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SCATTERING FROM A CORRUGATED THICK SCREEN 

M. Albani', F. Capolino2, P. Piazzesi', S. Mac?, R. Tiberio' 

'College of Engineering, Uniu. of Siena, Via Roma 56, Siena, Italy 
2Dept. of Elec. Eng., Uniu. of Florence, Via .?.Marta 3, Florence, Italy 

1. INTRODUCTION 

A closed form, high-frequency solution is presented for the scattering 
in the near zone by a semi-infinite thick screen, when it is illuminated 
by a line source at finite distance. This solution is derived for a thick 
screen with perfectly conducting side walls, and either perfectly 
conducting or artificially soft boundary condition [l] on the top face 
joining the two wedges. This last condition is practically obtained by 
etching on this face a quarter of wavelength deep corrugations with a 
small periodicity with respect to  the wavelength. Owing to the 
particular properties of the artificially soft surface, a strong decoupling 
effect in the shadow region is achieved for both polarizations; thus, an 
effective shielding from undesired interferences is obtained. 

The formulation adopted in this paper, which is based on the spectral 
approach presented in [2],[3], is briefly summarized in Sect. 2. The 
artificially soft boundary condition is accounted for by the spectral 
Green's function derived in [4],[5]. The above procedure leads to a 
double spectral integral that is asymptotically evaluated in Sect. 3. 
Thus, a high-frequency solution is obtained, that is described as a 
superposition of different diffracted field contributions, including doubly 
diffracted rays. This solution uniformly describes the total field: 
including those aspects where the transition regions of the diffracted 
fields from the two edges overlap, and an ordinary application of 
standard UTD [6] fails. Numerical results are presented and discussed 
in Sect. 4 in order to emphasize the shielding effectiveness of the 
corrugated screen. 

2. FORMULATION 

The geometry of the problem is shown in Fig. I.  Let US define a 
cylindrical coordinate system ( p i ,  4;) 11 at each edge i = 1,2. A uniform 
either electric (TMJ or magnetic ($'E,) line source illumination is 
assumed. Also, let us denote by P' E ( p ; ,  6;) the source point and by 
the thickness of the screen. The incident field at any point P (pl, 4') 
is either 

E,=- jkCI,$(P,P') or H,=- j k  Im$(P,P') (1) 

(2) 

< 
for either TM, or TE, case, respectively, where 

and I,, I, are the amplitudes of the electric and magnetic currents. 



For the sake of simplicity in the notation we deal with the normalized 
scalar potential $. 

The total field is represented as the sum of the GO field plus singly 
diffracted fields from edges 1 and 2, and doubly diffracted fields. In 
order to calculate the doubly diffracted contribution, the same 
formulation as that used in [2],[3] is used, which is summarized 
hereinafter. First, the response of the first edge to the line source 
excitation is represented in terms of a cylindrical wave spectrum. Next, 
each cylindrical spectral source is used as the incident field at the 
second edge. Then, the near field response of the second wedge is 
employed to obtain, by spectral synthesis, a double integral 
representation of the doubly diffracted field 

jm j m  

in which 

R ( ~ , , ~ J  = Jp;z + e 2  + p; + sp;e C O S Q ~  + 2p,e C O S Q ~  + 2 p ; p , ~ o s ( a , + 4  
(4) 

In (3),  the spectral functions Fi have different expressions for the the 
different cases that are shown in Fig. 1 [4],[5]; i.e., 

( 5 )  

where superscripts k, a denote the TE, polarization for hard (Fig la) ,  
artificially soft (Fig. lb),  respectively, and s the TM, polarization for 
both configurations. Furthermore, aP=& t (-l)Pn ; (P4=dz.+ (-1)". It 
is rather apparent that expression (8) explicitly satisfies reciprocity. 

An anolougus double diffraction contribution $$," arises from the 
reverse mechanism 2 4 1 .  

I 

(4 
Fig. 1 Geometry of the problem 
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3. HIGH-FREQUENCY SOLUTION. 

The double spectral integral representation for $!! is now 
asymptotically evaluated to find a uniform high-frequency expression. 
To this end, it is seen that the integrand in (8) exhibits a two 
dimensional, stationary phase point at ( c Y ~ , c Y ~ )  = ( O , O ) ,  that provides the 
dominant contribution. Furthermore, Fl(@f, q) and Fz(@& a2) exhibit 
pole singularities that independently occur in the two spectral variables. 
These poles may occur close to and at the stationary point; thus, they 
have to be appropriately accounted for. The uniform asymptotic 
evaluation of $f," is performed by considering the nearest poles to the 
saddle point. It is worth noting that the functions F, are either even or 
odd with respect to the integration variable for either hard ( h )  or 
artificially soft (a) and soft ( 5 )  cases. In these latter cases, the integrand 
vanish at the saddle point; thus, requiring a more accurate asymptotic 
evaluation, as that in [3]. This leads to 

where D:i"ls are the double diffraction coefficients for hard (h ) ,  
artificially soft (U) and soft (s) cases, that are expressed as 

Dh -- - 47vk I . 2 cot(%) co t (~) -?(a , ,b , ,w)  , 

and 

Expressions (8) involve the transition functions 

and (9 )  

in which is the Generalized Fresnel Integral defined as in [7] where a 
very simple algorithm is suggested for its numerical computation. The 
distance parameters involved in the transition functions are: 
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where NP, N* are integers defined as in the standard UTD [6], and 
I 

4. NUMERICAL EXAMPLES 

Several numerical results have been calculated. One example is 
shown in Fig. 2 which refers to a thickness l=X/4. There, the total field 
is plotted when the observation point moves from the lit to shadowed 
face as depicted in the inset. It is seen that in the soft and artificially 
soft cases the field in the shadow region is much weaker than that in 
the hard case. This emphasizes that the corrugations on the top face 
provides a strong shielding effect even for TE, polarization. Indeed even 
for such a small thickness the shielding effect in the shadow region for 
the TE, case is improved by about 10 dB. Increasing the thickness of 
the corrugated face dramatically increases the shielding in the shadow 
region. 

0 60 120 180 240 300 (degrees) 
Fig.  2 
artificially soft (solid line); TM,, (dotted line) 

Electric field amplitude. TE,, perfectly conducting (dashed line); TE,, 
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