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Abstract 

 

Impacts of Adaptive Cruise Control on Urban Congestion: A Queuing Perspective 

 

by 

 

Servet Lapardhaja 

 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

 

University of California, Berkeley 

 

Professor Michael Cassidy, Chair 

 

 

The morning rush in two idealized settings are forecast into the future, assuming that most 

drivers will engage Adaptive Cruise Control (ACC) while driving their cars. To this end, 

careful measurements of ACC-equipped cars traveling on roads and a highway confirm an 

earlier finding reported by others: for a given traffic speed in ACC-rich congestion, the 

density tends to be smaller than in present-day congestion where all vehicles are manually 

operated. All else equal, the lower congested densities (i.e., larger car spacings), mean that 

queues will be less-densely-packed and will expand over longer physical distances in the 

future, as ACC-equipped vehicles become more prevalent. These uncompacted queues 

pose problems for urban areas, where queue storage is often already a problem during rush 

hours. 

Simulations calibrated using the field-measured data confirm this concern and 

contradict optimistic predictions of how ACC may lead to a congestion-free future. In a 

setting with already moderately high congestion and long-street links inspired by 

Downtown Los Angeles, it is predicted that networkwide vehicle hours traveled (VHT) 

will increase by up to 12% compared to present-day levels, despite assumptions that are 

largely favorable to ACC. In a setting inspired by Midtown Manhattan, with short-street 

links and already high congestion levels, networkwide VHT is predicted to increase by as 

much as 87%. The higher bottleneck capacities often promised by advocates of ACC are 

shown to be irrelevant when spillover queues restrict flows from reaching those capacities. 

Interventions tested through simulations include adjusting onboard ACC controllers to 

produce lower jam spacings, to prevent a problematic future. 
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1 Introduction 
 

 

A vehicle equipped with Adaptive Cruise Control (ACC) features built-in sensors (e.g., 

RADAR or LiDAR) that continuously track the actions of the vehicle in front, coupled 

with a control mechanism that automatically adapts the speed of the vehicle in response to 

the lead vehicle’s actions. When engaged, ACC technology automatically sustains car-

following-distances appropriate for the vehicle’s speed. These distances are based on the 

driver’s preferred following-distance, selected from a menu of short, medium-, or long 

settings, with certain vehicle models offering an extra-long setting. ACC constitutes a 

fundamental component of present-day vehicle automation (Gunter et al., 2020; Makridis 

et al., 2021; Shang & Stern, 2021), and is an anticipated component for self-driving 

vehicles of the future (Tesla, 2023). 

There have been objections raised against enabling ACC when traveling in congested, 

slow-moving traffic, primarily due to safety concerns (GMC, 2023; Honda, 2022; Sparks, 

2022; Volvo, 2020). However, there are seemingly stronger advocates in favor of more 

unrestricted use of this technology. The US Department of Transportation (USDOT), for 

example, views ACC as a means to improve “throughput” and various other traffic 

performance metrics (USDOT, 2019). These assertions suggest part of ACC’s value lies in 

its utilization in congested rush-hour traffic when good performance is most desirable. 

Drivers themselves appear receptive to this broader use of the technology, as indicated by 

a recent federal study (USDOT, 2022), where most participants expressed comfort with all 

following-distances generated by ACC, even at speeds as low as 40 km/h, and with the 

short setting as their preferred following-distance. 

The prevailing trend appears to lean towards widespread adoption of ACC, whether 

traffic conditions are congested or not. Therefore, the present work assumes that drivers of 

ACC-equipped vehicles will likely utilize this technology regardless of traffic conditions, 

both in nearer term- and in more distant futures. Based on this assumption, it is illustrated 

why optimistic predictions regarding ACC’s future impacts on traffic “throughput” or other 

performance metrics are not only overstated, but in the absence of intervention, why one 

should anticipate a significant increase in urban congestion due to ACC. The concern 

seems particularly pressing in older, denser cities with limited queue storage space and that 

are already experiencing considerable congestion during a rush. 

In light of this concern, the dissertation utilizes careful measurements from presently 

conducted field experiments of ACC-controlled cars traveling on roads and a highway. The 

findings reveal that, for a given traffic speed, the density in ACC-rich congestion tends to 

be smaller than in present-day congestion, where all vehicles are fully human-controlled. 

All else equal, the smaller congested densities (i.e., larger vehicle spacings) mean that 

queues will be less compacted and will thus expand over greater physical distances in the 

future, as more and more ACC-controlled vehicles enter the scene. These uncompacted 

queues spell trouble for cities, where queue storage is often already a problem during a 

rush. Consequently, the improved “throughput” or higher bottleneck capacities, often 

promised by advocates of ACC are shown to be irrelevant when spillover queues restrict 

flows from reaching those capacities. Simulation-based case studies, inspired by two 
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distinct urban settings—Downtown Los Angeles and Midtown Manhattan—and calibrated 

to the field-measured data, confirm this looming concern and run contrary to glowing 

predictions of how ACC may lead to a congestion-free future. 

Before delving into the study, Section 1.1. presents the motivation driving this research. 

Section 1.2 describes the research questions that will be answered in this dissertation, and 

Section 1.3 provides the organization of chapters that follow. 

 

 

1.1 Motivation 
 

Careful measurements of ACC-controlled cars in this and previous research efforts indicate 

that, at a given traffic speed, ACC-rich congestion tends to exhibit lower densities 

compared to present-day congestion, where virtually all vehicles are human-controlled. 

The smaller congested densities (i.e., larger vehicle spacings) mean that queues will be less 

compacted and will thus expand over greater physical distances in the future, as more and 

more ACC-controlled cars enter the scene. These less compacted queues pose problems, 

particularly for older, densely populated cities, where queue storage is often already a 

problem during a rush. Higher bottleneck capacities commonly promised of ACC become 

irrelevant when queues that spillover from one link to the next constrain a bottleneck’s 

flow from reaching those capacities. In turn, queue spillover triggers a vicious cycle of 

worsening congestion over time, resulting in diminishing trip-completion rates and soaring 

delays, a process called gridlock (Daganzo, 1996, 2007; Mahmassani et al., 2013). It 

becomes apparent that a determinant of future urban congestion will be ACC’s impact on 

queue expansions, and unfortunately, the outlook in this regard appears unfavorable. With 

this concern in mind, the dissertation delves deeper into the implications of ACC-rich 

traffic on queue storage and urban congestion. This exploration is conducted through case 

studies loosely inspired by two distinct urban settings: Downtown Los Angeles and 

Midtown Manhattan. 

 

 

1.2 Research Questions 
 

Several pertinent questions arise concerning the expanding market presence of ACC. This 

dissertation endeavors to address the following research questions: 

• What are the potential impacts of ACC’s increasing market share on queue storage 

and urban congestion in the nearer term- and more distant futures? 

• How does the utilization of ACC impact congestion in distinct urban settings, akin 

to Midtown Manhattan, an older city with short block lengths, and Downtown Los 

Angeles, a newer car centric city characterized by larger block lengths? 

• What interventions could be implemented to manage future cases of ACC-rich 

traffic in urban areas? 
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1.3 Dissertation Organization 
 

The remaining chapters of this dissertation address the research questions outlined in 

Section 1.2. 

• Chapter 2 provides a literature review on both theoretical studies of ACC’s impacts 

on traffic and field experiments, both of which offer insights for the present study. 

The chapter also discusses the potential implications in urban areas stemming from 

lower queued densities in ACC-rich traffic, laying the groundwork for subsequent 

chapters. 

• Chapter 3 discusses the field experiments presently conducted to observe how 

ACC-equipped cars adjust their following-distances in response to their leaders, 

while traveling on real facilities. The experiments include ACC-equipped cars 

powered by internal combustion engines (ICE), and ACC-controlled, battery-

powered electric cars (EVs). 

• Chapter 4 describes the process of model calibration in the Aimsun simulation 

platform. 

