Consider using previous M days of historical data to forecast the hourly loads

for the next day, where each day includes td = 24 data points. Thus, we have Th = M×td

and Tf = td. Let Xi = (x1
i , x2

i , . . . , xn
i) ∈ Rtd×n and Xf = (x1

f , x2
f , . . . , xn

f) ∈ Rtd×n

collect the historical features for the day i and the future features of the next day.

We use the sum of feature-by-feature dissimilarities D(Xi, Xf) =
∑n

k=1 ∥xk
i − xk

f∥2 to

quantify the distance between all features of those two days. Then, the similar day

weight γi is calculated as the softmax of the reciprocal of the distance:

γi = exp
(
D−1(Xi, Xf)

)∑M
i=1 exp (D−1(Xi, Xf))

, i = 1, 2, . . . , M. (4.5)

When forecasting load at time t, not all historical data contribute equally to the

model’s output. Hence, the attention mechanism facilitates the extraction of historical

information that is more important to the current forecast value. Let subscript i denote

39

the i-th day and j for j-th hour. Then, the attention weight βi,j,t is given by

βi,j,t = exp(di,j,t)∑M
i=1

∑td
j=1 exp(di,j,t)

, (4.6)

where di,j,t is the (i× td + j)-th element of vector dt = (d1
t , d2

t , . . . , dTh
t)⊤ ∈ RTh , which

is given as

dt = Vd tanh
(

Wd

[
hd

t−1
⊤; xt

]⊤
+ bwd

)
+ bvd. (4.7)

The parameters Vd ∈ RTh×datt
h , Wd ∈ Rdatt

h ×(2hs+n), bvd ∈ RTh×1 and bwd ∈ Rdatt
h ×1

are trained jointly with the proposed model. hd
t−1 is the hidden vector of the decoder

BiLSTM at time t− 1.

To this end, let hi,j denote the historical hidden state for the j-th hour in

the i-th day from the encoder. The context vector of hierarchical temporal attention is

calculated as at =
∑M

i=1
∑td

j=1 γiβi,j,thi,j .

4.1.3 Error Correction Module

Traditional error correction systems often involve creating a new model to fore-

cast errors, resulting in higher learning costs and the potential loss of learnt knowledge

obtained by the original predictive model. To overcome these shortcomings, a transfer-

learning-based error correction module is proposed. Transfer learning utilizes previously

acquired domain knowledge to solve new problems more efficiently yielding better re-

sults. In recent years, transfer learning has succeeded in supervised and unsupervised

learning, including load forecasting, where knowledge is transferred between regions or

40

Algorithm 1: Training Procedure of the Framework
Input : Forecasting module training set Dl = {X, yh, yf},

Error correction module training set
De = {Xe, ye,h, ye,f},
Number of epochs Nl and Ne,
Feature weighting module fl,
Load forecasting module gl

Output: Trained model {fl, gl, ge}
Initialize model parameters;
for epoch = 1 to Nl do

for batch of {X, yh, yf} ∈ Dl do
X̃← fl(X);
ŷf ← gl(X̃, yh);
Compute training loss LLF;
Compute the gradient of loss;
Update parameters in gl(·) and fl(·);

end
end
ŷe,f ← gl(fl(Xe), ye,h);
e← ye,f − ŷe,f ;
Set feature weighting module fe(·) = fl(·);
Set error correction module ge(·) = gl(·);
Fixing the feature weighting layer, and train all other layers in the error
correction module as follows:

for epoch = 1 to Ne do
for batch of {Xe, eh, ef} do

X̃← fl(X);
êf ← ge(X̃, eh);
Compute training loss LEC;
Compute the gradient of loss;
Update model parameter of ge(·);

end
end
Return trained model {fl, gl, ge}.

households. However, transferring knowledge in error correction requires incorporating

the error information into the target domain without changing the input dimension,

while leveraging previously learned feature knowledge. The proposed error correction

41

module addresses this challenge and aims to improve prediction accuracy by extracting

valuable information from error values with the help of learned hidden features.

The error correction module is trained after the load forecasting module, which

is first trained on dataset Dl. Then, based on the error correction dataset De, we

compute the forecasting error as e = y − ŷ, where y is the real output value and

ŷ is the predicted value obtained by the forecasting model. The feature weighting

module and error correction module are initialized by the forecasting model, with the

feature weighting layer fixed and the other layers to be trained. To train the error

correction module, a new dataset with feature input and forecasting error is generated

and randomly split into training and validation sets. The algorithm computes the

training loss and its gradient to update the error correction module via backpropagation.

Upon completing the training of the error correction module, it can be used to correct

forecast errors and improve forecasting accuracy. The final output is obtained as ȳ = ŷ+

ê, as shown in Fig. 4.1. The overall training procedure of the framework is summarized

in Algorithm 1. The proposed transfer learning based model has several advantages

including no need for hyper-parameter tuning and the ability to train with limited

data. It also reuses existing knowledge learned by the original model, which results in

a faster learning rate.

42

4.1.4 Loss Function

For the load forecasting module, we choose the mean squared error (MSE) loss

and introduce ℓ1 regularizer to encourage sparsity. The formulation is given as:

LLF = 1
N

N∑
i=1

(yi − ŷi)2 + λ ∥α∥1 , (4.8)

where λ is the weighting parameter balancing the data fitting loss and the sparsity-

promoting ℓ1 penalty.

For the error correction module, we drop the ℓ1 regularization term because

the feature weighting layer is fixed. Hence, the loss function for training this module

becomes

LEC = 1
N

N∑
i=1

(ei − êi)2. (4.9)

4.2 Experiment Setup

4.2.1 Data Description

The proposed framework is evaluated using two public datasets: the ISO New

England (ISO-NE) dataset 1 and the North-American Utility (NAU) dataset2. ISO-NE

annually releases reports that provide hourly historical demand and electricity pricing

data for its control area and eight load zones. This work focuses solely on the control

area dataset and ignores the price-related features. The input features include day-
1Available at https://www.iso-ne.com/isoexpress/web/reports/load-and-demand/-/tree/dmnd
2Available at https://class.ece.uw.edu/555/el-sharkawi/index.htm

43

ahead demand, dry bulb and dew point temperatures (in Fahrenheit), and time-related

features. Data from 2015 to 2017 are used to train the forecasting module while 80% of

2018’s data are randomly selected to train the error correction module. The remaining

20% data of 2018 are used for validation. The year 2019 is reserved for testing. The

NAU dataset provides electricity load, temperature, and time information from January

1, 1985, to October 12, 1992. In our study, temperature and time-related features are

considered. We used the data from 1987 to 1989 for training the forecasting model and

randomly selected 80% of 1990 data to train the error correction module. The remaining

20% of 1990 is for validation, while the year 1991 is for testing.

4.2.2 Data Preparation

The missing values in the datasets are filled by linear interpolation. We in-

corporated time-related features such as indicators of weekends and holidays, seasons,

hour of day, day of week, and month of year. We embedded categorical features via

one-hot encoding 3 and standardize numerical features by subtracting their means and

dividing by their standard deviations. The framework forecasts the next 24-hour’ load

demands using the previous seven days’ load and features. The next 24 hours’ features

are assumed to be available as the model’s input. For hourly data, we had Th = 168

and Tf = 24. As shown in Fig. 4.4, the sliding window size is set to be 1 and 24 for

training the forecasting module and error correction module, respectively. We list the

model inputs from the ISO and NAU datasets in Tables 4.1 and 4.2.
3One-hot embedding represents each categorical variable as a binary vector with only one element is

1, while the rest are set to 0.

44

Figure 4.4: Illustration of the sliding window step for data processing.

Table 4.1: Time-related features of the ISO-NE dataset.

Input Size Description
yh 168× 1 Historical target values
DaDemd 192× 1 Day ahead demand
DryBulb 192× 1 Dry bulb temperature
DewPnt 192× 1 Dew point temperature
Weekday 192× 1 Weekday or weekend indicator
Holiday 192× 1 Holiday or non-holiday indicator
Season 192× 4 One-hot encoding
Hour of Day 192× 24 One-hot encoding
Day of Week 192× 7 One-hot encoding
Month of Year 192× 12 One-hot encoding

Table 4.2: Time-related features of the NAU dataset.

Input Size Description
yh 168× 1 Historical target values
Temperature 192× 1 Historical and future temperature
Holiday 192× 1 Holiday or non-holiday indicator
Season 192× 4 One-hot encoding
Hour of Day 192× 24 One-hot encoding
Day of Week 192× 7 One-hot encoding
Month of Year 192× 12 One-hot encoding

45

4.2.3 Baseline Models and Hyperparameters

To verify the effectiveness of our proposed framework, we compared four differ-

ent types of models: classic machine learning models, DBN-based models, RNN-based

models, and Transformer-based models. Details are given in below.

• Classic machine learning model: We tested SVR [12], RF [13], and GBM [15] using

Scikit-Learn 0.23.2. Inputs to the model are historical and feature features and

historical load that are flattened as a 1-D vector.

• DBN-based model: DBNs [81] are generative neural networks composed of mul-

tiple layers of RBMs. Each RBM layer is pre-trained in an unsupervised manner

using the contrastive divergence algorithm, and the overall model is fine-tuned

using supervised learning. Rough autoencoder combines rough set theory with

DBNs, which can effectively handle uncertain and noisy data and learn complex

patterns [82].

• RNN-based model: The CNN-LSTM [83] combines the advantages of both CNN

and LSTM layers to improve forecasting accuracy. Attention-based load forecast-

ing (ANLF) [80] is based on the encoder-decoder biLSTM architecture and utilizes

a dynamic feature selection layer within the encoder. These models have shown

promising results in load forecasting and can be used as effective baselines for

future research in this field.

• Transformer-based model: Informer is a transformer-based model designed for

time-series forecasting as proposed in the 2021 AAAI Best Paper [84]. Unlike the

46

RNN-based model, transformers can handle sequential data in parallel to reduce

training time.

The computing environment is a machine with 3.7 GHz Intel Core i7-8700K

Six-Core and NVIDIA GeForce GTX 1080 Ti (11GB GDDR5X). The training time for

each epoch is around seven minutes for the proposed model. Deep learning based models

are trained by using Adam optimizer and implemented with PyTorch 1.6.0. The initial

learning rate is 0.001 which decays by 0.1 times for every 30 epochs. Early stopping

criteria is set with patience 30. All models share the same training, validation, and

testing data samples and input features for fair comparisons. We performed a grid

search to identify the best hyper-parameter set based on the validation data. Grid

search is commonly used for hyper-parameter tuning, which involves setting a range of

values for each hyper-parameter and testing all possible combinations. The details of

the grid search are given in Table 4.3.

