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Abstract 
There is currently rather little agreement about the existence 
of, and explanation for, a vocabulary spurt in children during 
the second year. Here we apply a Functional Data Analysis-
based technique called Automatic Maxima Detection to the 
problem of finding vocabulary spurts in a sample of 20 
children. Even with considerable smoothing of the data, 
children were found to exhibit multiple vocabulary spurts of 
varying intensity and location. These results should provide a 
clearer target for researchers interested in detecting and 
explaining these deviations from linear growth.  

Keywords: vocabulary spurts; functional data analysis; 
automatic maxima detection. 

Vocabulary Spurts 
The psychological literature on vocabulary spurts in 
children is in an interesting state of turmoil. The spurt is 
usually taken to mean a sharp increase in vocabulary 
acquisition in the second year of life. There are at least eight 
different explanations of the vocabulary spurt with rather 
little consensus on which is the right explanation, and there 
is disagreement about whether a spurt even exists in most 
children. Here, we apply a new statistical methodology to 
the problem of detecting spurts and find evidence for a 
surprisingly larger number of vocabulary spurts in most 
children.  

Explanations of the Vocabulary Spurt 
The assertion that there is a substantial and reliable 
vocabulary spurt during the second year has been repeated 
so often that most developmental psychologists readily 
accept it. This apparent consensus on an interesting 
phenomenon has led to a variety of explanations. Most of 
these explanations emphasize factors endogenous to the 
child, some based on sudden developmental changes and 
others based on leveraging of previous learning.  

Among the sudden developmental changes are realizing 
that things have names (Dore, Franklin, Miller, & Ramer, 
1976; Goldfield & Reznick, 1990; McShane, 1979; Reznick 
& Goldfield, 1992), ability to categorize (Bates, Benigni, 
Bretherton, Camaioni, & Volterra, 1979; Gopnik & 
Meltzoff, 1987; Lifter & Bloom, 1989; Mervis & Bertrand, 
1994; Nazzi & Bertoncini, 2003; Poulin-Dubois, Graham, & 
Sippola, 1995), pragmatic skill (Ninio, 1995), and 
hemispheric specialization (Mills, Coffey-Corina, & 
Neville, 1993).  

Other endogenous factors emphasize leveraging 
techniques, such that known words facilitate learning of 
new words. These leveraging methods include mutual 
exclusivity (Markman, Wasow, & Hanson, 2003), syntactic 
bootstrapping (Gleitman & Gleitman, 1992), and word 
segmentation (Plunkett, 1993; Walley, 1993). 

A third kind of explanation does not emphasize the child, 
but rather the statistical properties of word distributions in 
the child’s language environment. Assuming due to the 
central limit theorem that word-learning difficulty is 
normally distributed and that words are learned in parallel, 
computer simulations show that an early vocabulary spurt is 
mathematically inevitable (McMurray, 2007). The same 
result was obtained with several other distributions of word 
difficulty (Mitchell & McMurray, 2008).  

Most of these explanations have been disputed, including 
this last one. Under alternate assumptions that all words are 
equally difficult to learn and their frequencies are 
distributed under Zipf’s law, simulations show that word 
acquisition is linear rather than spurt-like (Mayor & 
Plunkett, 2010). In a Zipf distribution, item frequency is 
inversely proportional to its rank (Zipf, 1949). This 
distribution is characteristic of word learning and many 
other phenomena such as city populations (Itti & Baldi, 
2006). 

Methods of Spurt Detection 
Four techniques have been used to assess the vocabulary 
spurt. The simplest is to calculate a ratio of vocabulary size 
to age and argue whether it is large enough to be a spurt 
(Schafer & Plunkett, 1998). This method is not particularly 
convincing as it does not assess change or rate of change. 
The most common approach is to specify a certain number 
of words that must be learned in a given time period 
(Goldfield & Reznick, 1990; Gopnik & Meltzoff, 1987; 
Lifter & Bloom, 1989; Mervis & Bertrand, 1994; Ninio, 
1995; Poulin-Dubois, et al., 1995; Reznick & Goldfield, 
1992). A third approach is to plot vocabulary growth over 
age and visually judge whether a spurt is present (Dromi, 
1987).  

