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Abstract

Theoretical aspects of chalcogen-based semiconductor thin films manufacturing

by

Humberto Batiz Guerrero

Doctor of Philosophy in Engineering- Materials Science & Engineering

University of California, Berkeley

Professor Daryl C. Chrzan, Chair

Chalcogen-based materials, specially those containing S, Se or Te, can can be successfully
manufactured into thin films with semiconducting properties. Transition metal dichalco-
genides (TMDCs) are a class of layered materials whose electronic properties are known to
depend on the elastic state. Mono- and bi-layer WSe2, for example, undergoes a strain-
induced direct to indirect band gap transition. This feature, in principle, could be of great
use to design single-material electronic devices were circuits are “drawn” in different elastic
states. While it is possible to grow TMDCs in a variety of elastic states, precise control of
local strain is yet to be achieved. The first part of this dissertation develops a theoretical
model for an empirically-tested method of strain release for TMDCs with built-in strain: the
solvent evaporation-mediated decoupling (SEMD) method. The purpose of building such
model is to generate knowledge about the underlying mechanism that allows the strain re-
lease, and once this process is better understood, to propose further generalizations and
experiments that could lead to a better engineering of the elastic states.

The SEMD process consists simply in letting a droplet of liquid solvent evaporate on top of a
strained layer. The process was first reported in WSe2 monolayers grown by physical vapor
deposition (PVD) on top of amorphous silica; in this case, as the system cooled down from
growth to room temperature, strain build up in the film due to the mismatch between its
thermal expansion coefficient and that of the substrate. By finding the elastic equilibrium
state of a Hamiltonian that takes into account the elastic, interfacial, and substrate-film
interaction energies, the proposed model finds an in-plane deformation beyond the film’s
initial strain as the main effect of the solvent droplet, and identifies it as the strain release
mechanism. Furthermore, the proposes a selectivity criteria based on the contact angle that
determines whether the SEMD process would be successful for a given initial elastic state.

The second part of the thesis is about thin films made of Te. Te-based materials were heavily
studied in the 1980’s due to their applications in data storage, and are now experiencing a
revival mainly because its potential application in electronic and optic devices. Due to
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the chain-like nature of the crystalline Te structure, this material’s properties are highly
anisotropic, with the conductivity, for example, being greater in the direction parallel to
the chains. Because of this anisotropy, high-quality devices require large areas of single-
crystalline Te.

Here, we explore the crystallization process of vapor-grown amorphous Te under different
temperatures and, using tools from classical nucleation theory, investigate the nucleation and
growth rate of crystals in an amorphous matrix. As a low nucleation rate will necessarily
result in slow growth, another mechanism to grow Te single crystals is needed. An alternative
route is offered by growing Te upon WTe2, a substrate with two-fold symmetry that favors
chain alignment along its high-symmetry direction. Crystals nucleating on top of WTe2 are
found to have single crystal-like texture, and thus be suitable for device applications.
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Chapter 1

Introduction

A chalcogen is simply an element from group 16 of the periodic table. Group 16 comprises
O, S, Te, Se, and Po. However, since O has a distinctive chemical nature and Po is ra-
dioactive and scarce, this thesis will focus on semiconductor compounds with S, Te, and Se.
The chalcogenide compounds we will study will fall into two categories: transition metal
dichalcogenides (TMDCs) and tellurium thin films.

TMDCs are layered materials whose fascinating properties [2, 3] make them candidates for
electronic and optoelectronic applications. Accordingly, they have drawn attention from the
research community. Both theoretical and experimental works have proved that their optical
and electronic properties are a function both of their thickness and their elastic state [4–6].
It has been proved that mono- and bi-layer WSe2, for example, undergoes a strain-induced
direct to indirect band gap transition, drastically changing their photoluminescence[7]. Even
though it is possible to induce uniform uni- and biaxial strain in TMDCs by means of
substrate bending and stretching, and thermal expansion coefficient mismatch between the
substrate and the film[4, 8], a method to locally control the strain state of TMDCs is still
lacking. With the aid of such method, we could engineer the dependency of the optoelectronic
properties on the elastic state. A precise control on the elastic state, and hence on the
optoelectronic properties, may help to synthesize single-material electronic devices, with
circuits following the lines of relaxed material.

A promising candidate for local strain control is the solvent-evaporation mediated de-
coupling (SEMD) method, reported experimentally in [9]. The SEMD process, presented
in Chapter 2, consists in letting a droplet of liquid solvent evaporate on top of a strained
layer. The process was first reported in WSe2 monolayers grown by physical vapor deposition
(PVD) on top of amorphous silica. According to the Ref. [9], the WSe2 had an intrinsic
tensile strain of 1.54 ± 0.05% due to a the mismatch in the thermal coefficients of expan-
sion between the film and the substrate. Thus, with the objective of providing a better
understanding of the SEMD process, the first part of this dissertation develops a theoretical
model for the SEMD method. The model takes into account the elastic, interfacial, and
substrate-film interaction energies, and identifies the critical parameters of the phenomenon.
Moreover, by finding the equilibrium state of the proposed Hamiltonian, it is established that
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the presence of the droplet deforms the film beyond the initial strain (it is also established
that the film’s out-of-plane deformation is negligible); this deformation, depending on the
contact angle of the droplet and the sign of the initial strain, can trigger a strain relaxation
event or stabilize the initial strain. The model, then, proposes a selectivity criteria based
on the contact angle that determines whether the SEMD process would be successful for a
given initial elastic state. With this selectivity criteria in mind, further experiments could
be conducted to test the applicability of the model.

The second part of the thesis, chapters 3 and 4, is devoted to tellurium thin films. Te-
based materials were heavily studied in the 1980’s due to their applications in data storage,
and are now experiencing a revival mainly because its potential application in electronic
and optic devices. Te has a crystalline form composed of triangular chains, with the chains
arranged hexagonally. While it is clear that the intra-chain bonds are covalent, the nature
of the inter-chain bonds is yet to be established, but they are weaker than their intra-chain
counterparts. The chain-like nature of the crystal structure results in the material properties
being highly anisotropic, with the conductivity, for example, being greater in the direction
parallel to the chains. Because of this anisotropy, high-quality devices require large areas of
single-crystalline Te.

In chapter 3, the crystallization process of vapor-grown amorphous Te under different
temperatures is explored. Analyzing experimentally-obtained polarized-light micrographs
and in-situ videos of the crystallization process, it was possible to extract the growth and
nucleation rate of crystalline nuclei within the initial amorphous matrix, as well as the final
crystal number density for different experimental conditions. Later, using tools from classical
nucleation theory, the nucleation and growth rates were related to growth and nucleation
energy barriers. While it is proven that classical nucleation theory can be used to model
the crystallization process in Te thin films, as a low nucleation rate will necessarily result in
slow growth, no satisfactory way of producing large single crystals quickly is found.

Chapter 4 offers an alternative route to create large single-crystal-textured Te thin films:
orienting the chains of multiple crystals in the same direction. This is achieved by growing Te
in WTe2, a substrate with two-fold symmetry that favors chain alignment along its two-fold
axis. Crystals nucleating on top of WTe2 are found to have single crystal-like texture, and
thus be suitable for device applications. Also, this chapter offers theoretical insight about
the kinetics of the growth and substrate treatments that increase the impingement rate of
Te.

Each these chapters start with a brief motivation of the problem and a description of
the experiment that is going to be modeled. Later, the theoretical tools are introduced and
then the model is built. Finally, each chapter offers conclusions summarizing the results and
proposing future theoretical work and further experiments.

Finally, Chapter 5 presents conclusions and proposes future work.
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Chapter 2

Solvent-Evaporation Mediated
Decoupling

Two-dimensional transition metal dichalcogenides (2D TMDCs) have been researched in-
tensely due to their fascinating properties [2, 3]. Moreover, it has been proven that their
optical and electronic properties can be strain engineered [4–6]. Accordingly, the need for
a method by which the strain in 2D materials can be controlled has become more press-
ing. A promising candidate for engineering the strain is the solvent-evaporation mediated
decoupling (SEMD) method that was first reported experimentally in [9].

This chapter is devoted to the presentation of the SEMD and a theoretical model that
was developed to further explore SEMD method’s capabilities and suggest new experiments.
In section 2.1, we present a detailed account of the experiments in which SEMD was first
observed. Section 2.2 introduces to the tools we are going to be using from the calculus
of variations; the goal of this section is not to be a comprehensive treatise of the matter
at hand, but rather a presentation of the equations used in the following. The theoretical
model is developed in section 2.3, with subsections that go from the simplest case, that of a
strained film on top of a substrate, to the most complex, when the a droplet on top of the
film is considered and the film is allowed to have out-of-plane movement. Finally, results
and conclusions are presented in sections 2.4 and 2.5, respectively. This chapter expands
and borrows from what is said in Ref. [10].

2.1 Experimental details

Recently, it was shown that WSe2 monolayers synthesized using chemical vapour deposition
are able to retain some of the strain arising from the mismatch in thermal coefficients of
expansion (TCE) between the film and the substrate, while still retaining their intrinsic
optoelectronic properties [8]. This observation is intriguing, as the strain was retained for
films grown on amorphous substrates. While strain stabilization arising from crystalline
epitaxial growth is well documented, one might expect that remnant thermal mismatch
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strain mediated by van der Waals bonding to a substrate would be relaxed during cooling
from the growth temperature, as the bonding between the film and substrate is relatively
weaker.

Since the strain is mediated by the bonding between the film and substrate, the strain
should be relieved if the film decouples from the substrate. A method to release the TCE
mismatch induced strain in WSe2 mono- and bilayers was recently presented [9]. This solvent-
evaporation mediated decoupling (SEMD) process consists in letting a droplet of acetone
evaporate on top of a strained WSe2 film grown on amorphous silica. The decoupling refers
to the supposition that the droplet evaporation enables the film to slip upon the substrate
so as to reduce its internal strain while still remaining bonded to the substrate. The strain
in the 2D TMDC is released as the film-liquid-vapor triple contact line sweeps over the film.
The stress in the films relaxes from the edges inward, as is shown through time-dependent
photoluminescence experiments [9]. In contrast, no strain relaxation is observed when the
film is completely submerged in acetone.