4.2.4 Performance Metrics

The mean absolute error (MAE) and mean absolute percentage error (MAPE)

are used to evaluate the forecasting accuracy. They are defined as follows:

MAE = 1
n

n∑
i=1
|yi − ŷi| , (4.10a)

MAPE = 1
n

n∑
i=1

∣∣∣∣yi − ŷi

yi

∣∣∣∣× 100% (4.10b)

47

Table 4.3: The ranges of hyper-parameter tuning. Bold and italic fonts indicate the
best values for the ISO-NE and the NAU datasets, respectively.

Model Hyper-parameter range
SVR [12] Kernel = (RBF, Linear, Poly)

Degree = (2, 3) with Poly
Gamma = (auto, scale) with Poly/RBF
C = (0.1, 1, 10)

RF [13] Number of estimators = (100, 500, 1000)
Maximum depth = (5, 10, 20 None)
Minimum samples split = (2, 5)
Minimum samples leaf = (1, 3, 5, 10)

GBM [15] Loss = (ls, lad, huber, quantile)
Learning rate = (0.1, 0.01)
Number of estimators = (100, 500, 1000)
Maximum depth = (5, 10, 20, None)
Minimum samples split = (2, 5)
Minimum samples leaf = (1, 3, 5, 10)

DBN [81] Hidden layer 1 = (128, 256, 512)
Hidden layer 2 = (128, 256, 512)
Hidden layer 3 = (0, 64, 128)
Batch = (64, 128)

RAE [82] Hidden layer 1 = (128, 256, 512)
Hidden layer 2 = (128, 256, 512)
Hidden layer 3 = (0, 64, 128)
Batch = (64, 128)

CNN-LSTM [83] Batch = (64, 128)
Hidden size = (128, 256, 512)
Kernal size = (3, 5, 8)

ANLF[80] Batch = (64, 128)
Hidden size = (128, 256, 512)

Informer[84] Batch = (64, 128)
Hidden size = (64, 128, 256, 512)
label length = (0, 24, 48)
number of attention heads = (2, 4, 8)

PM-LSTM Batch = (64, 128)
Hidden size = (128, 256, 512)
λ = (0, 0.001, 0.01)

PM-GRU Batch = (64, 128)
Hidden size = (128, 256, 512)
λ = (0, 0.001, 0.01)

48

where yi and ŷi are the i-th true and predicted outputs. n is the number of points in

the testing horizon.

4.3 Simulation Results

In this section, three case studies are carried out to show the effectiveness of

the proposed framework. Case 1 shows the ablation study results4. Case 2 compares

the baseline models in section III-C and our proposed model. Case 3 shows the gen-

eralization capability, for which we added the feature weighting mechanism and error

correction module to the Informer.

4.3.1 Case 1: Ablation Study and Discussion

An ablation study is conducted based on the NAU dataset. Table 4.4 presents

the MAE and MAPE results. The first row shows the performance of the backbone

encoder-decoder based BiLSTM model. We then compared three different approaches

of feature weighting: mutual information (MI) [85], random forest (RF) [26], and our

proposed feature weighting attention (FW). In addition, we evaluated the performance

of the backbone model with two types of temporal attention mechanisms: single layer

temporal attention (TA) and the proposed hierarchical temporal attention, which in-

corporates similar day information (SDA). Finally, we included the results for two error

correction methods: the baseline ARIMA model (BL) [28] and our proposed feature-
4Ablation study is a method of understanding the contribution of different components of a system

to its overall performance.

49

reinforced error correction model (EC). The results show that the proposed feature

weighting and error correction outperform the existing methods. Each individual mod-

ule improves the accuracy of the backbone model. Moreover, the combination of these

modules further enhances the performance. Compared with the other competing alter-

natives, our proposed framework achieves a significant improvement in accuracy.

The visualization of the performance improvements is shown in Fig 4.5. First,

the proposed weighting attention can identify feature importance in the time domain.

Fig 4.5(c) shows that our method adds time-varying weights on different features while

mutual information approach exerts time-invariant weights shown in Fig 4.5(a). Second,

our method puts more accurate weights on each feature compared with RF. Our weight

assignments are sparser, with higher weights on temperature and hour [cf. Fig. 4.5(c)].

In contrast, RF yields similar feature weights at approximately 0.02 [cf. Fig. 4.5(b)].

Third, our approach shows a good response to the input changes while RF is ignorant of

different input data. Finally, the clear pattern of feature weights in Fig. 4.5(c) indicates

that the temperature from 9 AM to 4 PM is a more critical factor, and the hour is not

as important; however, for the rest of the time, hour information also contributes to the

forecasting value.

4.3.2 Case 2: Load Forecasting Model Comparison

Besides our proposed model (FW+TA+SDA in Table 4.4) with LSTM (PM-

LSTM) and GRU (PM-GRU) implementations, we tested eight baseline models. To

have a fair comparison, the error correction module was deactivated because it is not

50

Table 4.4: NAU dataset: Ablation study for the proposed framework. Acronyms:
MI (mutual information feature weight), RF (random forest feature weight), FW (fea-
ture weighting attention), TA (temporal attention), SDA (similar day attention), BL
(baseline ARIMA error correction) and EC (the proposed error correction).

MI [85] RF [26] FW TA SDA BL [28] EC MAE MAPE (%)
- - - - - - - 89.20 3.93
✓ - - - - - - 59.93 2.57
- ✓ - - - - - 63.65 2.76
- - ✓ - - - - 56.65 2.45
- - - ✓ - - - 69.10 2.96
- - - ✓ ✓ - - 64.29 2.78
- - ✓ ✓ ✓ - - 48.96 2.15
- - ✓ ✓ ✓ ✓ - 46.36 2.09
- - ✓ ✓ ✓ - ✓ 45.70 2.00

Table 4.5: Forecasting errors over the year 2019 for the ISO-NE dataset.

Model SVR [12] RF [13] GBM [15] DBN[81] RAE[82]
MAE 317.49 393.58 277.54 326.45 308.36
MAPE (%) 2.33 2.87 2.00 2.38 2.22
Model CNN-LSTM [83] ANLF[80] Informer[84] PM-LSTM PM-GRU
MAE 309.06 258.70 256.89 229.47 231.84
MAPE (%) 2.27 1.88 1.89 1.66 1.67

Table 4.6: Forecasting errors over the year 1991 for the NAU dataset.

Model SVR [12] RF [13] GBM [15] DBN[81] RAE[82]
MAE 67.97 99.91 83.05 68.33 63.55
MAPE (%) 2.98 4.40 3.61 2.99 2.79
Model CNN-LSTM [83] ANLF[80] Informer[84] PM-LSTM PM-GRU
MAE 61.85 58.65 57.13 48.96 46.42
MAPE (%) 2.73 2.58 2.49 2.15 2.03

directly applicable to those classic machine learning algorithms such as SVR, RF and

GBM. Table 4.5 and Table 4.6 show the forecasting error for the two datasets.

51

Figure 4.5: Two-day feature weight visualization for the NAU dataset with different
approaches: (a) mutual information, (b) random forest, and (c) the proposed feature
weighting attention.

52

Among the three classic machine learning methods, GBM performs the best

for the ISO-NE dataset, while SVR stands out for the NAU dataset. DBN-based models

attain results that are comparable to CNN-LSTM for both datasets. Notably, our pro-

posed models PM-LSTM/GRU consistently outperform all the other models for both

datasets with the smallest forecasting errors. Moreover, comparing the ANLF model

with the proposed ones, extracting the feature weighting layer further improves the

accuracy and increases the model’s generalization capability. Overall, these findings

highlight the effectiveness of our proposed approach. The detailed forecasting perfor-

mance over three days are given in Fig. 4.6 and Fig. 4.7, where the relative error (RE)

between the forecast value ŷ and the true value y is defined as

RE = |y − ŷ|
y

× 100%. (4.11)

4.3.3 Case 3: Generalization Capability

To further show the generalization capability of the proposed framework, we

applied both the feature weighting and error correction to the transformer-based In-

former. The result is reported in Table 4.7 for the ISO-NE dataset. We compared

the model itself with the model having feature weighting and/or error correction. The

forecasting curves and relative errors are shown in Fig. 4.8. By the ablation study, the

model with our proposed feature weighting and error correction mechanisms performs

the best. This verifies the merit of integrating the feature weighting to provide more

53

Figure 4.6: Forecasting curve and relative error for the ISO-NE dataset (3 days).

Figure 4.7: Forecasting curve and relative error for the NAU dataset (3 days).

54

Table 4.7: ISO-NE dataset: Ablation study for Informer with feature reinforced error
correction (EC) and/or feature weighting attention (FW).

FW EC MAE MAPE (%)
- - 256.89 1.89
✓ - 249.17 1.81
- ✓ 239.35 1.76
✓ ✓ 239.23 1.74

Figure 4.8: ISO-NE dataset: The forecasting curves and relative errors for Informer,
Informer with error correction, Informer with feature weighting, and Informer with both
feature weighting and error correction (for two days).

informative features and error correction to further improve the accuracy.

55

4.4 Summary

This chapter develops a unifying deep learning framework for multi-horizon

STLF. Three interactive modules are developed with high generalization capability,

which includes the feature weighting mechanism, STLF model and error correction

module. In the proposed framework, the feature weighting mechanism is designed to

provide informative input features for both historical and future time horizons. The

STLF model with a hierarchical temporal attention layer decodes the next-day load

with the future input features and similar temporal information. The hierarchical tem-

poral attention layer provides a natural way to incorporate similar day information. In

addition, the error correction module is developed based on transfer learning. It can

reuse the learned hidden feature extraction to reduce the training cost. The modular

design of our framework facilitates customization and independent modification. The

extensive simulation results tested on the two datasets corroborate the merits of our

framework.

56

Chapter 5

MATNilm: Multi-appliance-task

Non-Intrusive Load Monitoring with

Limited Labeled Data

Non-intrusive load monitoring (NILM) identifies the status and power con-

sumption of various household appliances by disaggregating the total power usage sig-

nal of an entire house. Efficient and accurate load monitoring facilitates user profile

establishment, intelligent household energy management, and peak load shifting. This

is beneficial for both the end-users and utilities by improving the overall efficiency of a

power distribution network. Existing approaches mainly focus on developing an indi-

vidual model for each appliance. Those approaches typically rely on a large amount of

household-labeled data which is hard to collect. In this chapter, a multi-appliance-task

framework is proposed with a training-efficient sample augmentation (SA) scheme that

57

boosts the disaggregation performance with limited labeled data. For each appliance, a

shared-hierarchical-split structure is developed for its regression and classification tasks.

In addition, we also propose a two-dimensional attention mechanism in order to capture

spatio-temporal correlations among all appliances.