All three of these techniques use subjective and arbitrary 
specifications, and it is not too surprising that values are 
chosen in a way that guarantees that the expected spurt is 
found. Moreover, none of these methods distinguish a true 
spurt from a gradual continuous increase in words (Bloom, 
2000).  
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The fourth, and more sophisticated, technique fit 
particular functions to vocabulary growth data (Ganger & 
Brent, 2004). If a logistic (S-shaped) function fit the data 
better than a quadratic (curvilinear or linear) function, then a 
spurt was considered to be present. Presence of a spurt was 
assessed by noting whether the root mean-squared residual 
for the quadratic function was more than twice that for the 
logistic function. Such residuals are smaller for better fits. 
Comparing the two values by dividing one by the other is 
known the log-likelihood ratio. Interestingly, only 4 of 20 
children showed a vocabulary spurt by this measure, leading 
the authors to question the general existence of this spurt.   

This kind of curve fitting is a definite improvement over 
the other three methods in objectivity and precision, but 
there are some limitations. Only two functions are tried, and 
it is not clear that these two functions can always 
differentially identify a spurt. For example, only a part of 
the logistic (just before the inflection point) can identify a 
spurt, and the rapidly increasing section of a quadratic could 
also resemble a spurt. As well, to optimize a function’s fit, 
hundreds of parameter values for the functions had to be 
searched for and tried. Finally, this technique, like the other 
three, assumes that there is at most one spurt to find. None 
of these techniques are able to objectively identify the start, 
end, central location, or amplitudes of single or multiple 
spurts.  

The AMD Technique 
Automatic Maxima Detection (AMD)1

Dandurand & Shultz, 2010

 is a technique to 
automatically detect and measure statistically reliable 
maxima in functions of one variable or any of their 
derivatives ( ). Because growth 
spurts are characterized by local increases in the rate of 
change, AMD finds spurts as maxima in the first derivative 
of time-varying measures. In AMD, only two free 
parameters influence the number of spurts detected: (1) the 
smoothing parameter lambda (λ), and (2) the p-value that 
determines the threshold used for statistical significance 
(Dandurand & Shultz, in press).   

AMD takes as input a sample of data pairs (yj, tj) where yj 
is a measure of interest (e.g., vocabulary size) and tj are 
corresponding sampling times. AMD first uses Functional 
Data Analysis (FDA) (Ramsay & Silverman, 2005) to fit a 
spline-based smooth function to approximate the data 
sample, as well the first three derivatives of this smoothed, 
continuous function to identify important function markers 
(see Figure 2).  

The fitted function takes the form of a weighted linear 
combination of B-spline basis functions kφ , k = 1,...,K: 

( ) ( )∑=
K

k
kk tctx φ  

FDA uses a roughness penalty approach to smoothing 
which limits or penalizes the size of some higher-order 

                                                           
1 A Matlab implementation of AMD, bundled with FDA, can be 

downloaded from: http://lnsclab.org/lib/AMD/. 

derivative of the smoothed function. Coefficients ck are 
selected to minimize a penalized sum of squared errors 
(SSE) between the estimated function and observed data 
vector y: 

( ) ( ) ( ) RcccyWcycyPENSSE ''| λφφ +−−=  
Where: c is a vector of coefficients ck; W is a symmetric 
positive definite weight matrix; φ  is the matrix of basis 

function values kφ (tj); λ is a smoothing parameter; and R is 
a roughness penalty matrix, computed as follows: 

( ) ( )∫ 















= dtt

dt
dt

dt
dR '2

2

2

2

φφ  

Note that the fitted curve x(t) becomes increasingly 
smooth as lambda (λ) increases; this smoothing value 
lambda is the only parameter in AMD that is manually set. 
There are techniques to automate selection of lambda 
(Dandurand & Shultz, 2010). However, existing techniques 
have important limitations, and so a careful manual 
selection is preferred (Ramsay, Hooker, & Graves, 2009).  

Determining which spurts are significant 
To determine which spurts are significant, AMD first 
estimates a confidence interval of the derivative (velocity) 
of the curve (see dotted lines surrounding the fitted curve in 
Figures 1 and 2) for the p-value provided (a standard value 
of .05 is used here). Width of confidence intervals (also 
called point-wise bands) is based on the variance of the 
fitted function: 

[ ] [ ]φφ cVarxVar '=  
Where: φ  is a matrix of basis function values at the 
observation points and Var[c] is the variance of coefficients 
ck, computed as follows:  

[ ] ( ) ( )∑ −−= 11 ''' φφφφφφ WWWWcVar e  

Where: W is a symmetric positive definite weight matrix; 
and  is the variance-covariance matrix of the residual 
vector ε.  