The effectiveness of the SEMD process raises (at least) three interesting questions. First,
are the bonds formed during van der Waals epitaxy sufficiently strong to sustain the strain,
or must there be some number of covalent bonds between the film and the substrate? Second,
what is the nature of the perturbation to the film induced by the presence of the acetone
that allows for decoupling of the film and the substrate? Third, what are the conditions
under which SEMD will be operative?

2.2 Calculus of Variations

As the problem at hand requires computing the minimum energy state of a system for a
given Hamiltonian, the calculus of variations is a natural choice. In this section we will be
following and using notation similar to that of Ref. [11]. The objective of this section is,
rather than give a comprehensive overview of the calculus of variations, to develop sufficient
understanding as to arrive to Eqn. 2.19. On future sections, we will be using the calculus
of variations, and specially Eqn. 2.19, to find configurations that, given a Hamiltonian, are
energy extrema. We are particularly interested in configurations that minimize the energy.
Let us start then with some definitions.

One can think of a functional as a “function of functions,” and a general and basic
functional can be written as

J =

∫ x1

x0

F (x, y(x), y′(x))dx, (2.1)

where J is the functional and F is a function of the three arguments x, y(x), and y′(x). In
this case, we see that the functional J has a definite numerical value if the function y(x) is
fixed, and in this sense we say that J is a functional of y. In “normal” calculus, our task was
to find the number x in which a given function f(x) had an extrema; similarly, in variational
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calculus our goal is to find a function y(x) in which a given functional J has an extrema. We
will also say that a function f is belongs to class Cn if its derivatives up to n are continuous.

We start by considering a C1 function η(x) satisfying η(x0) = η(x1) = 0. If the functional
J defined in Eqn. 2.1 is evaluated at y(x)+αη(x), where α is a parameter and y(x) is assumed
to be an extremum of the functional J , we may think of J as a function of α, that is

J(α) =

∫ x1

x0

F (x, y(x) + αη(x), y′(x) + αη′(x))dx. (2.2)

Thus, we know from calculus that J(α) has an extremum on α = 0, and that J ′ = 0, that is

J ′(0) =

∫ x1

x0

[F,yη(x) + F,y′η(x)] dx

= [F,y′η(x)]
x1

x0
+

∫ x1

x0

η(x)

[
F,y −

d

dx
F,y′

]
dx

=

∫ x1

x0

η(x)

[
F,y −

d

dx
F,y′

]
dx = 0, (2.3)

where we are obviating the functional dependencies y(x) and F (x, y, y′), and a subscript
after a comma denotes differentiation with respect to the quantity following the comma. It
is easy to prove that, in order for Eqn. 2.3 to be true for an arbitrary function η(x),

F,y −
d

dx
F,y′ = 0 (2.4)

must be satisfied. Eqn. 2.4 is called Euler’s equation and is a requirement for y(x) to be an
extremum of J as defined in Eqn. 2.1.

We introduce notation similar to that of calculus and define the first variation of the
functional J , δJ , as the product αJ ′(0). We also make the definition δy ≡ αη(x). With this,
we can rewrite Eqn. 2.3 as

δJ = [F,y′δy]
x1

x0
+

∫ x1

x0

(
F,y −

d

dx
F,y′

)
δydx (2.5)

To obtain Eqn. 2.4 we have assumed that the value of y(x) is fixed at x0, x1. However,
this is not the case of the physical model to be presented below, were we do not restrict the
displacement of the film in one of the integration limits, say the lower one. To account for
this condition for the variational defined in Eqn. 2.1, we consider a function η such that
η(x0) ̸= 0, and η(x1) = 0. Then, following a derivation similar to that used to arrive to Eqn.
2.3, we get that, besides Eqn. 2.4, it is necessary for y(x) to be an extrema to satisfy the
boundary condition

F,y′

∣∣∣∣
x=x0

= 0. (2.6)
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Similarly, if the functional is of the form

J =

∫ x1

x0

F (x, y(x), y′(x))dx− ψ(y0) + ϕ(y1), (2.7)

where yi = y(xi), the natural boundary conditions have the form

ψ′(y0) + F,y′

∣∣∣∣
x=x0

= 0, (2.8)

ϕ′(y1) + F,y′

∣∣∣∣
x=x1

= 0. (2.9)

Finally, we look at the case where the integral limits are not fixed. To do this, we consider
again the functional defined in Eqn. 2.1. Whereas previously we have considered a function
y(x) + αη(x), it is convenient to now consider that y depends on α in a general way, i.e.
y(x) = f(x, α = 0). We will also assume that f(x, α) is C2, and that xi(α = 0) = xi. With
this, we have that

J(α) =

∫ x1(α)

x0(α)

F (x, f(x, α), f ′(x, α))dx. (2.10)

To continue with our δ notation introduced earlier, we define

δxi =
dxi(α)

dα

∣∣∣∣
α=0

α, (2.11)

δy =
∂f(x, α)

∂α

∣∣∣∣
α=0

α, (2.12)

δy′ =
d

dx
δy. (2.13)

In this notation, the first variation of J is given by

δJ = [F (x, y, y′)δx]
x1

x0
+

∫ x1

x0

(F,yδy + F,y′δy
′) dx. (2.14)

Transforming the second term in the integral by parts integration, we have∫ x1

x0

F,y′δy
′dx = F,y′(x1, y1, y

′
1)(δy)1 − F,y′(x0, y0, y

′
0)(δy)1 −

∫ x1

x0

(
d

dx
F,y′

)
δydx, (2.15)

where

(δy)i =
df(xi, α)

dα

∣∣∣∣
α=0

α. (2.16)
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It will be useful to find an expression for (δy)i in terms of something we know. For this,
we obtain the first variation of yi = f(xi(α), α):

δyi =
df(xi(α), α)

dα

∣∣∣∣
α=0

α

=

[
∂f

∂xi

dxi
dα

+
∂f

∂α

]
α=0

α

= y′iδxi + (δy)i. (2.17)

Inserting Eqns. 2.17 and 2.15 into 2.14, we have

δJ = [(F − y′F,y′) δx+ F,y′δy]
x1

x0
+

∫ x1

x0

(
F,y −

d

dx
F,y′

)
δydx. (2.18)

Combining the arguments used to arrive to Eqns. 2.8, 2.9, and 2.14, it is possible to
obtain the first variation of the functional defined in Eqn. 2.7 when the integration limits
are allowed to vary:

δJ = [(F − y′F,y′) δx]
x1

x0
+ [(F,y′ + ϕ,u) δy]x1

− [(F,y′ + ψ,u) δy]x0
+ ϕ,x1δx1 + ψ,x0δx0

+

∫ x1

x0

(
F,y −

d

dx
F,y′

)
δydx. (2.19)

Eqn. 2.19 is the most general function we are going to need. Thus, we can end this
section and present the physical model.

2.3 Model overview

Now that we we have established the mathematical tools, we move forward to study our
particular problem. For this, we will create a continuum Hamiltonian for the substrate-
film-droplet-air system that takes into account the elastic, interfacial, and substrate-film
interaction energies into account. As the Hamiltonian is a functional of the film’s displace-
ment, we can use the calculus of variations to find the minimum energy elastic state of the
system. As this is not an easy problem, we will start from the simplest case and then scale
our way to more realistic models. In Section 2.3.1 we model the case of a film strained on top
of a substrate. Then, we add the droplet but preclude out-of-place displacement (OOPD) of
the film. Finally, we discuss the magnitude of the OOPD. A schematic of the geometry of
the model can be found in Fig. 2.1.

In order to make progress, however, there are some assumptions that are needed. The
first one is that we will be considering a circular film instead of one with a triangular shape,
which would be closer to the experiments [9]. The circular geometry was chosen as it leads
to an axisymmetric model that can be solved relatively easily. While the geometry of the
film may alter the shape of the contact patch for the droplet and the film, the underlying
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Figure 2.1: A schematic of the continuum model: (a) side view and (b) top-down view.
The WSe2 sample is assumed to be circular in shape with unstrained radius R, and rigidly
attached to the substrate within the radius ∆, again defined in the unstrained material
coordinate system. The material within this radius is assumed to be under the fixed biaxial
strain ε0 (that arises from the synthesis process). The radius of the contact patch between
the acetone and the film is taken to be r0, also in the unstrained material coordinate system.
The contact angle θ also is shown.

physical processes will remain very similar, and the insights from the circular model will be
helpful in understanding the release of the triangular samples. The change from a circular
geometry to a triangular one also results in more atoms at the edge of the film, and it is
reasonable to expect that these atoms might be bonded more strongly to the substrate than
atoms in the interior of the film. The model does not account for differences between interior
and edge atoms, but experimental results [9] prove that the force exerted by the droplet is
enough to overcome any force due to extra bonds that the edge atoms might have with the
substrate.

Another assumption that we make is that the film-liquid and film-vapor interfacial ener-
gies will not depend on the elastic state of the film. This is justified because the strain in
the film is assumed to be small enough so that no substantial change in the nature of the
bonding occurs.



CHAPTER 2. SOLVENT-EVAPORATION MEDIATED DECOUPLING 9

2.3.1 Film over substrate

The model of a strained film on a substrate can be used to develop an understanding of
the forces preventing the TCE mismatch strain from relaxing due to thermal fluctuations or
other effects.

Consider the film-substrate system without the droplet. Specifically, consider the con-
figuration in which the film is decoupled and completely free to slide beyond a radius of ∆,
and is also biaxially strained by an amount ε0 for r < ∆ (see Fig. 2.1(b)). One can use
continuum linear elasticity theory to estimate the magnitudes of the forces that the atoms
near ∆ must exert in order to keep the film stable.