5.1 Preliminary

Machine learning models for NILM aim to learn a mapping from aggregated

power consumption (the input signal) to individual appliances’ power consumption (the

output signal). In order to train a model, a household labeled set of input (aggregate

power consumption) - output (appliances power consumption) pairs {(xi, yi)}Tl
i=1 are

used where Tl is the number of time steps. Typically, a sliding window method is used

to construct the training dataset

D =
{

(xt:t+T −1, yt+w:t+T −w−1) | t ∈ {s ∗ k}Nk=1

}
,

where T is the input length, s is step size, N is the number of training examples and

w is the additional window size. For context-aware setup [49][52][54], we have w > 0,

which means the length of the input is longer than the length of the output, providing

’extra’ input context to output.

Let xt:t+T −1 = (xt, xt+1, . . . , xt+T −1)⊤ ∈ RT denotes the aggregate household

load consumption, yi
t:t+T −1 = (yi

t, yi
t+1, . . . , yi

t+T −1)⊤ ∈ RT denotes the corresponding

power consumption of appliance i to be disaggregated in the same period, the remaining

58

unlabeled appliance consumption as ut:t+T −1 = (ut, ut+1, . . . , ut+T −1)⊤ ∈ RT . Thus, the

aggregate load consumption at each time step t would be the summation of appliance

load consumption and unknown appliance load consumption:

xt =
∑
i∈K

yi
t + ut + ϵt, (5.1)

where ϵ is the measurement noise, K is the set of appliances to be disaggregated.

For the NILM task, given the input as the aggregate load consumption x, we

aim to separate the signal to each appliance y1, y2, . . . , y|K|. The majority of existing

methods develop |K| independent models to learn each appliance’s mapping:

ŷi
t+w:t+T −w−1 = f i(xt:t+T −1). (5.2)

We define a multi-appliance-task training schema

{ŷ1
t+w:t+T −w−1, ŷ2

t+w:t+T −w−1, . . . , ŷ|K|
t+w:t+T −w−1} = f(xt:t+T −1), (5.3)

where f is trained jointly by all appliances in set K.

5.2 Methodology

In this section, we present our proposed framework for NILM with limited

household labeled data. We first introduce a novel sample augmentation scheme, which

is followed by the MAT structure with 2DMA.

59

5.2.1 Sample Augmentation (SA) Algorithm

A deep learning model typically requires a substantial amount of training data

in order to achieve good generalization capability. This “massiveness” refers not only

to the quantity of training samples, but also to the diversity of the data. Existing

approaches rely on numerous household labeled data {(xi, yi)}Tl
i=1. However, collecting

labeled data is not a simple task and often involves the installation of specialized hard-

ware, which can be time-consuming and raise privacy concerns. Moreover, the collected

dataset may suffer from various issues, including time inconsistencies, missing data, and

data of poor quality. Additionally, due to the fact that some appliances are predomi-

nantly in the OFF state, the dataset can be highly imbalanced. Lastly, the available

labeled samples are often limited and do not adequately represent the wide range of

appliance models and usage patterns.

To address the aforementioned challenges, we propose a dynamic sample aug-

mentation algorithm to generate appliance profiles based on real data. As shown in (5.1),

aggregate data can be synthetically generated by the combination of the appliance’s op-

eration profiles. An appliance’s operation profile is defined as a sequence of sampled

power measurements over one complete operation cycle [64]. Based on this observation,

we can generate synthetic labeled data {(xi, yi)}Tl
i=1 according to comprehensive opera-

tion profiles, which are assumed to be available. The proposed algorithm augments the

training sample adaptively until new instances cannot improve the performance further.

Our algorithm is based on a newly constructed appliance pool A = ∪Na
i=1Ai,

60

which collects power consumption signals of Na appliances; see also [68]. For appliance

i, Ai is the set Ni operation profiles {ỹi
j}

Ni
j=1. The appliance pool can be built by i)

real operation profiles where measurements are provided by existing datasets, appliance

companies, or smart plugs; and ii) synthetic operation profiles produced by generative

models such as GAN, diffusion models, or other algorithms.

To further diversify the training data, we utilize time series augmentation

methods to modify existing profiles via vertical scale, horizontal scale, and mixed

vertical-horizontal scale. In vertical scaling, the signal magnitude of yi is scaled by

α times, i.e., yi × α, where α ∼ N(1, σ2) is a Gaussian random variable with mean one

and variance σ2. In horizontal scaling, the signal length l of yi is scaled (compressed

or extended) by β times, i.e., l × β, where β ∼ N(1, σ2). Linear interpolation is used

to generate unknown data points while scaling. Other modification methods could be

added accordingly.

Let probi denote the probability that the profile of appliance i gets sample

augmentation. If needed, we can tune this parameter to balance the on/off sampling

rate. In addition, define pi = [pi
IN, pi

V, pi
H, pi

M] as the probabilities of four modes: intact,

vertical scaling, horizontal scaling and mixed scaling. The SA algorithm is applied once

a batch of samples is selected during training. As the training continues, new training

samples will be continuously generated, which may improve the generalization capability

of a machine learning model. The training will stop once the new training instance

cannot contribute to the performance improvement, or the maximum training epoch

has been reached. The detailed implementation of the proposed sample augmentation

61

is given in Algorithm 2.

Algorithm 2: Sample Augmentation Algorithm
Input : Original mini-batch D̄ from training set D;

Pre-defined sample augmentation probability for each appliance
probi;
Pre-defined modify-mode probability mass function for each
appliance pi; and
Appliance pool A

Output: Augmented mini-batch D̄a

for (x, y, yc) ∈ D̄ do
for appliance i in A do

r ← generate a random number from a uniform distribution over
[0, 1];

if r < probi then
sig ← randomly select an operation profile ỹi

j from Ai;
mode← randomly choose a modification mode based on the
distribution pi;

sig_new ← modify sig according to the chosen mode, and
randomly slice sig_new to the same length of yi

j ;
if i ∈ K then

X← X− yi
j ;

yi ← sig_new;
yi

c ← update on/off status;
end
X← X + sig_new;

end
end

end

Remark 1 (Merits of sample augmentation (SA)). The proposed SA offers several ad-

vantages over existing data augmentation methods that generate a synthetic dataset.

First, it does not require a predefined size of the augmented dataset. SA with early

stopping criteria enables an efficient generation of diverse training data until no fur-

ther performance improvements. This property is not present in existing augmentation

methods that often rely on ad-hoc or trial-and-error ways to determine the amount of

62

needed data samples. Second, performing SA within the training process enables end-

to-end training of the model. This simplifies the training pipeline and eliminates the

need for a separate data preprocessing step. It makes the training more efficient with

reduced memory overhead. Compared with existing DA schemes that require generating

and storing a separate augmented dataset, end-to-end SA generates augmented data on

the fly during the training. This further enables the model to learn from a diverse range

of augmented data and avoid overfitting. Finally, in our scenario of limited data, ex-

isting DA approaches need to generate a synthetic dataset by creating multiple copies of

the original dataset, based on which augmentation techniques can be applied. This ap-

proach is computationally expensive and time-consuming. In contrast, the proposed SA

does not require an increase in the length of the dataset, which is more computationally

efficient.

5.2.2 Multi-appliance-task Network Architecture

Multi-task learning can improve a model’s generalization capability and per-

formance, especially when the tasks share similar knowledge that can be leveraged by

one another. In the context of NILM tasks, the model acts as a resource allocator that

distributes aggregate power into each appliance. This means that the power assigned

to one appliance depends on the power assigned to the others, as the sum of each disag-

gregated value cannot exceed the aggregate input inherently. To model this connection,

we designed a MAT network with 2DMA. The backbone of the network consists of an

encoder and decoder structure, where the encoder learns a shared representation for all

63

appliances, and the decoder tries to distribute power into each appliance. The decoder is

split into n branches, with each branch further split into two branches for regression and

classification tasks. We stacked m decoder blocks in the decoder to extract higher-level

features from the shared representation, with each decoder block composed of a 2DMA

layer and a fully connected feed-forward layer. We also employed residual connection

and layer normalization for each sub-layer, following the design from the transformer.

The overall structure is shown in the Fig.5.1.

5.2.2.1 2DMA mechanism

The 2DMA mechanism comprises two attention layers: temporal attention and

appliance-wise attention. The temporal attention layer is specifically designed to capture

the temporal correlations across time for a given appliance by selectively attending to

different time steps within the input sequence. This layer enables the model to effectively

capture temporal dependencies. On the other hand, the appliance-wise attention layer

is implemented to exploit the representations of other appliances at the same time step.

The 2DMA architecture is built based on the multi-head (MH) attention, which

is a powerful mechanism for exploring complex relationships among input elements.

64

Figure 5.1: Multi-appliance-task network architecture with temporal attention and
appliance-wise attention. The decoder comprises a stack of m identical decoder blocks
with n branches. m and n are the numbers of decoder blocks and the number of
appliances to be disaggregated, respectively. This figure only shows the case when
n = 2 and m = 1. The grey zigzag areas can be extended as n and m increase.

65

Specifically, multi-head attention is defined as [22]:

Attention(Q, K, V) = Softmax
(

QK⊤
√

dk

)
V, (5.4a)

headi = Attention
(
QWQ

i , KWK
i , VWV

i

)
, (5.4b)

MH(Q, K, V) = Concat (head1, . . . , headh) WO. (5.4c)

Equation (5.4a) is the scaled dot-product attention that takes the input in the

form of three matrices, known as the query Q, the key K, and the value V. Essentially,

the attention function maps each query and a set of key-value pairs to an output,

which is computed as a weighted sum of the values. The weight assigned to each value

is given by a similarity score between the query and the corresponding key. Then,

we perform the attention computation in parallel with different projected versions of

queries, keys and values to produce multiple attention heads in (5.4b). To this end, those

independent attention heads are concatenated and transformed with another learned

linear projection WO to obtain the final output (5.4c). Such a linear projection, which

serves to reduce the dimension of the long concatenated head, learns which attention

heads to take more notice of. All above matrices W are learnable parameters obtained

by e.g., backpropagation.

The self-attention learns how best to route information between pieces (known

as tokens) of an input sequence while the multi-head version enables the model to jointly

attend to information from different representation subspaces at different positions [22].

This ubiquitous mechanism facilitates the creation of richer and better representations

66

that can boost performance on various machine learning tasks.