• Chapter 5 provides a detailed description of the approach used to simulate both 

present-day conditions and future scenarios in two urban settings inspired by Los 

Angeles and Manhattan. Networkwide performance predictions for nearer-term and 

more-distant futures are compared with the present-day. Interventions to address 

ACC-induced congestion are discussed. 

• Chapter 6 concludes the dissertation by summarizing key findings and delves into 

potential challenges that could emerge in response to the proposed interventions. 

Moreover, this chapter outlines future research directions complementing the 

present study, aiming to offer further evidence of the findings of this dissertation 

and stimulate further discussions about interventions to manage ACC-induced 

congestion. 
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2 Literature Review 
 

 

This chapter provides background on the topics at hand. Section 2.1 focuses on the history 

and evolution of ACC. Section 2.2 examines theoretical studies in which car-following 

models were used to investigate the impacts of ACC on bottleneck capacity. The studies 

yielded contradictory findings, which underscore the need for more empirical study. 

Section 2.3. delves into more recent studies that eschewed theoretical models in favor of 

real-world field data. These reveal that ACC, when engaged with shorter following-

distances, can increase queue discharge flows at isolated bottlenecks, but raise concerns 

about ACC’s impacts on queue expansions in congested traffic. Section 2.4 examines the 

problems posed by less-densely-packed, expanded ACC-vehicle queues in rush hour traffic. 

It serves as a troubling precursor on what to expect from the dissertation's investigation 

into this matter. 

 

 

2.1 Evolution of Adaptive Cruise Control 
 

Since the inception of the automobile, various driver assistance features have been 

introduced to enhance safety and reduce driver fatigue. Many of these features are closely 

tied to the automation of driving tasks. One widely adopted automation feature is the cruise 

control system, which takes control of the vehicle's throttle and maintains the vehicle's 

speed at the driver's chosen value. 

Recent developments in sensor technology have led to the introduction of ACC, 

representing an advanced iteration of traditional cruise control. While conventional cruise 

control simply maintains the driver-set vehicle speed, ACC goes a step further by also 

maintaining a suitable relative distance from the lead vehicle. When ACC detects that the 

lead vehicle is traveling at a slower speed than the driver's desired speed, the ACC system 

automatically decelerates the host vehicle to keep an appropriate car-following distance 

based on the driver’s preferred following-distance setting. These preferences consist of 

options for short, medium-, or long following-distances, and in some vehicle models, an 

extra-long option is also available. 

Nowadays, the ACC system is further extended to incorporate a “stop-and-go” feature, 

specifically designed for urban driving conditions. This extension provides the capability 

for the host vehicle to automatically come to a complete stop when it detects a stationary 

lead vehicle ahead. 

 

 

2.2 Findings from Theoretical Studies 
 

Initial studies on the impact of ACC in traffic have primarily centered around bottleneck 

capacity, i.e., queue discharge flow. These studies tend to be theoretical in nature, relying 

on car-following models originally designed for human-controlled driving (e.g., Gipps 

1981; Treiber et al. 2000). The models were adapted, with parameters sometimes calibrated 
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based on ACC-responses observed in field experiments, while in other cases, the models 

relied solely on speculative assumptions regarding parameter values. 

When applied to individual, isolated bottlenecks, these models often predicted that 

higher levels of ACC adoption in future traffic will result in increased bottleneck discharge 

flows compared to what is currently observed (Goñi-Ros et al., 2019; Kesting et al., 2008; 

Papacharalampous et al., 2015; Talebpour & Mahmassani, 2016). For instance, Kesting et 

al. (2008) simulated a three-lane freeway section with an on-ramp bottleneck for a variety 

of ACC market shares. The study used the intelligent driver model (IDM) (Treiber et al., 

2000), to model ACC-equipped cars using some untested parameters. Kesting et al. (2008) 

reported an increased bottleneck capacity when simulating a 25% ACC market share, 

resulting in the complete elimination of traffic congestion caused by the bottleneck. In the 

same vein, another study (Talebpour & Mahmassani, 2016) simulated a hypothetical one-

lane freeway with an on-ramp located in the middle of the segment, using the primitive 

simulation model MIXIC (Van Arem & De Vos, 1997). Parameters values based solely on 

speculation (Van Arem et al., 2006) were used to simulate ACC-equipped cars. Simulations 

showed that as the ACC market share grew, bottleneck capacity increased. 

Some less optimistic predictions of ACC impacts have also been reported in the 

literature. For instance, Vander Werf et al. (2002) studied the matter using Monte Carlo 

simulations with parameters for ACC controllers that were intended to represent best case 

scenarios for the capacity impacts of ACC. The simulated site was a single freeway lane 

consisting of a single-lane off-ramp followed immediately by a single-lane on-ramp. Based 

on the study’s simulation results, the authors conclude that ACC, even under the most 

favorable conditions, does not have a significant impact on capacity. In yet another recent 

effort to investigate the impact of ACC on freeway bottleneck capacity, Shang and Stern 

(2021) calibrated the IDM car-following model using field data collected from ACC-

equipped cars. For the analysis, a one-lane freeway with an on-ramp was simulated. The 

results of the study indicate that commercially available ACC cars lead to a reduction of 

bottleneck capacity by up to 35%.  

The inconsistency in outcomes across the theoretical studies seems a result of using 

untested car-following models, often with parameters that lack empirical support. The 

predictions from these models have frequently served as the ground truth in previous 

research, enabling the exploration of the effects of ACC on various lane-changing 

maneuvers, string stability, and other traffic characteristics that were not considered in the 

small-scale field experiments performed to date (Bose & Ioannou, 2003; Ntousakis et al., 

2015; Shang & Stern, 2021). 

A notable concern arises due to the absence of testing these models against real data 

from traffic predominantly composed of ACC-equipped vehicles. Evaluations of numerous 

predictions furnished in a simulation study (James et al., 2019), which varies parametrically 

the mix of ACC- and human-controlled vehicles in traffic, lead us to question the realism 

of these models. 

The study conducted in James et al. (2019) performed microscopic simulations in 

VISSIM, utilizing four car-following models: Autonomous Adaptive Cruise Control 

(AACC) (VanderWerf et al., 2001), the IDM (Treiber et al., 2000), the California PATH 

model (Milanés & Shladover, 2014), and the TU Delft model (Xiao et al., 2017). 

Pathologies can be observed in the resulting predictions. Initially, both the AACC and TU 

Delft model are shown logically, to predict that opting for short following-distances leads 
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to higher discharge flows at bottlenecks. However, these discharge flows start to steadily 

decrease when the market share of ACC-equipped cars exceeds 50%, as if an excess of 

short following-distances somehow leads to adverse effects. Adding to the peculiarity, the 

calibrated but untested California PATH model nonsensically predicts that the selection of 

short following-distance settings (and thus small headways) produces a lower queue 

discharge flow than when choosing long following-distance settings. Of course, then, the 

California PATH model predicts that bottleneck capacities diminish as the share of ACC 

cars with short settings in the traffic stream steadily increases. Of further concern, the short 

setting results in a headway that is smaller than the average selected by human drivers and 

yet the model predicts that these ACC capacities are lower than in human-controlled traffic. 

Like the California PATH model, IDM predicts that steadily growing numbers of ACC-

equipped vehicles with short following distances result in steadily lower queue discharge 

flows. To make matters worse, IDM predicts that ACC generates unrealistically large jam 

densities. These density predictions would be seen as positive news for cities. However, 

field-measured data present a different outcome, as discussed below and in other sections 

of this dissertation. 

 

 

2.3 Findings from Field Experiments 
 

Recent studies in Shi and Li (2021) and Li et al. (2022) utilized field data as the ground 

truth, rather than relying on predictions from car-following models. These latter two studies 

collected real-world ACC-response data from small fleets of 2 or 3 ACC-equipped cars 

operating in real-world settings. 