The system is axially symmetric with a deformation map given by r → r + u(r), with
u(r) the in-plane displacement. Then, we have the restriction that

u (r) = ε0r, r ≤ ∆ (2.20)

Within continuum linear elasticity theory, the energy of the system is given by

E = 2π

∫ R

0

Es[r, u(r), u
′(r)]rdr

= 2π

(
∆2(λ+ µ)ε20 +

∫ R

∆

Es[r, u(r), u
′(r)]rdr

)
, (2.21)

where λ and µ are the Lamé constant and shear modulus of the WSe2 film, respectively, and

Es[r, u(r), u
′(r)] =

(λ+ 2µ) (r2u′(r)2 + u(r)2) + 2λru(r)u′(r)

2r2
(2.22)

is the strain energy density. As E can be thought of as the basic functional defined in Eqn.
2.1, and we do not have any restriction for u(r) at r = R, we know that, for u(r) to be an
extremum, it must satisfy the Euler Eqn. 2.4 and the boundary conditions

u(∆) = ∆ε0,

Es,u′r

∣∣∣∣
r=R

= 0. (2.23)

Solving the differential equation, one finds that the radial displacements of the film are
given by:

u (r) =
∆2ε0 (µr

2 +R2(λ+ µ))

r (∆2µ+R2(λ+ µ))
, r ≥ ∆, (2.24)

and by plugging Eqn. 2.24 into 2.21, we get that the equilibrium energy of the system is

Eelastic (∆) = 2π∆2(λ+ µ)ε20 +
2π∆2µ(λ+ µ)ε20(R−∆)(∆ +R)

∆2µ+R2(λ+ µ)
. (2.25)
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Note that, as there is only one minimum that satisfies Euler’s Eqn. and the boundary
conditions, and as one can easily find a displacement u(r) resulting in a greater energy, we
can be sure that the displacement defined in Eqn. 2.24 is the global minimum, and hence
the energy in Eqn. 2.25 is the equilibrium energy for a given ∆. As ∆ is the material radius
up to which the film is coupled to the substrate, we can think of the force on ∆ as the
decoupling force, the film being totally decoupled and allowed to relax when ∆ = 0.

The generalized force leading to decoupling of the monolayer can be computed from the
elastic energy. One finds:

F∆ = −∂Eelastic

∂∆
= −4π∆R4(λ+ µ)2(λ+ 2µ)ε20

(∆2µ+R2(λ+ µ))2
, (2.26)

where the negative sign indicates that the force is acting to decrease ∆, as expected. F∆

is plotted as a function of ∆ for the parameters shown in Table 2.1, a monolayer of radius
R = 8 µm, and initial strain of ε0 = 0.7% in Fig. 2.2(a), for reference. The sample size
and strain were chosen to be comparable to those studied experimentally [9], though the
experimental samples are triangular. Unless otherwise noted, these parameters will be used
throughout Chapter 2.

To make a quantitative estimate of the bond forces necessary to retain the strain, consider
the following model. Suppose that the atoms within the ∆− δ < r < ∆ annulus slip so as to
relieve the strain within the annulus. Also assume that the atoms with positions such that
r > ∆ remain decoupled from the substrate, so that they can slide freely on the substrate.
One can estimate the average bond force on the atoms in the considered annulus by equating
the reduction in elastic energy to the work those bond forces would need to do to restrain
the film to its pre-slipped configuration.

The change in elastic energy upon decoupling an annulus of thickness δ starting from a
strained region of radius ∆, defined to be ∆Eelastic (∆, δ) can be approximated by

∆Eelastic (∆, δ) ≈ F∆δ. (2.27)

In this sense, F∆ sets the scale for the atomic forces, and can be used to assess the changes
in these atomic forces with changing parameters. However, one can make a more accurate
calculation by computing the finite difference in energy directly using Eqn. (2.25), so going
forward, we define ∆Eelastic (∆, δ) = Eelastic (∆− δ)− Eelastic (∆).

The average displacement of the atoms in the ∆− δ < r < ∆ annulus due to the motion
of the decoupling front is defined to be ū (∆, δ). Defining the displacement of the atoms
within the annulus upon motion of the pinned region boundary by δ to be ∆u (r, δ):

∆u (r, δ) =
ε0(∆− δ)2 (µr2 +R2(λ+ µ))

r (µ(∆− δ)2 +R2(λ+ µ))
− ε0r, (2.28)
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one finds:

ū (∆, δ) =

∫ ∆

∆−δ
2πr∆u (r, δ) dr

π
(
∆2 − (∆− δ)2

) (2.29)

= − 2δR2(2δ − 3∆)(λ+ µ)ε0
3(δ − 2∆) (µ(δ −∆)2 +R2(λ+ µ))

.

Using this observation, the magnitude of the average force on the atoms in the region of
interest, defined to be f̄ (∆, δ), is approximated by the change in elastic energy computed
using Eqn. (2.25) divided by the product of the number of atoms in the strip contacting the
substrate and their average displacement:

f̄ (∆, δ) =
∆Eelastic (∆, δ)Ac

ū (∆, δ) π
(
∆2 − (∆− δ)2

) (2.30)

=
3R2Ac(δ − 2∆)(λ+ µ)(λ+ 2µ)ε0
δ(2δ − 3∆) (∆2µ+R2(λ+ µ))

,

with Ac the area of the unit cell for the monolayer. f̄(∆, δ) is plotted as a function of ∆ for
various values of δ in Fig. 2.2(b).

Care should be used in applying Eqn. (2.30). Examination of this expression shows that
as δ → 0, the characteristic bond force diverges ∼ δ−1. This implies that the average bond
force must be infinite to keep the film coupled to the substrate. The difficulty, of course,
is that the film is not an elastic continuum, and decreasing the radius of a coupled region
by amounts less than the lattice parameter makes little sense. So applying the model for
δ ∼ lattice parameter is not likely to yield reasonable results. Moreover, the film may not
relax smoothly on the scale of the lattice parameter, but, as discussed below, it is likely to
have domains of relaxation that in turn trigger other domains to relax, etc. However, a more
detailed analysis requires an atomic scale model, which is beyond the scope of this work.

Importantly, for reasonable values of δ, the model predicts that forces of the order of
0.01 eV/Å are sufficient to retain the strain for reasonable values of δ. The strength of
covalent bonds is of the order of 1 eV/Å [12], so the bond strength necessary to sustain the
strain is approximately two orders of magnitude weaker than that expected from covalent
bonds. Indeed, atomic scale simulations for a strained MoS2 monolayer system predict that,

in order to maintain a tensile strain of ∼1%, forces with an order of magnitude of 0.01 eV Å
−1

per atom are needed [13]. The theory predicts that the average force per atom within a strip

50 Å wide necessary to sustain the observed strain is of the order of 0.01 eV Å
−1
. It is

reasonable to expect that the slipping of the decoupling front will involve the correlated
motion of atoms over a strip this wide. It is also likely that the decoupled portion of the
film will, perhaps weakly, re-adhere to the substrate, further stabilizing the strain within
the film. The model, which neglects this re-adhering, will overestimate the force required
for stabilization. Thus it appears that a relatively thin strip of atoms weakly bonded to
the surface is able to maintain the tensile strain in the film, such that it is not necessary
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to invoke the presence of covalent bonds between the substrate and the film. The analysis,
however, does not rule out the possibility that a small number of covalent bonds might be
present.

Table 2.1: Numerical values of the material properties and the methods by which they were
obtained. DFPT stands for Density Functional Perturbation Theory, and γsl was computed

using Eqn. (2.31) with θ = 22◦. Values are in MeV Å
−1

units.

λ [14] µ [14] γsv[15] γlv [16] γsl
144 303 0.24 0.16 0.10

DFPT Contact angle measurement Capillary rise Young’s equation

2.3.2 Droplet over film over substrate

After we have solved a problem using the mathematical tools developed in Sec. 2.2, and
gained some understanding on the nature of the bonds maintaining the strain in the WSe2
film, we now add the droplet to the model. The droplet is assumed to have the shape of a
spherical cap and to be concentric to the film, as shown in Fig. 2.1.

2.3.2.1 No out-of-plane displacement

Empirically, it is known that the passage of the contact triple point across the surface of
the film leads to decoupling and release of the stress. Evidently, the contact triple point
increases the forces tending to decouple the film. In general, when considering static friction,
one assumes that the frictional force is related to the normal force. One possible explanation
for the decoupling of the film by the evaporating liquid droplet is that the droplet lifts the
film, and reduces the friction force [9]. A detailed analysis of this possibility is presented
in Sec. 2.3.2.2 where it is shown that the film is expected to lift approximately 0.01 Å, an
amount that is surely negligible. Given this observation, then, the origins of the decoupling
must be present in a model for which the lifting of the film is negligible. One such model is
presented here.

The starting point for this model is the exploration of the deformation of a solid in the
presence of a droplet. If a droplet sits on an undeformable substrate, the contact angle obeys
Young’s equation:

γlv cos(θ) + γsl − γsv = 0, (2.31)

where θ is the contact angle between the substrate and the liquid; the subscripts l, v, s stand
for liquid, vapor and solid, respectively; and γij is the specific interfacial free energy of the
ij interface. It is well known, however, that if the substrate is deformable, Eqn. (2.31) is no
longer valid [17–25]. While there are several models describing this system [23, 26–28], the
film under consideration is bound to a substrate that resists the vertical deflection, as noted
above.
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Figure 2.2: (a) The generalized force on the decoupling boundary plotted as a function of
∆. (b) An estimate of the average force per atom experienced by atoms with ∆ − δ ≤
r ≤ ∆ computed as described in the text plotted vs. ∆ for three different values of δ.
The magnitudes of these forces are approximately two orders of magnitude below the range
associated with covalent bonding.
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Therefore, we suppose that a spherical cap droplet is supported by a material that is only
allowed to have in-plane deformation. Physically, this corresponds to a thin film supported
on a rigid substrate, with the interaction between the film and substrate strong enough to
prevent out-of-plane deformations. Considering the droplet to be centered on the film, the
problem remains axisymmetric, and the deformation map can also be written as r → r+u(r).
The distance from the center of the droplet to the triple contact line is defined to be r0+u0,
with u0 = u(r0). As in Sec. 2.3.1, it is assumed that u(r) = ε0r if r ≤ ∆.