In the temporal attention, Q, K, V come from the hidden representations of

the same appliance learned from the previous layer hi
t+w:t+T −w−1 and are updated across

different time steps:

θi
t+w:t+T −w−1 = LayerNorm

(
hi

t+w:t+T −w−1 + MH
(
hi

t+w:t+T −w−1

))
. (5.5)

Similarly, in the appliance-wise attention, Q, K, V come from the hidden rep-

resentations of each appliance at the same time step θi∈K
t . Each appliance can update

its representation based on other appliances’ representations:

ϕi∈K
t = LayerNorm

(
θi∈K

t + MH
(
θi∈K

t

))
. (5.6)

5.2.2.2 MATNilm architecture

Given an aggregated power consumption signal xt:t+T −1, the encoder learns a

hidden shared representation for better separating by later appliance-specific split task

ht+w:t+T −w−1 = Encoder (xt:t+T −1) , (5.7)

where w = 0 is for general setup and w > 0 is for context-aware setup. The decoder

splits a branch for each appliance i ∈ K with initial input ht+w:t+T −w−1. Each decoder

block then updates the hidden representation via the 2DMA layer

67

ϕi
t = 2DMA (ht+w:t+T −w−1) . (5.8)

Then, the representation of each appliance is updated by a fully connected

feed-forward network

hi
t = LayerNorm

(
ϕi

t + max
(
0, ϕi

tWi
1 + b1

)
Wi

2 + b2
)

. (5.9)

In the last decoder block, we further split the network for each appliance in

order to explicitly exploit power consumption and on/off state [52]:

hi
c,t = LayerNorm

(
ϕi

t + max
(
0, ϕi

tWi
c,1 + bc,1

)
Wi

c,2 + bc,2
)

, (5.10a)

hi
r,t = LayerNorm

(
ϕi

t + max
(
0, ϕi

tWi
r,1 + br,1

)
Wi

r,2 + br,2
)

. (5.10b)

In the regression subnetwork, a fully connected layer with the rectified linear

unit (ReLU) activation function is used to transform the hidden information to the

estimated power consumption for i-th appliances at each time step:

p̂i
t = ReLU(hi

r,tWi
r + bwr)Vi

r + bvr. (5.11)

Similarly, in the classification subnetwork, a fully connected layer with the

sigmoid activation function is used to transform the hidden information to the estimated

68

on/off status for i-th appliances at each time step:

ôi
t = Sigmoid(hi

c,tWi
c + bwc)Vi

c + bvc. (5.12)

The final estimated power consumption for appliance i is calculated by ŷi
t =

p̂i
t × ôi

t.

5.2.3 Loss Function

In this work, we extend the loss function in [52] to satisfy the MAT setup,

which is defined given as:

L =
|K|∑
i=1

(Li
output + Li

on), (5.13)

where Loutput is the mean squared error (MSE) of the network final output:

Li
output = 1

T

T∑
t

(
yi

t − p̂i
tô

i
t

)2
, (5.14)

and Lon is the binary cross entropy (BCE) of the classification subnetwork’s result:

Li
on = − 1

T

T∑
t=1

(
oi

t log ôi
t +

(
1− oi

t

)
log

(
1− ôi

t

))
. (5.15)

69

5.3 Experiment Setup

5.3.1 Data Preprocessing

The proposed algorithms are tested on two real-world datasets: Reference

Energy Disaggregation Data Set (REDD) [86] and UK-DALE [87]. The REDD dataset

comprises 6 US household aggregate load consumption data with time ranges varying

from 23 to 48 days. The time resolution of aggregate signal is 1 second while 3 seconds for

appliance-wise signals. To ensure the consistency of time alignment, the aggregate signal

is downsampled to 3 seconds to match the appliance-wise sampling rate. On the other

hand, the UK-DALE dataset includes 5 UK households, with house 1 having more than

four years of recordings. The time resolution for aggregate signal and appliance-wise

signals is 6 seconds. The appliances of interest include fridge, dishwasher, microwave

and washer dryer for REDD while an additional appliance kettle is being considered for

UK-DALE.

We followed the data preprocessing procedure in [52]. In that study, each pair

of the aggregate-appliance signal is processed independently, resulting in potentially

different timestamps for the processed appliance sequences. However, for the multi-

appliance-task framework, it is crucial to have a correct time alignment between each

appliance signal and its corresponding aggregate one. To ensure that, we first utilized the

merged dataset given by NILMTK [88], where the aggregated and individual appliance

active power consumptions are merged into a single table based on the timestamps.

Next, we split the table to exclude timestamps with 20 continuous missing values or

70

1200 continuously unchanged values for any signals. We then used the backward-filling

method to fill in the remaining missing values. We only considered sub-tables with more

than one hour of duration to ensure a sufficient amount of data for further analysis. The

entire dataset is normalized (divided by 612) in the same fashion as suggested by [52].

5.3.2 Three Scenarios

We considered three scenarios in this section: Scenario one (S1) serves as a

baseline when the entire dataset is available, following the common practice of prior

works. For the REDD dataset under S1, houses 2-6 are used for training while house

1 is for testing; see also [52] and [54]. We selected parts of data from houses 2 and 3

for validation because they have the active state for all the appliances to be estimated.

Scenario two (S2) is designed to evaluate the proposed method with limited labeled

data. We considered this scenario because obtaining long-term household-level labeled

data is often challenging in practice. Specifically, we considered an unfavorable sce-

nario where only a single day’s worth of labeled data is accessible for training, while

another day’s worth of data is utilized for validation and testing on an unseen house-

hold. Scenario three (S3) is built upon S2 by incorporating limited appliance activation

measurements to augment the training samples. Table 5.1 presents an overview of the

training, validation, and testing datasets used in this study.

71

Table 5.1: Training, validation, and testing datasets for REDD and UK-DALE.

House # Time index

REDD
Training 3 2011-04-21 19:41:24 - 2011-04-22 19:41:21
Validation 3 2011-05-23 10:31:24 - 2011-05-24 10:31:21
Testing 1 2011-04-18 09:22:12 - 2011-05-23 09:21:51

UK-DALE
Training 1 2017-04-23
Validation 1 2017-04-25
Testing 2 2017-04-12 - 2017-04-25

5.3.3 Model Details

The SGN-Conv model is implemented based on the specifications in [52]. In

addition, we also explored a variant of SGN called SGN-LSTM, where each subnetwork

is composed of five layers of BiLSTM followed by two linear layers with a hidden size

of 32. The MAT-Conv model uses the convolutional layers of SGN-Conv as its encoder,

while the LSTM layers in SGN-LSTM serve as the encoder for MAT-LSTM. For each

target appliance, three decoder blocks are employed in this study.

For REDD, the length of the input sequence is fixed at 864 while the output

length is 64. This results in an additional window size w = 400. For UK-DALE, the

input and output lengths are 464 and 64, respectively. Early stopping is used as a

training criteria with a patience of 30. This means that the training procedure stops

if the validation performance does not improve for 30 epochs. The detailed training

algorithm with our sample augmentation and early stopping is shown in Algorithm

3. We used the MSE loss for the regression subnetwork and the BCE loss for the

classification subnetwork. Based on PyTorch 1.6.0, all models are trained via the Adam

optimizer with an initial learning rate of 0.001.

72

Algorithm 3: Training Algorithm with Sample Augmentation (SA)
and Early Stopping

Input : Training set D, validation set Dval, number of epochs E,
patience parameter p, model fθ, SA algorithm AlgoSA, SA flag
fSA

Output: Trained model fθ

Initialize model parameters;
Set early stopping counter c = 0;
Assign a large enough number to the best loss Lbest;
for e ∈ 1, 2, ..., E do

for each batch D̄ ∈ D do
if fSA = true then
D̄ ← AlgoSA(D̄); // Algorithm 2

end
ŷ ← fθ(D̄);
Compute training loss Ltrain;
Compute the gradient of loss w.r.t. θ;
Update parameters in fθ;

end
Compute validation loss Lval on Dval;
if Lval < Lbest then

Save model fθ;
Update Lbest = Lval;
Reset c = 0;

end
else

c = c + 1;
if c ≥ p then

Stop training;
end

end
end
Return the saved model fθ.

5.3.4 Performance Metrics

Mean absolute error (MAE) and signal aggregate error (SAE) are used as

evaluation metrics of disaggregation performance for each appliance. They are defined

73

as follows [52]:

MAE = 1
H

H∑
t=1
|yt − ŷt| (5.16a)

SAE = 1
S

S−1∑
τ=0

1
M
|yτ − ŷτ | , (5.16b)

where yt and ŷt are the ground truth and estimated power consumption at time t,

respectively. H is the length of the test horizon. For SAE, the test horizon is split into

S disjoint sub-horizons. The length of each sub-horizon is M . yτ :=
∑M

t=1 yMτ+t is the

total power consumption across M timestamps in the τ -th sub-horizon and ŷτ is the

corresponding estimated value. In this study, for both datasets we set M = 1200 and

S = ⌊H
M ⌋ (i.e., the integer part of H

M).

The classification performance is evaluated by the F1 score, which is defined

as the harmonic mean of precision and recall:

F1 = 2× precision × recall
precision + recall . (5.17)

Precision is the ratio of true positives to the total number of positive predictions. Recall

is the ratio of true positives to the total number of actual positive instances. Due to

the inherent tradeoff between these two metrics, the F1 score turns out to be especially

valuable when dealing with imbalanced datasets.

74

5.4 Experiment Results

In this section, we showcased the outcomes of three case studies, where the

results have been averaged over three independent trials. These case studies demon-

strate the effectiveness and merits of our proposed framework. Case 1 evaluates the

performance of existing models on a limited labeled data scenario and compares them

with our proposed solution that utilizes SA and MATNilm. Case 2 is an ablation study

of the proposed approach. Moreover, we compared our SA approach with two state-of-

the-art data augmentation methods on four different models: SGN, LDwA, VMA, and

MATNilm. Case 3 uses the SGN model to show training performance on a full dataset

versus a limited dataset with SA.

5.4.1 Case 1: Performance Comparisons with Limited Training Data

In this test case, we focused on S2 and S3 where only limited training data

are available. S2 directly applies a learning model to a limited labeled data scenario

while S3 is our proposed solution: MATNilm with SA. Regarding the learning models,

both SGN and MATNilm can be implemented with a convolutional or LSTM shared

layer. Table 5.2 and Table 5.3 present the comparison of those four model variants. The

performance metrics include MAE, SAE and F1 scores. The average improvement for

MAE is defined as

Imp = MAE(SGN)−MAE(MAT)
MAE(SGN) × 100% . (5.18)

75

Similarly, we calculated the average improvements for SAE and F1 scores.

First, our proposed solution MAT-Conv and MAT-LSTM consistently outper-

form the SGN counterparts in terms of MAE (SAE) scores. For REDD, MAT-Conv and

MAT-LSTM models with SA significantly reduce MAE, with an average improvement of

52.23% (58.84%) and 56.04% (63.05%), respectively. We observed similar performance

gains for UK-DALE. For the microwave in UK-DALE, the MAE values for different

models are at the same level. However, the performance of F1 and SAE is much better

for S3.