The experiments in Shi and Li (2021) were conducted within a single lane on a four-

lane segment of SR-56 in Florida. The study utilized two ACC-equipped Lincoln MKZs, 

model years 2016 and 2017. Geographic coordinates of each vehicle were recorded using 

GPS receivers, and data were collected for four following-distance settings, ranging from 

short to extra-long. During these experiments, the leader of the platoon initially accelerated 

to a pre-selected higher speed, subsequently decelerated to a lower speed that had been 

selected a priori from a menu reflecting various congestion levels, and then returned to the 

initial higher speed. The menu of the higher speeds ranged from 55 mph to 35 mph, while 

the menu of lower speeds ranged from 53 mph to 25 mph. Additionally, the study 

incorporated a second dataset from Gunter et al. (2020), which also utilized two ACC-

equipped cars. This latter dataset included a range of high speeds from 75 mph to 65 mph 

and lower speeds from 55 mph to 35 mph, with data collected for two following-distance 

settings (short and long). 

The study in Li et al. (2022) conducted field experiments employing a three-vehicle 

platoon on undisclosed public highways and rural roads. A GPS device was installed on 

each car to collect location and velocity data. The data were collected only for two 

following-distance settings: short and long. Similar to the above cited field experiments, 

the platoon leader initially traveled at a high speed that was pre-selected, then decelerated 

to a predefined lower speed, before eventually returning to the initial high speed. The menu 

of high speeds ranged from 70 mph to 65 mph, while the menu of lower speeds ranged 

from 45 mph to 35 mph. Li et al. (2022) also incorporated field data from Gunter et al. 
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(2020) and Makridis et al. (2021). The latter dataset encompassed high speeds ranging from 

60 mph to 35 mph, and lower speeds ranging from 30 mph to 15 mph. The latter data were 

also collected for short and long following-distance settings. 

Both Shi and Li (2021) and Li et al. (2022) used the data to construct bivariate plots of 

densities and flows, the inverses of field-measured car spacings and headways, respectively. 

The plots clearly indicate that the selections of short- or medium following-distances 

engendered queue discharge flows that were higher than those typically observed in 

present-day traffic conditions. Conversely, choosing longer following-distances resulted in 

smaller discharge flows.  

These empirical findings, along with a prior finding that approximately 70% of ACC-

equipped drivers select small- or medium following-distance, suggest that ACC is likely to 

have favorable impacts on isolated bottlenecks. Unfortunately, most cities typically 

contend with multiple bottlenecks that can interact in ways that hinder traffic flow when 

queues grow long (Carlson et al., 2010, 2014; Cassidy et al., 2002; Daganzo, 1998, 1998; 

Daganzo et al., 1999; Kim & Cassidy, 2012). The potential higher bottleneck capacities 

promised by ACC become irrelevant when queues spillover from one link to the next, 

constraining a bottleneck’s flow from reaching those capacities. This suggests, that a 

significant factor influencing future urban congestion will be ACC’s impact on queue 

expansions, and unfortunately, the outlook in this regard appears unfavorable, as indicated 

by clues found in the studies in Shi and Li (2021) and Li et al. (2022). 

The density-flow data plotted in both those studies include measurements taken at 

slower speeds, commensurate with light to moderate congestion. To estimate jam densities, 

best-fit lines were extrapolated through those congested data. The resulting estimates 

varied, reaching as high as 90 cars/lane-km in Shi and Li (2021) and as low as 50 cars/lane-

km in Li et al. (2022). This range encompasses jams characterized by noticeably 

uncompressed cars. For instance, the lower estimate suggests that each stopped car 

occupies a staggering 20 meters of longitudinal road space on average. These estimations 

have been influenced by errors, which could have arisen due to the heroic extrapolations 

made in the absence of severely congested data, and because some of the lower-speed data 

from Makridis et al. (2021) were collected under short-lived, non-steady-state conditions. 

Not surprisingly, a somewhat higher jam density of 101 cars/lane-km was separately 

estimated in Li et al. (2022) based on an unspecified number of jam spacings sampled from 

a Tesla Autopilot dataset. 

Setting aside the errors, the above estimates underscore something of significance and 

concern. They suggest that, for any given speed in congestion, most of the densities 

generated by ACC appear to be lower than those observed when vehicles are solely under 

the control of human drivers. Notably, this finding seems to have been overlooked in earlier 

studies that primarily focused on discharge flows through isolated bottlenecks (see Section 

2.2). In a prescient response to this finding on density, the authors of Li et al. (2022) caution 

readers about potential issues with queue storage in the future, when ACC-equipped cars 

become more prevalent. This caution is well-founded, for the reasons discussed in Section 

2.4. 

 

 

 



8 

2.4 Queued Density and the Implications for ACC-Dominated Traffic 
 

Issues are known to occur when vehicle queues expand significantly during a rush and 

spillover to multiple upstream links, e.g., Daganzo (1998). On freeways, for example, 

spillover queues can obstruct off-ramps and deprive them of exit flows, thereby adding to 

overall system delays (Cassidy et al., 2002; Kim & Cassidy, 2012; Newell, 1993). Even 

greater problems can emerge on city streets, where long queues often wind around short 

city blocks. These queues spread to other links, triggering a vicious cycle of worsening 

congestion over time, with ever diminishing trip-completion rates and skyrocketing delays, 

a process known as gridlock (Daganzo, 1996, 2007; Mahmassani et al., 2013). 

As noted in Li et al. (2022), the lower densities (i.e., larger vehicle spacings) in 

congestion indicate that ACC-dominated queues in the future will be less tightly packed 

than at present. These expanded queues will give rise to more of the issues described above. 

With this concern in mind, this dissertation investigates the matter further.   
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3 Field Studies 
 

 

A battery of field experiments were conducted as part of the present research, to measure 

how ACC-controlled cars adjusted their spacings in response to their leaders, while 

operating on real roads. These experiments were akin to those in Shi and Li (2021) and Li 

et al. (2022), but this time the field data: included measurements at lower speeds 

commensurate with more severe congestion and included numerous measurements of 

jammed (i.e., stopped) conditions; and all data were extracted from steady-state conditions. 

The resulting estimates of queued densities (the inverses of car spacings), while generally 

larger than those reported in the aforementioned studies, still turn out to be small enough 

to produce damaging spillover queues, as ACC market shares grow in the future; see 

Chapter 5. 

The field experiments took place during off-peak hours when traffic was light, allowing 

the test cars to safely change their speeds, to emulate various levels of congestion. Several 

roads and a highway were utilized in these field experiments, as ACC responses are not 

influenced by the type of facility on which they operate (Xiao & Gao, 2010). Two separate 

sets of experiments were conducted, each using small platoons of ACC-equipped cars. One 

set involved ACC-equipped cars powered by internal combustion engines (ICE), while the 

other involved ACC-controlled battery-powered electric cars (EVs). 

In each set of experiments, and as in previous experiments described in Section 2.3, the 

platoon leader initially traveled at a high speed, pre-selected from a menu of one or more 

free-flow speeds, each to emulate what might occur on a particular facility type. 

Subsequently, the lead car reduced its speed to a lower value, selected a priori from a menu 

reflecting various congestion levels. The lead car then returned to the initial high speed, 

and the entire sequence of prescribed speeds was regulated by the lead car's ACC controller 

onboard. We will refer to one sequence of high-low-high speeds as a "cycle". 

Each combination of high and low speeds was tested for every available option for 

preferred following-distance, and each set of combined speeds and preferred following-

distance was performed for a minimum of 12 cycles. To ensure that the data collected 

represented steady-state conditions, high- and low speeds were each maintained for 10s or 

more, and measurements recorded at short intervals (0.04s or 0.2s) were used in the 

analysis only when the speed of the leader and its follower was approximately the same. 

Averages were used to estimate the ACC response for each prolonged speed state. 

In total, 1,264 data points were gathered across all experiments. It is worth noting that 

certain aspects of the experiments involving ICE-platoons differed from those involving 

EVs. These distinctions are described below, beginning with the ICE experiments. 

 

 

3.1 ICE-Platoons 
 

In this set of experiments, 3-car platoons were created using 2020 model-year Toyota 

Corollas powered by ICE and equipped with ACC (See Figure 1). These experiments were 

conducted at two locations in South Florida: an 8-km stretch in both directions of the US 
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441 Highway (between Atlantic and Boynton Beach Blvds.) in Delray Beach; and a 4-km 

stretch in both directions of Flying Cows Rd. (between US 98 Highway and Rustic Rd.) in 

Wellington. 