First, consider the case in which the film is submerged in liquid, i.e. r0 > R. In this
instance, the elastic energy of the film changes as ∆ is decreased from ∆ = R, but the
interfacial energies remain constant (in the approximation that any film strain dependence
to the liquid/film interfacial free energy can be neglected); then, the system reduces to that
presented in Sec. 2.3.1. Similarly, if r0 ≤ ∆, the deformation of the film will not have any
effect on the interfacial energy of the system, as the film-liquid-vapour triple contact line
sits is on the undeformable region; in this case, the forces in the system are also reduced to
those computed in Sec. 2.3.1. Thus for the droplet to influence the decoupling process, the
edge of the droplet must fall in the film’s deformable region, i.e. ∆ < r0 < R, and this will
be assumed in what follows.

With the droplet present, the total energy of the system is given by

E = 2π (ε0∆)2 (λ+ µ) + π∆2γsl+

+ 2π

(∫ r0

∆

(γsl + Es[r, u(r), u
′(r)]) rdr +

∫ R

r0

(γsv + Es[r, u(r), u
′(r)]) rdr

)
+

+ γlvAlv, (2.32)

where the first two terms on the right hand side correspond to the elastic and interfacial
energy in the 0 ≤ r < ∆ region, respectively; Alv is the liquid-vapor interface area; and Es

is the strain energy density, defined in Eqn. 2.22. In order for the energy E in Eqn. 2.32 to
have the form of a sum of previously studied functionals (Eqn. 2.7), an expression for Alv

in terms of the boundary values of u0 and r0 is needed. To do this, we start by considering
the volume of a spherical cap with base radius d = r0(1 + ε) and contact angle θ, which is
given by

V =

√
Alv (Alv + 2πd2)

√
1− πd2

Alv

6
√
π

. (2.33)

Solving for Alv, linearizing in the strain ε, and then doing the replacement εr0 → u0, one
finds:
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Alv(r0, u0, V ) =
2π7/3r50u0

(√
π2r60 + 9V 2 + 3V

)
√
π2r60 + 9V 2

(
6V
(√

π2r60 + 9V 2 + 3V
)
+ π2r60

)2/3+
+
π5/3r30

(
2u0

(√
π2r60 + 9V 2 + 3V

)
+ r0

√
π2r60 + 9V 2

)
√
π2r60 + 9V 2

(
6V
(√

π2r60 + 9V 2 + 3V
)
+ π2r60

)1/3 +

+

(
6πV

(√
π2r60 + 9V 2 + 3V

)
+ π3r60

)1/3

− πr0(r0 + 2u0). (2.34)

The in-plane displacement function can be defined as a piecewise function

u(r) =


rε0 r < ∆

u1(r) ∆ ≤ r ≤ r0

u2(r) r0 ≤ r ≤ R,

(2.35)

subject to boundary conditions

u1(r0) = u2(r0) = u0 and

u1(∆) = ε0∆. (2.36)

To work our way to the first variation of the energy, it is useful to group the full energy
of the system, Eqn. (2.32), as follows:

E =

∫ r0

∆

F1[u1(r), u
′
1(r), r] dr︸ ︷︷ ︸

E1

+

∫ R

r0

F2[u2(r), u
′
2(r), r] dr︸ ︷︷ ︸

E2

+ϕ(r0, u0), (2.37)

where
Fi = 2πr (γsi + Es[ui(r), u

′
i(r)]) , (2.38)

γs1 = γsl, γs2 = γsv, and

ϕ(r0, u0) = 2π (ε0∆)2 (λ+ µ) + π∆2γsl + γlvAlv(r0, u0). (2.39)

Then, the variational of the energy can be written as

δE = δE1[u1, u
′
1; r0] + δE2[u2, u

′
2; r0] + δϕ(r0, u0), (2.40)

where E1 and E2 are functionals of the in-plane displacement u, u′, and also depend on r0;
on the other hand, ϕ is a function of the parameters r0 and u0. As there are no physical
constraints for the values of u1(r0), u2(r0), and u2(R) (that is, other than the continuity
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constraint u1(r0) = u2(r0)) natural boundary conditions are used. Thus, the variationals of
the individual terms in Eqn. (2.40) are given by

δE1 =

∫ r0

∆

(
F1,u1 −

d

dr
F1,u′

1

)
δu1dr+

+
(
F1 − u′1F1,u′

1

)∣∣∣∣
r=r0

δr0+

+ F1,u′
1

∣∣∣∣
r=r0

δu1(r0), (2.41)

δE2 =

∫ r0

∆

(
F2,u2 −

d

dr
F2,u′

2
δu2dr

)
+

+ F2,u′
2

∣∣∣∣
r=R

δu2(R)+

−
(
F2 − u′2F2,u′

2

)∣∣∣∣
r=r0

δr0+

− F2,u′
2

∣∣∣∣
r=r0

δu2(r0), (2.42)

δϕ =ϕ,r0δr0 + ϕ,u0δu0, (2.43)

where the functional dependencies have been obviated. Then, grouping terms, we have that

δE =∫ r0

∆

(
F1,u1 −

d

dr
F1,u′

1

)
δu1dr (2.44a)

+

∫ R

r0

(
F2,u2 −

d

dr
F2,u′

2

)
δu2dr (2.44b)

+
(
F1 − u′1F1,u′

1
− F2 + u′2F2,u′

2
+ γlvAlv,r0

)∣∣∣∣
r=r0

δr0 (2.44c)

+
(
F1,u′

1
− F2,u′

2
+ γlvAlv,u0

)∣∣∣∣
r=r0

δu0 (2.44d)

+
(
F2,u′

2

)∣∣∣∣
r=R

δu2(R). (2.44e)

Since all the variations are arbitrary, one can assume that each of the terms (2.44a) - (2.44e)
vanish independently.

Consider terms (2.44a) and (2.44b). Since δui is an arbitrary variation, one concludes
that Fi,u − d

dr
Fi,u′ = 0. Using the definition of Fi, Eqn. (2.38), and solving the resulting

second order differential equation, one finds

ui(r) = ai1r +
ai2
r
, (2.45)
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where aij are constants to be determined. Using the boundary conditions (2.36), and setting
term (2.44e) equal to zero, it is possible to write three of the undetermined constants aij in
terms of a11:

a12 = ∆2(ε− a11),

a21 = µ
a11 (r

2
0 −∆2) + ∆2ε

r20µ+R2(λ+ µ)
,

a22 = R2(λ+ µ)
a11 (r

2
0 −∆2) + ∆2ε

r20µ+R2(λ+ µ)
. (2.46)

An analytical expression for a11 as a function of r0 can be derived from setting term
(2.44d) to zero. Lastly, it is possible to compute a numerical value for r0 by setting term
(2.44c) to zero. Then, with this solution, the equilibrium configuration of the system and
its energy are determined from Eqns. (2.32), (2.45), and (2.46), along with the expression
for a11 and the numerical value of r0.

2.3.2.2 Out-of-plane displacement

Allowing for the film to have out-of-plane displacements (OOPDs) will change the model
in three main ways. First, some of the liquid will be wrapped by the film, resulting in a
decrease of Alv; if this is to happen spontaneously, this will necessarily decrease the liquid-
vapour interfacial energy. Second, the substrate-film interaction has to be taken into account.
Finally, the elastic energy of the film, previously given by (2.22), needs to be modified to
account for the OOPD. We can estimate the extent of the OOPDs by looking at how the
energy of the system changes when these additional terms are considered.

The deformation map of the film is given by {r, 0} → {r + u(r), f(r)}, where f(r) is
the OOPD at radius r. If the film is lifted at r0, a portion Vw of the liquid volume V will
be wrapped by the film. Assuming that the length of the OOPD feature of the film near r0
is small compared to R, and that far from r0 the film is at the equilibrium height (set at
f(r) = 0), we have

Vw = 2π

∫ r0

0

(r + u(r))) (1 + u′(r)) (f0 − f(r)) dr ≈ πf0 (r0 + u0)
2 , (2.47)

where f0 = f (r0). Then, the liquid-vapour interfacial energy is given by

Elv = γlvAlv (r0, u0, V − Vw) . (2.48)

The substrate-film interaction energy is fit to a Morse potential:

Esubs−film = 2π

∫ R

0

rDe {1− exp [−β (r − req)]}2 dr, (2.49)

where De, β are constants. To determine De and β, Density Functional Theory (DFT)
computations were run using the Vienna Ab initio Simulation Package [29–31] version 5.4.4.
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The projected-augmented-wave method was used to model the core electrons [32], and the
exchange-correlation energy was estimated using Perdew-Burke-Ernzehof functionals [33].
All the simulations were run using a 500 eV cutoff energy for the plane-wave basis set, a
Γ-centered k-point 8× 8× 1 grid, and convergence criteria of 10−4 eV for the electronic self-
consistent cycle. The simulations consisted in a 27 layer slab of α-SiO2 with a reconstructed
(001) surface, as reported in Ref. [34]; a 3 × 3 monolayer WSe2 supercell was positioned
on top of the SiO2; to obtain a commensurate structure, the SiO2 was put under a −0.3%
biaxial compression. The parameters in Eqn. (2.49) were obtained by fitting the energies

obtained by DFT, the results being De = 0.50meV Å
−2

and β = 1.31 Å
−1
. The energies,

along with a the Morse fit, are shown in Fig. 2.3.

Figure 2.3: Energy of WSe2/SiO2 system as a function of the film-substrate separation, d.

The solid line is Eqn. (2.49) using De = 0.50meV Å
−2

and β = 1.31 Å
−1

The elastic energy will now have to account for the bending energy. Using linear elasticity
theory, we find:

Ebending = πκ

∫ R

0

r

(
f ′(r)

r
+ f ′′(r)

)2

dr, (2.50)

where κ = 11.25 eV [35] is the bending rigidity. Also, the strain energy density is modified
to incorporate OOPD:

Es =
1

8
(λ+ 2µ)

(
f ′(r)2 + 2u′(r)

)2
+
λu(r) (f ′(r)2 + 2u′(r))

2r
+

(λ+ 2µ)u(r)2

2r2
. (2.51)

Using a Gaussian-like function for the OOPD,

f(r) = f0 exp

[
−(r − r0)

2

σ

]
, (2.52)
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and Eqns. (2.48-2.51), the energy of the system was evaluated, and the differences in energy
of these systems compared to the case were no OOPD is allowed, ∆EOOP , are plotted in
Fig. 2.4. Note that, as we are not solving the variational equations for this case, the form
of the displacements used to obtain the energies shown in Fig. 2.4 are not the ones that
minimize the energy; this is justified because the goal of this section is not to determine a
precise value for f0, but rather to assess its orders of magnitude. The values reported in the
figure were obtained by choosing the value of σ to minimize the energy change for each value
of f0; for the reported f0 range, it was found that the values of σ that minimized the energy

were in the 240 Å
2
< σ < 250 Å

2
range, corresponding to an OOPD feature of ∼ 50 Å. Fig.