It is worth noting that there are instances of divergent performance between

the MAE and SAE metrics. For example, MAT-Conv has a higher MAE than MAT-

LSTM for fridge in REDD, while the SAE performance is the opposite. In such cases,

the model having lower SAE is better at accurately disaggregating the appliance’s power

consumption over time, but is not necessarily very effective in estimating the power at

each timestamp.

Second, S3 outperforms S2 in F1 score for both datasets. Recall that S3

has more training samples augmented with appliance activation profiles while S2 lacks

representative examples of appliance’s power consumption patterns. The limited data

scenario makes it harder for the learning models to differentiate between different ap-

pliance statuses. This in turn validates the strong capability of our solution to correctly

detect on/off status that leads to more accurate disaggregation results. In a nutshell,

the results demonstrate that our proposed approach of using MATNilm with SA can

substantially improve disaggregation performance, particularly when training data are

76

Table 5.2: Performance comparisons of existing models and the proposed framework
with limited data for REDD dataset. DW, FG, MW, KT, WD are the acronyms for
“Dishwasher”, “Fridge”, “Microwave”, “Kettle”, “Washer Dryer”. Ave and Imp stand
for “Average score” and “Average improvement”.

Metric Model Scenario DW FD MW WD Ave Imp

MAE

SGN - Conv [52] S2 22.14 39.01 19.40 40.13 30.17 -
SGN - LSTM S2 21.98 41.46 21.29 43.91 32.16 -
MAT - Conv S3 8.44 19.38 13.40 16.44 14.41 52.23%
MAT - LSTM S3 9.12 17.86 12.49 17.08 14.14 56.04%

SAE

SGN - Conv [52] S2 21.83 25.78 17.87 39.11 26.15 -
SGN - LSTM S2 21.61 31.71 17.89 39.49 27.67 -
MAT - Conv S3 6.94 12.30 10.47 13.35 10.76 58.84%
MAT - LSTM S3 8.20 12.67 9.81 14.29 10.23 63.05%

F1

SGN - Conv [52] S2 0.19 0.80 0.10 0.33 0.36 -
SGN - LSTM S2 0.23 0.71 0.08 0.61 0.41 -
MAT - Conv S3 0.80 0.88 0.66 0.67 0.75 110.98%
MAT - LSTM S3 0.82 0.91 0.74 0.64 0.78 89.23%

limited.

Finally, Fig. 5.2 shows the convergence of the MAT-conv model. It can be seen

that the total loss and all individual appliance-level losses converge in about 80 epochs.

5.4.2 Case 2: Ablation Study and DA comparisons

Table 5.4 summarizes the MAE scores obtained by the ablation study for the

sample augmentation and MATNilm with convolutional layers as the encoder. The

study evaluates the performance of the framework with different combinations of SGN,

sample augmentation (SA), multi-appliance task (MT), temporal attention (TA), and

appliance attention (AA). The results show that SA significantly reduces the MAE val-

ues. The errors further decrease by incorporating the temporal and appliance attention

77

Table 5.3: Performance comparisons of existing models and the proposed framework
with limited data for UK-DALE dataset. DW, FG, MW, KT, WD are the acronyms for
“Dishwasher”, “Fridge”, “Microwave”, “Kettle”, “Washer Dryer”. Ave and Imp stand
for “Average score” and “Average improvement”.

Metric Model Scenario DW FD MW KT WD Ave Imp

MAE

SGN - Conv [52] S2 19.81 27.05 8.03 15.09 20.92 18.18 -
SGN - LSTM S2 21.40 32.35 7.90 7.22 21.24 18.02 -
MAT - Conv S3 10.88 17.06 7.08 5.95 6.52 9.50 47.75%
MAT - LSTM S3 6.51 15.86 8.20 5.36 5.37 8.26 54.17%

SAE

SGN - Conv [52] S2 15.00 13.07 8.06 13.09 20.79 14.00 -
SGN - LSTM S2 19.52 16.23 7.49 5.49 20.24 13.79 -
MAT - Conv S3 9.44 6.93 5.53 3.01 4.54 5.89 57.92%
MAT - LSTM S3 5.39 6.79 6.70 3.34 3.65 5.18 62.48%

F1

SGN - Conv [52] S2 0.85 0.65 0.00 0.39 0.08 0.39 -
SGN - LSTM S2 0.76 0.60 0.18 0.85 0.09 0.50 -
MAT - Conv S3 0.82 0.83 0.67 0.91 0.79 0.80 104.41%
MAT - LSTM S3 0.91 0.84 0.65 0.90 0.82 0.83 66.76%

Figure 5.2: The convergence of MAT-conv training losses.

78

to the vanilla MT network. This validates the effectiveness of each proposed module in

our framework.

Using four models, namely SGN [52], LDwA [53], VMA [65], and MATNilm, we con-

ducted further comparisons between our sample augmentation approach and two state-

of-the-art NILM data augmentation methods [68] and [69]. However, since both of these

competing alternatives were not originally designed to address the limited data scenario

or the multi-appliance approach, certain modifications were necessary to tailor them to

our specific problem setting. The original data augmentation methods were designed

to augment a single target appliance and generated (aggregate, appliance) pairs of sig-

nals for each appliance. This resulted in misalignment among the aggregate signals and

rendered them unsuitable for the multi-appliance approach, where the aggregate signal

remains the same for each appliance. To ensure a fair comparison, we employed an

aligned aggregate signal dataset for both the single-appliance and multi-appliance mod-

els. To adapt Kong’s method [68], we duplicated the one-day labeled data 20 times and

applied the same augmentation steps to all target appliances, following the reference

algorithms in [68]. For [69], we first duplicated the one-day labeled data three times.

Then, we generated an augmented synthetic dataset for each appliance and concate-

nated them to create the final dataset for training and evaluation. These modifications

allowed us to compare the performance of our sample augmentation approach against

these state-of-the-art methods in a fair and consistent manner.

Table 5.5 summarizes the MAE performance for the aforementioned compar-

isons. Notably, our proposed MATNilm with SA achieves the lowest MAE scores for

79

all appliances, with an average MAE of 14.41. When considering a single model, our

proposed SA demonstrates significant performance improvement over the other two

competing data augmentation (DA) methods [68, 69], except for VMA. This suggests

that for deep models, SA is capable of generating richer data that benefits the model’s

learning process. However, in the case of VMA, which has a shallow model structure,

its learning ability is limited, and therefore it does not derive significant benefits from

the augmented training data.

Without the two-dimensional attention, MAT and VMA have inferior perfor-

mance compared with the single-appliance SGN. A possible reason is that the shared

and split structures of the two multi-appliance approaches cannot adequately capture

the complex cross-appliance information, which is necessary for yielding better disag-

gregation outcomes. Furthermore, employing a single model for all appliances does not

offer much flexibility when it comes to fine-tuning the best model for each appliance.

To sum up, the numerical results indicate that SA and MAT with 2DMA are

crucial components for achieving accurate appliance-level energy disaggregation. The

ablation study provides us an insight into the relative importance of different modules

of the proposed framework.

5.4.3 Case 3: Comparison with Training on Full Dataset

In practice, obtaining household-labeled data is often challenging. Appliance

operation profiles are comparatively easier to get. Hence, we aimed to investigate

whether the model can achieve comparable performance with limited labeled data and

80

Table 5.4: REDD: MAE results for ablation study of the proposed framework. MT,
TA, AA are the acronyms for “Multi-appliance-task”, “Temporal attention”, “Appliance
attention”.

SGN SA MT TA AA DW FG MW WD
✓ 22.14 39.01 19.40 40.13
✓ ✓ 14.31 28.68 16.90 21.79
✓ ✓ ✓ 24.26 42.83 19.78 34.18
✓ ✓ ✓ ✓ 9.73 20.08 13.33 20.12
✓ ✓ ✓ ✓ ✓ 8.44 19.38 13.40 16.44

Table 5.5: REDD: MAE results for performance comparison between the proposed SA
and two existing augmentation methods.

DA Model DW FD MW WD Average

Kong[68]

SGN[52] 22.14 39.01 19.40 40.13 30.17
LDwA[53] 17.62 39.44 18.93 39.21 28.80
VMA[65] 26.53 42.14 29.85 49.96 37.12
MATNilm 11.72 32.61 26.93 46.66 29.48

Rafiq[69]

SGN[52] 21.30 42.81 19.77 33.29 29.29
LDwA[53] 22.14 39.01 19.40 40.13 30.17
VMA[65] 24.59 49.62 18.66 41.59 33.61
MATNilm 24.77 44.68 20.12 42.31 32.97

SA

SGN[52] 14.31 28.68 16.90 21.79 20.42
LDwA[53] 16.41 28.32 19.34 27.63 22.93
VMA[65] 25.41 47.69 18.47 45.37 34.24
MATNilm 8.44 19.38 13.40 16.44 14.41

appliance operation profiles, compared with the case of several weeks of data from mul-

tiple houses. Specifically, we compared the results of models trained in S1 and S3. The

latter uses only one day of labeled data and appliance operation profiles, which are

extracted from the same training houses as in S1, for sample augmentation.

Table 5.6 presents the performance comparison in scenarios S1 and S3 for the

REDD dataset. The results indicate that limited data with SA can significantly im-

81

Table 5.6: REDD: Comparison of the SGN model trained on the full dataset (S1)
versus on the limited dataset with SA (S3).

Metric Scenario DW FD MW WD Average

MAE
S1 19.51 27.27 23.61 39.22 27.40
S3 14.31 28.68 16.90 21.79 20.42

SAE
S1 18.92 17.23 18.33 34.79 22.32
S3 12.73 16.77 11.94 16.12 14.39

F1
S1 0.34 0.83 0.04 0.29 0.38
S3 0.70 0.85 0.65 0.59 0.70

prove the F1 score for most appliances, except for the fridge. This improvement can

be attributed to the fact that SA tends to balance the on/off status for each appliance,

which also results in better performance in terms of MAE and SAE. However, since

the fridge operates quite uniformly over time, there is no significant improvement in its

performance with SA.

5.5 Summary

In this chapter, a solution for the NILM problem with limited training data is

designed. Specifically, the multi-appliance-task framework adopts a shared-hierarchical

split structure for each appliance based on its power consumption (regression) and status

(classification) tasks. A two-dimensional attention mechanism is developed to capture

power consumption relationships across each appliance and time step. Instead of gen-

erating a time-continuously synthetic dataset, we designed a dynamic sample augmen-

tation algorithm, where augmented training samples are randomly generated for each

appliance in each mini-batch. Experiment results show a significant performance boost

82

by the proposed solution. Moreover, the simulation results also reveal the importance

of collecting individual appliance operation profiles, which may open up a new research

direction for the NILM.