Second, AMD lists all local maxima in the velocity 
function as spurt candidates. Finally, for each spurt 
candidate, a null hypothesis is tested in which a straight line 
between the two local minima adjacent to the maximum in 
velocity is contained within the confidence band. This null 
hypothesis thus corresponds to an absence of spurt. A 
candidate is a genuine spurt when this null hypothesis has to 
be rejected, that is, the maximum of velocity is significant 
(see Figure 1). For a spurt to be considered significant, 
velocity not only has to significantly increase to indicate the 
beginning of a spurt, it must also significantly decrease to 
mark the end of the spurt (Dandurand & Shultz, 2010).  

For example, in Figure 7, a spurt is not detected in the 
upper section of the curve because velocity keeps on 
increasing (that is, acceleration is always positive). This 
design decision reflects the fact that not all processes 
eventually decelerate or stop, like physical growth does. In 
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other processes, such as growth of national economies, the 
existence of such upper bounds is less clear. In such cases, 
an acceleration in growth may not mark a spurt per se, but 
instead a transition for a slower steady-state rate of increase 
to another, faster steady-state rate. The definition of spurts 
in AMD excludes the latter case. 

 
 

 
Figure 1: Example of a significant spurt. Dotted lines 

above and below the smooth function correspond to 95% 
confidence bands.  

 

Quantifying spurts 
AMD also provides rigorous quantification of the important 
features of significant spurts: (1) when the spurt starts, (2) 
the point where it is most intense (maximal velocity), (3) the 
spurt amplitude and (4) the spurt duration. An example is 
given in Figure 2. A spurt starts when velocity is at an 
inflection point, acceleration is at a local maximum, and jerk 
crosses 0 at a negative slope. A spurt peaks when velocity is 
at a local maximum, acceleration crosses 0 at a negative 
slope, and jerk is negative. A spurt ends when velocity is at 
an inflection point, acceleration is at a local minimum, and 
jerk crosses 0 on a positive slope. Spurt amplitude is given 
by the vertical distance from acceleration at the start to 
acceleration at the end.  

In previous work, AMD successfully detected and 
measured three important and well-known phenomena of 
physical growth of children: (1) An adolescent growth spurt 
in virtually all children; (2) an earlier age of onset for girls’ 
adolescent growth spurts than for boys’; and (3) a smaller, 
pre-adolescent growth spurt in some children. Such spurts 
tend to be small and difficult to detect without techniques 
like AMD (Dandurand & Shultz, 2010).  

Applying AMD to the vocabulary spurt 
Our previous work also included some preliminary results 
for vocabulary spurts. In simulated data derived from a 
computational model of this spurt (McMurray, 2007), AMD 
flexibly found one large, global spurt under a low degree of 
sampling, and many local, mini-spurts under higher 
sampling.  

In real vocabulary data from three English-speaking 
children (Corrigan, 1978), AMD found an average of 2.0 
spurts per child. An example of a child who had 3 
significant spurts is presented in Figure 3. These data had 
also  been previously analyzed using FDA but without the 

benefit of automated detection of significance (Shultz, 
2003). Hence, identification of spurts and plateaus had to be 
performed manually. These early results suggested that 
children exhibit multiple vocabulary spurts, but the analysis 
was limited by the small sample size and limited number of 
observations. In the current project, we analyze a new set of 
data with a larger sample size and more densely sampled 
observations. 

 
 

 
Figure 2: Example of quantification of spurt features: where 
it starts, where it is most intense, its amplitude and duration. 

 
 
 

 
Figure 3: Example of an AMD analysis of vocabulary 

growth in a child over a few observations.  
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Method 
Here we apply the AMD method to data from each of 20 
children from an online database (Ganger, 2004) whose 
vocabulary growth had been recorded daily over the second 
year of life (Ganger & Brent, 2004). These are the same 20 
children studied in Ganger and Brent’s (2004) Experiment 
1. Parents had listed the words used by their child every day, 
even if the words had been used previously. Imitations had 
been excluded and context noted. As Ganger and Brent 
(2004) note, systematic parental reports on vocabulary 
enable large sample sizes, enhanced validity, and good 
reliability. We converted new words per day to cumulative 
vocabulary, and assumed a variation of zero when an 
observation value was not available (i.e., for missing data).  

The main unspecified parameter in AMD, as in most FDA 
techniques, is lambda, which controls the amount of 
smoothing that is applied to the raw data. We tried several 
lambda values (1, 100, 1×105, and 1×1010) and noticed the 
usual decrease in detected spurts with increases in lambda. 
For this paper, we concentrate on the results with a lambda 
of 1×1010, which is a very large value. Our results are 
therefore conservative; even more spurts were found using 
less smoothing. 