2.4 shows a reduction of the energy of about 2 eV related to the lifting of the film. While
this energy is big on an atomic scale, it is minuscule compared to the liquid-vapor interfacial
energy, which is in the order of tens of MeV. Also, note that the f0 range in which an energy
reduction happens is very narrow, with the minimum occurring around f0 = 0.0125 Å. This
level of OOPDs will not alter much the analysis as compared to assuming no OOPD, and is
consequently neglected.

2.4 Results and discussion

The hypothesis investigated here assumes that the strained film will be near instability, and
that the strain release will be governed by a type of near-critical behavior found in other
systems governed by stick/slip friction. Theoretical analysis of pinned charge density waves
[36], earthquake fault slipping [37] and dislocation motion [38–40] all show that in such
systems, a small perturbation force can lead to a large scale response. In the present case,
we propose that a small perturbative force can initiate the slipping process that relaxes the
film.

In this framework, then, all that is needed is for the droplet to provide the necessary
perturbing force. The theory presented here shows that there is an in-plane force arising
from the liquid/vapor/solid intersection.

If the droplet is considered, the elastic state of the film is a function of the interfacial
energies γij, meaning that it will be different from that shown in Sec. 2.3.1. To understand
the extra force provided by this perturbation, we begin by comparing the in-plane displace-
ments u of the equilibrium configuration in systems with and without a droplet, Fig. 2.5.
For the chosen interfacial tensions [which correspond to θ < π/2 in Eqn. (2.31)], the dis-
placements within the decoupled region are reduced relative to the values that they have in
the absence of the droplet. The implication is that the droplet places the region ∆ < r < r0
under compression relative to the droplet-free case. This additional compressive strain exerts
a force on the boundary of the decoupled region tending to decrease ∆. Hence, for the chosen
parameters, the presence of a droplet with ∆ < r0 < R increases the decoupling force.

Note that the increase in decoupling force is of the order of a few percent (see Fig. 2.6)
– an amount consistent with the notion that the films are near instability. That the extra
force increases with the droplet volume may explain why sometimes, as reported in Ref. [9],
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Figure 2.4: Energy differences of systems with and without OOPD. The parameters used
where those shown in Table 2.1, V = 150 µm3, ∆ = 5 µm. The values for r0 and u0 were
obtained using the formalism shown in Sec. 2.3.2.1

it takes several droplet applications in order to fully relax the film. As the the volume of the
droplet decreases due to evaporation, the extra force may fall below the threshold necessary
to trigger decoupling causing the radius of the contact patch of the droplet to fall below ∆.
Reapplying another, larger drop, increases the force, and enables decoupling to proceed.

Also note that in the presence of the strain, the contact angle defined by Eqn. (2.31) is
not the final contact angle of the fluid. Since the film is strained, and the strain exerts a
force on the triple point, the contact angle is altered slightly. The angle might be decreased
or increased depending upon the sign of the stress, and the value of the contact angle for an
unstressed film.

In order to assess the conditions in which the SEMD is possible, one has to consider how
the system will behave for a variety of parameter sets and strains. Though the mathematics
underlying the effect of an evaporating droplet are subtle, there is a simple way to qualita-
tively predict the effects of droplet evaporation on the decoupling. If the in-plane projection
of the liquid-vapor interfacial tension anti-aligns with the radial displacements arising from
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Figure 2.5: In-plane displacement in the equilibrium configuration for a system with ∆ =
5 µm and different liquid volumes. The vertical black line corresponds to r = ∆, while the
others correspond to r = r0 for the different values of V

the initial strain (radially outwards if εo > 0 , radially inwards if εo < 0), the evaporation will
increase the net force on the decoupling interface, and can lead to decoupling. Conversely, if
the projection of the liquid-vapor interfacial tension is aligned with the displacements associ-
ated with ε0, the evaporating droplet will tend to stabilize the strain state. The applicability
of this simple assessment is presented in Fig. 2.7. This figure shows, for a variety of contact
angles as defined by Eqn. (2.31), the displacements, ud (r) and the strains εd (r) = u′d (r),
induced by the application of an evaporating droplet. Note that the displacements plotted
here are computed according to

ud (r) = uwith droplet (r)− uwithout droplet (r) (2.53)

with uwith droplet (r) and uwithout droplet (r) referring to the solutions for the displacements with
and without the droplet, respectively. From the εd plots shown in the third column of Fig.
2.7, one can see the effect the droplet has on the decoupling force F∆: if εd is of the opposite
sign of εo in the ∆ < r < r0 region, as in cases I and IV, then the decrease in the elastic
energy prompted by a decrease in ∆ is bigger than in the no droplet case, thus increasing
|F∆|, and the droplet has the potential to initiate strain release. In contrast, in cases II and
III, the strain release will not be initiated.
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Figure 2.6: Percentage increase in decoupling force (now elastic plus droplet effects) relative
to just the elastic force for three different droplet volumes plotted as a function of ∆. The
step discontinuity at larger ∆ arises from the fact that, within the model, there is no extra
force if the radius of the pinned region is larger than the radius of the droplet contact patch.

2.5 Conclusion

This chapter presents a theoretical model for the SEMD method for as-grown strain release
in a film is developed and analyzed. The model demonstrates that bond strengths well below
those of covalent bonds are likely sufficient to stabilize the strains arising during the van der
Waals epitaxial growth of the WSe2. The model also predicts that a droplet of liquid can
generate an additional in-plane force that can trigger the decoupling of the film from the
substrate. Specifically, if the contact angle of the liquid is such that the projection of the
liquid/vapor surface tension is anti-aligned with the elastic displacements of the coupled
film, then the in-plane force has the potential to trigger decoupling.

The origin of the extra decoupling force is the compression (or tension, depending upon
the system in question) of the outer portion of the film that is free to slide. This additional
strain arises from the interfacial tensions associated with the droplet/film/vapor triple point.
For the acetone/WSe2 strained in tension samples, the extra compression of the free sliding
region from the droplet can be relieved if more of the film decouples by reducing ∆, and the
droplet can initiate strain release. The extra decoupling force represents an approximate 4%
increase in the decoupling force for the specific case of an acetone droplet and a WSe2 film
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Figure 2.7: Schematics, displacement and strains for a droplet on top of a strained film.
For cases 3 and 4, a volume of V = 500 µm3 was used; γlv = 0.45MeV2 µm−1 and γsl =
0.40MeV2 µm−1 were selected so that γlv would match that of water and the Young’s angle,
defined by Eqn. (2.31), was 110◦. Cases 2 and 4 use an initial strain of εo = −0.7%. The
white arrows indicate the direction of the displacements associated with the strain. For cases
1 and 4, the droplet has the potential to initiate decoupling of the film from the substrate.
For cases 2 and 3, the droplet will likely stabilize the strain state.

grown on amorphous silica.
Based on the model, it may be possible to use the SEMD method with a wide range of

substrates and 2D materials beyond TMDCs, opening the possibility of creating complex
relaxation patterns that exploit the strain tuned direct-to-indirect bandgap change [4] to
create novel devices. The fundamental understanding of the origins of the extra force pro-
vided by the droplet, and the predictions outlined in Fig. 5, make the case for the SEMD
method to be a viable pathway to engineer strain in 2D materials, thereby harnessing the
variety of strain-tunable properties [41].
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Chapter 3

Tellurium crystalline thin film growth

After being studied in the 1980s due to their applications in data storage materials [42–45],
tellurium thin films are nowadays experiencing a revival due to its potential application in
semiconductor devices [46–49] and their appealing optical and electronic properties [50–52].
On top of this, their crystal structure, depicted in Fig. 3.1, is composed of triangular chains
arranged in an hexagonal fashion. While it has been established that the bonds within the
chains are covalent, the nature of the interchain bonds is still being debated [53]. When
growing films on unheated substrates from vapor, most materials tend to form amorphous
slabs because of the lack of kinetic energy needed for the atoms to rearrange themselves in
the lower-energy crystalline state; thus, a high-temperature annealing step may be needed for
crystallization. Interestingly, Te grown by physical vapor deposition (PVD) crystallizes at
near-ambient temperature, and films grown this way are found to have respectable electrical
properties when the experimental conditions are optimized [50, 54–56].

Figure 3.1: Crystal structure of Te.

Even though research has been done in the direction of finding optimal conditions for Te
thin film growth, the amorphous to crystalline phase transition kinetics are yet to be fully
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understood. This chapter aims to provide a theoretical framework for the amorphous to
crystalline phase transition. In section 3.1, we detail the experiments from which data for
our model was extracted. Section 3.2 gives a brief introduction to both the Johnson-Mehl-
Avrami-Kolmogorov (JMAK) mathematical model for nucleation and growth and classical
nucleation theory (CNT), and section 3.3 introduces the image analysis methods used to
quantify the experimental data. Finally, results are presented in section 3.4 while conclusions
are drawn in section 3.5. This chapter is based in the work presented in Ref. [50].

3.1 Experimental details

In a chamber starting at 2 × 10−6mbar, Te atoms were deposited by thermal evaporation
in a SiO2/Si substrate kept at −80 °C by a cold nitrogen gas flow. When the deposition
process ended, the sample was taken out of the chamber after it reached 5 °C to prevent
water condensation from ambient air. Immediately after unloading them from the chamber,
samples were put in a thermoelectric module that was previously set at a desired temperature.