83

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we first developed an attention-based neural load forecasting

model for multi-horizon STLF. The proposed approach includes a dynamic feature se-

lection layer combined with a BiLSTM encoder to extract relevant features. A BiLSTM

decoder with a hierarchical temporal attention layer is then used to decode the next

day’s load based on future input features. The temporal attention layer provides a

systematic way to incorporate similar day information. Extensive simulation results

demonstrate the effectiveness of the proposed approach, which outperforms state-of-

the-art benchmarks.

Next, a unified deep learning framework is proposed for load forecasting, which

incorporates time-varying feature weighting, a load forecasting model with hierarchical

temporal attention, and feature-reinforced error correction. This framework is designed

84

with modularity in mind, allowing for good generalization capabilities. Firstly, the

feature-weighting mechanism assigns temporal weights to input features. Secondly, a

recurrent encoder-decoder structure with hierarchical attention is developed to serve

as a load predictor. The hierarchical attention facilitates the selection of similar days,

allowing for a re-evaluation of the importance of historical information at each time step.

Lastly, an error correction module is introduced to leverage the errors and learned hidden

information of features, further enhancing the forecasting performance of the model.

This framework offers an effective solution to the electric load forecasting problem and

can be easily adapted to various other forecasting tasks.

Finally, a solution has been developed to address the NILM problem when there

is limited training data available. The solution utilizes a multi-appliance-task framework

that employs a shared-hierarchical split structure for each appliance, taking into account

both power consumption (regression) and status (classification) tasks. To capture the

relationships between power consumption and time steps, a two-dimensional attention

mechanism has been devised. Instead of generating a synthetic dataset continuously

over time, a dynamic sample augmentation algorithm has been designed. This algorithm

randomly generates augmented training samples for each appliance in each mini-batch.

Experimental results demonstrate a significant performance improvement achieved by

the proposed solution. Additionally, simulation results highlight the importance of

collecting individual appliance operation profiles, which could potentially open up new

avenues for research in the field of NILM.

85

6.1.1 Contributions

This thesis offers the following notable contributions:

1. We introduced a novel attention-based dynamic feature selection mechanism for

STLF, emphasizing the capability of weighing each feature concerning the entire

input sequence and integrating a hierarchical temporal attention layer for similar

day and hour information.

2. We proposed a unifying framework for multi-horizon STLF. The feature weight-

ing is extracted from the encoder, enhancing the modularity of the design and

improving interpretability. The proposed error correction module utilizes transfer

learning, eliminating the need for a new model design while inheriting the learned

feature knowledge.

3. We developed a solution for the NILM problem under the constraints of limited

training data. Through a dynamic sample augmentation algorithm, we demon-

strated competitive performance against models trained on comprehensive datasets.

A multi-appliance-task model with a two-dimensional multi-head self-attention

mechanism further enhanced the efficacy of our solution by capturing power con-

sumption relationships across multiple appliances and time steps.

86

6.2 Future work

Current efforts in load forecasting are primarily focused on point prediction,

which provides a specific expected value for future demand. However, this approach

does not consider various uncertainties such as changes in weather, unexpected events,

or consumer behavior. Probabilistic load forecasting, in contrast, offers a range of

possible outcomes, giving a more comprehensive view of potential future uncertainties.

Prospective paths in load forecasting may utilize methods like conformal prediction to

generate interval predictions. Additionally, incorporating real-time adjustments into

load forecasts could be a pivotal step. Such dynamic corrections would enable the

forecasting model to adapt to immediate changes or new information, maintaining its

relevance and accuracy. Moreover, regularly updating forecasting models with the latest

datasets will guarantee that the predictions remain up-to-date and accurately capture

the evolving trends in electricity consumption. Finally, it is beneficial to incorporate

feature errors by using total least-squares methods [89].

Deep learning models heavily depend on large and diverse training datasets to

achieve optimal generalization capabilities. The challenge is amplified in the context of

non-intrusive load monitoring (NILM). The total energy consumption is a combination

of the outputs from different appliances. By collecting the operation profile of each

appliance instead of just the labeled data of the aggregate appliance pairs, we can obtain

a more comprehensive and arguably better dataset for training deep learning models.

The potential of appliance-level data goes beyond individual patterns. By utilizing a

87

wide range of such data, it becomes possible to replicate numerous household scenarios.

This replication can effectively simulate real-life conditions, allowing the model to train

in different circumstances, ultimately improving its resilience and flexibility.

When creating training samples, it is important to determine specific hyper-

parameters. As explained in Chapter 5, variables such as the sample augmentation

probability for each appliance (represented as probi) and the modify-mode probability

mass function for each appliance (represented as pi) have been pre-defined manually.

While this method is functional, it can introduce biases and may not be optimally

efficient.

Automated sample augmentation is a promising area for future investigations

in NILM. Rather than relying on manual presets, an algorithm could iteratively refine

hyperparameters and autonomously optimize for the best results. This Auto Sample

Augmentation mechanism could reduce manual interventions and enhance the adapt-

ability and precision of the model across various household scenarios. Furthermore,

integrating newer architectures and methodologies into deep learning paradigms could

further refine NILM outcomes. Meta-learning/few-shot learning, for instance, can be

explored to accelerate the training process and achieve better generalization with lim-

ited data. With these methodologies, we expect the NILM system can quickly adapt to

new or rarely seen appliances or houses via limited training data, which will be practical

in real-world situations where new devices are introduced.

88

6.2.1 Literature Review

In the field of deep learning, Data Augmentation (DA) has become an essen-

tial technique for improving model performance, especially when dealing with limited

training datasets. However, traditional DA methods often require manual design and

extensive domain knowledge, making them time-consuming and not always optimal.

To overcome these limitations, there has been a growing demand for Automated Data

Augmentation (AutoDA) techniques.

AutoDA is a data-driven approach that is capable of identifying superior data

augmentation strategies. AutoDA techniques can be broadly classified into three cate-

gories based on their augmentation synthesis mechanisms: composition-based, mixing-

based, and generation-based AutoDA [90].

Composition-based methods aim to improve model generalization by integrat-

ing various data transformation operations. One notable example is AutoAugment

[91], which uses a reinforcement learning framework to learn optimal data augmenta-

tion operations like shearing and rotation to maximize validation accuracy. However,

AutoAugment can be computationally expensive. RandAugment addresses this issue

by fine-tuning the search space of AutoAugment and calibrating multiple transforma-

tions via a singular magnitude parameter [92]. Population-Based Augmentation (PBA)

combines AutoAugment with population-based training (PBT) principles, using an evo-

lutionary algorithm to train multiple models simultaneously and improve augmentation

techniques iteratively [93].

89

Mixing-based techniques in machine learning involve creating new training

samples by blending existing data. Two popular techniques in this category are Mixup

and Cutmix. Mixup generates a weighted fusion of two pre-existing images [94], while

Cutmix creates a unique image by combining a segment from one image with fragments

from another [95]. Another technique in this category is MoCHi, which leverages a

catalog of negative features to create synthetic, challenging instances in a structured

manner [96].

The generation-based approach focuses on creating new data entities, utilizing

Generative AI algorithms as data catalysts. Computer vision is enhanced through the

use of tools such as GANs, VAEs, and diffusion models, which are skilled at generating

new training samples [97]. Additionally, the neural style transfer technique is highly

beneficial in diversifying datasets by producing images that combine different styles

while preserving the essence of the content [98]. Meanwhile, Large Language Models

(LLMs) have revolutionized natural language processing, enabling the creation of new

textual samples and serving as advanced annotators [99].

6.2.2 Problem formulation

A sample augmentation policy includes Na appliance selection policies: {s̄i(Ōi; probi) |

1 ≤ i ≤ Na} which are applied in sequence.

s̄i(Ōi; probi) =

si
(
Ōi
)

: with probability probi,

0 : with probability 1− probi.

90

Figure 6.1: Differentiable policy structure for AutoNILM.

Each appliance selection policy s includes K operations (e.g. intact, horizontal

scaling, vertical scaling and mixing scaling) Ōi
k

(
ỹi

j ; wi
k, mi

k

)
(1 ≤ k ≤ K) which will be

sampled from a categorical distribution. ỹi
j is uniformly sampled from Ai. Operation

Ōi
k is applied to the original appliance profile ỹi

j with two continuous parameters: wi
k

(the probability of applying the operation) and mi
k (the magnitude of the operation):

Therefore, augmented aggregate input is given by:

x̂ =
i=Na∑
i=0

si(Ōi; probi) (6.1)

This approach involves modeling appliance selection and operation using Bernoulli

and Categorical distributions, respectively. Then, the Monte Carlo gradient estimate

problem can be utilized to optimize sample augmentation from two distributions. Future

work includes optimizing the sample augmentation parameters by using differentiable

91

relaxation of the Bernoulli and Categorical distribution and gradient estimator. The

procedure is shown in Fig. 6.2.

Figure 6.2: Workflow of AutoNILM.

92

References

[1] U. DOE, “Grid 2030: A national vision for electricity’s second 100 years,” US DOE

Report, pp. 137–140, 2003.

[2] Y. Peng, Y. Wang, X. Lu, H. Li, D. Shi, Z. Wang, and J. Li, “Short-term load

forecasting at different aggregation levels with predictability analysis,” in 2019

IEEE Innovative Smart Grid Technologies-Asia (ISGT Asia), pp. 3385–3390, IEEE,

2019.

[3] C. Feng, M. Sun, and J. Zhang, “Reinforced deterministic and probabilistic load

forecasting via Q-learning dynamic model selection,” IEEE Transactions on Smart

Grid, vol. 11, pp. 1377–1386, Mar. 2020.

[4] X. Kong, C. Li, C. Wang, Y. Zhang, and J. Zhang, “Short-term electrical load

forecasting based on error correction using dynamic mode decomposition,” Applied

Energy, vol. 261, p. 114368, 2020.

[5] S. Makonin, Z. J. Wang, and C. Tumpach, “Rae: The rainforest automation energy

dataset for smart grid meter data analysis,” data, vol. 3, no. 1, p. 8, 2018.

[6] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning

based natural language processing,” IEEE Computational Intelligence Magazine,

vol. 13, pp. 55–75, Jul. 2018.

[7] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning

93

for computer vision: A brief review,” Computational Intelligence and Neuroscience,

vol. 2018, pp. 1–13, Feb. 2018.

[8] G. Mbamalu and M. El-Hawary, “Load forecasting via suboptimal seasonal autore-

gressive models and iteratively reweighted least squares estimation,” IEEE Trans-

actions on Power Systems, vol. 8, no. 1, pp. 343–348, 1993.

[9] J.-F. Chen, W.-M. Wang, and C.-M. Huang, “Analysis of an adaptive time-series

autoregressive moving-average (arma) model for short-term load forecasting,” Elec-

tric Power Systems Research, vol. 34, no. 3, pp. 187–196, 1995.