Each experiment typically commenced on the shoulder of a facility, where each of the 

platoon’s two follower-vehicles were positioned 1.4 meters apart from their respective 

leaders, as measured from the rear of the leader to the front of the follower. Once in a travel 

lane, the platoon leader followed a specific sequence: it accelerated to the speed of 88 km/h, 

decelerated to one of the predefined lower speeds from the menu of {72, 56, 40, 24, 0} 

(km/h), and then returned to the initial speed of 88 km/h, initiating a new cycle shortly 

thereafter. Decelerations to zero by the platoon leader were performed only when traveling 

on Flying Cows Rd., but not while on US 441. Speedometer readings for all three vehicles 

in the platoon were automatically logged at intervals of 0.2s, and the resulting estimates of 

distances traveled during each time step were recorded using Onboard Diagnostics (OBD) 

II data loggers (see Figure 2). 

To limit systematic measurement errors in each vehicle’s speedometer, which might 

have accumulated with distance traveled, a re-initialization procedure was implemented. 

The procedure involved re-establishing the 1.4-meter separation between platooned 

vehicles every two cycles and did so in the manner described above. 

 

 
Figure 1 ACC-equipped ICE-powered cars 

 

 
Figure 2 OBD II data logger used for collecting data from test vehicles 
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3.2 EV-Platoons 
 

The second set of experiments involved 2-car platoons consisting of ACC-equipped EVs: 

a 2021 Toyota Camry as the lead vehicle and a 2022 Hyundai IONIQ 5 as the follower (see 

Figure 3). Notably, the Hyundai IONIQ 5 had an additional setting for preferred following-

distance: extra-long. The experiments were carried out on remote, lightly trafficked 

sections of three public roads located in Northern California, specifically on approximately 

10-km stretches of Pendrick, Robben, and Sikes Roads in the rural community of Dixon 

(see Figure 4).  

 

 
Figure 3 Test vehicles (left: 2021 Toyota Camry, right: 2022 Hyundai IONIQ 5) 

 

 
Figure 4 Test sites for EV ACC experiments 

 

In this set of experiments, the lead vehicle initially decelerated from a pre-selected 

speed from a menu of {95, 88, 72, 56} (km/h) to one of the lower speeds from the menu of 

{72, 56, 20, 24, 0} (km/h), and then eventually returned to its initial high speed. During 

these experiments, lower-cost yet highly precise GPS devices manufactured by Racebox 

had by this time entered the marketplace and were now used to measure the geographic 

coordinates of each vehicle at 0.04s intervals (see Figure 5). These more accurate devices 

eliminated the need for periodic re-initialization of vehicle separations. Since the platoons 
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consisted of only 2 cars instead of the previous 3, measurements were collected over 

additional cycles to ensure that the number of data points in each set of experiments (ICE 

and EV) remained comparable.  

 

 
Figure 5 Racebox GPS mounted on test vehicle 

 

 

3.3 Data Processing 
 

Vehicle trajectories were constructed from the field-measured data and were used to extract 

joint estimates of density and flow, similar to the approach taken in Shi and Li (2021) and 

Li et al. (2022). To begin, a thorough examination was conducted to identify any potential 

accumulation of errors in the measurements of ICE-platoons. Figure 6 provides clarity in 

this regard. It presents median values of densities and flows derived from both the first 

cycles (illustrated by unshaded data points) and the second cycles (represented by shaded 

points). These data points are further categorized based on steady-state speeds (depicted 

by light lines radiating from the origin) and preferred following-distances. Best-fit 

polynomial curves are included in the figure to aid in visual inspection. 

 

 
Figure 6 Median measurements for Cycle 1 (unshaded) and Cycle 2 (shaded) 

ICE Experiments 
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Figure 6 clearly illustrates that there are differences between the unshaded and shaded 

data points, representing the first and second cycles, both in their densities and flows. 

However, these differences are relatively small when compared to the displacements of the 

data points from their respective best-fit curves. In essence, the behavior of ACC responses 

demonstrates a degree of random variation. Consequently, the observed distinctions 

between the estimates from the first and second cycles, as depicted in Figure 6, seem within 

the expected range and do not suggest any systematic accumulation of measurement errors. 

Consequently, all the data collected during the field experiments, including those from 

ICE-platoons obtained in the second cycles, were used. 

The entirety of the data is presented in Figures 7a and 7b for the ICE- and EV-platoons, 

respectively. The slightly enlarged and shaded data points represent median values for each 

group of data with the same speed and preferred following-distance setting, with best-fit 

curves shown for these medians. 

 

 
(a) 

 
(b) 

Figure 7 Fundamental diagrams and field data: (a) ICE, (b) EV 

 

Upon visual inspection of both figures, it is evident that selecting a short following-

distance leads to queue discharge flows (represented by the peaks of the concave-shaped 

relations) greater than those typically observed in present-day traffic conditions, e.g., 

Seeherman and Skabardonis (2013); TRB (2016). This observation holds true even when 

the medium following-distance is chosen for the EV. These findings align with the results 

from Shi and Li (2021) and Li et al. (2022). 

Turning our focus to jam densities, Figure 7a indicates that estimates for ICE-platoons 

range from 106 to 88 cars/lane-km, depending on the selected preferred following-distance. 

While most of these estimates are larger than those reported in Shi and Li (2021) and Li et 

al. (2022), they still fall below the values commonly reported for traffic composed solely 

of fully-human-controlled vehicles (Chiabaut et al., 2009; Hoogendoorn et al., 2015; 

Knoop & Daamen, 2017; Lárraga & Alvarez-Icaza, 2010; Li et al., 2022; Rakha et al., 

2008). It is worth noting that the present estimates of jam density decrease as the settings 

for following-distance get larger. Consequently, settings that result in lower queue 

discharge flows also lead to lower congested densities, which in turn have a higher potential 

for queue spillovers. 
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In contrast, the pattern for tested EVs is reversed: Selecting shorter following-distance 

settings results in lower jam densities, as clearly illustrated in Figure 7b. When short and 

medium following-distances are chosen, the jam densities are comparable to those 

observed in ICE-vehicles using the same following-distance settings. However, setting the 

EV at long- and extra-long following-distances, produced jam densities of 130 and 133 

cars/lane-km, respectively, which are nearly equivalent to what is typically observed in 

human-controlled traffic. This positive outcome appears to be attributed to the EV's 

regenerative braking system, i.e., when opportunities arose, the controller gradually rolled 

the car forward as it came to a halt, possibly to recharge the onboard battery.  
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4 Model Calibration 
 

 

The Aimsun microscopic platform (Aimsun, 2017) was utilized to simulate network 

performance for settings inspired by Los Angeles and Manhattan. To emulate ACC-

controlled cars, Aimsun parameters were calibrated to match the field data presented in 

Chapter 3. To emulate human-controlled cars, for which Aimsun is highly reputed (Ahmed 

et al., 2021; Panwai & Dia, 2005), parameters were carefully chosen from literature. 

Consequently, the choice of the Aimsun platform enabled simulations of both present-day 

conditions and of future times when ACC (and EVs) are expected to progressively 

dominate the market (Calvert et al., 2017; Litman, 2020; Tillema et al., 2017). The platform 

enabled this in a relatively simple fashion, and with good calibration results. 

Section 4.1 outlines the calibration process employed for modeling ACC-controlled 

cars, accompanied by a discourse on the parameters selected for human-controlled cars. 

Section 4.2 provides the complete set of Aimsun input parameters used in the simulations, 

while Section 4.3 presents comparisons between Aimsun's predictions and the field data. 