As the crystallization process did not start before loading the sample in the thermoelectric
module, this experimental set up allowed the recording of the crystallization process at
different temperatures using optical microscopy. Moreover, Te anisotropic optical properties
made it possible to differentiate between crystals with different orientations using polarized
light. From the videos of the crystallization process, it is possible to obtain kinetic parameters
such as the growth rate, while grain number density can be extracted from the polarized
light micrographs.

3.2 Nucleation and growth phenomena

Before analyzing the experimental data, we must first set the data that we want to extract.
The following sections are a concise introduction to a mathematical model of nucleation and
growth, and of the physical causes behind these phenomena.

3.2.1 Johnson-Mehl-Avrami-Kolmogorov model

The JMAK model [57–60] considers the phase transformation of a material in which nuclei of
the new phase are appearing at a rate Ṅ (units of number of new nuclei per area per time),
and these nuclei have a linear growth rate v (units of length per time). In what follows, we
will consider constant growth and nucleation rates, isotopic growth, and a 2D material.

We start by considering the growth of a single crystalline nucleus created at time τ . The
area of this seed after t time has passed if given by

a1(t) = πv2(t− τ)2. (3.1)

Considering the growth at an infinitesimal period of time, we get

da1(t) = 2πv2(t− τ)dt. (3.2)
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If we are to consider several nuclei appearing and growing in the same material, care
should be taken, as impingement, i.e. nuclei growing into one another, must be accounted
for. Labelling the total area of the material as A and the untrasformed area as Au(t),
the fraction of untransformed area is given then by u(t) = Au(t)/A. If nucleation is totally
random, then u(t) is, in average, the fraction of the nuclei that lies on an untransformed area.
Thus, the mean area contributed to the transformation by a single nuclei in an infinitesimal
time dt is given by

da2(t) = u(t)da1(t) = 2πv2u(t)(t− τ)dt. (3.3)

Considering a completely untransformed material, the number of new nuclei formed in
an infinitesimal interval dτ is

dN0 = AṄdτ. (3.4)

Note that, even though Eqn. 3.4 applies only at the very beginning of the transformation,
it is possible to account for the appearance of new nuclei in already transformed areas by
considering random nucleation and using the fraction u(t). Hence, the transformed area in
an interval dt due to all nuclei nucleated at the interval dτ is

dN0da2(t) = 2πAṄv2u(t)(t− τ)dtdτ. (3.5)

From Eqn. 3.5, we find that the growth rate of the transformed area due to every nuclei,
Ac(t), is

Ac(t)

dt
= 2πAṄv2u(t)

∫ t

0

(t− τ)dτ = πAṄv2t2u(t). (3.6)

As Ac(t) = A− Au(t), we get, using the definition of u(t):

f(t) ≡ Ac(t)

A
= 1− u(t), (3.7)

where we have defined the transformed fraction as f(t). From Eqn. 3.7, we have that

Ac(t)

dt
= −Adu(t)

dt
. (3.8)

Inserting Eqn. 3.8 into 3.6, and solving the differential equation with the boundary
condition u(t = 0) = 1, we have

f(t) = 1− u(t) = 1− exp
(
−π
3
Ṅv2t3

)
. (3.9)

Furthermore, we can compute the total number of nuclei after the crystallization process
has finished. To do this, we consider the number of nuclei appearing on an interval dτ :

dN = AṄu(t)dτ, (3.10)
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where we have assumed again that the nuclei are appearing in random positions. We then
get the final grain number density, ρ, by integrating from τ = 0 to τ = ∞:

ρ =
1

A

∫ ∞

0

dNdτ =

(
3

π

)1/3
(
Ṅ

v

)2/3

Γ

(
4

3

)
≈ 0.879

(
Ṅ

v

)2/3

, (3.11)

where Γ is the Euler gamma function.

3.2.2 Classical nucleation theory

Section 3.2.1 presented a mathematical model for nuclei of a new phase appearing and
growing. Here, we will deal with the physics of why is this new phase appearing on the first
place, and relate nucleation and growth rates to fundamental thermodynamic quantities like
the free energy difference. The following is a presentation of some useful results from classical
nucleation theory (CNT).

Consider the crystalline nuclei in an amorphous matrix. Within the CNT framework, it
is assumed that this nuclei will change size by the attachment or detachment of atoms, and
that there is no correlation in successive attachment or detachment events. Labelling the
attachment rate to an i-cluster as Γ+(i), it is possible to prove [61] that the nucleation rate
is given by

Ṅ = n(1)

(
imax−1∑
i=1

neq(1)

neq(i)

1

Γ+(i)

)−1

, (3.12)

where n(i) and neq(i) are the number of crystalline nuclei with i atoms in the steady and
equilibrium stage of the crystallization process, respectively, and imax is such that n(imax) =
0.

Using thermodynamics consideration, we can obtain the fraction of transformed nuclei
with i atoms in the equilibrium state as

neq(i)

neq(1)
= exp

(
−∆G(i)

kBT

)
, (3.13)

where kB is the Boltzmann constant and ∆G(i) = −gc→ai + γi2/3, with gc→a the difference
in free energy per atom of the amorphous and crystalline phase and γ a factor associated to
the interfacial energy of the crystal in the amorphous matrix. Plugging Eqn. 3.13 into 3.12,
approximating the sum by an integral and integrating around the critical number of atoms
ic for which ∆G(i) is maximum, we thus obtain

Ṅ = n(1)Γ+(ic)

√
η

2πkBT
exp

(
−∆G(ic)

kBT

)
, (3.14)

where η = 9g4c→a

8γ3 . Finally, as the attachment rate is also a thermally activated process, it can
be modelled by an Arrhenius like equation. Thus, from Eqn. 3.14, we get

Ṅ ≈ Ṅ0 exp

(
−∆Ev +∆G(ic)

kBT

)
, (3.15)
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where ∆Ev is an energy barrier associated with the attachment of an atom from the amor-
phous matrix to the crystalline nuclei.

Lastly, approximating the nuclei as spherical, we arrive at the expression

∆G(ic) =
16πγ3

3∆G2
c→a

, (3.16)

with ∆G2
c→a the free energy difference per volume between the crystalline and amorphous

phases.

3.3 Image analysis

In this section we will describe the image analysis algorithms used to extract the data
from the optical light videos and the polarized light micrographs. From the optical light
videos, time series of the crystallized fraction were obtained from samples held at different
temperatures. Grain number densities were extracted from polarized light micrographs.

We start by describing the three algorithms used to extract the information about the
transformed fraction from the crystallization videos at different temperatures. In the simplest
one, we transformed the video frames to gray scale images and selected two reference frames,
one before the transformation has started and another after the system has completely
crystallized. The values of the individual pixels of these reference frames are added up and
labelled l0 and l1, for the amorphous and crystalline references, respectively. Then, the
transformed fraction of the frame corresponding to time t is given by

f1(t) =
l(t)− l0
l1 − l0

, (3.17)

where l(t) is the sum of the value of the individual pixels of the frame corresponding to time
t.

A more sophisticated version of the aforementioned algorithm was also used. In this
scheme, the transformed fraction for a pixel i at time t, pi(t), was computed using the
equation

qi(t) =
pi(t)− pi,0
pi,1 − pi,0

, (3.18)

where pi,0 and pi,1 are the values of pixel pi in the amorphous and crystalline reference frames,
respectively. Then, the total transformed fraction for the frame is given by

f2(t) =
∑
i

qi(t). (3.19)

In the third and last algorithm that we used, we also worked with the frames extracted
from the videos. The frames were then processed as follows: first, they were rescaled to
150×113 pixels. A highpass filter with a cutoff frequency of 0.025 was then applied, and the
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obtained images were then transformed to gray scale. A background image corresponding
to the amorphous state was selected. We define the N(t) matrices as

N(t) = R[M(t)−M0], (3.20)

where M(t) and M0 are the matrix representations of the processed frames corresponding
to time t and to the reference state, and R[M ] is just a rescaling function that ensures that
all the values of the matrix M are between 0 and 1. The entries of the N(t) matrices where
then binarized by a function of the form

bh(Nij(t)) =

{
1 ifNij ≥ h,

0 ifNij < h.
(3.21)

Finally, the transformed fraction was obtained by

f3(t) =

∑
ij bh(Nij(t))

N
, (3.22)

where N is the total number of pixels. It is important to note that this method depends on
the threshold h defined in Eqn. 3.21.

The three methods were applied to the video of the sample held at 10 °C. We can see
that, even though the same reference images were used, the transformed fraction obtained
using the third method, f3, differs somewhat significantly from f1 and f2, with the difference
increasing as the threshold h decreases.

As the first method is the simplest of the three, and it does not have any adjustable
parameter besides the selection of the reference frames, results obtained using this method
are the ones reported. A comparison of the results obtained using different methods can be
found in Table 3.1, where we can see that, even though the shapes of transformed fraction
curves obtained by using different methods differ for a given temperature (see Figure 3.2),
properties of the system that are obtained by fitting the data of the curves over a range of
temperatures yield similar results.

Method ∆Eg (eV) ∆EN (eV)
1 0.92± 0.08 1.1± 0.2
2 0.92± 0.08 1.1± 0.2

3, h=0.44 0.82± 0.07 1.1± 0.2

Table 3.1: Values of different system properties obtained using different methods to extract
data from the videos. The process to calculate these properties is explained in Sec. 3.4

To obtain the grain density of samples held at different temperatures, images obtained
by polarized optical microscopy (see Figure 3.3.(a)) were analyzed. To count the number of
grains, we used the Fiji software [62] to process the images as follows: first, contrast was
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Figure 3.2: Transformed fraction for the sample held at 10 °C computed used the three
methods with the same reference images.

enhanced using histogram stretching and allowing 0.3% of the pixels to saturate; then, the
images were transformed from RGB to Luminance; finally, the statistical region merging
algorithm [1] with 25 independent random variables per pixel was applied. The output of
this process can be found in Figure 3.3. From the number of grains, it is straightforward to
obtain the nuclei density; these results are shown in Figure 3.4.