[10] G. Juberias, R. Yunta, J. G. Moreno, and C. Mendivil, “A new arima model for

hourly load forecasting,” in 1999 IEEE Transmission and Distribution Conference

(Cat. No. 99CH36333), vol. 1, pp. 314–319, IEEE, 1999.

[11] J. Contreras, R. Espinola, F. J. Nogales, and A. J. Conejo, “ARIMA models to

predict next-day electricity prices,” IEEE Transactions on Power Systems, vol. 18,

pp. 1014–1020, Jul. 2003.

[12] E. Ceperic, V. Ceperic, and A. Baric, “A strategy for short-term load forecasting

by support vector regression machines,” IEEE Transactions on Power Systems,

vol. 28, no. 4, pp. 4356–4364, 2013.

[13] G. Dudek, “Short-term load forecasting using random forests,” in Intelligent Sys-

tems’ 2014, pp. 821–828, Springer, 2015.

94

[14] Y.-Y. Cheng, P. P. Chan, and Z.-W. Qiu, “Random forest based ensemble sys-

tem for short term load forecasting,” in 2012 international conference on machine

learning and cybernetics, vol. 1, pp. 52–56, IEEE, 2012.

[15] S. B. Taieb and R. J. Hyndman, “A gradient boosting approach to the kaggle

load forecasting competition,” International journal of forecasting, vol. 30, no. 2,

pp. 382–394, 2014.

[16] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. W. Cottrell, “A dual-stage

attention-based recurrent neural network for time series prediction,” Twenty-Sixth

International Joint Conference on Artificial Intelligence, pp. 2627–2633, Aug. 2017.

[17] Q. Cao, B. T. Ewing, and M. A. Thompson, “Forecasting wind speed with recurrent

neural networks,” European Journal of Operational Research, vol. 221, pp. 148–154,

Aug. 2012.

[18] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-

dient descent is difficult,” IEEE Transactions on Neural Networks, vol. 5, pp. 157–

166, Mar. 1994.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computa-

tion, vol. 9, pp. 1735–1780, Nov. 1997.

[20] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,

and Y. Bengio, “Learning phrase representations using rnn encoder-decoder for

statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014.

95

[21] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural

networks,” in Advances in neural information processing systems, pp. 3104–3112,

2014.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” Advances in Neural Information

Processing Systems, vol. 30, pp. 5998–6008, Dec. 2017.

[23] K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties

of neural machine translation: Encoder–decoder approaches,” Eighth Workshop on

Syntax, Semantics and Structure in Statistical Translation, pp. 103–111, Oct. 2014.

[24] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly

learning to align and translate,” 3rd International Conference on Learning Repre-

sentations, 2015.

[25] D. Panday, R. C. de Amorim, and P. Lane, “Feature weighting as a tool for un-

supervised feature selection,” Information processing letters, vol. 129, pp. 44–52,

2018.

[26] Y. Xuan, W. Si, J. Zhu, Z. Sun, J. Zhao, M. Xu, and S. Xu, “Multi-model fusion

short-term load forecasting based on random forest feature selection and hybrid

neural network,” IEEE Access, vol. 9, pp. 69002–69009, 2021.

[27] Y. Deng, B. Wang, and Z. Lu, “A hybrid model based on data preprocessing strat-

96

egy and error correction system for wind speed forecasting,” Energy Conversion

and Management, vol. 212, p. 112779, 2020.

[28] J. Duan, H. Zuo, Y. Bai, J. Duan, M. Chang, and B. Chen, “Short-term wind

speed forecasting using recurrent neural networks with error correction,” Energy,

vol. 217, p. 119397, 2021.

[29] H. Liu and C. Chen, “Multi-objective data-ensemble wind speed forecasting model

with stacked sparse autoencoder and adaptive decomposition-based error correc-

tion,” Applied Energy, vol. 254, p. 113686, 2019.

[30] Z. Li, L. Ye, Y. Zhao, X. Song, J. Teng, and J. Jin, “Short-term wind power

prediction based on extreme learning machine with error correction,” Protection

and Control of Modern Power Systems, vol. 1, no. 1, pp. 1–8, 2016.

[31] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[32] L. Cai, J. Gu, and Z. Jin, “Two-layer transfer-learning-based architecture for short-

term load forecasting,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3,

pp. 1722–1732, 2019.

[33] D. Wu, B. Wang, D. Precup, and B. Boulet, “Multiple kernel learning-based trans-

fer regression for electric load forecasting,” IEEE Transactions on Smart Grid,

vol. 11, no. 2, pp. 1183–1192, 2019.

[34] E. Lee and W. Rhee, “Individualized short-term electric load forecasting with deep

97

neural network based transfer learning and meta learning,” IEEE Access, vol. 9,

pp. 15413–15425, 2021.

[35] S. S. Hosseini, K. Agbossou, S. Kelouwani, and A. Cardenas, “Non-intrusive load

monitoring through home energy management systems: A comprehensive review,”

Renewable and Sustainable Energy Reviews, vol. 79, pp. 1266–1274, 2017.

[36] Y.-H. Lin and M.-S. Tsai, “Development of an improved time–frequency analysis-

based nonintrusive load monitor for load demand identification,” IEEE Transac-

tions on Instrumentation and Measurement, vol. 63, no. 6, pp. 1470–1483, 2013.

[37] Y. Liu, X. Wang, and W. You, “Non-intrusive load monitoring by voltage–current

trajectory enabled transfer learning,” IEEE Transactions on Smart Grid, vol. 10,

no. 5, pp. 5609–5619, 2018.

[38] A. L. Wang, B. X. Chen, C. G. Wang, and D. Hua, “Non-intrusive load monitoring

algorithm based on features of v–i trajectory,” Electric Power Systems Research,

vol. 157, pp. 134–144, 2018.

[39] G. W. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the IEEE,

vol. 80, no. 12, pp. 1870–1891, 1992.

[40] Z. Ghahramani and M. I. Jordan, “Factorial hidden markov models,” Machine

learning, vol. 29, no. 2, pp. 245–273, 1997.

[41] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, “Unsupervised disaggre-

98

gation of low frequency power measurements,” in Proceedings of the 2011 SIAM

international conference on data mining, pp. 747–758, SIAM, 2011.

[42] R. Bonfigli, S. Squartini, M. Fagiani, and F. Piazza, “Unsupervised algorithms for

non-intrusive load monitoring: An up-to-date overview,” in 2015 IEEE 15th inter-

national conference on environment and electrical engineering (EEEIC), pp. 1175–

1180, IEEE, 2015.

[43] M. Zhuang, M. Shahidehpour, and Z. Li, “An overview of non-intrusive load mon-

itoring: Approaches, business applications, and challenges,” in 2018 International

Conference on Power System Technology (POWERCON), pp. 4291–4299, IEEE,

2018.

[44] B. Najafi, S. Moaveninejad, and F. Rinaldi, “Data analytics for energy disaggrega-

tion: Methods and applications,” in Big data application in power systems, pp. 377–

408, Elsevier, 2018.

[45] H. Bousbiat, A. Faustine, C. Klemenjak, L. Pereira, and W. Elmenreich, “Unlocking

the full potential of neural nilm: On automation, hyperparameters & modular

pipelines,” IEEE Transactions on Industrial Informatics, 2022.

[46] A. Moradzadeh, B. Mohammadi-Ivatloo, M. Abapour, A. Anvari-Moghaddam,

S. Gholami Farkoush, and S.-B. Rhee, “A practical solution based on convolutional

neural network for non-intrusive load monitoring,” Journal of Ambient Intelligence

and Humanized Computing, vol. 12, no. 10, pp. 9775–9789, 2021.

99

[47] C. Zhang, M. Zhong, Z. Wang, N. Goddard, and C. Sutton, “Sequence-to-point

learning with neural networks for non-intrusive load monitoring,” in Proceedings of

the AAAI conference on artificial intelligence, vol. 32, 2018.

[48] Y. Liu, J. Qiu, and J. Ma, “Samnet: Toward latency-free non-intrusive load mon-

itoring via multi-task deep learning,” IEEE Transactions on Smart Grid, vol. 13,

no. 3, pp. 2412–2424, 2021.

[49] M. Kaselimi, N. Doulamis, A. Voulodimos, E. Protopapadakis, and A. Doulamis,

“Context aware energy disaggregation using adaptive bidirectional lstm models,”

IEEE Transactions on Smart Grid, vol. 11, no. 4, pp. 3054–3067, 2020.

[50] J. Feng, K. Li, H. Zhang, X. Zhang, and Y. Yao, “Multi-channel spatio-temporal

feature fusion method for nilm,” IEEE Transactions on Industrial Informatics,

2022.

[51] G. Tanoni, E. Principi, and S. Squartini, “Multilabel appliance classification with

weakly labeled data for non-intrusive load monitoring,” IEEE Transactions on

Smart Grid, vol. 14, no. 1, pp. 440–452, 2022.

[52] C. Shin, S. Joo, J. Yim, H. Lee, T. Moon, and W. Rhee, “Subtask gated networks for

non-intrusive load monitoring,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, pp. 1150–1157, 2019.

[53] V. Piccialli and A. M. Sudoso, “Improving non-intrusive load disaggregation

100

through an attention-based deep neural network,” Energies, vol. 14, no. 4, p. 847,

2021.

[54] K. Chen, Y. Zhang, Q. Wang, J. Hu, H. Fan, and J. He, “Scale- and context-

aware convolutional non-intrusive load monitoring,” IEEE Transactions on Power

Systems, vol. 35, pp. 2362–2373, May 2020.

[55] M. Kaselimi, N. Doulamis, A. Voulodimos, A. Doulamis, and E. Protopapadakis,

“Energan++: A generative adversarial gated recurrent network for robust energy

disaggregation,” IEEE Open Journal of Signal Processing, vol. 2, pp. 1–16, 2020.

[56] Y. Liu, L. Zhong, J. Qiu, J. Lu, and W. Wang, “Unsupervised domain adaptation

for nonintrusive load monitoring via adversarial and joint adaptation network,”

IEEE Transactions on Industrial Informatics, vol. 18, no. 1, pp. 266–277, 2021.

[57] A. Harell, S. Makonin, and I. V. Bajić, “Wavenilm: A causal neural network for

power disaggregation from the complex power signal,” in ICASSP 2019-2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 8335–8339, IEEE, 2019.

[58] B. Liu, W. Luan, and Y. Yu, “Dynamic time warping based non-intrusive load

transient identification,” Applied energy, vol. 195, pp. 634–645, 2017.

[59] A. Rahimpour, H. Qi, D. Fugate, and T. Kuruganti, “Non-intrusive energy disag-

gregation using non-negative matrix factorization with sum-to-k constraint,” IEEE

Transactions on Power Systems, vol. 32, no. 6, pp. 4430–4441, 2017.