 

 

4.1 Model Calibration Process 
 

The calibration process for Aimsun's car-following parameters to mimic ACC-controlled 

cars was meticulously executed for cases of homogeneous traffic, meaning that: model 

parameters were selected through separate simulation runs, always of traffic comprised 

entirely of one vehicle type (ICE-powered or EVs), and for which all cars were set to a 

single, same preferred following-distance (short, medium, long, or extra-long in the case 

of EVs). These simulation runs were conducted for every feasible combination of vehicle 

type and following-distance, resulting in the individual calibration of parameters for 7 cases 

of homogeneous ACC-controlled traffic. 

For each case, parameters were fine-tuned through extensive trial-and-error iterations. 

The objective was to achieve a close match between the simulated outcomes and their 

respective fundamental diagram from the field data. Each simulation run’s outcomes were 

generated for a single travel lane spanning 1 km, with vehicles entering from the upstream 

end at a rate approaching the lane's capacity. To replicate slowdowns possibly caused by 

congestion from a downstream bottleneck, a speed limit was introduced at the lane’s 

midpoint. The speed limit varied parametrically at rates of {3, 6, 15, 25, 40, 50} (km/h) to 

represent different congestion levels. Congested densities and flows were jointly measured 

using a simulated vehicle detector placed just upstream of the posted speed limit. 

Three parameters were calibrated via this process. The first parameter, referred to as 

"clearance" (measured in meters), is defined as the average jammed distance between the 

rear bumper of a lead vehicle and the front bumper of its follower. Additionally, two 

dimensionless parameters, namely "sensitivity" and "headway aggressiveness," were also 

calibrated. These parameters dictated the shape of the fundamental diagram's congested 

branch. 
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Human-controlled traffic was constrained to match a nearly piecewise-linear-shaped 

fundamental diagram. The fundamental diagram encompassed a free-flow speed of 50 

km/h, an average queue discharge flow of 1,900- and 1,650 cars/h/lane, one to describe 

each of our two distinct urban settings (TRB, 2016), and a jam density of 138 cars/lane-

km. The jam density was the smallest value found in the literature (Chiabaut et al., 2009). 

We refrained from utilizing larger jam density values found in other studies (Hoogendoorn 

et al., 2015; Knoop & Daamen, 2017; Lárraga & Alvarez-Icaza, 2010; Li et al., 2022; 

Rakha et al., 2008). This decision was made to ensure that our predictions regarding ACC's 

potential adverse effects on jam density would be the smallest within reason, thus 

conservatively addressing any potential queue storage issues anticipated in an ACC-

dominated future. 

 

 

4.2 Input Parameters Estimates 
 

The values selected for Aimsun's input parameters are presented in Table 1 for each case 

of homogeneous-traffic. In the table's last row, Aimsun's default parameter values are 

provided as a reference. Values that are different from their respective defaults are denoted 

in bold italics in the table. The last column in Table 1 shows the maximum acceleration 

rates used for each car type. An acceleration rate of 4.5 m/s2 was selected for EVs, based 

on the specifications in Hyundai (2022), to replicate the higher acceleration capabilities of 

EVs. For all other cases, the default value of 3 m/s2 was retained. 

 

Table 1 Input parameters 

Vehicle Type (Following -

Dist. Setting) 

Clearance 

(m) 

Sensitivity 

Factor 

Headway 

Aggressiveness 

Acceleration 

(m/s2) 

ICE ACC (Short) 5.2 0.98 1 3 

ICE ACC (Medium) 5.5 1.16 0 3 

ICE ACC (Long) 6.4 1.62 -0.75 3 

EV ACC (Short) 4.5 0.96 1 4.5 

EV ACC (Medium) 4.2 1.10 0 4.5 

EV ACC (Long) 3.0 1.20 -0.75 4.5 

EV ACC (Extra-Long) 2.9 1.50 -1 4.5 

Human Driver  

(high discharge flow) 
2.3 1.10 -1 3 

Human Driver  

(low discharge flow) 
2.3 1.35 -1 3 

Aimsun Default 1 1 0 3 

 

In the next section, the resulting agreements between the simulated and field-measured 

data for ACC-controlled traffic are presented. Additionally, comparisons are drawn against 

the fundamental diagrams that describe our human-controlled traffic. 
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4.3 Fundamental Diagrams and Comparisons 
 

The fundamental diagrams produced via simulations are displayed in Figures 8a to 8d. In 

the case of ACC-controlled EVs, the fundamental diagrams are split across two figures (8b 

and 8c) for clarity. The shaded data points represent averages from 10 simulations. It is 

noteworthy, as shown in Figures 8a to 8c, that the simulated fundamental diagrams (solid 

curves) closely match with their empirically-estimated counterparts (dashed curves) 

presented earlier in Figures 7a and 7b. The largest differences are observed between the 

simulated and empirical fundamental diagrams when the following-distance for EVs is set 

at extra-large, as seen in Figure 8c. Nevertheless, the congested branch of this simulated 

diagram either matches or lies above the empirical branch, which will produce a 

conservative estimation of ACC's adverse effects in the forthcoming analyses. 

Regarding the input to Aimsun, the jam density for the human-controlled fundamental 

diagram in Figure 8d exceeds those for the ACC cases. To make these distinctions more 

evident, we have replicated the lightly shaded area beneath the fundamental diagram, 

which features a queue discharge rate of 1,900 cars/h/lane from Figure 8d, in the three other 

figures. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8 Simulated and empirical FDs. (a) ICE-ACC, (b) EV-ACC, short and 

medium following-distances, (c) EV-ACC, long and extra-long distances, (d) 

Human-controlled traffic 
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5 Illustrations of ACC Impacts 
 

 

In this chapter, a preview of the impacts of ACC that one might expect in the nearer term- 

and more-distant futures is provided. Illustrations to this end draw inspiration from two 

distinct urban settings. One is reminiscent of Downtown Los Angeles, a car-oriented city 

characterized by longer block lengths and moderately high congestion. The other setting 

takes cues from Midtown Manhattan, featuring shorter blocks typical of older cities and 

more severe congestion. Street geometry in both the Los Angeles and Manhattan inspired 

settings was kept simple, again in the pursuit of conservative predictions regarding ACC-

induced problems. Among these simplifications is the absence of turn pockets, which could 

have otherwise facilitated the spillover of less-compact ACC queues from turning traffic 

into adjacent lanes, hindering the flow of through-moving vehicles. 

Projections for future demands are also conservative in nature. For instance, morning 

demands were set to approximately replicate the existing congestion levels in Los Angeles 

and Manhattan, with the assumption that these demands will not grow in the years to come. 

Forecasts regarding ACC adoption behavior are based on informed guesswork. However, 

as the subsequent sections reveal, it becomes evident why reasonable variations in these 

guesses are unlikely to skirt the problems anticipated in the nearer- term and more distant 

futures. 

Inputs to our illustrations are presented in Sections 5.1 to 5.3. Section 5.4 delves into 

unsettling predictions for intervention-free futures, while findings that point toward 

promising interventions are offered in Section 5.5. 

 

5.1 Simulated Networks 
 

The street networks for both urban settings were idealized as homogenous square grids, 

consisting of 20 north-south (N-S) and 20 east-west (E-W) bidirectional arterials, each 

featuring two travel lanes per direction, as illustrated in the inset of Figure 9. Vehicles 

within these networks were allowed to make turning maneuvers from any approach. The 

spacing between the centerlines of all street links was 210 meters for the Los Angeles-

inspired site and 170 meters for the Manhattan-inspired site. Additionally, a speed limit of 

50 km/h was enforced on every link within the grid. Queue discharge flows were set at 

1,900 cars/h/lane and 1,650 cars/h/lane for the Los Angeles and Manhattan-like grids, 

respectively. 

For traffic control, pre-timed, two-phase traffic signals with unprotected left turns were 

assumed to control every intersection across the grid. All signals operated on a long 90s 

cycle, which is a good practice when managing congested traffic (see Koshi, 1989). To 

accommodate the symmetry within the network, equal green and amber splits of 45s were 

utilized for each phase. The signal phases were synchronized with zero offsets, a strategy 

known to be effective in congested settings (Daganzo & Lehe, 2016). 
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Figure 9 Representation of simulated networks and the street configuration 

 

 

5.2 Travel Demands 
 

The demands for car trips were set to approximately replicate the morning rush-hour 

congestion levels presently observed in Los Angeles and Manhattan. To achieve this, we 

quantified each city's congestion level as the maximum rise in average vehicle pace (the 

inverse of speed), normalized by the average free flow pace (see Figure 10 for example). 