Figure 3.3: a) Polarized optical microscopy of a sample after the crystallization was com-
pleted holding the sample at 15 °C. b) Processed version of (a). The image segmentation
was done using the statistical region merging algorithm [1] using 25 random variable per
pixel. Region colors were assigned just to facilitate differentiation.

To extract the grain growth velocity from the videos, these were processed and analyzed
using Wolfram Mathematica [63]. The processing and analysis for each video frame was done
as follows: First, all the images were converted to gray scale. Then, a background image
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Figure 3.4: Grain density obtained by segmenting the micrographs of Te samples crystallized
at different temperatures. Error bars were set to 0.02 µm−2 to account for errors in the
digitization of the data.

was created by averaging all the images corresponding to times previous to crystallization.
Second, as the crystals are clearly brighter than the amorphous sections, all the images were
binarized by comparing to the background image. Finally, the growth rates were obtained by
fitting an ellipse to crystals before coalescence using the ComponentMeasurements package
and tracking its major and minor axis growth. An example of the ellipse fit and the results
obtained using this method can be found in Figure 3.5.

Figure 3.5: a) Binarized image of a grain and its fitted ellipse. b) Growth rate of the major
and minor axis of the fitted ellipses for different temperatures. Error bars were obtained as
the standard deviation of at least 3 tracked crystals.
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3.4 Results and discussion

Fitting the transformed fraction data extracted from the optical light videos to Eqn. 3.9,
we get an experimental measurement of the product v2Ṅ . Figure 3.6 shows the fitted curves
obtained by using Mathematica’s [63] NonlinearModelFit function as compared with the
experimental data. Equation (3.9) represents the experimental data well.

Figure 3.6: The kinetic growth data obtained from analysis of experimental data for
(i). . . (vii) = 35, 30, 25, 20, 15, and 10°C, respectively. The solid red curves are the ex-
perimental data obtained from the digitized movies, and the black dashed curves represent
the fits of the data to Eqn. 3.9.

Now, using the grain number density values extracted from the polarized light and Eqn.
3.11, we can obtain an experimentally measured value of Ṅ/v. Hence, it is possible to obtain
values for Ṅ and v for each temperature at which the sample was held. Such values can be
found in Fig. 3.7.

The computed radial growth rates range from 0.014 µm sec−1 to 0.100 µm sec−1. Assum-
ing that the growth facet is (111), this corresponds to completion of an additional atomic
layer approximately every 10−3 sec. Assuming an Arrhenius form, the growth rate corre-
sponds to an energy barrier of ∆Ev = 0.92±0.08eV. This, presumably, is the average energy
barrier for attachment of an atom to the growing cluster from the amorphous surroundings.

The nucleation rate also obeys an Arrhenius form, but with a total energy barrier of
1.99± 0.16eV. Using Equation 3.15 and the experimentally determined activation energies,
we conclude that ∆G(ic) = 1.08 ± 0.24eV. The Materials Project tabulates the air/crystal

surface energies for Te and these range from 5meV Å
−2

to 23meV Å
−2

[64]. Assuming that
the interfacial energy for the crystalline/amorphous interface is approximately half of this
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Figure 3.7: Growth and nucleation rates determined by the fitting of Eqn. (3.9) and final
grain number densities. All lengths are measured in microns, and times in seconds.

energy, i.e. γ = 2.5meV Å
−2
, using Eqn. 3.16 one concludes that ∆Gc−a = 17 ± 7meV per

atom, and the critical nucleus size over the temperature range studied includes approximately
127 atoms.

As temperature is decreased from 35 °C to 10 °C, the incubation time, that is, the time
it takes to have a 5% transformation increases from 30 seconds to more than 10 minutes
due to the suppressed nucleation rate (Ṅ is dominated by temperature) and crystallization
time increases from seconds to hours (Fig. 3.8), which is contributed by low nucleation and
growth rates.

The activation energy for Te crystal growth is extracted directly by measuring growth
rate at different crystallization temperatures and fitting the temperature-dependent growth
rate to the Arrhenius equation for grain growth (Fig, 3.9). The extracted activation energy
extracted directly from measurements of growth is 0.81 ± 0.1eV in good agreement with
the value ∆Ev = 0.91 ± 0.11eV extracted from fitting to Eqn. 3.9. The energy barrier is
also much lower than that of Si or Ge (∼ 3 eV)[65], which explains the tendency toward
crystallization of the amorphous Te films at the low temperature (−10 °C or lower).

3.5 Conclusions

Based on the observations above, larger grain size can be obtained by reducing the ratio
Ṅ/v, which according to Eqn. 3.15 has an Arrhenius form. Consequently, over the range of
temperatures modeled here, a lower temperature corresponds to a lower number of grains.
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Figure 3.8: Temperature time transformation diagram for Te films crystallized at different
temperatures. 5% and 95% means the coverage of the crystallized Te extracted from Fig.
3.6

Lower temperature, however, also causes the sample to crystallize at a much slower rate,
and thus this process might not be readily scalable.

As the the experimental data can be fitted with good accuracy to equations obtained
from the JMAK and CNT models, we know that the assumptions of each of these models
also apply to the physical system at hand. The knowledge gained by the applications of these
theories was used to control the crystallization process of thermally evaporated amorphous
Te.
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Figure 3.9: Plot of growth rate as function of temperature, measured in µms−1. The solid
line represents the fit to an Arrhenius equation.
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Chapter 4

Oriented growth of thin Te crystals

In Sec. 3 we studied the possibility of synthesizing large areas of single-crystal Te by tuning
the growth parameters. While we concluded that the nucleation rate can be lowered by
decreasing the temperature of the substrate, we also established that under these conditions
the growth rate of the nuclei is very slow, making the process hard to scale. Then, a new,
scalable method of creating high-quality, large areas of Te thin films is needed, and we present
such process here.

In this chapter, instead of aiming at growing single-crystal Te thin films by suppressing the
nucleation rate, we present a method for multiple Te crystals aligned in the same direction.
To do this, we take advantage of the low symmetry of the Te crystalline structure (see Fig.
3.1), and use similar substrates to favor a specific chain direction. Te was grown using
physical vapor deposition (PVD) on top WSe2, WS2, MoSe2, MoS2, and WTe2 substrates.
Of the substrates used,WSe2, WS2, MoSe2, MoS2 have a three-fold rotation axis, while WTe2
has a two-fold one.

The synthesized Te films were shown to have their c-axis oriented in-plane, meaning that
the chains were perpendicular to the vector normal to the substrate. Also, because of the
high anisotropy of their bonding, Te crystals showed a needle-like growth, leading to poor
area coverage. Then, different growth temperatures, as well as pre-annealing the substrate
(i.e., annealing before Te depostion) were systematically explored. This section presents
results previously published in Ref. [66].

4.1 Results and discussion

When Te was grown on top of substrates with a three-fold rotation axis, optical and scanning
electron microscopy (SEM) images confirmed that the chains were aligned along one of the
three substrate’s high-symmetry directions, as can be seen in Fig. 4.1, showing a Te film on
a WSe2 pre-annealed substrate at 300 °C that was grown at 100 °C. It was also confirmed
by transmission electron microscopy that the chains preferred to be aligned along armchair
directions.
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Figure 4.1: Optical (a) and SEM (b) images of the oriented ultrathin Te on WSe2 substrate.

Substrates were also subjected to thermal treatment before the deposition process, and
it was found pre-annealing increased the Te thin film coverage, as shown in Fig. 4.2. In
Fig. 4.2a), Te showed a 1D needle-like structure on the untreated, as-exfoliated WSe2 flakes.
79% of the flakes exhibited preferred growth orientation along the armchair directions, while
the other 21% flakes grew along the zigzag directions. Te grown on the annealed substrates
tends to form 2D structures as shown in Fig. 4.2b), c). The yield of armchair oriented flakes
increases to 93% after a pre-annealing of WSe2 substrate at 200 °C. The flakes, retaining
the oriented nature, grow and merge into a film with a surface coverage of 95% on the WSe2
substrate pre-annealed at 300 °C. Fig. 4.2a)–c) indicate that the films are more uniform
after pre-annealing. We further investigate the influence of substrate temperature on the
growth. Te was grown on the annealed WSe2 flakes (annealing temperature was 300 °C) at
temperatures ranging from 100 to 170 °C. As shown in the Fig. 4.2d)–f), the morphology of
Te changes from 1D needle-like structure to 2D form with the growth temperature decreasing
at fixed substrate preparation conditions.

The observed patterns of growth can be rationalized within a simple model. Fig. 4.3
highlights the kinetic processes that appear to be relevant to the growth mechanism. Te
atoms are deposited on the surface, diffuse on that surface, and can desorb from the surface
(Fig. 4.3a)–c)). Note that diffusion of adatoms on a substrate with 3-fold symmetry is
expected to be isotropic. The diffusing atoms can encounter trapping sites before desorption.
In the case that the trapping site is another diffusing atom, a nuclei may begin to form,
growing through the attachment of additional diffusing atoms (Fig. 4.3e)). Alternatively,
the trapping site might be a surface defect, such as a Se vacancy in the substrate, or a
Te substitutional defect in the substrate (Fig. 4.3f)). Finally, an adatom can encounter a
stable cluster of Te atoms, and begin to diffuse along its edge (Fig. 4.3d)). At the first
stages of nuclei growth, i.e., when the film is thin enough for the Te-substrate van der Waals
interaction to be important throughout the whole nuclei, van der Waals epitaxy takes place
and Te chains align with the substrate. At later stages of growth, atoms can attach directly
to existing Te islands, and thus thicken the films (Fig. 4.3g)). At this later stage, the only
van der Waals interaction at play is the one between the Te chains; the difference in bond
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Figure 4.2: Morphology of Te grown on WSe2 under different conditions. a–c) Te grown at
100 °C on the non-annealed (a), 200 °C (b) and 300 °C (c) annealed WSe2 substrates. d–f)
Te grown at temperatures of 170 °C (d), 130 °C (e) and 100 °C (f) on the 300 °C pre-annealed
WSe2 substrates.

strength (covalent between atoms in the same chain, van der Waals between chains) might
be the mechanism behind surface roughening.