101

[60] P. A. Schirmer and I. Mporas, “Non-intrusive load monitoring: A review,” IEEE

Transactions on Smart Grid, 2022.

[61] Y. Yang, J. Zhong, W. Li, T. A. Gulliver, and S. Li, “Semisupervised multilabel

deep learning based nonintrusive load monitoring in smart grids,” IEEE Transac-

tions on Industrial Informatics, vol. 16, no. 11, pp. 6892–6902, 2019.

[62] J. A. Mueller and J. W. Kimball, “Accurate energy use estimation for nonintrusive

load monitoring in systems of known devices,” IEEE Transactions on Smart Grid,

vol. 9, no. 4, pp. 2797–2808, 2016.

[63] Y. Liu, G. Geng, S. Gao, and W. Xu, “Non-intrusive energy use monitoring for a

group of electrical appliances,” IEEE Transactions on Smart Grid, vol. 9, no. 4,

pp. 3801–3810, 2016.

[64] J. Kelly and W. Knottenbelt, “Neural nilm: Deep neural networks applied to en-

ergy disaggregation,” in Proceedings of the 2nd ACM international conference on

embedded systems for energy-efficient built environments, pp. 55–64, 2015.

[65] P. A. Schirmer and I. Mporas, “Binary versus multiclass deep learning modelling

in energy disaggregation,” in Energy and Sustainable Futures: Proceedings of 2nd

ICESF 2020, pp. 45–51, Springer International Publishing Cham, 2021.

[66] A. Faustine, L. Pereira, H. Bousbiat, and S. Kulkarni, “Unet-nilm: A deep neural

network for multi-tasks appliances state detection and power estimation in nilm,” in

102

Proceedings of the 5th International Workshop on Non-Intrusive Load Monitoring,

pp. 84–88, 2020.

[67] D. Li, J. Li, X. Zeng, V. Stankovic, L. Stankovic, C. Xiao, and Q. Shi, “Trans-

fer learning for multi-objective non-intrusive load monitoring in smart building,”

Applied Energy, vol. 329, p. 120223, 2023.

[68] W. Kong, Z. Y. Dong, B. Wang, J. Zhao, and J. Huang, “A practical solution for

non-intrusive type ii load monitoring based on deep learning and post-processing,”

IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 148–160, 2019.

[69] H. Rafiq, X. Shi, H. Zhang, H. Li, M. K. Ochani, and A. A. Shah, “Generalizability

improvement of deep learning-based non-intrusive load monitoring system using

data augmentation,” IEEE Transactions on Smart Grid, vol. 12, no. 4, pp. 3265–

3277, 2021.

[70] H. Cimen, Y. Wu, Y. Wu, Y. Terriche, J. C. Vasquez, and J. M. Guerrero, “Deep

learning-based probabilistic autoencoder for residential energy disaggregation: An

adversarial approach,” IEEE Transactions on Industrial Informatics, 2022.

[71] D. Li and S. Dick, “Residential household non-intrusive load monitoring via graph-

based multi-label semi-supervised learning,” IEEE Transactions on Smart Grid,

vol. 10, no. 4, pp. 4615–4627, 2018.

[72] Z. Zhou, Y. Xiang, H. Xu, Z. Yi, D. Shi, and Z. Wang, “A novel transfer learning-

103

based intelligent nonintrusive load-monitoring with limited measurements,” IEEE

Transactions on Instrumentation and Measurement, vol. 70, pp. 1–8, 2020.

[73] C. Fan, Y. Zhang, Y. Pan, X. Li, C. Zhang, R. Yuan, D. Wu, W. Wang, J. Pei, and

H. Huang, “Multi-horizon time series forecasting with temporal attention learning,”

International Conference on Knowledge Discovery & Data Mining, pp. 2527–2535,

Jul. 2019.

[74] C. Feng and J. Zhang, “Hourly-similarity based solar forecasting using multi-model

machine learning blending,” 2018 IEEE Power Energy Society General Meeting,

pp. 1–5, Aug. 2018.

[75] M. Barman, N. D. Choudhury, and S. Sutradhar, “A regional hybrid GOA-SVM

model based on similar day approach for short-term load forecasting in assam,

india,” Energy, vol. 145, pp. 710–720, Feb. 2018.

[76] T. Hong, P. Pinson, S. Fan, H. Zareipour, A. Troccoli, and R. J. Hyndman, “Prob-

abilistic energy forecasting: Global energy forecasting competition 2014 and be-

yond,” International Journal of Forecasting, vol. 32, pp. 896–913, Jul.–Sept. 2016.

[77] Y. Saeys, T. Abeel, and Y. Van de Peer, “Robust feature selection using ensemble

feature selection techniques,” Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pp. 313–325, Sept. 2008.

[78] M. V. Shcherbakov, A. Brebels, N. L. Shcherbakova, A. P. Tyukov, T. A. Janovsky,

104

and V. A. Kamaev, “A survey of forecast error measures,” World Applied Sciences

Journal, vol. 24, pp. 171–176, Jan. 2013.

[79] N. Kwak and C.-H. Choi, “Input feature selection for classification problems,” IEEE

Transactions on Neural Networks, vol. 13, pp. 143–159, Aug. 2002.

[80] J. Xiong, P. Zhou, A. Chen, and Y. Zhang, “Attention-based neural load forecast-

ing: A dynamic feature selection approach,” in 2021 IEEE Power & Energy Society

General Meeting, pp. 1–5, IEEE, 2021.

[81] A. Dedinec, S. Filiposka, A. Dedinec, and L. Kocarev, “Deep belief network based

electricity load forecasting: An analysis of macedonian case,” Energy, vol. 115,

pp. 1688–1700, 2016.

[82] M. Khodayar, O. Kaynak, and M. E. Khodayar, “Rough deep neural architecture

for short-term wind speed forecasting,” IEEE Transactions on Industrial Informat-

ics, vol. 13, no. 6, pp. 2770–2779, 2017.

[83] S. H. Rafi, S. R. Deeba, E. Hossain, et al., “A short-term load forecasting method

using integrated cnn and lstm network,” IEEE Access, vol. 9, pp. 32436–32448,

2021.

[84] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang, “Informer:

Beyond efficient transformer for long sequence time-series forecasting,” in Proceed-

ings of AAAI, 2021.

[85] N. Ghadimi, A. Akbarimajd, H. Shayeghi, and O. Abedinia, “Two stage forecast

105

engine with feature selection technique and improved meta-heuristic algorithm for

electricity load forecasting,” Energy, vol. 161, pp. 130–142, 2018.

[86] J. Z. Kolter and M. J. Johnson, “REDD: A public data set for energy disaggregation

research,” in Workshop on data mining applications in sustainability (SIGKDD),

San Diego, CA, vol. 25, pp. 59–62. Issue: Citeseer.

[87] J. Kelly and W. Knottenbelt, “The uk-dale dataset, domestic appliance-level elec-

tricity demand and whole-house demand from five uk homes,” Scientific data, vol. 2,

no. 1, pp. 1–14, 2015.

[88] N. Batra, J. Kelly, O. Parson, H. Dutta, W. Knottenbelt, A. Rogers, A. Singh, and

M. Srivastava, “Nilmtk: An open source toolkit for non-intrusive load monitor-

ing,” in Proceedings of the 5th international conference on Future energy systems,

pp. 265–276, 2014.

[89] I. Markovsky and S. Van Huffel, “Overview of total least-squares methods,” Signal

processing, vol. 87, no. 10, pp. 2283–2302, 2007.

[90] T.-H. Cheung and D.-Y. Yeung, “A survey of automated data augmentation for

image classification: Learning to compose, mix, and generate,” IEEE Transactions

on Neural Networks and Learning Systems, 2023.

[91] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment:

Learning augmentation strategies from data,” in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 113–123, 2019.

106

[92] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical au-

tomated data augmentation with a reduced search space,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition workshops,

pp. 702–703, 2020.

[93] D. Ho, E. Liang, X. Chen, I. Stoica, and P. Abbeel, “Population based augmenta-

tion: Efficient learning of augmentation policy schedules,” in International confer-

ence on machine learning, pp. 2731–2741, PMLR, 2019.

[94] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup: Beyond empirical

risk minimization,” arXiv preprint arXiv:1710.09412, 2017.

[95] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “Cutmix: Regularization

strategy to train strong classifiers with localizable features,” in Proceedings of the

IEEE/CVF international conference on computer vision, pp. 6023–6032, 2019.

[96] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, and D. Larlus, “Hard neg-

ative mixing for contrastive learning,” Advances in Neural Information Processing

Systems, vol. 33, pp. 21798–21809, 2020.

[97] A. Antoniou, A. Storkey, and H. Edwards, “Data augmentation generative adver-

sarial networks,” arXiv preprint arXiv:1711.04340, 2017.

[98] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing

and improving the image quality of stylegan,” in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, pp. 8110–8119, 2020.

107

[99] V. Kumar, A. Choudhary, and E. Cho, “Data augmentation using pre-trained

transformer models,” arXiv preprint arXiv:2003.02245, 2020.

108

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Literature Review
	Short-term Load Forecasting
	Non-Intrusive Load Monitoring
	Single-appliance vis-à-vis Multi-appliance
	Data Augmentation

	Attention-based Neural Load Forecasting: A Dynamic Feature Selection Approach
	Proposed Approach
	Input Feature Embedding and Problem Statement
	Encoder and Decoder

	Numerical Results
	Data Description
	Baseline and Model Setup
	Numerical Results

	Summary

	A Unifying Framework of Attention-based Neural Load Forecasting
	The Proposed Load Forecasting Framework
	Feature Embedding and Feature-weighting Mechanism
	Short-term Load Forecasting Model
	Error Correction Module
	Loss Function

	Experiment Setup
	Data Description
	Data Preparation
	Baseline Models and Hyperparameters
	Performance Metrics

	Simulation Results
	Case 1: Ablation Study and Discussion
	Case 2: Load Forecasting Model Comparison
	Case 3: Generalization Capability

	Summary

	MATNilm: Multi-appliance-task Non-Intrusive Load Monitoring with Limited Labeled Data
	Preliminary
	Methodology
	Sample Augmentation (SA) Algorithm
	Multi-appliance-task Network Architecture
	Loss Function

	Experiment Setup
	Data Preprocessing
	Three Scenarios
	Model Details
	Performance Metrics

	Experiment Results
	Case 1: Performance Comparisons with Limited Training Data
	Case 2: Ablation Study and DA comparisons
	Case 3: Comparison with Training on Full Dataset

	Summary

	Conclusion and Future Work
	Conclusion
	Contributions

	Future work
	Literature Review
	Problem formulation