We obtained these measurements by analyzing a large number of morning commute trips 

using Google Maps, similar to Doig et al. (2023). For reference, the estimated congestion 

levels in Los Angeles and Manhattan were 2.7 and 5.0, respectively. 

 

 
Figure 10 Estimation of congestion level in Los Angeles 
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The aggregate demand for each urban setting was assumed to follow a time-varying 

pattern illustrated by the respective piece-wise linear cumulative count curve in Figure 11. 

Note how the rates changed: starting at a lower rate, increasing at the 20-minute mark from 

the simulation's initiation, returning back to the lower rate at the 60-minute mark, and 

ultimately tapering off to zero by the 80-minute mark, ensuring that all cars could complete 

their trips by the end of the simulation. These higher and lower demand rates were adjusted 

accordingly for each urban setting to ensure that, when combined with a time-invariant 

Origin-Destination (OD) matrix reflecting trip fractions to represent the spatial distribution 

of demand, the simulated congestion levels for each city would align with their respective 

estimates derived from Google Maps. 

 

 
Figure 11 Time-varying aggregate demands 

 

All trips in the simulations had origins and destinations located at intersections on the 

grids. Trip fractions were the same for all OD pairs in the matrix, meaning that OD pairs 

were uniformly and independently distributed over space, and trips between all OD pairs 

adhered to a Poisson process with an equal rate. Cars entered the network via one of the 

four departing links at their origin intersections when it was safe and possible to do so, with 

entry delays factored into all subsequent analyses. Upon reaching their destination 

intersections, cars were promptly removed from the network, without any additional time 

spent searching for parking. 

 

 

5.3 ACC Adoption Forecasts 
 

As vehicle automation continues to advance, the prevalence of ACC is expected to surge 

in the future. In fact, as of today, ACC is becoming increasingly ubiquitous, with a 

staggering 92% of newly sold cars either offering it as a standard feature or as an optional 

upgrade (Bartlett, 2021). Figure 12, sourced from Bansal and Kockelman (2017), provides 

a visual representation of a conservative forecast for the market share of ACC-equipped 

vehicles. According to the plot, it is forecasted that by 2045, the market share of ACC-
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equipped cars will surpass 80%. Consequently, in our simulations, we can reasonably 

assume that the adoption rates of ACC will increase over time (Calvert et al., 2017; Litman, 

2020; Tillema et al., 2017). A growth is not only expected for ACC but for EVs as well, 

such that ICE-powered cars will likely decline in number (CARB, 2022; Choi, 2021; 

Lambert, 2021). The adoption of EVs is rising sharply as the global push for net-zero 

carbon emissions accelerates. The share of EV sales is anticipated to be well above 80% 

by 2040 in developed countries (Goldman Sachs, 2023), as seen in Figure 13. By taking 

those projections into account, our illustrations will follow the informed guessed-at 

forecasts displayed in Figure 14. We view these as optimistic, in the sense that other 

guesses, such as a higher prevalence of ICE-powered cars, for example, would produce 

bleaker prognostications. As seen in the figure, our projections encompass three futures: (i) 

a shorter-run future when half of all cars are equipped with ACC, and half of those are EVs; 

(ii) an exceptionally optimistic longer-run future when 90% of all cars are EVs with ACC, 

and (iii) a more moderately optimistic future when 80% of cars EVs with ACC. In all these 

futures, simulated outcomes are compared to present-day, where all cars are assumed to be 

operated by human drivers. 

 

 
Figure 12 Forecast for the market share of ACC-equipped vehicles  

(Bansal & Kockelman, 2017) 

 

Recall that drivers of ACC-equipped vehicles are assumed to always engage the 

technology. Additionally, these drivers are assumed to set a preferred following-distance 

that does not change during their trips. The distribution of preferred following-distances 

for ACC-driver populations is taken from the empirical study in Nowakowski et al. (2010). 

In this study, 50.4% of ACC-drivers selected a short following-distance, 18.5% opted for 

a medium distance, and 31.1% selected the long setting. For the purposes of our analyses, 

we assumed that drivers of ACC-equipped EVs select the long- and extra-long settings in 

equal proportions, accounting for a total of 31.1% of all ACC-drivers. 

 



22 

 
Figure 13 Projected EV sales as a proportion of total vehicle sales  

(Goldman Sachs, 2023) 

 

 
Figure 14 Adoption forecasts 

 

 

5.4 Simulation Performance Predictions 
 

The outcomes for the settings inspired by Los Angeles and Manhattan are depicted in 

Figures 15a and 15b, respectively. In these figures, the solid, bold curves represent the 

aggregate demands during the morning rush for each respective site. The thinner solid 

curves show cumulative exit counts for the present-day, while the dashed and dotted curves 

represent exit counts for the forecasted futures. Each exit curve is derived from an average 

of 10 simulations with distinct random seeds, and all outcomes presented in this study were 
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similarly averaged in this fashion. The curves are plotted such that, the area between a 

demand curve and an exit curve corresponds to the networkwide vehicle-hours traveled 

(VHT) for the respective scenario, and the vertical displacements between these curves 

reflect the time-varying vehicle accumulations, which are also networkwide. Upon visual 

inspection of both figures, it becomes apparent that the predicted future traffic conditions 

are nearly always worse and most of the time much worse compared to the present-day for 

both settings. 

From further examination of the figures, it is evident that the outlook is somewhat more 

optimistic for the Los Angeles-like setting. This can be attributed, at least in part, to its 

longer link lengths, which provide additional space for queue storage. Still, Figure 15a 

illustrates that the network's VHT and accumulation (indicative of congestion) are 

noticeably worsened in the nearer-term future, where ICE-powered cars are expected to 

still constitute a significant portion of the traffic. In this scenario, the VHT is projected to 

increase by 12% compared to the present-day level, with delays anticipated to rise by 25%. 

Upon closer examination of the near-term exit curve in Figure 15a, the reasons why 

problems occur become evident. The declining slopes of the cumulative exit curve (i.e., 

network exit flows), start to manifest at approximately 60 minutes from the initiation of 

the simulations, coinciding with an accumulation of approximately 14,000 cars within the 

network. This diminishing exit flow is a conspicuous sign of the onset of gridlock, e.g., see 

Daganzo (1996, 2007); Mahmassani et al. (2013). It is worth noting how the gridlock 

situation gradually, albeit artificially, subsided as exit flows were restored when the 

demand abruptly dropped to zero at the 80-minute mark. It is important to mention that 

gridlock would have persisted, and its adverse effects exacerbated, had the demand 

diminished more gradually and realistically toward the end of the rush period.  

The outlook for the more distant futures appears more promising for the Los Angeles 

inspired setting. In fact, the optimistic exit curve nearly aligns with the present-day curve 

to the extent that it is barely discernible in Figure 15a. The longer link lengths, and lower 

present-day congestion level of the Los Angeles-like network played a pivotal role. There 

were substantial periods when the network was not fully engulfed by residual queues. The 

higher queue discharge rates enabled by ACC, and the higher acceleration rates facilitated 

by EVs, increased exit flows during these periods. This positive effect largely offset the 

adverse impact stemming from ACC's less-compact queues. Consequently, the 

networkwide VHT predicted for the optimistic distant future closely matches that of the 

present-day. 

Meanwhile, the exit curve for the less-optimistic distant future also closely 

approximates its present-day counterpart, albeit not as closely. This less optimistic future 

resulted in the formation of the least densely packed queues compared to all cases. 

Nevertheless, the damage done compared to the present-day is small, primarily attributable 

to the higher queue discharge flows and vehicle accelerations brought by the EVs present 

in that future. 