These processes can be used to understand the morphology of the growth. First and
foremost, the growth shape of the crystals is determined by the relative rates of diffusion
along the wire, versus diffusion at its ends. Since the Te interchain bonds are primarily of
van der Waals character, one expects that edge diffusion (4.3d)) will be very rapid relative
to the diffusion of Te atoms on a pristine (0001) surface because those Te are covalently
bonded to the chains. These relative rates explain the aspect ratio of the growing wires, as
well as the fact that the (0001) facets of the growing plates are very rough, and perhaps even
display a fingering instability [67].

To further explore this matter, DFT calculation were run using the Vienna Ab Initio
Simulation Package [29–31] version 5.4.4. The projected-augmented-wave method was used
to model the core electrons, and the exchange-correlation energy was estimated using Perdew-
Burke-Ernzehof [33]. All the simulations were run using a 600 eV cutoff energy for the

plane-wave basis set, a minimum spacing for the k-points of 0.25 Å
−1
, and convergence

criteria of 10−5eV for the electronic self-consistent cycle. Also, a dipole correction was
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Figure 4.3: Kinetic Processes Affecting Morphology. a) Atoms arrive at the surface from
the vapor. b) Atoms diffuse on the surface and c) may desorb from the surface, if they
do not encounter a trapping site. d) Existing nuclei can serve as a trapping site. Once an
atom encounters a wire, it is loosely bound and diffuses along the edge of the wire rapidly
until it encounters the end of the wire, where it covalently bonds to the chain. e) Other
atoms may also serve as trapping sites, leading, through standard nucleation kinetics, to
homogeneous nucleation. f) Pre-existing defects can also serve as trapping sites, and can
lead to heterogeneous nucleation. (Here the defect is a substitutional impurity atom.) g)
After growth has progressed for some time, atoms will attach directly to nucleated clusters,
and multilayer growth can ensue.

used in the direction perpendicular to the substrate to reduce spurious interaction of the
system with its periodic image. To compute the binding energies of Te atoms to WSe2
substrates with and without Se vacancies, a 5 × 5 substrate supercell was used, and the
atomic positions and volume of the supercell were relaxed until the forces on all atoms were

less than 10−3eV Å
−1
. Lastly, the binding energies were computed using the usual equation,

Eb = ETe/WSe2 − (EWSe2 +ETe), where ETe is the energy of a single Te atom (obtained using
a single k-point and the above mentioned parameters), and ETe/WSe2 , EWSe2 are the energies
of Te plus substrate and substrate Te systems respectively. The binding energy of a Te slab
with its substrate was computed using a supercell containing 1× 4 and 1× 3 substrate and
Te unit cells, respectively, and strains of ε33 = −3.6% and ε11 = −2.0% were imposed on
the Te slab. The bonding energy was obtained using the equation

Eb =
ETe/WSe2 − (EWSe2 + ETe)

A
(4.1)

where ETe/WSe2 , EWSe2 , ETe are the energies of the systems consisting of just the substrate,
the Te slab, and the substrate plus the slab; and A is the area perpendicular to the substrate
normal.
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The potential for desorption helps to explain the fact that the growth rate of the films de-
pends upon temperature and pre-annealing conditions. First, DFT total energy calculations
suggest that the binding energy of the Te film to the substrate is quite weak, 10mJm−2,
which is consistent with a high probability for desorption of diffusing Te atoms. With no
pre-annealing, the number of surface trapping sites (Fig. 4.3f)) is at a minimum. The po-
tential for an atom to be bound to a trapping site is low, and the average desorption rate of
the deposited Te atoms is maximized. Pre-annealing leads to the production of Se vacancies
in substrate[68–71], and DFT predicts that these will trap a Te atom with a binding energy
of 4.9 eV. Thus, one expects that the vacancies will become substitutional Te defects. The
substrate Te substitutional defects then act as a trapping site for additional Te atoms. DFT
predicts that this binding energy is 1.6 eV, which is greater than that computed for a Te
atom binding in a pristine substrate by 95meV. So, on average, a Te atom has a longer
residence time on the substrate for a pre-annealed sample.

The nucleation rate of clusters is probably a combination of heterogeneous and homoge-
neous nucleation. Consider the growth morphologies of Fig. 4.2a)–c). Clearly, pre-annealing
at 200 °C leads to a higher nucleation rate than that without pre-annealing. This is most
likely due to heterogeneous nucleation (Fig. 4.3f)). However, it appears that as the pre-
annealing temperature is increased to 300 °C, the nucleation rate decreases. A possible
explanation for this is that the vacancies produced in the substrate begin to cluster. DFT
predicts that the Se divacancy in WSe2 is bound by 105meV. If true, as the vacancies form,
the number of clusters depends on the ratio of the diffusion coefficient to the rate of produc-
tion of vacancies [72]. If this ratio increases rapidly with temperature, then the number of
clusters in the 300 °C pre-annealing case will be reduced relative to the 200 °C pre-annealing
treatment, and the heterogeneous nucleation rate will be, accordingly, decreased.

Once the clusters are nucleated, they grow through the aggregation of atoms, both from
the vapor and from the surface. Occasionally, if two atoms bound to the edge of a wire
encounter one another, they can nucleate and adjacent wire, and the width of the flake
increases. Alternatively, a Te atom diffusing along the edge of a wire may encounter and
bind to a Te substitutional defect in the substrate. This bound atom would start a new
chain that would align with the original. In this manner, the growing needles can expand to
become a film.

The orientation of the wires (armchair vs zigzag) are determined by both kinetics and
thermodynamics. Though the films are not strongly bound to the substrate, the symmetry of
the substrate clearly impacts the growth morphology. Empirically, the chains aligned along
the armchair direction seemed favored, but it is difficult to assess the relative binding energies
of the two configurations using DFT because the size of the cells necessary to obtaining a
low stress configuration are prohibitive.

The crucial role of substrate interaction in the orientation on Te chains was further
checked experimentally. Te was grown on MoS2, MoSe2, and WS2, all similar three-fold
symmetric substrates, using a substrate pre-annealing at 300 °C and growth at 100 °C. While
the sizes of the Te flakes varied, all of them exhibited the same orientation of the Te chains
along one of the substrate’s three high-symmetry directions.
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Furthermore, to achieve single-crystal-like flake growth, Te was grown at 130 °C on a
WTe2 pre-annealed at 300 °C substrates. As WTe2 has a two-fold rotation axis, we expect
all the chains to be aligned in the same direction. Indeed, electron backscatter diffraction
(EBSD) was performed on the Te/WTe2 structure to determine its crystallinity and growth
orientation, indicating single-crystal-like texture of the grown Te on the WTe2 surface. C-
axis of Te is aligned perpendicularly to the a-axis of WTe2 (tungsten atomic chains), and
(10-10) planes are paralleled to the surface based on the EBSD results.

4.2 Conclusions

We realized oriented growth of ultrathin Te on 2D surfaces via van der Waals epitaxy on
WSe2, WS2, MoSe2, MoS2, and WTe2 flakes. DFT was used to model the growth behavior
of the Te atoms, and a plausible explanation for the increased surface coverage in the case of
a pre-annealed substrate was offered. Finally, using a pre-annealed substrate, we achieved
the growth of single-crystal textured Te on WTe2.
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Chapter 5

Conclusions and future work

Throughout this thesis, I have presented models that, relying on basic science, explain com-
plex phenomena that occur during semiconductor manufacturing. Chapter 2 presents a
model of the SEMD method. The model offers a quantitative selectivity criteria to deter-
mine whether the SEMD method will work for a specific system based on the liquid contact
angle and the nature (compressive or tensile) strain of the film; this criteria is summarized
in Fig. 2.7. Even though Ref. [8] reports the synthesis of WSe2 monolayer with both tensile
and compressive strain, the selectivity criteria remains to be tested experimentally. Further
experiments may involve growing monolayers on substrates patterned with materials with
different thermal coefficients of expansion, ideally ones predicted to result in widely different
elastic states of the film (like silica and strontium titanate for WSe2 [8]), and explore the
effects of SEMD. Another way to create interesting elastic state patterns is to “weld” the
film to the substrate by putting islands of other materials with stronger interaction to the
substrate on top of it.

Some theoretical advances can also be made to the SEMD model. As is, the model
can only manage circular, concentric shapes, and any departure from this results in a very
complex system of differential equations. However, it may be possible to, using the same
physical assumptions presented in this work, develop a finite-element method that is capable
of computing the resulting elastic state of systems with complex geometries. While it is
predicted that the necessary forces for maintaining the initial stress on the film need not to
be large, and can be sustained the van der Waals bonds with the substrate, there is also
evidence [13] that the combination of these bonds along with the thermal vibrations might
result in some very interesting strain maps at the atomic scale. The maps show vortex-like
atomic displacements, resulting in a metastable equilibrium state where strain is present;
the effect of the droplet will then be to “kick” the system out of this state into the global
energy minimum, releasing thus the strain.

Chapter 3 uses classical nucleation theory to develop an understanding of the amorphous-
to-crystal transition in vapor grown Te thin films. Because of the anisotropic nature of Te
properties, large areas of single crystal Te are desired. It was seen experimentally, and later
confirmed by the model, that decreasing the temperature inhibited the nucleation, therefore
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resulting an larger average crystal area; the downside of this is that a lower temperature also
means slower growth, rendering the method a poor candidate for industrial scaling. A way to
overcome this would be suppress the homogeneous nucleation by engineering the substrate
to make the Te impingement rate as low as possible (how can this be done is a problem
for future engineers), and rely only on heterogeneous nucleation starting at the edges of the
substrate or at impurities and defects. With such a system, it may be possible to have a low
nucleation rate that does not depend on temperature and a decent growth rate.

Lastly, the growth of oriented Te films was explored in chapter 4. The chapter out-
lined the importance of the substrate pre-annealing treatment, which greatly increases the
impingement Te rate. In this case, however, having a good impingement rate might be
desirable, as the direction of the Te chains can be determined by the substrate. While it
is empirically know that thermal treatment leads to vacancies on the substrates used in
this work, the theoretical study does not get beyond saying that this vacancies enhance the
impingement rate, and currently the underlying mechanism is not know.
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