Results 
A plot of spurt locations and amplitudes for all 20 children 
at a lambda value of 1×1010 is presented in Figure 4. The 
number of spurts in this smoothing condition ranged from 1 
to 6, with a mean of 3.0 and SD of 1.5. Three children 
showed only 1 spurt. Examples of representative individual 
cases are shown in Figures 5 and 6. Child 10 had 2 spurts, 
with the largest one being last at 554 days. Child 22 showed 
4 spurts, the largest one being first, at 269 days. The 
variability in number, location, and amplitude of spurts is 
notable, all of which is obscured in a group plot of 
vocabulary spurts averaged across all 20 children (see 
Figure 7). Only 2 spurts appear in the averaged plot and 
they bear very little relation to results for any of the 20 
individual children. The dynamics and variability of 
vocabulary growth are nearly completely obscured by group 
plots because spurts in individuals vary greatly in location, 
number, and intensity.  

For comparison, the mean number of spurts at a smaller 
lambda value of 1×105 was 6.5, with SD 2.8. The range 
was from 3 to 15 spurts. 

Discussion 
There has been considerable disagreement about both the 
existence and causes of the vocabulary spurt, but until now 
virtually no consideration of the number of such spurts. The 
classical position has assumed one such spurt, during the 
second year. More recently, reviews of this evidence 
(Bloom, 2000) and results from more precise methods 
(Ganger & Brent, 2004) have cast serious doubts on the 
general existence of a vocabulary spurt. Earlier work had 
not taken the existence issue very seriously and had failed to 

distinguish gradual linear vocabulary growth from a genuine 
spurt, defined as a sharp increase against a background of 
linear growth. 

 

 
Figure 4: Spurts in vocabulary growth for 20 children 

(lambda = 1×1010). Spurt length is indicated by a horizontal 
line, spurt number by a number on the line, spurt amplitude 

by line thickness, and spurt peak by the location of the 
number.  

 
 

 
Figure 5: Vocabulary growth for child 10. The 2 spurt 

peaks are indicated by filled circles.  
 
The present work applies a relatively new FDA technique 

to vocabulary spurts. This AMD technique automatically 
detects growth spurts from densely-recorded observations 
on an individual, ensuring that each detected spurt is 
statistically reliable, thus distinguishing spurts from linear 
growth. AMD had been successfully applied to several 
growth phenomena including longitudinally-measured 
physical growth (Dandurand & Shultz, 2010). As in 
previous AMD applications to vocabulary growth, we found 
multiple spurts in most children tested. And like in previous 
work applying FDA methods to growth (Shultz, 2003), the 
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number of spurts detected increased with less smoothing of 
the data.  
 

 
Figure 6: Vocabulary growth for child 22. The 4 spurt peaks 

are indicated by filled circles. 
 
 

 
Figure 7: Mean vocabulary growth across all 20 children. 

The 2 spurt peaks are indicated by filled circles. 
 

Smoothing is valuable for ignoring small, random, and 
uninteresting bumps in growth curves. In other words, 
smoothing allows AMD to focus only on the larger and 
more noticeable spurts. Even with an extremely large, and 
thus conservative, value of 1×1010 for the lambda 
smoothing parameter, multiple vocabulary spurts were 
found in the majority of children (17 of 20). With a still 
large and conservative lambda of 1×105, all children 
showed at least 3 spurts and a mean of 6.5 spurts. In future 
work, we plan to apply AMD to other available datasets on 
vocabulary and other kinds of growth.  

Although AMD can detect statistically significant 
departures from linearity, interpretation of their theoretical 
importance requires expertise in the domain of the relevant 
study (Dandurand & Shultz, 2010). Interpretations of 
identified spurts may depend on the quality of the controls 

included in the research design. For example, volubility of 
children could vary according to their health status, mood, 
and transient environmental stimuli. Empirical studies 
should control as much as possible for such effects, because, 
based on data alone, no statistical tool can distinguish 
reliable spurts caused by such effects from those due to 
cognitive and developmental processes. 

Our findings could influence the literature on spurt 
causation, most of which has assumed only a single spurt at 
a particular age. Some of the proposed explanations, 
particularly those dealing with sudden developmental 
changes in other systems, may not enjoy being stretched to 
cover various multiple spurts at different ages, along with 
large individual differences in number, timing, and intensity 
of spurts. In any case, better documentation on the number 
and location of statistically reliable vocabulary spurts 
should provide researchers seeking explanations of these 
spurts with a clearer and more realistic target. 
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