While the predictions of less damaging distant futures for the Los Angeles inspired 

setting offer some solace, it is crucial to acknowledge that these predictions rely on several 

favorable assumptions. Thus, these predictions still fall significantly short of the benefits 

of ACC championed by its advocates. 
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(a) 

 
(b) 

Figure 15 Cumulative Curves for (a) Los Angeles-like and (b) Manhattan-like 

settings 

 

The situation takes a bleaker turn for the Manhattan-inspired setting depicted in Figure 

15b. This can be attributed to the shorter block lengths and limited queue storage space, 

which already contribute to high congestion levels in the present-day and exacerbate the 

problems with ACC predicted in the future. In Figure 15b, it is noticeable that up until 

around the 80-minute mark, the predicted damages for the various future scenarios ranked 

in a similar manner to those of the Los Angeles-like site, with the worst damage predicted 

for the nearer-term future. However, beyond this point, the Manhattan-like site became 

overwhelmed by queues to the extent that the benefits of increased discharge flows and 

accelerations no longer applied. Consequently, the less optimistic distant future, marked 

by the least compacted queues, emerged as the most concerning scenario for the 

Manhattan-like setting. The onset of gridlock, as evidenced more prominently in this case, 

led to a staggering 87% increase in networkwide VHT compared to present-day conditions. 

While the situation was somewhat improved in the optimistic distant future, VHT still rose 

by 46% relative to the present-day. 

Table 2 presents a summary of the performance predictions for both the Los Angeles 

and Manhattan-inspired settings. This table offers a comparison of predicted networkwide 

VHT for present-day conditions and the three future scenarios, along with the 

corresponding percentage change in VHT compared to the present-day baseline. 
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Table 2 Summary of performance predictions for the Los Angeles and 

Manhattan-inspired settings 

Scenario 

Los Angeles Inspired Manhattan Inspired 

VHT Change (%) VHT Change (%) 

Present Day 15673 - 27990 - 

Optimistic Distant 

Future 
15623 ~ 0% 40838 46% 

Distant Future 16056 2% 40838 87% 

Nearer-Term Future 17530 12% 50396 80% 

 

 

5.5 Potential Interventions for a Different Future 
 

One can question the ACC and EV adoption forecasts used in the work (see again Figure 

14). Nevertheless, moderate deviations from these adoption forecasts are unlikely to 

significantly alter predicted outcomes, as evident from the results in Figures 15a and 15b. 

The nearer-term adoption forecasts differ considerably from those for the more distant 

future. Yet, when examining the shifts among exit curves in all three adoption scenarios, 

they appear relatively small compared to their deviations from the corresponding demand 

curves drawn in bold. This is a cause for concern, particularly for denser, more congested 

cities like Manhattan, regardless of any errors in the forecasts. Even more sprawling cities, 

such as Los Angeles, may also have valid reasons for concern, given that our predictions 

of future congestion are probably very loose lower bounds. 

It becomes markedly evident that higher queue discharge flows, achievable through 

ACC, cannot avert impeding problems once street links are filled with queues. For instance, 

in Figure 16, we present the demand and present-day exit curves alongside two additional 

exit curves, all for the Manhattan-inspired setting. The dotted exit curve in this plot 

represents a somewhat dystopian future where all vehicles are EVs controlled by ACC, and 

all drivers opt for the short following-distance setting. In this case, the average queue 

discharge flow is the highest possible (significantly exceeding present-day rates), and the 

jam densities are relatively high (though lower than at present-day, as seen in Figures 8a 

and d). Yet, the dotted exit curve in Figure 16 demonstrates how conditions deteriorate 

over time, with a predicted 94% increase in networkwide VHT.  

A more promising future lies in maximizing jam density to compact queued vehicles 

more tightly. To illustrate, the dashed curve in Figure 16 represents exit flow when all 

vehicles are EVs, ACC-controlled, and set for the extra-long following distance setting. 

While this setting reduces queue discharge flows compared to the short following-distance 

settings, it results in a jam density closer to present-day traffic (as seen in Figures 8c and 

d). Indeed, the dashed curve in Figure 16 lies closer with the present-day curve, with 

networkwide VHT predicted to increase by 14%. While this increase remains substantial, 

it represents a significantly better outcome compared to the 94% increase. 
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Figure 16 Cumulative Curves Diagrams for Manhattan-like settings 

 

In light of the more promising outlook resulting from maximizing jam density to pack 

queued vehicles more tightly, a viable intervention strategy becomes apparent. This 

strategy entails adjusting the settings of ACC controllers to opt for smaller spacings in 

congestion, particularly when jammed. Simulations were carried out after recalibrating 

ACC-equipped vehicles to adopt jam spacings akin to present-day values, regardless of the 

preferred following-distance settings chosen by drivers. Throughout this recalibration 

process, discharge flows remained consistent with those depicted in Figures 8a to 8c. The 

results, as portrayed in Figure 17, showcase significant improvements across both nearer-

term and more distant future scenarios, for the Manhattan-inspired setting, and especially 

for our optimistic distant future scenario. Networkwide VHT in this scenario is anticipated 

to decrease by 39% compared to present-day levels. Table 3 furnishes a summary of 

performance predictions for the Manhattan-inspired setting, highlighting the potential VHT 

reductions due to this intervention. 

 

Table 3 Performance predictions with ACC spacing intervention for the 

Manhattan-inspired setting 

Scenario 

Manhattan Inspired 

VHT Change (%) 

Present Day 27990 - 

Optimistic Distant Future 17170 -39% 

Distant Future 18054 -36% 

Nearer-Term Future 23180 -17% 
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Figure 17 Cumulative Curves with ACC spacing intervention for Manhattan-

inspired setting 
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6 Conclusion 
 

In conclusion, this dissertation raises a red flag by revealing the adverse impacts of ACC-

rich traffic on queue storage and urban congestion. Through careful field measurements of 

ACC-controlled cars traveling on roads and a highway, this study confirms that queues 

formed by ACC-controlled vehicles exhibit lower densities compared to those comprised 

entirely of human-operated vehicles. These uncompacted queues pose problems for urban 

areas, where queue storage is often already a problem during rush hours. Simulation-based 

case studies loosely inspired by two distinct urban settings—Downtown Los Angeles and 

Midtown Manhattan—confirm this concern and contradict optimistic predictions from 

advocates of how ACC may lead to a congestion-free future. The higher bottleneck 

capacities commonly promised of ACC become irrelevant when queues that spillover from 

one link to the next constrain a bottleneck’s flow from reaching those capacities. 

In this concluding chapter of the dissertation, we recapitulate the key findings, suggest 

some interventions and examine potential challenges that may arise from those 

interventions. Furthermore, we outline future research avenues that complement the current 

study. These research avenues involve conducting additional simulation studies tailored to 

specific urban settings, considering their unique characteristics. Additionally, we propose 

naturalistic driving experiments with ACC-equipped cars that go beyond the experiments 

conducted in the present study and previous related efforts. The objective of these future 

research avenues is to offer further evidence of the findings presented in this dissertation 

and stimulate further discussions about potential interventions to manage ACC-induced 

congestion. 

 

 

6.1 Summary of Findings 
 

Field measurements of steady-state conditions, with numerous observations of jammed 

states, have confirmed that queues formed by ACC-controlled vehicles exhibit lower 

densities compared to those comprised entirely of human-operated vehicles. Specifically, 

the reduction in jam density within a platoon of ACC-equipped ICE cars can vary from 23% 

to 38%, while for ACC-equipped EVs, the reduction in jam density ranges from 4% to 23%, 

depending on the preferred following-distance settings selected by drivers. Simulations 

utilizing calibrated car-following models in two idealized settings illustrate that these 

lower-density queues indeed pose impending problems for urban areas in the future, as 

ACC's market share continues to grow. Unsurprisingly, queue storage issues were forecast 

to have the most pronounced adverse effects in our Manhattan-inspired setting, 

characterized by shorter block lengths and already-high levels of congestion. What may be 

both surprising and disconcerting is the magnitude of the damage predicted (up to 87% 

increase in networkwide VHT), especially since some of our assumptions were quite 

conservative in this respect. 

Remedying this disconcerting future could involve implementing restrictions on the 

use of ACC when driving in congested traffic, especially on city streets. Such a prohibition 

would be akin to the earlier calls in (GMC, 2023; Honda, 2022; Sparks, 2022; Volvo, 2020), 
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yet could be justified not only for safety reasons, but also on societal grounds too, i.e., to 

curb congestion and its externalities. Nevertheless, imposing restrictions on a technology 

feature for which drivers have paid good money might encounter resistance and prove 

challenging to enforce. Furthermore, it would signify a regression in the march toward 

greater vehicle automation and halt any notion of automation as a panacea for congestion. 

Thus, we anticipate a degree of reluctance when considering such interventions. 

A more feasible intervention could involve adjusting ACC controllers to opt for smaller 

spacings in congested conditions, particularly when vehicles are jammed, e.g., at red lights. 

Simulations were conducted after recalibrating ACC-equipped cars to adopt jam spacings 

similar to present-day values, regardless of the preferred following-distance settings 

selected by drivers. As a result of this adjustment to ACC controllers, networkwide VHT 

reductions were predicted for all future scenarios compared to present-day. The most 

substantial drop in networkwide VHT was predicted in the most optimistic longer-run 

future for the Manhattan-inspired setting, with reductions up to 39% in VHT. While this 

outcome may be less impressive than what has been promised by advocates (USDOT, 

2019), it offers a hopeful prospect. Additionally, our previously conservative assumptions 

(e.g., concerning link geometry and future demand levels), may be causing us to 

underestimate the benefits of these fine-tuned ACC controllers. 

Nonetheless, mandating shorter vehicle spacings during congested traffic could raise 

concerns and bring the issue of liability to the forefront, with automobile manufacturers 

expressing apprehensions about their customers' safety when faced with shorter following-

distances. In short, there may be no straightforward solution to the currently identified 

looming concerns. 

For these and other reasons, we recognize that the red flag raised in the dissertation will 

not be the final word on this subject. In the initial stages, it is foreseeable that proponents 

of technology and various stakeholders will likely advocate for more extensive studies, 

potentially encompassing locations such as Los Angeles, Manhattan, and other settings. 

This could indeed be a positive development, provided that any subsequent analyses adhere 

to the care and objectivity as in this dissertation. Nonetheless, it is important to 

acknowledge that conducting further investigations will necessitate time, which may not 

be on our side. This is particularly pertinent considering the steady growth in the market 

share of ACC (Calvert et al., 2017; Litman, 2020; Tillema et al., 2017), and recalling 

vehicles in the future to update their ACC controllers retroactively could present substantial 

challenges. 

Therefore, any further assessments ought to be expedited. This, in turn, may require 

USDOT to shift its role from being an enthusiastic advocate to a more cautious assessor 

and potentially a regulator. The likelihood of these transformations remains uncertain, 

particularly in light of a recent USDOT publication indicating that the responsibility for 

balancing ACC's impact on safety and road network performance is now placed on 

manufacturers; see USDOT (2022), p. 20. This transfer of authority raises concerns for us 

and appears to be a worrisome relinquishment of oversight. Perhaps leadership may instead 

come from state and local governments or potentially from other parts of the world. 

Nevertheless, wherever it arises, effective leadership is urgently required. 
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6.2 Future Work 
 

The work presented in this dissertation raises a red flag by revealing the adverse impacts 

of ACC-rich traffic on queue storage and urban congestion. The exploration of these 

impacts was conducted through careful field experiments and through simulation-based 

case studies loosely inspired by two distinct urban settings: Downtown Los Angeles and 

Midtown Manhattan. These urban settings were simplified as homogeneous square grids, 

while incorporating certain assumptions (e.g., for link geometry and future demand levels) 

favorable to ACC. 

The dissertation thus makes a contribution in its own right and paves the way for 

additional research in this area. Decision-makers in cities may seek a more detailed 

understanding of how the future might unfold in their unique urban environments. As a 

next step, to this end, decision-makers might stimulate their cities with their unique 

characteristics. This task can be reasonably straightforward given decision-makers’ 

presumed access to input data regarding street geometry, projected future demands, etc. 

However, it is important to acknowledge that microscopic traffic simulations, while 

valuable, can only approximately emulate the dynamics of individual vehicles, via use of 

car-following and lane changing models. Thus, the most definitive findings will come from 

real-world field experiments that go beyond the experiments conducted in the present study 

and in previous related efforts. To this end, researchers might conduct naturalistic driving 

experiments involving commercial ACC-equipped vehicles. In these experiments, the 

participant drivers would be instructed to activate ACC while travelling through various 

facilities (e.g. city streets, highways, freeways), at different times of the day and under 

varying traffic (e.g. free-flow, moderate congestion, severe congestion) and environmental 

conditions (e.g. rainy, foggy, sunny). All vehicles would be equipped with technology for 

collecting vehicle spacings and transmitting that data to the analysts as vehicles perform 

their day-to-day trips. The objective of these experiments is to address any skepticism that 

may exist among advocates of ACC regarding the small-scale controlled field experiments 

conducted by this study, and offer further evidence of the findings presented in Chapters 3 

and 5. 

If advocates of ACC remain unconvinced by the results of these naturalistic driving 

experiments, an alternative and more dramatic experiment may be considered. It would 

involve gathering a substantial number of ACC-equipped vehicles to collectively drive 

designated city streets during a rush hour. Due to the expanded ACC-vehicle queues, it 

would be essential to acknowledge the associated risks, as this experiment could lead to 

extreme congestion and even gridlock. Therefore, meticulous planning and an alternative 

course of action would need to be in place to terminate the experiment if conditions 

approach an unrecoverable gridlock. The results of this experiment would undoubtedly be 

eye-opening for advocates of ACC and would hopefully stimulate further discussions about 

interventions. 

In the quest for those interventions, one emerges as seemingly obvious: opting for 

smaller spacings when vehicles are jammed. However, implementing this intervention is 

probably easier said than done. Drivers are likely to feel uncomfortable when they are 

robotically driven at smaller spacings, and mandating such spacings may introduce safety 

concerns. The question of liability might thus take center stage for automobile 
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manufacturers, who may also worry about the comfort perceived by their customers when 

confronted with shorter following-distances.  

One potential solution that might accommodate driver comfort and safety while 

achieving smaller jam spacings is to fine-tune the controllers so that ACC-equipped 

vehicles gradually roll forward as they come to a halt, similar to how ACC-equipped EVs 

come to a complete stop at long- and extra-long following-distance settings; see again 

Section 3.3. However, it is uncertain whether drivers would be receptive to these 

adjustments. Therefore, conducting additional naturalistic driving experiments, like those 

mentioned above but with ACC-equipped cars with fine-tuned controllers, and offering 

participants the freedom to engage or disengage ACC based on their comfort, is necessary 

to assess driver receptiveness to this intervention. 

If adjusting the controllers in this way faces opposition, cities should then consider, as 

a last resort, more drastic measures, such as segregating ACC-equipped vehicles by 

restricting them to specific lanes on streets or confining their use to designated streets when 

ACC is engaged. However, cities may hesitate to implement such measures for several 

reasons. One significant concern is the potential opposition from stakeholders, such as the 

USDOT and vehicle manufacturers, who often fund research in the field of vehicle 

automation and could view these measures a step backward in the march toward greater 

vehicle automation. Furthermore, ACC-equipped vehicle owners may also strongly object 

to restrictions on their vehicle use. Additionally, substantial enforcement challenges are 

associated with these restrictions. Ensuring that drivers comply with the restrictions would 

demand additional resources and rigorous enforcement measures, which might pose 

practical difficulties for city authorities. Considering all these obstacles, cities might be 

cautious about implementing such measures to manage ACC-induced traffic problems and 

may need to seek alternative approaches that fit their specific needs. Nonetheless, urgent 

and effective decision-making in this matter seems needed. 
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